CN101631613A - 作为一氧化碳甲烷化的催化剂的掺杂金属的氧化镍 - Google Patents

作为一氧化碳甲烷化的催化剂的掺杂金属的氧化镍 Download PDF

Info

Publication number
CN101631613A
CN101631613A CN200880007994A CN200880007994A CN101631613A CN 101631613 A CN101631613 A CN 101631613A CN 200880007994 A CN200880007994 A CN 200880007994A CN 200880007994 A CN200880007994 A CN 200880007994A CN 101631613 A CN101631613 A CN 101631613A
Authority
CN
China
Prior art keywords
catalyst
oxide
metal
methanation
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880007994A
Other languages
English (en)
Other versions
CN101631613B (zh
Inventor
M·杜伊斯伯格
W·F·迈尔
M·克雷默
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Publication of CN101631613A publication Critical patent/CN101631613A/zh
Application granted granted Critical
Publication of CN101631613B publication Critical patent/CN101631613B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一氧化碳甲烷化的催化剂,其含有组成为(以摩尔%计)(M1)a(M2)bNicOx的掺杂金属的氧化镍,其中a=0.1-5摩尔%,b=3-20摩尔%和c=100-(a+b)摩尔%,并且M1包含元素周期表中过渡族VII或VIII的至少一种金属,而M2包含PTE中过渡族III或IV的至少一种金属。该催化剂可作为纯催化剂或作为负载催化剂,如果合适,在惰性支撑体上被施用为涂层。它们表现出高转化率和高选择性并用于在含氢气体混合物中,尤其在用于燃料电池运转的重整气中的CO的甲烷化工艺。本发明的催化剂可通过沉淀、浸渍、溶胶-凝胶法、烧结工艺或通过粉末合成来制备。

