CN101584093A - 耐反射光性优异的光纤激光器 - Google Patents

耐反射光性优异的光纤激光器 Download PDF

Info

Publication number
CN101584093A
CN101584093A CNA2008800012247A CN200880001224A CN101584093A CN 101584093 A CN101584093 A CN 101584093A CN A2008800012247 A CNA2008800012247 A CN A2008800012247A CN 200880001224 A CN200880001224 A CN 200880001224A CN 101584093 A CN101584093 A CN 101584093A
Authority
CN
China
Prior art keywords
wavelength
wavelength conversion
fiber
light
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008800012247A
Other languages
English (en)
Other versions
CN101584093B (zh
Inventor
北林和大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Publication of CN101584093A publication Critical patent/CN101584093A/zh
Application granted granted Critical
Publication of CN101584093B publication Critical patent/CN101584093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06741Photonic crystal fibre, i.e. the fibre having a photonic bandgap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06779Fibre amplifiers with optical power limiting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光纤激光器,是MO-PA方式的光纤激光器,包括脉冲振荡器,以及与所述脉冲振荡器的后段连接的将添加稀土元素光纤作为增益介质的第一光纤放大器,在脉冲振荡器和光纤放大器之间具有波长变换部,并且在所述波长变换部和脉冲振荡器之间具有仅使从脉冲振荡器发出的脉冲光的波长成分通过的波长滤波器,因此能够不使用昂贵的光学部件就能防止由反射光造成的光纤激光器的损坏。

