CN101622305A - 阴离子交换膜 - Google Patents

阴离子交换膜 Download PDF

Info

Publication number
CN101622305A
CN101622305A CN200880002997A CN200880002997A CN101622305A CN 101622305 A CN101622305 A CN 101622305A CN 200880002997 A CN200880002997 A CN 200880002997A CN 200880002997 A CN200880002997 A CN 200880002997A CN 101622305 A CN101622305 A CN 101622305A
Authority
CN
China
Prior art keywords
monomer
film
group
exchange membrane
grafting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200880002997A
Other languages
English (en)
Inventor
达恩·乔纳森·布朗宁
基思·维克托·洛弗尔
杰奎琳·安妮·霍斯福尔
苏珊·克里斯廷·韦林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Secretary of State for Defence
Original Assignee
UK Secretary of State for Defence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Secretary of State for Defence filed Critical UK Secretary of State for Defence
Publication of CN101622305A publication Critical patent/CN101622305A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

本发明涉及一种制备阴离子交换膜的方法,所述阴离子交换膜适用于碱性燃料电池特别是直接硼氢化物燃料电池,所述方法包括以单体对烃类聚合物膜辐射接枝并添加季铵化试剂。通过将所述单体与包括醇和烃类溶剂的稀释剂混合来改善接枝度。

