CN101635309A - 环绕栅极型半导体器件及其制造方法 - Google Patents

环绕栅极型半导体器件及其制造方法 Download PDF

Info

Publication number
CN101635309A
CN101635309A CN200810177544A CN200810177544A CN101635309A CN 101635309 A CN101635309 A CN 101635309A CN 200810177544 A CN200810177544 A CN 200810177544A CN 200810177544 A CN200810177544 A CN 200810177544A CN 101635309 A CN101635309 A CN 101635309A
Authority
CN
China
Prior art keywords
raceway groove
semiconductor device
type semiconductor
vertical raceway
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200810177544A
Other languages
English (en)
Inventor
张太洙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of CN101635309A publication Critical patent/CN101635309A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7789Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface the two-dimensional charge carrier gas being at least partially not parallel to a main surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Abstract

本发明公开一种环绕栅极型半导体器件及其制造方法。通过将硅锗柱和围绕硅锗柱的硅层用作竖直沟道,该环绕栅极型半导体器件提高了电子和空穴的迁移率。栅电极形成为围绕竖直沟道。当将半导体器件用作nMOSFET时,由于硅锗柱而产生应变的硅层用作沟道以增加电子迁移率。当将半导体器件用作pMOSFET时,硅锗柱用作沟道以增加空穴迁移率。由此,无论晶体管为何种类型,半导体器件都可以增强电流供应能力。