Description

作为一氧化碳甲烷化的催化剂的掺杂金属的氧化镍
技术领域
本发明涉及用于选择性地将一氧化碳氢化成甲烷(CO的“甲烷化”)的掺杂金属的氧化镍催化剂。这种催化剂可用于例如从在燃料电池技术中用作重整气的含氢气体混合物中去除一氧化碳。这种催化剂也可用于从用于氨合成的合成气中去除CO。本发明还涉及了采用该掺杂金属的氧化镍催化剂的一氧化碳甲烷化工艺,并涉及催化剂材料的制备方法。
背景技术
这种催化剂的主要用途是燃料电池的重整气的纯化。与氢气供应和储存相关的问题一直阻碍着膜燃料电池(聚合物电解质膜燃料电池,PEMFCs)在移动、固定和便携式设备中的广泛使用。对于所用的相对小的固定体系,例如家用能量部分,通过水煤气转化反应的蒸汽重整方式,由液体或气体能量载体如甲醇或天然气产生氢气是很有前景的替代方案。由此方式形成的重整气含有氢气、二氧化碳(CO2)和水以及少量的一氧化碳(CO)。后者对燃料电池的阳极有毒,必须通过进一步的纯化步骤将其从气体混合物中去除。除了选择性氧化(″PROX″)之外,甲烷化(即将CO氢化成甲烷(CH4))是将富含氢的气体混合物中的CO浓度降低至100ppm以下的特别适宜的方法。
但是,重整气中二氧化碳(CO2)的同时存在对反应条件和催化剂设置了特殊要求。目的在于从重整气气流中尽可能完全地去除作为燃料电池催化剂毒物的CO,同时不将过量存在的CO2转化成甲烷,从而降低氢气的比例。甲烷化的最重要反应(1)和(2)如下所示:
CO+3H2==>CH4+H2O(1)
CO2+4H2==>CH4+H2O(2)
不期望的反应(2)比期望反应(1)消耗了更多的氢气。相对于CO2的比例(约20体积%),在重整气中CO的比例小(约0.5体积%),这明显使得选择性是甲烷化催化剂性质的重要参数。通常,选择性的定义是:
选择性:S=Conv(CO)/[Conv(CO)+Conv(CO2)]
其中转化率Conv的定义是
转化率(%):Conv=[n(进料气)-n(产物气)/n(进料气)]x100
其中n=摩尔或浓度的数值。
在本申请中,温差ΔTco2/co定义如下:
                ΔTco2/co=T10(CO2)-T50(CO)
其中
T50(CO)=50%的CO进料被反应的温度
T10(CO2)=10%的CO2进料被反应的温度
其被用作甲烷化催化剂的选择性的特征指标。
温差ΔTco2/co越大,甲烷化催化剂操作的选择性越大,因为不期望的CO2甲烷化(2)的副反应仅在比期望的CO甲烷化(1)明显更高的温度下才发生。由于抑制了CO2甲烷化(2),使得在重整气纯化中有更高的氢气产量。从而获得了更高的总效率并改善了氢运转的燃料电池体系的经济性。
对CO甲烷化的催化剂的认识已有一段时间。在大部分情况下,使用镍催化剂。因此,CH 283697公开了在含氢气体混合物中氧化碳的催化甲烷化的工业方法,其中采用了含有镍、氧化镁和硅藻土的催化剂。
US 4,318,997也公开了含镍的甲烷化催化剂。
然而,含贵金属的催化剂也是已知的。S.Takenaka和其同事描述了负载Ni和Ru催化剂。通过组成为5重量%的Ru/ZrO2和5重量%的Ru/TiO2的催化剂在250℃可以实现CO的完全转化(参见S.Takenaka,T.Shimizu andKiyoshi Otsuka,International Journal of Hydrogen Energy,29,(2004),1065-1073)。然而,所述催化剂对CO的选择性甲烷化具有窄的温度范围。在513K(=240℃)以上,通过CO2甲烷化形成的甲烷显著增加。
在WO 2006/079532中,Ru催化剂(在TiO2/SiO2上2重量%的Ru)用于CO的选择性甲烷化。
WO 2007/025691公开了用于氧化碳甲烷化的双金属铁-镍或铁-钴催化剂。
传统甲烷化催化剂的常见问题是同时过量存在的CO2。当在低温下CO氢化最初占优势,只要大部分CO被反应就会发生CO2甲烷化的增强。因为高的贵金属含量,上述含Ru材料也是昂贵的。
发明内容
因此,本发明的目的在于为一氧化碳(CO)的甲烷化提供改善的催化剂,其可以高转化率和高选择性将同时含有CO2的含氢气体混合物中的CO转化成甲烷。它们应具有最低的对CO2的反应性,使得它们抑制在甲烷化反应中进一步的氢气(H2)消耗,从而获得高的氢气产量。本发明的另一目的在于提供制备这种催化剂的方法,采用这种催化剂的CO的甲烷化工艺和它们的使用方法。
通过提供如权利要求1所述的催化剂实现第一目的。在其它权利要求中描述了制备该催化剂的方法、采用这种催化剂的甲烷化工艺以及它们的用途。
已经发现含有多种掺杂物的特定氧化镍可以用作CO甲烷化的催化剂,并且,在该反应中表现出在转化率和选择性上的良好特性。
本发明提供了用于在含氢气体混合物中的一氧化碳的甲烷化的催化剂,其含有组成为(M1)a(M2)b Nic Ox(摩尔%)的掺杂金属的氧化镍;
其中a=0.1-5摩尔%,
    b=3-20摩尔%
    c=100-(a+b)摩尔%
M1包含PTE(=元素周期表)中过渡族VII或VIII的至少一种金属,M2包含PTE中过渡族III或IV的至少一种金属。
此处,M1包括选自锰(Mn)、铼(Re)、铁(Fe)、钴(Co)、铂(Pt)、钌(Ru)、钯(Pd)、银(Ag)、金(Au)、铑(Rh)、锇(Os)和铱(Ir)的至少一种金属和它们的混合物或合金中。
优选地,M1包括铼(Re)、铂(Pt)、钌(Ru)、钯(Pd)、银(Ag)、金(Au)、铑(Rh)、锇(Os)、铱(Ir)和它们的混合物或合金。
M1更优选包括贵金属,即铂(Pt)、钌(Ru)、钯(Pd)、银(Ag)、金(Au)、铑(Rh)、锇(Os)、铱(Ir)和它们的混合物或合金。
最优选,M1包括金属铂(Pt)或铼(Re)和它们的混合物或合金。
此外,M2包括选自钪(Sc)、钇(Y)、镧(La)、钛(Ti)、锆(Zr)或铪(Hf)的至少一种金属和它们的混合物或合金中。
优选地,M2包含PTE的过渡族IV中的至少一种金属,即钛(Ti)、锆(Zr)或铪(Hf)和它们的混合物或合金。