Description

阴离子交换膜
技术领域
本发明涉及阴离子交换膜的生产,特别是适用于碱性燃料电池、更特别是适用于直接硼氢化物燃料电池的阴离子交换膜的生产。
背景技术
阴离子交换膜(AEM)已为人所知并用于多种分离和纯化应用,例如电渗析、盐裂解和复分解。它们可以用作单极膜或双极膜层;它们可以通过许多不同的技术制备,通常通过卤甲基化聚合物与多种二胺的胺化来制备。EP 0563851(Fraunhofer)公开了一种制备包含阴离子选择层和阳离子选择层的双极膜的方法;所述层由聚合物溶液制备。JP2003096219(Asahi Glass)公开了一种制备包含下述聚合物的AEM的方法,所述聚合物具有通过使具有特定卤代烷基的芳香族多磺酸聚合物与多元胺和一元胺反应而形成的交联结构。许多已知AEM的一个问题是:由于阴离子交换基团在浓碱溶液中分解,因此AEM的稳定性特别是在浓碱性环境中的稳定性较差。
碱性环境中稳定性较差是任何用于碱性燃料电池的离子交换膜的缺点。WO2006003182(Solvay)公开了适用于固体碱性燃料电池的AEM。该AEM包含通过磺胺键与支撑聚合物连接的二元胺或多元胺。所述二元胺或多元胺的至少一个氮原子是作为阴离子交换基团的季铵化(quaternised)氮原子。
然而,一直希望改善这样的膜的离子导电性,同时保持充分的化学稳定性。
直接硼氢化物燃料电池(DBFC)是碱性燃料电池的亚类,其中的燃料是硼氢化钠溶液。与传统碱性燃料电池中的氢相比,硼氢化钠的主要优点是硼氢化钠比氢更易于储存,产生改善的系统能量密度。此外,高碱性燃料和产生的废料Na2B4O7(硼砂)可防止燃料电池的二氧化碳中毒。
DBFC还具有优于直接甲醇燃料电池(DMFC)的优点,DMFC具有低活性和在膜处的高甲醇穿透速度的缺点。这导致能量效率和电池性能降低。相反,DBFC不产生气体副产物,并且比能量较高。可以使用阳离子交换膜(CEM)或AEM运行DBFC。使用AEM具有无需将氢氧化钠从阴极再循环至阳极的优势。然而,仅开发出极少的可商购的AEM用于其它应用,并且该AEM不适宜用于碱性燃料电池,特别是DBFC。
发明内容
本发明目的在于提供一种AEM,该AEM具有增加的离子导电性、低渗透性和碱性环境中的高化学稳定性从而使燃料穿透(fuel crossover)最小化。
因此,本发明提供了一种制备阴离子交换膜的方法,所述方法包括下述步骤:选择烃类聚合物膜;以单体对烃类聚合物膜辐射接枝,并添加季铵化试剂以赋予离子导电性,其中所述单体以单体/稀释剂混合物的形式存在,其中所述稀释剂包括醇和烃类溶剂。
优选在合适的溶剂中洗涤阴离子交换膜以除去任何均聚物,并干燥至恒重。如果省略该步骤,则在使用过程中,未反应的单体会冲掉聚合物,并会随时间的流逝影响膜的离子导电性。
所述稀释剂优选包含至少10体积%的醇,所用的醇优选是甲醇。有利的是,所述烃类溶剂选自由芳香族或脂肪族烃组成的组,优选甲苯、二甲苯或苯。
为了降低成本,将单体/稀释剂混合物中的单体含量减至最低,并且优选小于60体积%,更优选为30体积%~50体积%。
已发现使用氯化苯乙烯(VBC)或乙烯基吡啶(VPy)作为单体可产生显著改善的膜性能。
可以由粉末或颗粒预成型或制备烃类聚合物膜。虽然可以使用任何烃类聚合物膜,但低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)来源广泛且相对便宜,因此是优选的原料。
辐射接枝多年来是已知的,并且已经证实是制备不同类型膜的成功方法。辐射接枝方法允许由两种完全不同的材料形成杂化材料。例如,低密度聚乙烯是疏水性的、非离子导电性的稳定烃膜。丙烯酸是亲水性的酸性单体;其聚合形式机械性较差且可溶于水。然而,如果由这两种成分形成接枝共聚物,则可以获得机械性较强、不可溶、亲水性的酸性离子交换膜。
存在两种基本的辐射接枝方法,相互接枝(MG)和照射后接枝(PIG);区别在于在哪个步骤向膜施加辐射。MG中,在进行照射的同时聚合物和单体一起反应,而对于PIG,在含氧氛围中单独对膜进行照射以形成相当稳定的过氧自由基,然后在单独的反应中与单体反应。已知MG可提供更好的膜均匀性和导电性,然而,由于PIG的经照射聚合物可以在低温保持其反应状态高达一年而不损失其接枝性能,因此PIG可能更适于制备大量的膜。还可以根据涉及的单体和聚合物选择接枝方法。因此,本发明同等应用两种辐射接枝方法。
在实践中,已经发现接枝共聚物在制备出时具有较差的离子导电性,这是因为接枝到聚合物上的部分(例如VBC和VPy)本身不是离子导电性的。因此,需要进行后处理以赋予离子导电性。这称为季铵化。取决于涉及的单体,许多试剂可以用于该后处理。季铵化试剂可以选自由胺类组成的组,更优选为烷基胺。已发现最优选的季铵化试剂是盐酸(HCl)、2-氯乙酰胺(2-CA)、三甲胺(TMA)、三乙胺(TEA)或二甲基甲酰胺(DMF)。