Description

环绕栅极型半导体器件及其制造方法
技术领域
本发明整体涉及一种具有竖直沟道的半导体器件,更具体地说,本发明涉及一种提高电子和空穴的迁移率的环绕栅极型(all aroundgate type)半导体器件及其制造方法。
背景技术
为了制造高集成度的电路,需要半导体更小。然而,若半导体器件的集成度增加,则可能产生短沟道效应。
因此,已经开发出用于防止产生短沟道效应以及用于缩小器件尺寸的各种方法。
在设计成用于使半导体器件小型化并且用于防止产生短沟道效应的晶体管的理想实例中,环绕栅极型晶体管包括围绕所有沟道的栅极。
在传统晶体管中,沟道宽度随着器件区域的减小而缩短。然而,在环绕栅极型晶体管中,可以将被栅电极围绕的沟道的所有外围区域用作沟道,从而增加了沟道的宽度。因此,可以避免由于沟道宽度缩短所造成的电流减小。
近来,已经对具有竖直沟道的环绕栅极型半导体器件进行了各种研究。然而,在制造具有竖直沟道的环绕栅极型半导体器件时,需要提高沟道中的电子和空穴的迁移率。
发明内容
本发明的各个实施例旨在改善环绕栅极型半导体器件的竖直沟道结构,以增加沟道中的电子和空穴的迁移率。
根据本发明的一个实施例,一种环绕栅极型半导体器件包括:竖直沟道柱,其在硅基板上形成并且包含锗;硅层,其围绕所述竖直沟道柱;以及栅电极,其围绕所述硅层。
优选的是,所述环绕栅极型半导体器件包括:第一源极/漏极触点,其连接至所述竖直沟道柱的上表面;第二源极/漏极触点,其连接至所述硅层;以及栅极触点,其连接至所述栅电极。
在所述环绕栅极型半导体器件中,所述竖直沟道柱是包含在1%至99%范围内的锗的硅锗(SiGe)柱。在所述竖直沟道柱中掺入p型或n型杂质。所述竖直沟道柱的高度和宽度分在1nm至500nm和1nm至300nm的范围内。
在所述环绕栅极型半导体器件中,所述硅层的厚度在1nm至500nm的范围内。在所述硅层中掺入p型或n型杂质。
优选的是,所述环绕栅极型半导体器件包括在所述硅层和所述栅电极之间形成的栅极氧化物膜。
根据本发明的一个实施例,一种制造环绕栅极型半导体器件的方法包括:在硅基板上形成包含锗的竖直沟道柱;形成围绕所述竖直沟道柱的硅层;形成围绕所述硅层的栅电极;以及形成分别与所述竖直沟道柱、所述硅层和所述栅电极连接的漏极触点、源极触点和栅极触点。
优选的是,形成所述竖直沟道柱的步骤包括:在所述硅基板上形成限定竖直沟道柱区域的光阻图案;利用所述硅基板作为晶种通过外延工序在所述竖直沟道柱区域中形成SiGe层;对所述SiGe层进行蚀刻和平坦化;以及移除所述光阻图案。所述外延工序是利用硅前体(precursor)和锗前体的化学气相的气相外延工序。
优选的是,形成所述SiGe层的步骤还包括利用原位(in-situ)法来掺入掺杂物。杂质的浓度在1E10/cm3至1E20/cm3的范围内。
优选的是,在形成所述SiGe层的步骤中锗的比例在1至99%的范围内。
优选的是,所述硅层的厚度在1nm至500nm的范围内。形成所述硅层的步骤还包括利用原位法在所述硅层中掺入掺杂物。
附图说明
图1是示出根据本发明实施例的环绕栅极型半导体器件的平面图。
图2a与图2b是沿着图1的线A-A′和B-B′所截取的剖视图。
图3至图12是示出制造根据本发明实施例的环绕栅极型半导体器件的方法的视图。
具体实施方式
图1是示出根据本发明实施例的环绕栅极型半导体器件的平面图。图2a与图2b是沿着图1的线A-A′以及B-B′所截取的剖视图。
在该环绕栅极型半导体器件中,漏极触点21、源极触点22以及栅极触点23形成为在绝缘膜20上突出,并且布置成“L”形的构造。例如,栅极触点23构造成沿着一个方向与漏极触点21以预定间隔间隔开,并且源极触点22构造成沿着垂直方向与漏极触点21以预定间隔间隔开。
漏极触点21连接至硅锗(SiGe)柱13(当用作pMOSFET时)、或连接至SiGe柱13和硅层14(当用作nMOSFET时)。在该实施例中,漏极触点21连接至SiGe柱13和硅层14。利用外延(epitaxy)法形成SiGe柱13和硅层14,并且将SiGe柱13和硅层14用作竖直沟道以提高空穴或电子在环绕栅极型半导体器件中的迁移率。
SiGe柱13依次地由硅层14、栅极氧化物(SiO2)膜15和栅电极19围绕。也就是说,如图2a所示,竖直沟道形成有包括栅电极/栅极氧化物膜/硅层/硅锗柱/硅层/栅极氧化物膜/栅电极的横截面结构。SiGe柱13包含在1%至99%范围内的锗。根据晶体管的类型,可以通过原位法将p型或n型杂质掺杂到SiGe柱13和硅层14中。掺杂的浓度在1E 10/cm3至1E20/cm3的范围内。SiGe柱13的高度和宽度分别在1nm至500nm和1nm至300nm的范围内。硅层14的厚度在1nm至500nm的范围内。
通过蚀刻绝缘膜20和16来将源极触点22形成为与硅层14接触,并且该源极触点22通过绝缘膜16而与栅电极19间隔开。
如图2b所示,栅极触点23连接至栅电极19,该栅电极19沿着竖直方向延伸并且围绕包括SiGe柱13的竖直沟道。
图3至图12是示出制造根据本发明实施例的环绕栅极型半导体器件的方法的视图。在图3至图12中,(a)示出剖视图,而(b)示出平面图。
参照图3,在硅基板30上形成光阻膜(未示出)。
在利用限定SiGe柱将要形成的区域的掩模来对光阻膜曝光之后,使曝光过的光阻膜显影以获得光阻图案31。