Description

耐反射光性优异的光纤激光器
技术领域
本发明涉及MO-PA方式的光纤激光器,特别是涉及以脉冲光进行输出的、耐反射光性优异的光纤激光器。
本申请主张基于2007年6月27日在日本提出的专利申请特愿2007-169042号的优先权,并在此引用其内容。
背景技术
近年,由于高输出光纤激光器的开发的进展,在加工机器、医疗机械、测量仪器等各种领域中广泛使用光纤激光器。特别是在材料加工领域中,光纤激光器与其他的激光器相比具有优异的聚光性,能够得到高功率密度的非常小的光束斑因此可进行精密加工,而且,由于是非接触加工,并且能够对可吸收激光的硬物质进行加工,所以其用途被迅速地扩大。
脉冲输出的光纤激光器一般采用MO-PA方式的构成,通过脉冲振荡器(MO:Master Oscillator)产生比较低功率的脉冲光,该脉冲光通过光纤放大器(PA:Power Amplifier)放大到希望的输出。图1是表示MO-PA方式的高输出光纤激光器的概略图。在使用一个光纤放大器不能放大到希望的输出时,也有串联连接使用多个光纤放大器的情况。
但是,MO-PA方式的光纤激光器,特别是输出为10W以上的高输出的光纤激光器存在容易由反射光而引起故障的缺点。例如,使用光纤激光器进行加工时,存在已经从光纤激光器输出的激光被加工对象物体的表面反射,其一部分再次返回到光纤激光器的情况。该反射光虽微弱但通过PA内向MO传输时被放大从而功率增大,有时造成构成MO的光学部件、配置在MO和PA之间的光学部件的损坏。
而且,在PA内进行脉冲光的放大,在下一束脉冲光射入到PA的期间内,从PA所使用的添加稀土元素光纤中输出ASE光(AmplifiedSpontaneous Emission)。该光被加工对象物体反射,再次射入PA时,往往会产生寄生振荡。若产生寄生振荡则会从PA向MO发出非常高的峰值的脉冲光,该脉冲光会损坏构成MO的光学部件、配置在MO和PA之间的光学部件。
为了保护MO的光学部件以及配置在MO和PA之间的光学部件免受反射光的损坏,例如专利文献1所公开那样,考虑使用隔离器。此处提出了为了防止光通信用的光纤放大器中后段的光纤放大器发出的ASE光射入到前段的光纤放大器而使用了隔离器的方案。同样在光纤激光器中紧挨着PA的前面配置隔离器能够防止反射光射入到MO、MO和PA之间所配置的光学部件中。
专利文献1:日本专利第2619096号公报
专利文献2:日本特开2002-296630号公报
专利文献3:美国专利第5864644号说明书
非专利文献1:G.Bouwmans,“Fabrication and characterization ofan allsolid 2D photonic bandgap fiber with a low-loss region(<20dB/km)around 1550nm”OPTICS EXPRESS 17,Vol.13,No.21,2005,pp8452-8459
但是,即使如专利文献1所公开那样使用隔离器时,在该隔离器正常发挥功能时,也存在光纤激光器的输出是比较低的数百mW左右的情况。能够在数W左右使用的隔离器在市场上虽有但价格非常高。
并且,隔离器的插入损耗很大程度依赖于隔离器的构成要素的法拉第旋转器。但是法拉第旋转器能够使用的材料是受限制的,存在难于得到希望波段的低损耗的隔离器的情况。特别是在通过数W以上的激光的地方使用隔离器时即使只有很小的损耗(通常法拉第旋转器的损耗为0.5dB左右)由该损耗产生的热也会导致其损坏。
并且,寄生振荡在PA所使用的添加稀土元素光纤的荧光波段内(波段为100nm左右)的任何波长中都可能发生,取得足够大的隔离器的隔离是10nm左右的波段,对这以外的波长隔离度低,存在无法防止寄生振荡的发生的情况。
发明内容
本发明正是鉴于上述情况而做出的,目的在于提供一种在高输出脉冲的MO-PA方式的光纤激光器中,不使用昂贵的光学部件就能够防止由反射光引起的光纤激光器的损坏的光纤激光器。
为达到上述目的,本发明提供一种激光器,是MO-PA方式的光纤激光器,包括脉冲振荡器,以及与所述脉冲振荡器的后段连接的将添加稀土元素光纤作为增益介质的第一光纤放大器,在脉冲振荡器和光纤放大器之间具有波长变换部,并且在所述波长变换部和脉冲振荡器之间具有仅使从脉冲振荡器发出的脉冲光的波长成分通过的波长滤波器。
在本发明的光纤激光器中,优选在所述波长变换部和所述光纤放大器之间,具有仅使由波长变换部对从所述脉冲振荡器发出的脉冲光进行波长变换后的波长通过的波长滤波器。
在本发明的光纤激光器中,优选所述波长变换部,是将从脉冲振荡器发出的脉冲光的波长变换为用第一光纤放大器能够放大的波长的部件。
在本发明的光纤激光器中,优选所述波长变换部是产生受激拉曼散射的波长变换用光纤。
在本发明的光纤激光器中,优选所述波长变换用光纤是光子带隙光纤。
在本发明的光纤激光器中,优选所述波长变换部是第二光纤放大器。
在本发明的光纤激光器中,优选还包括用于容易引发波长变换的种光光源,种光光源与脉冲振荡器同步,并发出波长与从脉冲振荡器发出的脉冲光被第二光纤放大器进行波长变换后的波长相同的光,从与自脉冲振荡器来的脉冲光被射入的方向相同方向射入第二光纤放大器。
发明效果
本发明的光纤激光器作为在脉冲振荡器(MO)和光纤放大器(PA)之间具有波长变换部,并且在所述波长变换部和脉冲振荡器之间具有仅通过脉冲振荡器发出的脉冲光的波长成分的波长滤波器的构成,由于从脉冲振荡器发出的脉冲光的波长和反射光脉冲的波长不同,所以不使用隔离器而在波长变换器的前后使用BPF等的波长滤波器,就能够防止反射光脉冲对部件的损坏从而保护部件。
而且,由于没有使用非常昂贵的隔离器,所以能够降低光纤激光器的成本。
而且,由于在波长变换中使用拉曼散射,因此不根据从脉冲振荡器发出的脉冲光的波长就能进行波长变换。
而且,通过在波长变换中使用光纤放大器,能够增大射入到PA的脉冲光功率,所以使用小的激发功率即可得到规定的输出,能够抑制光纤激光器的成本。