基于金属,以摩尔%来表示掺杂氧化镍的组成。金属成分a、b和c总共为100摩尔%(a+b+c=100摩尔%)。在NiOx中的指数″x″是指氧化镍中实际的、精确的氧含量是未知的或未经具体检测。本文中的术语“掺杂”是指至少两种其他金属成分的和为0.5-25摩尔%。因此,本发明组合物的氧化镍含量为75-99.5摩尔%的范围。
优选以金属M1=铂(Pt)和/或铼(Re)以及以金属M2=铪(Hf)、钇(Y)和/或锆(Zr)掺杂的掺杂氧化镍作为催化剂。优选的这类组合物的实例是Re2Hf9Ni89Ox、Pt0.6Y11Ni88.4Ox或Re2Zr10Ni88Ox
特别优选以金属M1=铼(Re)以及以金属M2=锆(Zr)掺杂的掺杂氧化镍作为催化剂。特别优选的这类组合物的实例是Re2Zr10Ni88Ox或Re5Zr5Ni90Ox
出人意料地发现,与文献中已知的体系相比,在180-270℃温度范围内,优选在180-250℃的温度范围,更优选200-250℃的温度范围内,在CO的甲烷化中,(M1)a(M2)bNicOx类的掺杂金属的氧化镍具有明显更佳的转化率和更高的选择性。以这样宽的温度范围,本发明催化剂表现出大的操作空间。在250℃操作温度下,CO转化率通常>75%,优选>80%。
本发明的金属掺杂的氧化镍可以纯形式使用,即作为“纯催化剂”,以粒状、球体或粉末形式使用。根据应用,需要通过改变生产参数或通过附加工艺步骤(例如煅烧、研磨、筛选、制粒等)调整本发明的催化剂制剂的粒径、粒径分布、比表面积、容积密度或孔隙率。此目的所需的制备步骤是本领域技术人员已知的。可以无定形状态或结晶状态获得催化剂。
然而,掺杂金属的氧化镍还可以负载形式使用。为制备负载催化剂,以掺杂的氧化镍作为催化活性成分(“活性相”)用在适宜的载体材料上。已发现的可用载体材料是无机氧化物如氧化铝、二氧化硅、氧化钛、稀土元素氧化物(″RE氧化物″)或它们的混合氧化物以及沸石。为实现催化活性成分在载体材料上的精细分布,载体材料应该具有至少大于20m2/g的比表面积(BET表面积,根据DIN 66132测定),优选大于50m2/g。催化剂中无机载体材料的量应在1-99重量%的范围,优选在10-95重量%(每种情况都基于掺杂金属的氧化镍的量)。
为实现热稳定性和/或作为促进剂,除活性相之外(即除掺杂金属的氧化镍之外),本发明的催化剂可含有不超过20重量%的选自氧化硼、氧化铋、氧化镓、氧化锡、氧化锌、碱金属氧化物和碱土金属氧化物和它们的混合物的无机氧化物,具体的量基于掺杂金属的氧化镍的量。在制备工艺中可添加稳定剂,例如凝胶形成之前或之后。
此外,本发明的掺杂金属的氧化镍可以纯的形式或以负载形式(即作为负载催化剂,参见上文)涂覆在惰性支撑体上来应用。下文中这种催化剂也被称为涂层催化剂。适宜的支撑体是已知来自于汽车尾气气体纯化的由陶瓷或金属制成的单片(monolithic)蜂窝体并具有大于10cm-2的孔密度(每单位横断面积的流动通道数量)。但是,金属片、热交换板、开孔陶瓷或金属泡沫体和不规则形状部件也可用作支撑体。为了本发明的目的,当支撑体不参与或不明显参与催化反应,支撑体就被认为是惰性的。通常,这些是具有低比表面积和低孔隙率的物体。
本发明还涉及本发明的掺杂金属的氧化镍催化剂的制备方法。
本发明的催化剂可通过沉淀、浸渍、溶胶-凝胶法、烧结工艺或简单粉末合成来制备。优选的制备方法是溶胶-凝胶法。此处,首先采用醇溶剂和适宜的络合剂将相应的原料盐(例如硝酸镍、硝酸氧锆或氯化铼)溶解(溶胶制备),然后将该溶液老化,以形成相应的凝胶。将凝胶干制,如合适,进行煅烧。通常在20-150℃温度范围内在空气干燥凝胶。通常的煅烧温度是在空气中200-500℃范围,优选200-400℃。所得催化剂可在随后做进一步处理。
为了制备负载催化剂,高表面积的载体材料(例如来自SASOL的通过BET方法测定的具有130m2/g的比表面积的Al2O3)可在凝胶形成前以特定量加入反应混合物中。在形成凝胶之后,分离粉末,干燥并煅烧。但是,在制备掺杂金属的氧化镍之后,载体材料也可与活性相混合。
为了制备涂覆的催化剂体(“涂层催化剂”),将制得的催化剂粉末(或以负载形式或以纯的粉末),如果适合,与稳定剂和/或促进剂一起,在水中制浆并施于单片支撑体上(陶瓷或金属)。如果适合,该涂覆悬浮液可含有粘结剂以改善粘附性。涂覆之后,对单片体(monolith)进行热处理。单片体的催化剂负载量为50-200g/l范围。催化剂被置于适宜的反应器中用于操作或检验。
本发明还涉及采用本文所述催化剂将含氢气体混合物中的CO甲烷化的方法。甲烷化方法是在180-270℃温度范围内在适宜反应器中进行的,优选在180-250℃温度范围内并更优选在200-250℃温度范围内。在燃料处理体系(也称为“重整器”)中生成含氢气体混合物,其通常含有0.1-5体积%CO、10-25体积%CO2、40-70体积%氢气和余量的氮气。方法的更多细节在实施例部分给出(参考“催化活性的检测”)。
具体实施方式
催化活性的检测
在管式反应器中在粉末样品上检验催化剂的催化活性。为此目的,将100mg催化剂导入可加热玻璃管中。测定了起始材料的转化率作为160-340℃范围内温度的函数。文献中已知的Ru/TiO2催化剂(参见对比例CE1)作为参照催化剂。温差ΔTco2/co(参见背景技术部分)作为甲烷化催化剂的选择性的特征参数。
长期稳定性的检测
在流动反应器中进行长期稳定性的评估。测定了以%/h的钝化率DR=dU/dt作为长期稳定性的尺度。为检测长期稳定性,将该材料与被负载并施于结构体(如:单片体)上的催化剂导入反应器中。在50小时期间在恒温下测定产物气体中的CO转化率。
以下实施例阐述了本发明但不限制其范围。
实施例
实施例1:制备Re 2 Hf 9 Ni 89 O x
将7.21ml(94.17mmol)异丙醇和2.229ml(18mmol)4-羟基-4-甲基-2-戊酮(得自Aldrich)置于20ml玻璃容器中同时搅拌。随后以移液管加入5.34ml1M的Ni(C2H5COO)2在甲醇中的溶液、1.8ml 0.3M的HfCl4(得自Aldrich;在甲醇中)和1.2ml 0.1M的ReCl5溶液(得自Aldrich;在甲醇中)。然后将褐绿色溶液搅拌1小时,随后在通风橱中打开老化。结果形成深绿褐色、高粘性的、透明的凝胶,然后将其在烘箱中在40℃干燥。在350℃下煅烧该凝胶。其成了黑色粉末。