参照图4,在从光阻图案31露出的用作晶种层的硅基板30上形成SiGe层32。
该SiGe层32可以利用外延工序形成,该外延工序包括这样一种气相外延工序:该工序利用作为硅前体的丙硅烷(Si3H3)和作为锗前体的GeH4的化学气相。SiGe层32包含在1%至99%范围内的锗。
在形成SiGe层32时,根据晶体管类型,利用原位法掺入所需的掺杂物。也就是说,在SiGe层32中掺入杂质,从而使得可以将由后续工序形成的SiGe柱用作沟道。当该晶体管是nMOSFET时,掺入p型杂质,而当该晶体管是pMOSFET时,掺入n型杂质。p型或n型杂质的掺杂浓度在1E10/cm3至1E20/cm3的范围内。
参照图5,在SiGe层32上执行CMP工序,以露出光阻图案31。然后,移除光阻图案31以获得具有预定高度的SiGe柱33。
SiGe柱33的高度和宽度分别在1nm至500nm和1nm至500nm的范围内变化。
参照图6,在SiGe柱33和硅基板30上依次地形成Si层34和栅极氧化物(SiO2)膜35。也就是说,通过外延工序,将Si层34沉积在SiGe柱33和硅基板30上,并且将SiO2膜形成在Si层34上。Si层34的厚度在1nm至500nm的范围内。栅极氧化物膜35的厚度在1nm至100nm的范围内。
在形成Si层34时,根据晶体管类型,可以以与形成SiGe柱33相同的方式,利用原位法掺入所需的掺杂物,从而使得可以将Si层34用作沟道。例如,当形成nMOSFET时,将p型杂质掺入Si层34中,而当形成pMOSFET时,将n型杂质掺入Si层34中。
下面,描述在SiGe柱33上形成Si层34的理由。
首先,SiGe的特性不及SiO2的特性良好,这是因为锗会造成器件性能降低。在形成栅极氧化物膜35之前,通过外延工序在SiGe柱33上形成Si层34,从而改善界面特性。
其次,由于SiGe而产生应变(strained)的Si层34因为电子迁移率的增加而改善晶体管的电流供应能力(current supply capacity)。也就是说,由于Si的晶格常数比SiGe的晶格常数小,因此如果在SiGe柱33上形成薄的Si层34,则Si层由于SiGe与Si之间的晶格常数的差异而产生应变。以这样的方式,若Si层34产生应变,则Si层34中的电载流子迁移率会增加。因此,当根据本发明实施例的半导体器件作为nMOSFET使用时,通过Si层34的电子迁移率可以进一步增加。
参照图7,在将第一绝缘膜36形成在栅极氧化物膜35上之后,依次蚀刻第一绝缘膜36、栅极氧化物膜35和Si层34,直到露出SiGe柱33的上表面为止。
参照图8,在图7的所得结构上形成光阻膜(未示出)。在利用限定栅电极所形成的区域的栅极掩模(未示出)对光阻膜进行曝光之后,对曝光后的光阻膜进行显影以获得光阻图案37。
参照图9,用光阻图案37作为蚀刻掩模选择性地蚀刻第一绝缘膜36,直到露出栅极氧化物膜35为止,从而获得沟槽T。
参照图10,在图9的所得结构上形成栅电极材料38,以填充沟槽T。
参照图11,依次蚀刻栅电极材料38和光阻图案37直到露出SiGe柱33的上表面为止,从而获得栅电极39。
参照图12a和图12b,在图11的所得结构上形成第二绝缘膜40。利用对漏极触点孔(未示出)、源极触点孔(未示出)和栅极触点孔(未示出)进行限定的触点孔掩模(未示出)在第二绝缘膜40上形成触点孔图案(未示出)。
根据触点孔区域,使用触点孔图案(未示出)作为蚀刻掩模,对第二绝缘膜40进行选择性地蚀刻、或对第二绝缘膜40、第一绝缘膜36和栅极氧化物膜35进行选择性地蚀刻。也就是说,在形成漏极触点孔和栅极触点孔的区域中,对第二绝缘膜40进行选择性地蚀刻,直到露出SiGe柱33和栅电极39为止。在形成源极触点孔的区域中,对第二绝缘膜40、第一绝缘膜36和栅极氧化物膜35进行选择性地蚀刻直到露出Si层34为止。
通过填充蚀刻出的区域来形成连接插塞多晶硅(未示出)。利用对漏极触点41、源极触点42和栅极触点43进行限定的触点掩模(未示出)使连接插塞多晶硅图案化,从而获得漏极触点41、源极触点42和栅极触点43。
如上所述,根据本发明的一个实施例,竖直沟道形成为具有Si层35围绕SiGe柱33的结构,并且栅电极形成为围绕该竖直沟道,由此增加电载流子迁移率。
也就是说,当将根据本发明实施例的半导体器件用作nMOSFET时,将由于SiGe而产生应变的Si层34用作沟道以增加电子迁移率。此外,当将半导体器件用作pMOSFET时,将SiGe柱33用作沟道以增加空穴迁移率。以这样的方式,根据本发明实施例的半导体器件可以改善电子和空穴的迁移率,从而无论晶体管为何种类型都能增强电流供应能力。
尽管在实施例中将SiGe柱作为竖直沟道柱的实例,但是可以用Ge柱取代SiGe柱。本领域的技术人员可以参照上述方法容易地执行利用气相外延工序将锗在硅基板上沉积至预定高度的方法。
本发明的上述实施例是示例性的而非限制性的。各种替代及等同的方式都是可行的。本发明并不限于本文所述的沉积、蚀刻、抛光和图案化步骤的类型。本发明也不限于任何特定类型的半导体器件。举例来说,本发明可以用于动态随机存取存储(DRAM)器件或非易失性存储器件。对本发明内容所作的其它增加、删减或修改是显而易见的并且落入所附权利要求书的范围内。
本发明要求2008年7月25日提交的韩国专利申请No.10-2008-0072824的优先权,该韩国专利申请的全部内容以引用方式并入本文。