而且,通过在波长变换中使用光纤放大器,能够增大射入到PA的脉冲光功率,因此使用小的激发功率即可得到规定的输出,能够抑制PA的寄生振荡,因此能够提高光纤激光器的可靠性。
附图说明
图1是以例子表示MO-PA方式的光纤激光器的基本构成的构成图。
图2是表示本发明的光纤激光器的一个实施方式的构成图。
图3是表示本发明的光纤激光器中MO的构造的一个例子的构成图。
图4是表示本发明的光纤激光器中PA的构造的一个例子的构成图。
图5是表示根据实施例1所制造的光纤激光器的MO发出的脉冲光的光谱波长的图。
图6是表示在实施例1中波长变换后的脉冲光的光谱波长的图。
图7是表示实施例1中波长变换后、通过波长滤波器后的光的光谱波长的图。
图8是说明实施例1中波长变换时的脉冲波形变化的图。
图9是表示实施例1中波长变换后的脉冲波形图。
图10是表示实施例1中从PA返回到MO的反射光脉冲的平均功率和通过第一波长滤波器射入到MO的反射光脉冲功率的测量结果的图。
图11是实施例2所使用的波长变换用PBGF的截面图。
图12是表示实施例2所使用的波长变换用PBGF的直径方向的折射率分布图。
图13是表示实施例2中从作为波长变换器使用的PBGF输出的光谱波长的图。
图14是表示根据实施例3所制造的光纤激光器的构成的图。
图15是表示根据实施例3所制造的光纤激光器输出的光谱波长的图。
图16是表示根据实施例4所制造的光纤激光器输出的光谱波长的图。
附图符号说明
100-光纤激光器;110-MO;120-PA;130-波长变换器;140-第一波长滤波器;150-第二波长滤波器;111-激发光源;112-WDM耦合器;113-添加稀土元素光纤;114-隔离器;115-输出耦合器;117-带通滤波器;118-光开关;121-激发光源;122-信号端口;123-光耦合器;124-射出端口;125-添加稀土元素双包层光纤;500-PBGF;501-低折射率区域;502-高折射率部分。
具体实施方式
下面参照附图说明本发明的实施方式。
图2是表示本发明的光纤激光器的一个实施方式的构成图。本实施方式的光纤激光器100是在脉冲振荡器(以下称为MO)110和光纤放大器(以下称为PA)120之间设置波长变换器130,在MO110和波长变换器130之间设置第一波长滤波器140,并且在波长变换器130和PA120之间设置第二波长滤波器150而构成的。在MO-PA之间所设置的第一波长滤波器140、波长变换器130以及第二波长滤波器150,在从MO110发出的脉冲光朝向PA120通过时进行以下动作。
从MO110发出的脉冲光通过第一波长滤波器140射入到波长变换器130中。波长变换器130变换射入的脉冲光的波长。变换后的波长在PA120中能够放大到所期望的输出,并处于PA120的增益波段内。第二波长滤波器150通过由波长变换器130变换了波长的脉冲光,遮断在波长变换器130中没有进行波长变换的成分。这样,通过第二波长滤波器150后的脉冲光被PA120放大到所期望的输出后被输出。
另一方面,第一波长滤波器140、波长变换器130、第二波长滤波器150对于反射光进行以下动作。已经输出的激光由外部的反射等再次射入PA120时,即使仅有少量的反射光在通过PA120的期间也会被放大,成为高强度的脉冲射入第二波长滤波器150。射入到第二波长滤波器150的反射光脉冲因为与从波长变换器130射入PA120的脉冲是相同的波长,因此没被第二波长滤波器150遮断而通过,射入到波长变换器130。通过波长变换器130的反射光脉冲射入到第一波长滤波器140,但由于反射光脉冲的波长是与MO110原来发出的波长不同的波长,因此被第一波长滤波器140遮断。如上所述,不使用隔离器也能够遮断向MO110射入的反射光脉冲,因此能够防止发生由反射光引起的MO110内的部件的故障。
下面说明具体的实施例。
实施例1
MO110是激光振荡器,在本实施例中使用光纤环形激光器。如图3所示,该光纤环形激光器包括:激发光源111,耦合激发光和激光的WDM耦合器112,作为增益介质的添加稀土元素光纤113,隔离器114,带通滤波器117,光开关118,以及输出耦合器115。从激发光源111射出的激发光经由WDM耦合器112射入到添加稀土元素光纤113。射入到添加稀土元素光纤113的激发光由添加稀土元素光纤113的纤芯中所添加的稀土元素离子吸收,使稀土元素离子处于激发状态。成为激发状态的稀土元素离子放出特定波长的自然放射光,该自然放射光一边被放大一边在添加稀土元素光纤113内传播,作为ASE(AmplifiedSpontaneous Emission)被输出。WDM耦合器112和添加稀土元素光纤113、隔离器114、输出耦合器115、带通滤波器117以及光开关118连接成为环形,带通滤波器117的通过波段的波长的ASE通过这些部件环绕一周后,再次在添加稀土元素光纤113中被放大,最后激发出激光,其一部分通过输出耦合器115作为激光被输出。而且光开关元件117若总是处于低损耗的状态则进行CW发光,激光输出作为连续光被输出。若光开关元件117周期性重复在低损耗状态和高损耗状态之间这样动作的话则发出脉冲光,能够得到脉冲形式的激光输出。
本实施例作为MO110的添加稀土元素光纤113使用在纤芯中添加Yb离子、纤芯直径是4μm、吸收量是500dB/m的光纤,激发光源使用在波长976nm下振荡的光源,以便能够激发在添加稀土元素光纤的纤芯中所添加的Yb离子,光开关元件使用声光学元件(AOM)。驱动激发光源使其能够输出500mW,使AOM以20kHz周期动作时,作为MO输出可得到脉冲宽度是50ns、峰值功率是70W左右的脉冲输出。
MO110也可不使用这样的光纤环形激光器,而使用在添加稀土元素光纤的两端设置谐振器反射镜的法布里-佩洛型光纤激光器或组合输出连续光的半导体激光器和外部调制器的部件等的激光器。
另一方面,PA120使用如图4所示的构成的PA。