实施例2:制备Pt 0.6 Y 11 Ni 88.4 O x
将8.42ml(109.98mmo1)异丙醇和2.229ml(18mmo1)4-羟基-4-甲基-2-戊酮(得自Aldrich)置于20ml玻璃容器中同时搅拌。随后以移液管加入5.30ml 1M的Ni(C2H5COO)2在甲醇中的溶液、2.2ml 0.3M的Y(NO3)3×6 H2O溶液(得自Aldrich;在甲醇中)和0.36ml 0.1M的PtBr4溶液(得自AlphaAesar;在异丙醇中)。然后将褐绿色溶液搅拌1小时,随后在通风橱中打开老化。结果是形成深绿褐色、高粘性的、透明的凝胶,然后将其在烘箱中在40℃干燥。在350℃空气中对获得的透明、玻璃质凝胶进行煅烧。其成了黑绿色粉末。
实施例3:制备Re 2 Zr 10 Ni 88 O x
将6.94ml(90.65mmo1)异丙醇和2.229ml(18mmo1)4-羟基-4-甲基-2-戊酮置于20ml玻璃容器中同时搅拌。随后以移液管加入5.28ml 1M的Ni(C2H5COO)2在甲醇中的溶液、2ml 0.3M的ZrO(NO3)2溶液(得自JohnsonMatthey;在甲醇中)和1.2ml 0.1M的ReCl5溶液(同样在甲醇中)。然后将褐绿色溶液密闭搅拌1小时,随后在通风橱中打开老化。结果是形成深绿褐色、高粘性的、透明的凝胶,然后将其在40℃干燥。在350℃空气中对获得的透明、玻璃质凝胶进行煅烧。其成了深绿至黑色的粉末。
对比例(CE1):制备Ru/TiO 2
将500mg(6.26mmo1)氧化钛(P25型,得自Degussa;BET~120m2/g)在水中制浆并与103.6mg(0.096mmo1)Ru(III)氯化物溶液(Ru含量=19.3重量%;得自Umicore,Hanau)混合。添加20%浓度的NH4CO3溶液之后,Ru被固定在载体氧化物上。将形成的产物蒸发干燥并在500℃熔炉中处理。组成:在TiO2上4重量%的Ru(基于载体材料)。
实施例4:制备负载催化剂
制备具有如实施例3所述组成的催化剂。但是,在形成凝胶之前,在搅拌下按催化剂/载体材料为1∶4的重量比加入高表面积的Al2O3(得自SASOL,BET:130m2/g),并相应地调整溶剂比例。剩余的步骤按实施例3所述进行。这形成了含有在80重量%Al2O3(载体材料)上的20重量%Re2Zr10Ni88Ox(活性相)的灰色粉末。
实施例5:制备涂覆的支撑体(金属片)
将如实施例3所述的或如对比例1(CE1)所述的粉末在水中制浆,并按催化剂/载体材料为1∶2(对于CE1,重量比1∶1)的重量比混入Al2O3(得自SASOL,BET:130m2/g)。将按此方法制得的浆液施于金属片上。片上的催化剂负载量是50g/m2。热处理之后,涂覆的支撑体被引入等温反应器中。在长期试验中检测催化剂,其中测定了钝化率。
实施例6:制备涂覆的支撑体(单片体)
将实施例4获得的粉末在水中制浆并施于单片支撑体上(堇青石陶瓷,孔密度=600孔/英寸2)。随后对单片体进行热处理。单层体上的催化剂负载量是130g/l。将涂覆的支撑体引入反应器中;在恒温下操作期间测定钝化率。
实施例7:通过浸渍法制备Re 2 Zr 10 Ni 88 O x
可替换地,通过浸渍NiO可制备实施例3的催化剂。在此方法中,将2.00g(26.7mmol)氧化镍(得自Umicore)浸渍于含0.752g(3.25mmol)ZrO(NO3)2 xH2O(得自Alfa-Aesar)和0.236g(0.65mmol)ReCl5(得自Aldrich)的10ml水溶液中。将该材料干燥之后在350℃空气中煅烧。这形成了深绿至黑色的粉末。
催化活性的检测
在管式反应器中测试了催化剂粉末的催化活性。为此目的,将100mg催化剂导入可加热玻璃管中。试验条件是:
气体组成:2体积%CO,15体积%CO2,63体积%H2,20体积%N2
气体流速:125ml/min
GHSV:~15000l/h
测定起始材料的转化率作为在160-340℃范围内温度的函数。CE1中所述催化剂作为参照催化剂。
转化率:在CO甲烷化中,本发明的掺杂金属的氧化镍比参照催化剂CE1甚至在220℃(493K)温度下表现出明显更佳的转化率。从图1可看出,如实施例3所述的本发明的催化剂(Re2Zr10Ni88Ox)在220℃下得到了90%的CO转化率,而参照催化剂CE1基本上无活性(CO转化率<5%)。
选择性:温差ΔT=T10CO2-T50CO越大,催化剂选择性越强,因为不期望的CO2甲烷化副反应仅在比期望的CO反应明显更高温度下才发生。表1总结了测量数据。可以看出本发明的催化剂的温差ΔTco2/co(第3栏)大于参照样品(CE1)值的2倍。这清楚地显示了本发明的催化剂的改善的选择性。
表1:选择性的测量数据
  实施例   催化剂   T50CO(℃)   T10CO2(℃)  ΔTco2/co(℃)
  CE1   Ru/TiO2   262   294  32
  1   Re2Hf9Ni89Ox   217   286  69
  2   Pt0.6Y11Ni88.4Ox   242   318  76
  3   Re2Zr10Ni88Ox   202   281  79
检测长期稳定性
在流动反应器中进行本发明的催化剂的长期稳定性试验。测定钝化率DR=dU/dt(%/h)作为长期稳定性的尺度。在50小时期间在恒温下测定产物气体中的CO转化率。试验条件是:
气体组成:0.3体积%CO,15体积%CO2,59.7体积%H2,15体积%H2O,10体积%N2
GHSV:10 000 1/h
按实施例5所述(金属片)或实施例6所述(单片体)制备的催化剂涂覆的支撑体(实施例3中制备的催化剂Re2Zr10Ni88Ox作为活性相)被导入等温反应器中并与参照催化剂CE1(施于实施例5所述的金属片支撑体上)比较。测定了钝化率(DR=dU/dt(%/h)),如表2所示。可以看出本发明的催化剂比CE1表现出明显更低的钝化率DR
表2:长期试验中的钝化率
实施例 DR(%/h) 催化剂 支撑体
CE1 -0.125 Ru/TiO2 金属片
5 -0.0275 Re2Zr10Ni88Ox 金属片
6 -0.020 Re2Zr10Ni88Ox 单片体