Claims (20)

1.一种环绕栅极型半导体器件,包括:
竖直沟道柱,其在硅基板上形成并且包含锗;
硅层,其围绕所述竖直沟道柱;以及
栅电极,其围绕所述硅层。
2.根据权利要求1所述的环绕栅极型半导体器件,还包括:
第一源极/漏极触点,其连接至所述竖直沟道柱的上表面;
第二源极/漏极触点,其连接至所述硅层;以及
栅极触点,其连接至所述栅电极。
3.根据权利要求1所述的环绕栅极型半导体器件,其中,
所述竖直沟道柱是硅锗(SiGe)柱。
4.根据权利要求3所述的环绕栅极型半导体器件,其中,
所述SiGe柱包含在1%至99%范围内的锗。
5.根据权利要求3所述的环绕栅极型半导体器件,其中,
在所述竖直沟道柱中掺入有p型或n型杂质。
6.根据权利要求3所述的环绕栅极型半导体器件,其中,
所述竖直沟道柱的高度在1nm至500nm的范围内。
7.根据权利要求3所述的环绕栅极型半导体器件,其中,
所述竖直沟道柱的宽度在1nm至300nm的范围内。
8.根据权利要求1所述的环绕栅极型半导体器件,其中,
所述竖直沟道柱仅包含锗。
9.根据权利要求1所述的环绕栅极型半导体器件,其中,
所述硅层的厚度在1nm至500nm的范围内。
10.根据权利要求1所述的环绕栅极型半导体器件,其中,
在所述硅层中掺入有p型或n型杂质。
11.根据权利要求1所述的环绕栅极型半导体器件,还包括:
在所述硅层和所述栅电极之间形成的栅极氧化物膜。
12.一种制造环绕栅极型半导体器件的方法,所述方法包括:
在硅基板上形成包含锗的竖直沟道柱;
形成围绕所述竖直沟道柱的硅层;
形成围绕所述硅层的栅电极;以及
形成分别与所述竖直沟道柱、所述硅层和所述栅电极连接的漏极触点、源极触点和栅极触点。
13.根据权利要求12所述的方法,其中,
形成所述竖直沟道柱的步骤包括:
在所述硅基板上形成限定竖直沟道柱区域的光阻图案;
利用所述硅基板作为晶种通过外延工序在所述竖直沟道柱区域中形成SiGe层;
对所述SiGe层进行蚀刻和平坦化;以及
移除所述光阻图案。
14.根据权利要求13所述的方法,其中,
所述外延工序是利用硅前体和锗前体的化学气相的气相外延工序。
15.根据权利要求13所述的方法,其中,
形成所述SiGe层的步骤还包括利用原位法掺入掺杂物。
16.根据权利要求13所述的方法,其中,
在所述SiGe层中,锗相对于硅的量在1%至99%的范围内。
17.根据权利要求12所述的方法,其中,
形成所述竖直沟道柱的步骤包括:
在所述硅基板上形成限定竖直沟道柱区域的光阻图案;
在所述竖直沟道柱区域中通过外延工序来形成锗层;
对所述锗层进行蚀刻和平坦化;以及
移除所述光阻图案。
18.根据权利要求12所述的方法,其中,
所述硅层是通过外延工序来形成的。
19.根据权利要求19所述的方法,其中,
所述硅层的厚度在1nm至500nm的范围内。
20.根据权利要求19所述的方法,其中,
形成所述硅层的步骤还包括利用原位法在所述硅层中掺入掺杂物。
CN200810177544A 2008-07-25 2008-11-21 环绕栅极型半导体器件及其制造方法 Pending CN101635309A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080072824A KR101031476B1 (ko) 2008-07-25 2008-07-25 올 어라운드 게이트형 반도체 장치 및 그 제조 방법
KR1020080072824 2008-07-25