该PA120由激发光源121、光耦合器123、添加稀土元素双包层光纤125、以及激发光源121构成。光耦合器123例如可以使用专利文献3所记载的光耦合器。该光耦合器123具有由多模光纤构成的多根激发端口122,以及由一根单模光纤构成的信号端口122,还具有将这些熔化拉伸一体化所形成的一个射出端口124。
从MO110射出的激光从信号端口122射入,经由光耦合器123入射到添加稀土元素双包层光纤125的纤芯。另一方面激发端口122连接有激发光源121,激发光经由光耦合器123射入到添加稀土元素双包层光纤125的第一包层。射入到添加稀土元素双包层光纤125的第一包层的激发光被纤芯所添加的稀土元素离子吸收后形成逆态分布,通过产生受激发射来放大在纤芯内传播的激光,并作为激光输出被输出。
本实施例中作为PA120的添加稀土元素双包层光纤125,使用在纤芯中添加Yb离子的添加Yb双包层光纤,上述光纤的纤芯直径是6μm,第一包层直径为125μm,纤芯吸收量是1200dB/m@976nm。激发光源为了要激发Yb离子所以使用波长为915nm的激发光源。每一台激发光源的输出为6W,通过使用这样的12台光源能够射入最大是72W的激发光。激发光源的台数(最大功率)根据需要的激光输出进行调整。而且,在PA120的输出达不到所期望的输出时,也可在PA120的后段设置相同构成的PA,放大到所期望的输出。
波长变换部130使用波长变换用光纤。该波长变换用光纤是在高强度的光射入时通过受激拉曼散射使射入光的波长向波长长的一侧偏移的光纤。受激拉曼散射产生的光的强度能够通过波长变换光纤的纤芯直径、光纤长度进行调节,在本实施例中通过使用50m的纤芯直径6μm的单模光纤,在射入到波长变换用光纤的脉冲光的峰值超过约50W时,引发基于受激拉曼散射的波长变换。
由于本实施例的MO110发出的脉冲光峰值是70W左右,因此能够发生足够的波长变换。如图5所示,从MO110发出的脉冲光的波长为1040nm,在通过波长变换用光纤时,如图6所示通过拉曼散射脉冲光的波长偏移到约1090nm。在图6中,虽然只产生波长1090nm的光(一次拉曼光),但如果通过使光纤的长度变长,或使纤芯直径变小等,调整为更容易产生受激拉曼散射时,则能够波长变换为更长波长、例如1140nm(2次拉曼光)的波长。本实施例中,能够通过后段所连接的PA120的添加Yb双包层光纤125进行脉冲放大,因此只对波长1090nm脉冲光进行波长变换。而且,若脉冲光的时间波形完全成为矩形时,则能够完全地波长变换到1090nm,但实际上从MO110发出的脉冲的时间波形是如图8所示的形状,在波长的上升和下降的部分不发生波长变换,在脉冲的峰值前后发生波长变换,因此来自波长变换用光纤的输出光是射出包含1040nm和1090nm这两者的波长成分的脉冲光。
第一波长滤波器140使用设计成通过从MO110发出的波长1040nm附近的脉冲光的带通滤波器,而且第二波长滤波器150使用设计为通过波长变换后的1090nm附近的带通滤波器。任何一个都使用多层电介质薄膜滤波器。因此,从波长变换用光纤射出的脉冲光(图6)之中,仅通过具有波长1090nm附近的波长成分的脉冲光(图7)。此时,脉冲波形也从图8的波形变为图9的波形,脉冲宽度也变窄。这样如上所述,波长变换只在脉冲的峰值附近发生。而且由于通过波长变换使脉冲宽度变窄,因此在被PA120放大时,能够放大到更高峰值。
通过第二波长滤波器150的脉冲光射入到PA120,被放大后作为激光输出被输出。本实施例中激发光功率是70W时,可得到25W的输出,可得到脉冲宽度为53ns、峰值功率为25kW的脉冲。
下面,在按照激光输出是25W的方式驱动光纤激光器的状态下,在PA120的射出端配置反光镜改变反射损耗,测量从PA120返回到MO110的反射光脉冲的平均功率和通过第一波长滤波器140后射入到MO110的反射光脉冲的功率。结果如图10所示。
如图10所示,来自PA120的最大功率约30dBm(1W)的反射光脉冲射出到MO110。假设1W的反射光脉冲也射入MO110中,会使MO110中所使用的光学部件发生故障。但是,实际上已控制射入到MO110的反射光脉冲的功率在0dBm(1mW)以下。
这是因为第一波长滤波器140只能通过和MO110相同波长的光,已经进行波长变换而波长发生变化的反射光脉冲通过第一波长滤波器140时其将被遮断。通常,MO110所使用的光学部件在100mW功率时也不会损坏。而且,由于波长滤波器140、150使用具有优异的耐功率性的多层电介质薄膜,因此即使遮断高强度的反射光脉冲也不会损坏。而且,也不需要昂贵的隔离器。
在此,通过信号光射入到高度非线性的光纤而发生的拉曼散射进行波长变换,之后在波长滤波器中进行仅取出波长变换后的波长成分的波长变换技术,例如专利文献2所记载的技术。假设,将该构成设置在本实施例的MO110和PA120之间,则在从MO110射入到PA120时,能够对由PA120可放大的脉冲光进行波长变换,反射光都通过波长滤波器、高度非线性光纤后,射入到MO110,因此该构成不能保护MO110免受反射光脉冲的损害。
实施例2
实施例1中,拉曼变换后的光谱波长如图6所示,通过第二波长滤波器150时功率损耗大。即使调整波长变换用光纤的长度等,使拉曼散射更容易地产生,由于开始发生了2次拉曼光,因此不能增加1次拉曼光的功率。因此,使用与实施例1相同的构成,通过在波长变换器130中使用光子带隙光纤(以下称为PBGF),抑制功率损耗,实现改善效率。
PBGF例如是非专利文献1所记载的。图11是表示PBGF的截面图,图12是表示其直径方向的折射率分布图。该PBGF500在中心具有与纯石英相同低折射率的区域501,在其周围通过添加Ge等形成高折射率部分502,将该高折射率部分排列成三角形栅格状的周期构造。通过调整高折射率部分的直径、间隔能够形成所期望的波段的光子带。当光射入到该PBGF500的低折射率区域501时,光子带隙的波段的光不能在周期构造配置的高折射率部分502中传播,因此被封闭在低折射率区域501中,在纤芯区域被传播。这与原有的光通信等中所使用的光纤的传播原理不同。关于这以外的波段的光,能够在周期构造中传播,因此直接在光纤整体中扩散放射。即对于光子带隙的波段的光,PBGF成为以低折射率区域作为纤芯、以高折射率区域作为包层发挥功能的光纤。