Claims (19)

1、用于含氢气体混合物中一氧化碳的甲烷化的催化剂,其含有组成为(M1)a(M2)bNicOx的掺杂金属的氧化镍,以摩尔%计,
其中a=0.1-5摩尔%,
b=3-20摩尔%,
c=100-(a+b)摩尔%,
M1包含元素周期表中过渡族VII或VIII的至少一种金属,M2包含元素周期表中过渡族III或IV的至少一种金属。
2、如权利要求1所述的催化剂,其中M1包括金属锰(Mn)、铼(Re)、铁(Fe)、钴(Co)、铂(Pt)、钌(Ru)、钯(Pd)、银(Ag)、金(Au)、铑(Rh)、锇(Os)、铱(Ir)和它们的混合物或合金。
3、如权利要求1或2所述的催化剂,其中M2包括金属钪(Sc)、钇(Y)、镧(La)、钛(Ti)、锆(Zr)和铪(Hf)以及它们的混合物或合金。
4、如权利要求1-3之一所述的催化剂,其中a=0.2-3摩尔%;b=5-15摩尔%。
5、如权利要求1-4之一所述的催化剂,其进一步包含具有大于20m2/g比表面积的无机载体材料。
6、如权利要求5所述的催化剂,其中所述无机载体材料包括氧化铝、二氧化硅、氧化钛、稀土元素氧化物或它们的混合氧化物以及沸石。
7、如权利要求5所述的催化剂,其中所述无机载体材料的比例在1-99重量%的范围内,优选10-95质量%,各自基于掺杂金属的氧化镍的量。
8、如权利要求1-7之一所述的催化剂,基于掺杂金属的氧化镍的量,进一步含有浓度不超过20重量%的选自氧化硼、氧化铋、氧化镓、氧化锡、氧化锌、碱金属氧化物和碱土金属氧化物的无机氧化物。
9、如权利要求1-8之一所述的催化剂,其中所述催化剂被施用于惰性支撑体上。
10、如权利要求9所述的催化剂,其中单片陶瓷蜂窝体、金属蜂窝体、金属片、热交换板、开孔陶瓷泡沫体、开孔金属泡沫体或不规则形状部件用作所述惰性支撑体。
11、通过溶胶-凝胶法制备如权利要求1-7之一所述的催化剂的方法。
12、如权利要求11所述的方法,其中在凝胶形成之前加入具有大于20m2/gBET比表面积的无机载体材料。
13、如权利要求11或12所述的方法,其中所述凝胶在20-150℃温度范围内干燥。
14、如权利要求11-13之一所述的方法,其中在200-500℃温度范围内煅烧所述凝胶。
15、权利要求1-10之一所述的催化剂在含氢气体混合物中CO的甲烷化中的用途。
16、如权利要求15所述的用途,其中使所述含氢气体混合物在180-270℃温度范围与催化剂接触。
17、如权利要求15所述的用途,其中在操作温度250℃实现高于75%的一氧化碳转化率。
18、如权利要求15所述的用途,其中所述含氢气体混合物是用于运转燃料电池的重整气。
19、含氢气体混合物中CO的甲烷化的方法,其中采用了如权利要求1-10之一所述的催化剂。
CN2008800079942A 2007-03-13 2008-03-11 作为一氧化碳甲烷化的催化剂的掺杂金属的氧化镍 Expired - Fee Related CN101631613B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07005139.6 2007-03-13
EP07005139 2007-03-13
PCT/EP2008/001903 WO2008110331A1 (en) 2007-03-13 2008-03-11 Metal-doped nickel oxides as catalysts for the methanation of carbon monoxide