Publications (1)

Publication Number Publication Date
CN101635309A true CN101635309A (zh) 2010-01-27

Family

ID=41567845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810177544A Pending CN101635309A (zh) 2008-07-25 2008-11-21 环绕栅极型半导体器件及其制造方法

Country Status (4)

Country Link
US (1) US8816427B2 (zh)
KR (1) KR101031476B1 (zh)
CN (1) CN101635309A (zh)
TW (1) TW201005835A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544105A (zh) * 2012-01-17 2012-07-04 清华大学 具有准同轴电缆结构的隧穿晶体管及其形成方法
CN102569405A (zh) * 2012-01-17 2012-07-11 清华大学 具有准同轴电缆结构的隧穿晶体管及其形成方法
CN103201842A (zh) * 2011-11-09 2013-07-10 新加坡优尼山帝斯电子私人有限公司 半导体器件的制造方法及半导体器件
CN104134695A (zh) * 2014-07-15 2014-11-05 华为技术有限公司 隧穿场效应晶体管及隧穿场效应晶体管的制备方法
CN104465762A (zh) * 2013-09-12 2015-03-25 台湾积体电路制造股份有限公司 具有减小的电阻抗和电容的半导体器件
CN111799173A (zh) * 2019-04-01 2020-10-20 株式会社日立高新技术 半导体元件的制造方法以及等离子体处理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368619B2 (en) 2013-02-08 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method for inducing strain in vertical semiconductor columns
US9466668B2 (en) 2013-02-08 2016-10-11 Taiwan Semiconductor Manufacturing Company, Ltd. Inducing localized strain in vertical nanowire transistors
US9287362B1 (en) 2014-11-21 2016-03-15 International Business Machines Corporation Vertical field effect transistors with controlled overlap between gate electrode and source/drain contacts
US9564493B2 (en) 2015-03-13 2017-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Devices having a semiconductor material that is semimetal in bulk and methods of forming the same
US9608068B2 (en) * 2015-08-05 2017-03-28 International Business Machines Corporation Substrate with strained and relaxed silicon regions
KR102324232B1 (ko) 2020-06-03 2021-11-08 연세대학교 산학협력단 게이트-올-어라운드 구조의 수직형 트랜지스터 및 그 제조 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027975A (en) * 1998-08-28 2000-02-22 Lucent Technologies Inc. Process for fabricating vertical transistors
US7205604B2 (en) * 2001-03-13 2007-04-17 International Business Machines Corporation Ultra scalable high speed heterojunction vertical n-channel MISFETs and methods thereof
US6900521B2 (en) * 2002-06-10 2005-05-31 Micron Technology, Inc. Vertical transistors and output prediction logic circuits containing same
KR20050078145A (ko) * 2004-01-30 2005-08-04 삼성전자주식회사 수직 채널을 갖는 전계 효과 트랜지스터를 포함하는반도체 소자 및 그 형성 방법
US7037856B1 (en) * 2005-06-10 2006-05-02 Sharp Laboratories Of America, Inc. Method of fabricating a low-defect strained epitaxial germanium film on silicon
US20070148939A1 (en) * 2005-12-22 2007-06-28 International Business Machines Corporation Low leakage heterojunction vertical transistors and high performance devices thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201842A (zh) * 2011-11-09 2013-07-10 新加坡优尼山帝斯电子私人有限公司 半导体器件的制造方法及半导体器件
CN102544105A (zh) * 2012-01-17 2012-07-04 清华大学 具有准同轴电缆结构的隧穿晶体管及其形成方法
CN102569405A (zh) * 2012-01-17 2012-07-11 清华大学 具有准同轴电缆结构的隧穿晶体管及其形成方法
CN102569405B (zh) * 2012-01-17 2014-02-19 清华大学 具有准同轴电缆结构的隧穿晶体管及其形成方法
CN102544105B (zh) * 2012-01-17 2015-04-15 清华大学 具有准同轴电缆结构的隧穿晶体管及其形成方法
CN104465762A (zh) * 2013-09-12 2015-03-25 台湾积体电路制造股份有限公司 具有减小的电阻抗和电容的半导体器件
CN104134695A (zh) * 2014-07-15 2014-11-05 华为技术有限公司 隧穿场效应晶体管及隧穿场效应晶体管的制备方法
CN111799173A (zh) * 2019-04-01 2020-10-20 株式会社日立高新技术 半导体元件的制造方法以及等离子体处理装置
CN111799173B (zh) * 2019-04-01 2024-04-05 株式会社日立高新技术 半导体元件的制造方法以及等离子体处理装置