在本实施例中,作为波长变换用光纤使用PBGF500,该PBGF500将光子带隙配置在MO110发出的脉冲光和其1次拉曼光的波段(1020~1120nm)中,2次拉曼光的波段(1140nm)在光子带隙的波段以外。通过这样的构成,从MO110发出的脉冲光通过PA120时,从MO110发出的脉冲光和其1次拉曼光被封闭在纤芯区域中进行传播,1次拉曼光产生的拉曼散射光不在纤芯区域中传播,在受激拉曼散射前被放出。若没有产生受激拉曼散射,为了能够有效抑制从1次拉曼光向2次拉曼光的波长变换,通过使用该PBGF500,比实施例1中的波长变换用光纤能够产生更多1次拉曼光。
图13是表示作为波长变换器130使用PBGF500时的、从PBGF500输出的光谱波长。与实施例1的情况(图6)相比能够产生更多波长1090nm的脉冲光。通过第二波长滤波器150时的损耗相对于实施例1中的3.5dB,本实施例能够降低到1.8dB。
而且,通过降低损耗能够得到以下的效果。
通过降低损耗可提高向PA120输入的脉冲光的功率,为了得到与实施例1相同的25W的输出而需要的激发功率减少到65W。即、通过小的激发功率能够得到与实施例1相同的输出。光纤激光器中的激发光源是成本高的部件,减少需要的激发功率即可达到需要的输出则在成本控制方面具有很大的效果。而且,由于能够降低激发功率,可降低添加稀土元素光纤的增益,难以发生寄生振荡,因此具有能够提高光纤激光器的可靠性的效果。
在按照激光输出是25W的方式驱动光纤激光器的状态下,与实施例1相同,在PA120的射出端配置反射镜且反射损耗是20dB,测量从PA120返回到MO110的反射光脉冲的平均功率和通过第一波长滤波器140射入到MO110的光脉冲的功率。从其结果可知:来自PA120的最大功率约29dBm(0.8W)的反射光脉冲向MO110射出,射入MO110的反射光脉冲的功率被抑制在-3dBm(0.5mW),得到与实施例1大体上相同的效果。
实施例3
在实施例2中,通过在波长变换器中使用PBGF,抑制了功率损耗并提高了效率。
但是,为了产生足够的波长变换,需要数十米非常长的波长变换用光纤。因此在制造激光器时操作性差,且需要大的容纳空间。特别是形成如图12所示的复杂的折射率构造时,比通常的光纤更难制造而且成本高。
射入到波长变换器130的光,在PBGF中传播的同时通过自然拉曼散射产生波长比入射光长的光。该自然拉曼散射光随着入射光在PBGF中的传播而逐渐地积蓄,达到某个强度时迅速地产生由受激拉曼散射引发的波长偏移。
因此,在入射光接近波长变换器130的射出侧时产生2次拉曼光,即使波长变换器130的射入侧部分没有PBGF光纤,只要在射出侧部分使用PBGF,就能够抑制2次拉曼光的产生。
通过上述,相对于实施例2的激光器增加了以下的变更。
基本构成与实施例2相同,但波长变换器130是由以下的两个部分构成的这一点与实施例2不同。(图14)
第一波长变换器131使用纤芯直径为4μm的单模光纤。由于与实施例1相比纤芯直径变小,因此能够使在纤芯内传播的光的功率密度增高,使用更短的光纤就可产生波长变换。光纤长度调整为观测到来自第一波长变换器131的输出光仅产生1次拉曼光的长度(15m)。图15表示来自第一波长变换器的输出光谱。
第二波长变换器使用25m与实施例2中所使用的光纤相同的光纤,该输出光谱是与实施例2的PBGF的输出(图13)相同的输出光谱,作为波长变换器130具有与实施例2的构成的情况同样的功能。
而且,使用的PBGF与实施例相比只是其一半的长度,因此能够缩短所使用的PBGF。
实施例4
作为波长变换器130使用添加Yb的光纤放大器。添加Yb光纤使用具有纤芯直径为6μm、包层直径为120μm的双包层构造的光纤,纤芯吸收量是1200dB/m(@976nm)。调整该添加Yb光纤的长度以及激发光强度,以使该添加Yb光纤的最大增益波长处于1090nm附近,在从MO110发出的脉冲光射入时,能够得到如图16所示的输出,能够将脉冲光的波长从1040nm变换到1090nm。在此,根据光纤放大器的动作条件,也有产生1140nm脉冲光的情况。这是由于波长变换到1090nm的脉冲光通过拉曼散射使波长偏移的缘故,当发生量多时将成为导致损耗的主要原因,因此也可使用纤芯直径大的添加Yb光纤,或使用在PBGF500的纤芯中添加Yb的光纤等,抑制拉曼散射引起的波长偏移。而且,通过将种光从与将来自MO110的脉冲光射入到光纤放大器的方向相同的方向输入,能够容易地发生波长偏移。种光以希望波长变换到的波长与脉冲光同步地射入到光纤放大器中即可。
接着在PA120中对波长变换后的脉冲光进行放大,激光输出调整为25W,与实施例1中进行的相同,在PA120的射出端配置反射镜且反射损耗为20dB时,测量从PA120返回到MO110的反射光脉冲的平均功率和通过第一波长滤波器140射入到MO110的反射光脉冲的功率。其结果可以确认:来自PA120的最大功率约29dBm(0.8W)的反射光脉冲向MO110射出,能够将射入到MO110的反射光脉冲功率抑制在+8dBm(6nW)。由于反射光通过光纤放大器时被放大,因此与实施例1和实施例2相比反射光脉冲功率变大,但能够充分地抑制到不损坏MO110的光学部件的程度。
而且,由于作为波长变换器130使用光纤放大器,所以能够得到实施例1和实施例2得不到的效果。在本实施例中相对于波长变换前的脉冲光的功率是70mW,波长变换后的输出被放大到900mW。即、射入PA120的脉冲光功率比实施例1和实施例2能够增大10倍以上。若增大射入PA120的脉冲光功率,则可减少用于得到规定的输出的PA120的激发光,即能够降低PA120的增益,因此能够防止由寄生振荡引起的光纤激光器的故障,并具有能够减少在光纤激光器的成本中占最大比例的激发光激光器的台数的优点。
产业上利用的可能性
根据本发明的光纤激光器,不必使用昂贵的光学部件就能够防止由反射光引起的光纤激光器的损坏。