Publications (2)

Publication Number Publication Date
CN101631613A true CN101631613A (zh) 2010-01-20
CN101631613B CN101631613B (zh) 2013-01-30

Family

ID=38292729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800079942A Expired - Fee Related CN101631613B (zh) 2007-03-13 2008-03-11 作为一氧化碳甲烷化的催化剂的掺杂金属的氧化镍

Country Status (7)

Country Link
US (1) US20100168257A1 (zh)
EP (1) EP2125204A1 (zh)
JP (1) JP5334870B2 (zh)
KR (1) KR20090119766A (zh)
CN (1) CN101631613B (zh)
CA (1) CA2680431A1 (zh)
WO (1) WO2008110331A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247851A (zh) * 2010-05-12 2011-11-23 中国科学院福建物质结构研究所 一种去除工业co气体中少量h2的甲烷化工艺及催化剂制备方法
CN104399491A (zh) * 2014-12-04 2015-03-11 广州博能能源科技有限公司 一种耐高温甲烷化催化剂及其制备方法
CN108439492A (zh) * 2018-04-16 2018-08-24 沈阳建筑大学 一种银掺杂纳米氧化镍粉体的制备方法
CN112642440A (zh) * 2019-10-12 2021-04-13 中石化南京化工研究院有限公司 耐硫二氧化碳甲烷化催化剂及其制备方法
CN114789047A (zh) * 2022-03-30 2022-07-26 吉林大学 一种表面硼掺杂氧化镍催化剂的制备方法及应用