Also Published As

Publication number Publication date
KR101031476B1 (ko) 2011-04-26
TW201005835A (en) 2010-02-01
US20100019276A1 (en) 2010-01-28
KR20100011559A (ko) 2010-02-03
US8816427B2 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
CN101635309A (zh) 环绕栅极型半导体器件及其制造方法
US7061054B2 (en) Semiconductor device and semiconductor device manufacturing method
CN107887444A (zh) 半导体器件及其制造方法及包括该器件的电子设备
US20180226415A1 (en) Structure featuring ferroelectric capacitance in interconnect level for steep sub-threshold complementary metal oxide semiconductor transistors
US20060234437A1 (en) Recessed-type field effect transistor with reduced body effect
US10134595B2 (en) High aspect ratio gates
US8927432B2 (en) Continuously scalable width and height semiconductor fins
US6909141B2 (en) Method for producing a vertical semiconductor transistor component and vertical semiconductor transistor component
US10090330B2 (en) Structure and method for fully depleted silicon on insulator structure for threshold voltage modification
US10249632B2 (en) Simple integration of non-volatile memory and complementary metal oxide semiconductor
US9054191B2 (en) High ion and low sub-threshold swing tunneling transistor
KR100467018B1 (ko) 콘텍홀을 갖는 반도체 소자의 형성방법
US6355531B1 (en) Method for fabricating semiconductor devices with different properties using maskless process
CN111244161B (zh) C形沟道部半导体装置及包括其的电子设备
US7439596B2 (en) Transistors for semiconductor device and methods of fabricating the same
CN116666439B (zh) 具有连续栅长的竖直半导体器件及其制造方法及电子设备
US20230402454A1 (en) Semiconductor devices
US10944002B2 (en) Integrated assemblies having a portion of a transistor gate extending into a recessed region of a semiconductor base, and methods of forming integrated assemblies
KR20180074014A (ko) 수직 나노선 터널링 전계효과 트랜지스터 및 이의 제조방법
JP2927122B2 (ja) 非対称ldd型mosfetの製造方法
KR100955933B1 (ko) 반도체 소자 및 그의 제조방법
CN116666439A (zh) 具有连续栅长的竖直半导体器件及其制造方法及电子设备
JPH1187612A (ja) 半導体装置及びその製造方法
JP2003347429A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100127