Claims (7)

1.一种光纤激光器,其是MO-PA方式的光纤激光器,包括脉冲振荡器,以及与所述脉冲振荡器的后段连接的将添加稀土元素光纤作为增益介质的第一光纤放大器,其特征在于,
在脉冲振荡器和光纤放大器之间具有波长变换部,并且在所述波长变换部和脉冲振荡器之间具有仅使从脉冲振荡器发出的脉冲光的波长成分通过的波长滤波器。
2根据权利要求1所述的光纤激光器,其特征在于,
在所述波长变换部和所述光纤放大器之间,具有仅使由波长变换部对从所述脉冲振荡器发出的脉冲光进行波长变换后的波长通过的波长滤波器。
3.根据权利要求1或2所述的光纤激光器,其特征在于,
所述波长变换部,是将从脉冲振荡器发出的脉冲光的波长变换为用第一光纤放大器能够放大的波长的部件。
4.根据权利要求1或2所述的光纤激光器,其特征在于,
所述波长变换部是产生受激拉曼散射的波长变换用光纤。
5.根据权利要求4所述的光纤传感器,其特征在于,
所述波长变换用光纤是光子带隙光纤。
6.根据权利要求1或2所述的光纤激光器,其特征在于,
所述波长变换部是第二光纤放大器。
7.根据权利要求6所述的光纤激光器,其特征在于,
还包括用于容易引发波长变换的种光光源,
种光光源与脉冲振荡器同步,并发出波长与从脉冲振荡器发出的脉冲光被第二光纤放大器进行波长变换后的波长相同的光,从与自脉冲振荡器来的脉冲光被射入的方向相同方向射入第二光纤放大器。
CN2008800012247A 2007-06-27 2008-06-25 耐反射光性优异的光纤激光器 Active CN101584093B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP169042/2007 2007-06-27
JP2007169042 2007-06-27
PCT/JP2008/061534 WO2009001852A1 (ja) 2007-06-27 2008-06-25 反射光耐性の優れたファイバレーザ