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617196B2 (en) * 2007-08-03 2017-04-11 Hitachi Zosen Corporation Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
JP5691119B2 (ja) * 2007-08-03 2015-04-01 アタカ大機株式会社 水素化触媒の製造方法およびそれを使用したメタンガスの製造方法
EP2143490A1 (en) * 2008-07-08 2010-01-13 ETH Zürich Porous ceramic catalysts and methods for their production and use
CN103270015B (zh) 2010-12-27 2015-03-11 花王株式会社 叔胺的制造方法
JP5879123B2 (ja) * 2011-12-27 2016-03-08 花王株式会社 3級アミンの製造方法
CN103170340A (zh) * 2013-04-15 2013-06-26 厦门大学 一种用于制备合成天然气的催化剂及其制备方法
EP3080037A1 (en) 2013-11-11 2016-10-19 Saudi Basic Industries Corporation Method for hydrogenation of co2 in adiabatic metal reactors
WO2016032357A1 (ru) * 2014-08-26 2016-03-03 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор для углекислотной конверсии природного газа
CN104226318A (zh) * 2014-09-29 2014-12-24 西南化工研究设计院有限公司 一种适用于高空速的蜂窝状甲烷化催化剂及其制备方法
EP3072589A1 (de) 2015-03-26 2016-09-28 Basf Se Katalysator und Verfahren zur selektiven Methanisierung von Kohlenmonoxid
CN106118771A (zh) * 2016-07-06 2016-11-16 扬州大学 一种利用氢化镁还原二氧化碳制备清洁燃料的方法
WO2018141646A1 (de) 2017-01-31 2018-08-09 Clariant Produkte (Deutschland) Gmbh Eisen- und mangandotierte nickel-methanisierungskatalysatoren
WO2018141648A1 (de) 2017-01-31 2018-08-09 Clariant Produkte (Deutschland) Gmbh Eisendotierte nickel-methanisierungskatalysatoren
CN110234428A (zh) 2017-01-31 2019-09-13 科莱恩产品(德国)有限公司 锰掺杂的镍甲烷化催化剂
CN108355636B (zh) * 2018-03-20 2020-09-25 商丘师范学院 一种碳掺杂氧化锌纳米复合材料的高效制备方法
US11559791B2 (en) * 2020-01-22 2023-01-24 The Regents Of The University Of California Carbon-doped nickel oxide catalyst and methods for making and using thereof
CN114272950A (zh) * 2022-01-04 2022-04-05 安徽理工大学 一种ch4、co2重整制备合成气催化剂及其制备方法与应用
CN115888739A (zh) * 2022-11-07 2023-04-04 北京科技大学 稀土镍氧化物电子相变半导体甲烷合成催化剂及使用方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH283697A (de) 1949-04-06 1952-06-30 Ruhrchemie Ag Verfahren zur katalytischen Methanisierung von Kohlenstoffoxyde und Wasserstoff enthaltenden Gasgemischen.
DE2747517A1 (de) 1977-10-22 1979-04-26 Didier Eng Verfahren und vorrichtung zum mehrstufigen katalytischen methanisieren
US4287095A (en) * 1980-06-24 1981-09-01 The United States Of America As Represented By The Secretary Of The Interior High surface area transition metal catalysts and method of preparing same
US5321160A (en) * 1991-07-31 1994-06-14 Tosoh Corporation Process for producing an ethylenamine
FR2695574B1 (fr) * 1992-09-15 1994-11-04 Rhone Poulenc Chimie Composition à base d'oxyde cérique, préparation et utilisation.
DE19714732A1 (de) * 1997-04-09 1998-10-15 Degussa Verfahren zum Abscheiden von katalytisch aktiven Komponenten auf hochoberflächigen Trägermaterialien
GB9801321D0 (en) * 1998-01-21 1998-03-18 Dytech Corp Ltd Catalysis
DE19843242A1 (de) * 1998-09-11 2000-03-23 Inst Angewandte Chemie Berlin Verfahren zur Herstellung aktiver und/oder selektiver Feststoff-Katalysatoren aus anorganischen oder metallorganischen Feststoffen oder Gemischen davon
US6203587B1 (en) * 1999-01-19 2001-03-20 International Fuel Cells Llc Compact fuel gas reformer assemblage
WO2000043121A1 (en) 1999-01-21 2000-07-27 Imperial Chemical Industries Plc Catalyst carrier carrying nickel ruthenium and lanthanum
US7090824B2 (en) * 2001-07-27 2006-08-15 Board Of Trustees Of Michigan State University Mesostructured transition aluminas
JP4488178B2 (ja) * 2004-02-26 2010-06-23 戸田工業株式会社 メタン化触媒及びその製造方法、並びに該メタン化触媒を用いた一酸化炭素をメタン化する方法
TWI294413B (en) * 2004-11-19 2008-03-11 Ind Tech Res Inst Method for converting co and hydrogen into methane and water
DE102005003311A1 (de) * 2005-01-24 2006-07-27 Basf Ag Katalytisch aktive Zusammensetzung zur selektiven Methanisierung von Kohlenmonoxid und Verfahren zu deren Herstellung
DE102005004075B4 (de) 2005-01-28 2008-04-03 Umicore Ag & Co. Kg Keramischer Mikroreaktor
JP2006239551A (ja) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Coメタン化触媒、co除去触媒装置及び燃料電池システム
DK200600854A (en) 2005-09-02 2007-03-03 Topsoe Haldor As Process and catalyst for hydrogenation of carbon oxides
KR101320388B1 (ko) * 2006-02-18 2013-10-22 삼성에스디아이 주식회사 탄화수소 개질 촉매, 그 제조방법 및 이를 포함하는연료처리장치
US8877674B2 (en) * 2006-04-26 2014-11-04 Battelle Memorial Institute Selective CO methanation catalysis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247851A (zh) * 2010-05-12 2011-11-23 中国科学院福建物质结构研究所 一种去除工业co气体中少量h2的甲烷化工艺及催化剂制备方法
CN104399491A (zh) * 2014-12-04 2015-03-11 广州博能能源科技有限公司 一种耐高温甲烷化催化剂及其制备方法
CN108439492A (zh) * 2018-04-16 2018-08-24 沈阳建筑大学 一种银掺杂纳米氧化镍粉体的制备方法
CN112642440A (zh) * 2019-10-12 2021-04-13 中石化南京化工研究院有限公司 耐硫二氧化碳甲烷化催化剂及其制备方法
CN114789047A (zh) * 2022-03-30 2022-07-26 吉林大学 一种表面硼掺杂氧化镍催化剂的制备方法及应用
CN114789047B (zh) * 2022-03-30 2023-11-21 吉林大学 一种表面硼掺杂氧化镍催化剂的制备方法及应用