季铵化试剂可以是用于改善膜的化学稳定性的交联剂,例如N,N,N′,N′-四甲基己烷-1,6-二胺、二乙基氨基乙基胺、二乙基氨基丙基胺(参考J.Varcoe等,Chem.Comm.,2006,13,1428-1429)。
附图说明
现在参考附图通过实施例描述本发明,附图中:
图1说明了使用乙烯基苄基氯作为单体的反应流程。
图2说明了使用4-乙烯基吡啶作为单体的反应流程。
图3说明了用于本发明一个实施方式的方法的相互接枝步骤的装置。
具体实施方式
图1说明了本发明一个实施方式的反应流程,其中以VBC接枝并使用TMA季铵化。图2说明了本发明的另一个实施方式的反应流程,其中以VPy接枝并使用HCl季铵化。
参考图3,多片所选的聚合物膜1间插入有非织造物、吸收剂、中间层材料2,并放置在玻璃接枝容器3中。添加单体/稀释剂混合物4,直至辊被浸透。然后通过用氮气吹洗或通过使容器处于真空下来除去容器中的氧气,从而在反应剂上产生惰性氛围5。然后用电离辐射6照射该容器。以下公开的实施例中,在钴60γ源中以已知剂量率在23℃±1℃进行照射预定时间。接枝后,在合适的溶剂中洗涤膜,以除去任何均聚物,然后在烘箱中以70℃干燥至恒重。
然后在所选的季铵化试剂的水溶液中浸泡经接枝的膜。
实验
所有的聚合物和试剂均以得到的状态使用。标称厚度50μm的低密度聚乙烯(LDPE)由BPI Films提供,标称厚度40μm的高密度聚乙烯(HDPE)由Metal Box Co.提供。4-乙烯基苄基氯(VBC)由Aldrich提供,以0.05%叔丁基邻苯二酚和0.05%硝基烷稳定。95%的4-乙烯基吡啶(VPy)由Aldrich
Figure G2008800029977D00042
提供,以100ppm的对苯二酚稳定。脱盐水来自于混合床Elgastat
Figure G2008800029977D00043
,导电率<50μScm-1。甲苯和甲醇由Fisher Scientific,UK提供,SLR等级。盐酸5M分析纯滴定液由Merck
Figure G2008800029977D00044
提供,三甲胺(TMA)50重量%水溶液、99.5%三乙胺(TEA)、2-氯乙酰胺(2-CA)和二甲基甲酰胺(DMF)由Aldrich提供。
使用许多实验室测试表征所合成的膜。这些测试包括在电解液中的表面电阻率(areal resisitivity)、离子交换容量(IEC)、平衡电解质吸收量(EEU)和化学稳定性。
使用下列公式计算膜的接枝度(DOG):
其中:
W0=接枝之前聚合物膜的重量
Wg=接枝共聚物的重量
这意味着DOG等于聚合物中的单体量。因此DOG=50%的共聚物由50%接枝单体和50%原始聚合物构成。
对于燃料电池应用,重要的是膜具有尽可能最低的电阻率以使电池效率最大化。为了分级所合成的膜,通过将膜放置于25℃±1℃的恒温控制的电池中来测量其电解电阻率。测试期间,使用外部扭矩夹具来确保膜不被过度压缩。进行测量前,将膜样品在电解液(6M NaOH)中至少平衡16小时。使用Wayne Kerr Universal Bridge,Model B642,以1591.5Hz的频率对已知测试面积进行电阻测量。使用测试区域切成孔洞的、厚度与膜相当的聚合物空白物来测量电解液途径的电阻值。然后从样品测量值中减去“空白”测量值。对于每种膜,测试两个样品,并取结果的平均值。然后考虑样品面积来计算膜电阻率。
IEC测量值是膜中的离子基电离并交换不同离子的能力的指标。因此也是膜的功能化的量度。可以由所添加的各部分的DOG计算理论IEC,此时假设每个接枝官能团均发生交换反应。比较测量出的IEC与理论值,从而给出季铵化的效力的量度。然而,IEC测量值单独不能表明膜在燃料电池的性能如何。如果没有在整个厚度对膜进行接枝,则膜仍然可以具有较高的IEC(如果具有较大的DOG),但也将具有高电阻率测量值,不适于燃料电池应用。
如下测量IEC:将约0.5g膜在0.1M HCl溶液中于环境温度平衡至少24小时。然后将样品吸干,并放置在50ml已知摩尔浓度的氢氧化钠溶液(标称0.1M)中,于环境温度通过不定期旋动进一步交换24小时。以已知摩尔浓度的HCl溶液将经交换的NaOH溶液的等分试样滴定至酚酞终点。进行三次该过程,并取结果的平均值。然后吸干交换样品片,并将其放置在105℃±5℃的真空干燥炉中,干燥至恒重。