Publications (2)

Publication Number Publication Date
CN101584093A true CN101584093A (zh) 2009-11-18
CN101584093B CN101584093B (zh) 2011-11-23

Family

ID=40185665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800012247A Active CN101584093B (zh) 2007-06-27 2008-06-25 耐反射光性优异的光纤激光器

Country Status (8)

Country Link
US (1) US8295314B2 (zh)
EP (1) EP2164140B1 (zh)
JP (1) JP5198292B2 (zh)
CN (1) CN101584093B (zh)
AU (1) AU2008268087B2 (zh)
CA (1) CA2693112C (zh)
RU (1) RU2460186C2 (zh)
WO (1) WO2009001852A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689745B (zh) * 2007-06-29 2011-09-28 株式会社藤仓 光放大器、光纤激光器以及反射光去除方法
US8189257B2 (en) * 2008-05-01 2012-05-29 Massachusetts Institute Of Technology Optimized cascaded raman fiber-based laser source for high efficiency mid-infrared spectral generation
EP2381543B1 (en) 2008-12-26 2019-07-10 Fujikura Ltd. Fiber laser apparatus
CN102292672B (zh) * 2009-01-23 2016-06-22 株式会社藤仓 光合波器以及光纤激光器
WO2010132466A1 (en) * 2009-05-11 2010-11-18 OFS Fitel LLC, a Delaware Limited Liability Company Systems and methods for cascaded raman lasting at high power levels
JP5662770B2 (ja) * 2010-11-25 2015-02-04 株式会社フジクラ ファイバレーザ装置
JP2012243789A (ja) * 2011-05-16 2012-12-10 Miyachi Technos Corp ファイバレーザ加工装置及びレーザ加工方法
WO2012161083A1 (ja) * 2011-05-24 2012-11-29 住友電気工業株式会社 パルス光源
JP2013055283A (ja) * 2011-09-06 2013-03-21 Fujikura Ltd 高パワーパルス光発生装置
WO2013111271A1 (ja) 2012-01-24 2013-08-01 株式会社フジクラ ファイバレーザ装置
JP6037711B2 (ja) * 2012-08-08 2016-12-07 株式会社フジクラ ファイバレーザ装置
US9037669B2 (en) 2012-08-09 2015-05-19 International Business Machines Corporation Remote processing and memory utilization
JP6140750B2 (ja) * 2015-03-24 2017-05-31 株式会社フジクラ ファイバレーザ装置
WO2018005927A1 (en) * 2016-07-01 2018-01-04 Ipg Photonics Corporation Fiber laser system with mechanism for inducing parasitic light losses

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619096B2 (ja) 1990-02-13 1997-06-11 日本電信電話株式会社 光増幅器
JPH03242627A (ja) * 1990-02-20 1991-10-29 Nippon Telegr & Teleph Corp <Ntt> 多段光増幅装置
US5745284A (en) * 1996-02-23 1998-04-28 President And Fellows Of Harvard College Solid-state laser source of tunable narrow-bandwidth ultraviolet radiation
US5880877A (en) 1997-01-28 1999-03-09 Imra America, Inc. Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier
US5864644A (en) 1997-07-21 1999-01-26 Lucent Technologies Inc. Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices
US6154310A (en) 1997-11-21 2000-11-28 Imra America, Inc. Ultrashort-pulse source with controllable multiple-wavelength output
JP2000235202A (ja) * 1999-02-16 2000-08-29 Oki Electric Ind Co Ltd 波長変換装置及び信号光発生装置
US6340806B1 (en) * 1999-12-28 2002-01-22 General Scanning Inc. Energy-efficient method and system for processing target material using an amplified, wavelength-shifted pulse train
US6885683B1 (en) * 2000-05-23 2005-04-26 Imra America, Inc. Modular, high energy, widely-tunable ultrafast fiber source
US7190705B2 (en) * 2000-05-23 2007-03-13 Imra America. Inc. Pulsed laser sources
JP2002006348A (ja) 2000-06-21 2002-01-09 Mitsubishi Electric Corp 光増幅器
WO2002014944A1 (en) * 2000-08-11 2002-02-21 Crystal Fibre A/S Optical wavelength converter
JP2003035919A (ja) * 2000-11-07 2003-02-07 Furukawa Electric Co Ltd:The 光増幅装置および光伝送システム
EP1241746A1 (en) * 2001-03-14 2002-09-18 Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre Narrow band high power fibre lasers
JP2002296630A (ja) 2001-04-02 2002-10-09 Hitachi Cable Ltd 光ファイバ形波長変換器
JP3961266B2 (ja) * 2001-11-07 2007-08-22 三菱電機株式会社 光増幅装置
GB2385460B (en) * 2002-02-18 2004-04-14 Univ Southampton "Pulsed light sources"
JP2003298527A (ja) * 2002-04-02 2003-10-17 Fujitsu Ltd ラマン増幅を用いた光ファイバ伝送のための方法及び装置
EP1353460B1 (en) * 2002-04-12 2008-06-11 Corvis France R & D Optical amplifier system
CN1164973C (zh) * 2002-08-27 2004-09-01 上海交通大学 多稀土掺杂超宽带光纤放大器
JP4405250B2 (ja) 2003-08-28 2010-01-27 日本電信電話株式会社 信号光反射阻止回路および光伝送システム
US7711013B2 (en) * 2004-03-31 2010-05-04 Imra America, Inc. Modular fiber-based chirped pulse amplification system
US7420994B2 (en) * 2005-03-04 2008-09-02 Corning Incorporated Pulsed cascaded Raman laser
US7620077B2 (en) * 2005-07-08 2009-11-17 Lockheed Martin Corporation Apparatus and method for pumping and operating optical parametric oscillators using DFB fiber lasers
US7391561B2 (en) * 2005-07-29 2008-06-24 Aculight Corporation Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method
US7430352B2 (en) * 2005-07-29 2008-09-30 Aculight Corporation Multi-segment photonic-crystal-rod waveguides for amplification of high-power pulsed optical radiation and associated method
JP4699131B2 (ja) 2005-08-05 2011-06-08 株式会社フジクラ 光ファイバレーザ、光ファイバ増幅器、mopa方式光ファイバレーザ
JP4732120B2 (ja) * 2005-10-19 2011-07-27 株式会社フジクラ 光増幅用光ファイバの製造方法
US7876803B1 (en) * 2007-03-21 2011-01-25 Lockheed Martin Corporation High-power, pulsed ring fiber oscillator and method
US7519253B2 (en) * 2005-11-18 2009-04-14 Omni Sciences, Inc. Broadband or mid-infrared fiber light sources
JP2007169042A (ja) 2005-12-26 2007-07-05 Jfe Steel Kk 運搬設備の台数決定方法及びその装置
GB2434483A (en) * 2006-01-20 2007-07-25 Fianium Ltd High-Power Short Optical Pulse Source
JP5096171B2 (ja) * 2006-01-23 2012-12-12 パナソニック株式会社 レーザ光源装置、画像表示装置及び照明装置
JP2007221037A (ja) * 2006-02-20 2007-08-30 Fujikura Ltd 光増幅器、ファイバレーザ及び反射光除去方法
EP2381543B1 (en) * 2008-12-26 2019-07-10 Fujikura Ltd. Fiber laser apparatus