Also Published As

Publication number Publication date
KR20090119766A (ko) 2009-11-19
CN101631613B (zh) 2013-01-30
CA2680431A1 (en) 2008-09-18
JP2010520807A (ja) 2010-06-17
EP2125204A1 (en) 2009-12-02
WO2008110331A1 (en) 2008-09-18
US20100168257A1 (en) 2010-07-01
JP5334870B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
CN101631613B (zh) 作为一氧化碳甲烷化的催化剂的掺杂金属的氧化镍
US8609577B2 (en) Catalyst for steam reforming of methanol
Chagas et al. Alumina-supported LaCoO3 perovskite for selective CO oxidation (SELOX)
US20060111456A1 (en) Process for the selective methanation of carbonmonoxide (CO) contained in a hydrogen-rich reformate gas
WO2003092888A1 (fr) Catalyseur pour l'oxydation partielle d'hydrocarbures, procede pour le preparer, procede pour produire du gaz qui contient de l'hydrogene par utilisation du catalyseur et procede d'utilisation du gaz qui contient de l'hydrogene produit au moyen du catalyseur
CN101330973B (zh) Pt-Re双金属水煤气转换催化剂的工艺条件
Wang et al. Effect of Ce x Zr1-x O2 Promoter on Ni-Based SBA-15 Catalyst for Steam Reforming of Methane
CN101160170A (zh) 具有以稀土元素改性氧化物载体的贵金属水煤气轮换催化剂
JP2007252989A (ja) 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
JPWO2005094988A1 (ja) 一酸化炭素除去触媒及びその製造方法並びに一酸化炭素除去装置
CN107427819B (zh) 用于选择性甲烷化一氧化碳的钌-铼基催化剂
Dongare et al. Oxidation activity and 18O-isotope exchange behavior of nickel oxide-stabilized cubic zirconia
CN113996293B (zh) 铈镧固溶体负载铱催化剂、其制备方法及应用
US8395009B2 (en) Catalyst for selective methanization of carbon monoxide
JP6684669B2 (ja) アンモニア分解用触媒およびこの触媒を用いた水素含有ガスの製造方法
Rosso et al. Preferential CO oxidation over Pt/3A zeolite catalysts in H 2-rich gas for fuel cell application
JP3307976B2 (ja) 炭化水素水蒸気改質触媒
CN110329992A (zh) 甲醇低温水汽重整制氢催化剂及其制备方法
JP5961166B2 (ja) 高活性水性ガスシフト触媒、その製造方法と利用
US20040147394A1 (en) Catalyst for production of hydrogen
JP4175452B2 (ja) ジメチルエーテル改質触媒およびジメチルエーテル改質方法
JP4831800B2 (ja) ジメチルエーテル改質触媒およびジメチルエーテル改質方法
JP2008161742A (ja) 水素ガス中の一酸化炭素除去用触媒
JP2007516825A (ja) 改質触媒
Shao et al. Effect of Sr Substitution on the Novel La1-xSrxCo0. 5Ni0. 5O3-δ Perovskite‐Type Catalysts for Hydrogen Production in Ethanol Steam Reforming

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130130

Termination date: 20150311

EXPY Termination of patent right or utility model