为了测量EEU,在40℃干燥后,首先对羟基形式的膜称重。然后在6M NaOH中水合,并于环境温度保留过夜。然后从NaOH中取出膜,吸干以从表面除去过量电解液,并称重。如下计算EEU:
EEU = W 1 - W 0 W 0 × 100
其中:
W0=膜的干重
W1=以电解质润湿的膜的重量
为了评估化学稳定性,在氧化环境和还原环境中对膜进行测试,因为膜在燃料电池中会遭受氧化和还原这两种环境,并且使用高温以提供可能的最严苛的测试。称重干燥的、氢氧化物形式的膜,并记录其状态(颜色等)。然后在90℃的氢氧化钾(68.8g)/高锰酸钾(3.2g)的水溶液中处理一个小时(氧化环境)。然后在脱盐水中漂洗所述膜,并记录明显的物理变化。然后将相同的膜在70℃的硼氢化钠(30g)/氢氧化钠(6M)水溶液中沉浸3小时(还原环境)。然后在脱盐水中洗涤所述膜,干燥至恒重,并观察任何物理变化。以百分比记录重量变化。认为较大的重量损失是化学不稳定性的指标,通过再测量表面电阻率和IEC对其进一步核查。
实施例1
该实施例公开了以乙烯基苄基氯(VBC)作为单体的相互接枝反应。用于所述膜的基础聚合物膜是50μm低密度聚乙烯(LDPE)和40μm高密度聚乙烯(HDPE)。还使用了其它基础聚合物,例如乙烯四氟乙烯(ETFE),可是所产生的膜在特性测试中表现不佳。
在下述两种条件下进行实验:保持总剂量不变的同时改变剂量率(接枝时间),以及保持剂量率不变但总剂量不同。
发现用于相互膜的最佳总辐射剂量在低剂量率下为1Mrad。较高的总剂量产生不希望有的寄生反应(均聚),并产生较低的DOG。发现在较低的剂量率,DOG增加。
表1展示了稀释剂组合物对得到的DOG的影响。能够看出通过添加甲醇DOG得以提高。
表1.单体/稀释剂混合物组成对接枝度的影响
  膜   %VBC   %甲醇   %甲苯   接枝度
  LDPE-g-VBC   40   0   60   16
  LDPE-g-VBC   40   24   36   24
  LDPE-g-VBC   40   30   30   26
  LDPE-g-VBC   40   36   24   30
  HDPE-g-VBC   40   24   36   26
  HDPE-g-VBC   40   30   30   29
  HDPE-g-VBC   40   36   24   31
采用了多种季铵化试剂用于VBC共聚物,包括TMA、DMF和TEA。图1说明了以TMA季铵化VBC共聚物。在加热或在环境温度,将所述膜浸泡在胺的水溶液中。如表2所示表征所述膜。
表2.VBC接枝的共聚物的性能
Figure G2008800029977D00071
表面电阻率(在6M NaOH中)是用于评估膜的潜在性能的方便有效的技术。从表2中可以看出,DOG小于17%的VBC膜和以DMF季铵化的VBC膜具有可能妨碍其用于燃料电池的高电阻率。
从表2中可以看出,DMF作为用于VBC接枝共聚物的季铵化试剂表现不佳。用这种方式处理的膜具有较高的表面电阻率和低于VBC接枝重量理论值的IEC(29%IEC理论值=1.709meq/g,测量值=0.665meq/g)。用于VBC共聚物的最好的季铵化试剂是TMA,其得到低电阻率和与理论值相当的IEC。最佳测定条件为环境温度、4小时。
将DOG均为22%、均以TMA季铵化的两种膜HDPE-g-VBC和LDPE-g-VBC放置在6M NaOH溶液中,并在25℃~40℃的设定温度保持最长60天的不同的时段。然后再次测量膜的表面电阻率,并将任何变化作为潜在不稳定性的指标。结果总结于表3中,表明VBC接枝的膜至少在40℃可稳定高达60天。据认为测得的电阻率在与测量技术有关的实验误差范围内。
表3.VBC共聚物于不同温度在6M NaOH中的稳定性
Figure G2008800029977D00081
实施例2
该实施例公开了以乙烯基吡啶(VPy)作为单体的相互接枝反应。使用的聚合物膜再一次是50μmLDPE和40μmHDPE。
采用5M HCl或2-CA热处理,由此进行VPy接枝的膜的季铵化反应。
得到的DOG为10%~60%。尽管使用VPy作为单体可以获得高度接枝,但只要DOG超过某一水平,膜的性能就会受损;DOG高于58%时太易碎,无法用作膜。
结果总结于表4中,表明DOG>29%、以5M HCl或2-CA胺化的VPy接枝的膜具有较低的表面电阻率。
表4:VPy接枝的共聚物的性能
Figure G2008800029977D00082
本发明是利用美国海军研究所给予的美国政府支持GrantN00014-02-1-0225完成的。美国政府具有本发明的某些权利。

Claims (20)

1.一种制备阴离子交换膜的方法,所述方法包括下述步骤:选择烃类聚合物膜;以单体对所述烃类聚合物膜辐射接枝,并添加季铵化试剂以赋予离子导电性,其中,所述单体以单体/稀释剂混合物的形式存在,其中所述稀释剂包括醇和烃类溶剂。
2.如权利要求1所述的方法,所述方法还包括在合适的溶剂中洗涤所述阴离子交换膜以除去任何均聚物,并干燥至恒重。
3.如权利要求1或2所述的方法,其中,所述单体/稀释剂混合物包含至少10体积%的醇。
4.如前述权利要求中任一项所述的方法,其中,所述醇包括甲醇。
5.如前述权利要求中任一项所述的方法,其中,所述烃类溶剂选自由芳香烃和脂肪族烃组成的组。
6.如权利要求5所述的方法,其中,所述烃类溶剂选自由甲苯、二甲苯和苯组成的组。
7.如前述权利要求中任一项所述的方法,其中,所述单体/稀释剂混合物中所述单体的含量小于60体积%。
8.如权利要求7所述的方法,其中,所述单体/稀释剂混合物中所述单体的含量为30体积%~50体积%。
9.如前述权利要求中任一项所述的方法,其中,所述单体选自由氯化苯乙烯(VBC)和乙烯基吡啶(VPy)组成的组。
10.如前述权利要求中任一项所述的方法,其中,所述烃类聚合物膜选自由低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)组成的组。
11.如前述权利要求中任一项所述的方法,其中,所述辐射接枝步骤为相互接枝。
12.如权利要求1~10中任一项所述的方法,其中,所述辐射接枝步骤为照射后接枝。
13.如前述权利要求中任一项所述的方法,其中,所述季铵化试剂选自由胺类组成的组。
14.如权利要求13所述的方法,其中,所述季铵化试剂选自由烷基胺类组成的组。
15.如权利要求14所述的方法,其中,所述季铵化试剂选自由三甲胺(TMA)和三乙胺(TEA)组成的组。
16.如权利要求1~12中任一项所述的方法,其中,所述季铵化试剂选自由盐酸(HCl)、2-氯乙酰胺(2-CA)和二甲基甲酰胺(DMF)组成的组。
17.如前述权利要求中任一项所述的方法,其中,所述季铵化试剂为交联剂。
18.一种基本上参考附图如上所述的制备阴离子交换膜的方法。
19.一种根据前述权利要求中任一项所述的方法制备的阴离子交换膜。
20.一种碱性燃料电池,所述燃料电池具有权利要求19所述的阴离子交换膜。
CN200880002997A 2007-01-26 2008-01-25 阴离子交换膜 Pending CN101622305A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0701449.1A GB0701449D0 (en) 2007-01-26 2007-01-26 Anion Exchange Membranes
GB0701449.1 2007-01-26

Publications (1)

Publication Number Publication Date
CN101622305A true CN101622305A (zh) 2010-01-06

Family

ID=37872782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880002997A Pending CN101622305A (zh) 2007-01-26 2008-01-25 阴离子交换膜

Country Status (8)

Country Link
US (2) US20100062313A1 (zh)
EP (2) EP2125940B1 (zh)
JP (1) JP2010516853A (zh)
CN (1) CN101622305A (zh)
AU (1) AU2008208749A1 (zh)
CA (1) CA2676100A1 (zh)
GB (3) GB0701449D0 (zh)
WO (1) WO2008090351A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580586A (zh) * 2011-04-25 2012-07-18 大连理工大学 杂环聚合物碱性阴离子交换膜及其制备方法
CN102867929A (zh) * 2011-07-05 2013-01-09 中国科学院大连化学物理研究所 一种复合阴离子交换膜及其制备和应用
CN104080843A (zh) * 2012-01-25 2014-10-01 日东电工株式会社 阴离子交换膜及其制造方法以及使用该阴离子交换膜的燃料电池
CN104779404A (zh) * 2015-04-09 2015-07-15 深圳市万越新能源科技有限公司 一种采用射线辐照接枝法制备全钒电池均相离子交换膜的方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948243B2 (ja) 2009-08-26 2016-07-06 エヴォクア ウォーター テクノロジーズ ピーティーイー リミテッド イオン交換膜
JP5656201B2 (ja) * 2010-04-27 2015-01-21 Agcエンジニアリング株式会社 陰イオン交換膜およびその製造方法
GB201015859D0 (en) 2010-09-21 2010-10-27 Imp Innovations Ltd Regenerative fuel cells
EP2627436B1 (en) 2010-10-15 2018-01-17 Evoqua Water Technologies LLC Process for making a monomer solution for making cation exchange membranes
EP3626341B1 (en) 2010-10-15 2021-06-09 Evoqua Water Technologies LLC Anion exchange membranes and process for making
WO2014012188A1 (en) 2012-07-20 2014-01-23 Zhongwei Chen Highly ion-conductive nano-engineered porous electrolytic composite membrane for alkaline electrochemical energy systems
KR101394417B1 (ko) * 2012-09-06 2014-05-14 한국원자력연구원 방사선 그라프트 방법으로 비닐벤질 클로라이드가 그라프트된 탄화수소계 필름을 이용한 연료전지막 제조 방법
AU2013325234B2 (en) 2012-10-04 2017-09-28 Evoqua Water Technologies Llc High-performance Anion exchange membranes and methods of making same
SG11201502697YA (en) 2012-10-11 2015-05-28 Evoqua Water Technologies Llc Coated ion exchange membranes
WO2014103338A1 (ja) 2012-12-28 2014-07-03 日東電工株式会社 アニオン交換膜の製造方法、燃料電池用膜-電極接合体および燃料電池
JP6163101B2 (ja) 2012-12-28 2017-07-12 日東電工株式会社 燃料電池用膜−電極接合体とその製造方法および燃料電池
EP2997617B1 (en) 2013-05-16 2018-10-10 United Technologies Corporation Flow battery with hydrated ion-exchange membrane having maximum water domain cluster sizes
US9692072B2 (en) 2014-06-13 2017-06-27 Nitto Denko Corporation Anion exchange electrolyte membrane, membrane-electrode assembly for fuel cell including the same, and fuel cell including the same
WO2016002227A1 (ja) * 2014-07-03 2016-01-07 日東電工株式会社 液体燃料電池用隔膜及びそれを備えた膜-電極接合体
CN109478643B (zh) 2016-07-22 2022-03-15 南特能源公司 电化学电池中的水分和二氧化碳管理系统
WO2018187561A1 (en) 2017-04-06 2018-10-11 Jaramillo Mateo Cristian Refuelable battery for the electric grid and method of using thereof
WO2019133702A1 (en) 2017-12-29 2019-07-04 Staq Energy, Inc. Long life sealed alkaline secondary batteries
WO2020006436A1 (en) 2018-06-29 2020-01-02 Form Energy Inc. Aqueous polysulfide-based electrochemical cell
JP2021533552A (ja) 2018-07-27 2021-12-02 フォーム エナジー インク 電気化学セル用の負極
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11949129B2 (en) 2019-10-04 2024-04-02 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
US11987681B2 (en) 2020-04-06 2024-05-21 Rensselaer Polytechnic Institute Methods of making anion exchange membrane via simultaneous post-functionalization and crosslinking of epoxidized SBS
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB872217A (en) * 1956-06-18 1961-07-05 American Mach & Foundry Improvements in or relating to ion exchange membranes
US4045352A (en) * 1973-05-23 1977-08-30 California Institute Of Technology Ion-exchange hollow fibers
GB1472232A (en) 1974-01-11 1977-05-04 Maruzen Oil Co Ltd Graft copolymer and process for preparation thereof
JPS54101791A (en) * 1978-01-30 1979-08-10 Kurorin Engineers Kk Method of manufacturing anion exchange membrane
US4414090A (en) * 1981-10-01 1983-11-08 Rai Research Corporation Separator membranes for redox-type electrochemical cells
US4999098A (en) * 1984-10-04 1991-03-12 Dionex Corporation Modified membrane suppressor and method for use
JPH0224307A (ja) * 1988-07-14 1990-01-26 Mitsubishi Kasei Corp モザイク荷電膜の製造法
DE4211267C2 (de) 1992-04-03 1994-06-16 Fraunhofer Ges Forschung Bipolare Membran und Verfahren zu deren Herstellung
EP0679167A1 (en) * 1993-01-15 1995-11-02 The Graver Company Process for producing ion exchange membranes, and the ion exchange membranes produced thereby
US6359019B1 (en) * 1997-11-12 2002-03-19 Ballard Power Systems Inc. Graft polymeric membranes and ion-exchange membranes formed therefrom
US6723758B2 (en) * 1997-11-12 2004-04-20 Ballard Power Systems Inc. Graft polymeric membranes and ion-exchange membranes formed therefrom
JP2003096219A (ja) 2001-05-24 2003-04-03 Asahi Glass Co Ltd 陰イオン交換膜
EP1523057A1 (en) * 2003-09-26 2005-04-13 Paul Scherer Institut Membrane electrode assembly (MEA), method for its manufacturing and a method for preparing a membrane to be assembled in a MEA
EP1612874A1 (en) 2004-07-02 2006-01-04 SOLVAY (Société Anonyme) Solid alkaline fuel cell comprising ion exchange membrane
CA2591671A1 (en) * 2004-12-17 2006-06-22 Pirelli & C. S.P.A. Proton exchange fuel cell
JP4514643B2 (ja) * 2005-04-12 2010-07-28 信越化学工業株式会社 ダイレクトメタノール型燃料電池用固体高分子電解質膜及びその製造方法、並びにダイレクトメタノール型燃料電池
GB0511841D0 (en) * 2005-06-10 2005-07-20 Itm Fuel Cells Ltd Polymer formulations
JP5093440B2 (ja) * 2006-06-09 2012-12-12 信越化学工業株式会社 ダイレクトメタノール型燃料電池用電解質膜・電極接合体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580586A (zh) * 2011-04-25 2012-07-18 大连理工大学 杂环聚合物碱性阴离子交换膜及其制备方法
CN102867929A (zh) * 2011-07-05 2013-01-09 中国科学院大连化学物理研究所 一种复合阴离子交换膜及其制备和应用
CN104080843A (zh) * 2012-01-25 2014-10-01 日东电工株式会社 阴离子交换膜及其制造方法以及使用该阴离子交换膜的燃料电池
CN104779404A (zh) * 2015-04-09 2015-07-15 深圳市万越新能源科技有限公司 一种采用射线辐照接枝法制备全钒电池均相离子交换膜的方法

Also Published As

Publication number Publication date
EP2468804A1 (en) 2012-06-27
AU2008208749A1 (en) 2008-07-31
GB0701449D0 (en) 2007-03-07
US20120220673A1 (en) 2012-08-30
WO2008090351A8 (en) 2009-06-18
GB201119902D0 (en) 2011-12-28
CA2676100A1 (en) 2008-07-31
GB2483807B (en) 2012-06-13
GB2458079B (en) 2012-04-25
EP2125940A1 (en) 2009-12-02
US20100062313A1 (en) 2010-03-11
GB0912364D0 (en) 2009-08-26
EP2125940B1 (en) 2012-08-01
WO2008090351A1 (en) 2008-07-31
GB2458079A (en) 2009-09-09
JP2010516853A (ja) 2010-05-20
GB2483807A (en) 2012-03-21

Similar Documents

Publication Publication Date Title
CN101622305A (zh) 阴离子交换膜
Nagarale et al. Preparation of polyvinyl alcohol–silica hybrid heterogeneous anion-exchange membranes by sol–gel method and their characterization
Vinodh et al. A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization
Kang et al. Water-swollen cation-exchange membranes prepared using poly (vinyl alcohol)(PVA)/poly (styrene sulfonic acid-co-maleic acid)(PSSA-MA)
Li et al. Electrochemical properties of sulfonated PEEK used for ion exchange membranes
Cui et al. Development and characterization of ion-exchange polymer blend membranes
Xing et al. Effect of amination agent on the properties of quaternized poly (phthalazinone ether sulfone) anion exchange membrane for vanadium redox flow battery application
EP2627436B1 (en) Process for making a monomer solution for making cation exchange membranes
Nibel et al. Amphoteric ion‐exchange membranes with significantly improved vanadium barrier properties for all‐vanadium redox flow batteries
Coppola et al. Polybenzimidazole-crosslinked-poly (vinyl benzyl chloride) as anion exchange membrane for alkaline electrolyzers
KR101351280B1 (ko) 레독스-흐름 전지용 음이온교환막 및 이의 제조방법
Yuan et al. Facile synthesis of amphoteric ion exchange membrane by radiation grafting of sodium styrene sulfonate and N, N‐dimethylaminoethyl methacrylate for vanadium redox flow battery
Naik et al. Novel poly (ionic liquid)-based anion exchange membranes for efficient and rapid acid recovery from industrial waste
Choi et al. Electrochemical characterization of poly (vinyl alcohol)/formyl methyl pyridinium (PVA-FP) anion-exchange membranes
CN101743660A (zh) 含有阴离子交换膜和聚合物离聚体的电化学装置
KR101863396B1 (ko) 산 차단 음이온 막
US4355116A (en) Stable high performance bipolar membrane with cross-linked functional groups
Choi et al. Preparation and electrochemical characterizations of anion-permselective membranes with structurally stable ion-exchange sites
Jeevananda et al. Synthesis and characterization of bipolar membrane using pyridine functionalized anion exchange layer
Chaudhury et al. Self-diffusion of ions in Nafion-117 membrane having mixed ionic composition
Bavdane et al. N-Sulfonated Poly (arylene-oxindole) for Vanadium Redox Flow Battery Applications
CN106463740B (zh) 阴离子交换型电解质膜、具备该电解质膜的燃料电池用的膜-电极接合体以及燃料电池
CN107978779B (zh) 一种燃料电池用自修复阴离子交换膜及其制备方法
Fu et al. Preparation of a mono‐sheet bipolar membrane by simultaneous irradiation grafting polymerization of acrylic acid and chloromethylstyrene
Choi et al. Preparation and characterization of LDPE/polyvinylbenzyl trimethyl ammonium salts anion-exchange membrane

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20100106

C20 Patent right or utility model deemed to be abandoned or is abandoned