Also Published As

Publication number Publication date
CN101584093B (zh) 2011-11-23
CA2693112C (en) 2013-12-10
AU2008268087A1 (en) 2008-12-31
EP2164140A4 (en) 2013-06-05
JP5198292B2 (ja) 2013-05-15
EP2164140B1 (en) 2017-08-02
WO2009001852A1 (ja) 2008-12-31
CA2693112A1 (en) 2008-12-31
EP2164140A1 (en) 2010-03-17
JPWO2009001852A1 (ja) 2010-08-26
US20100135340A1 (en) 2010-06-03
US8295314B2 (en) 2012-10-23
EP2164140A8 (en) 2010-07-14
RU2460186C2 (ru) 2012-08-27
RU2010102046A (ru) 2011-08-10
AU2008268087B2 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
CN101584093B (zh) 耐反射光性优异的光纤激光器
US6965469B2 (en) Fiber amplifier having a non-doped inner core and at least one doped gain region
JP5260146B2 (ja) 光源装置
US20080219299A1 (en) Optical fibre laser
US9397465B2 (en) Fiber laser device
US11316315B2 (en) Filter element, laser device, fiber laser device, filter method, and method for manufacturing laser device
JP2009246369A (ja) カスケードラマンレーザ
CN109713562B (zh) 基于随机布里渊动态光栅的随机光纤激光器
JP5151018B2 (ja) 光源装置
US20020018287A1 (en) Fiber-optic amplifier
CN111244735B (zh) 一种环形窄带光纤光栅随机激光器及产生随机激光的方法
CN103503251B (zh) 波长在2μm范围内工作的高功率单模光纤激光器系统
KR20140068795A (ko) 광대역 광원
Nilsson et al. Cladding-pumped Raman fiber amplifier
JP4910328B2 (ja) 光増幅装置およびレーザ光源装置
CN109149336A (zh) 基于sbs和法布里珀罗干涉仪的被动调q锁模激光器
JP2010171260A (ja) パルス変調方法及び光ファイバレーザ
KR102078144B1 (ko) 초고출력 싱글모드 광섬유 레이저 시스템
JP2009537979A (ja) 高出力光ファイバパルスレーザ装置
Harun et al. High output power Erbium-Ytterbium doped cladding pumped fiber amplifier
CN108711732B (zh) 用于受激拉曼散射的全光纤低重频参量振荡器
JP5975026B2 (ja) 光源装置および加工方法
CN109075522B (zh) 用于大芯光纤的超短脉冲光纤前置放大器系统
JP2012044224A (ja) 光増幅装置およびレーザ光源装置
JP2018174206A (ja) レーザ装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant