CN101583858A - 带引线的温度传感器 - Google Patents

带引线的温度传感器 Download PDF

Info

Publication number
CN101583858A
CN101583858A CNA2008800018084A CN200880001808A CN101583858A CN 101583858 A CN101583858 A CN 101583858A CN A2008800018084 A CNA2008800018084 A CN A2008800018084A CN 200880001808 A CN200880001808 A CN 200880001808A CN 101583858 A CN101583858 A CN 101583858A
Authority
CN
China
Prior art keywords
wire
lead
temperature sensor
thermistor
terminal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008800018084A
Other languages
English (en)
Other versions
CN101583858B (zh
Inventor
川濑政彦
辻史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN101583858A publication Critical patent/CN101583858A/zh
Application granted granted Critical
Publication of CN101583858B publication Critical patent/CN101583858B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/223Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/144Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being welded or soldered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/008Thermistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Thermistors And Varistors (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

热敏电阻(1)在热敏电阻本体(2)之两端形成有端子电极(3a、3b)。第1引线(9a)较第2导线(9b)更长。第1及第2引线(9a、9b)之前端均以使金属线(12a、12b)表面露出的状态被切断成倾斜状。而且,以使第1引线(9a)与端子电极(3a)之侧面折回部(5a)具有特定角度θ的状态,将热敏电阻本体(2)附着于第(1)导线(9a)之侧面特定位置上。端子电极(3a)与第1导线(9a)经由焊锡(10a)而连接,第2导线(9b)与端子电极(3b)经由焊锡(10b)而连接。由此得到一种带引线的温度传感器,即便在负载有过度的热应力的情况下亦可避免产生机械应力,且与温度传感器之电性连接稳定,检测灵敏度良好,从而具有高可靠性。

Description

带引线的温度传感器
【技术领域】
本发明系关于一种带引线的温度传感器,更详细而言,本发明系关于适用于在从安装有温度传感器的控制基板上分开的部位进行测温的带引线的温度传感器。
【背景技术】
例如,在个人计算机及电动自行车等上,有时会使用比较大的二次电池,或者并设使用多个燃料电池。在上述情况下,必须使二次电池等之要测温的部位与安装有温度传感器的控制基板分开,因此,使用附带较长引线的带引线的温度传感器。即,通过使用带引线的温度传感器,可将引线焊接并固定于印刷基板等控制基板上,另一方面,可将温度传感器之感温部配置于欲进行温度检测的零件附近,从而可以良好精度检测出欲测温部位的温度。
作为该种带引线的温度传感器,如图21所示,已知具有单板形状的热敏电阻103,该热敏电阻103在板状的热敏电阻本体101的两个主面上形成有电极层102a、102b,用前端涂布有含有玻璃粉之耐热性导电膏104的导线105a、105b夹持上述热敏电阻103,并且在热敏电阻组件101的面上形成有绝缘性无机物质层106,且将这些以覆盖接合部的方式插入至玻璃管107中,在电极烧制的同时进行玻璃密封(专利文献1)。
又,作为其它现有技术,如图22所示,提出如下一种温度传感器:在从热敏电阻111引出的一对引线112a、112b中,其中一根饮线112a形成为U字状,进而,配置成平行状的绝缘包覆引线113a、113b与热敏电阻111经由焊锡114a、114b而连接,且将热敏电阻111、焊锡114a与114b、以及绝缘包覆引线113a与113b的前端部分收纳于聚烯烃树脂等热收缩绝缘体115内(专利文献2)。
在专利文献2中,设法使焊锡114a、114b于长度方向上具有预定之分开距离(例如,5~10mm左右),以免相互接触。
[专利文献1]日本专利特开平10-149903号公报
[专利文献2]日本专利特开平11-108771号公报
【发明内容】
发明要解决的技术问题
如专利文献1中,在采用以一对引线105a、105b夹持板状的热敏电阻103的构造时,若负载有过度的热应力,则包覆金属线的绝缘部件会产生热膨胀,进而,因引线105a、105b与玻璃管的热膨胀差,而会在引线105a、105b的扩张方向上产生应力。即,若负载有过度的热应力,则引线105a、105b会在向箭头a所示之外侧拉伸的方向上产生应力。因此,如箭头b所示,在电极层102a、102b上,在从热敏电阻本体101剥离的方向上产生机械应力。进而,亦会有玻璃管破损的情况。
特别是在引线105a与引线105b的长度不同或者引线105a与引线105b之间具有温度差的情况下,热膨胀量亦不同,所以在电极层102a、102b上会产生朝向箭头b方向的应力。
而且,其结果产生如下问题:在电极层102a、102b的一部分从热敏电阻本体101上剥离等之后,电阻值变大,从而与实际温度之间会产生测量误差。或者,施加过度的热应力后,会产生朝向上述箭头a及b方向的应力,从而其结果可能导致热敏电阻本体101自身破损,可靠性降低。
而且,由于以引线105a、105b夹持热敏电阻103,故宽度方向的尺寸受到热敏电阻厚度的限制,因此电极间之距离变得更短,短路可能性增大,从而难以进一步小型化。
另一方面,在专利文献2中,由于将热敏电阻111配置成使热敏电阻111的长度方向与绝缘包覆引线113b平行,故可以认为几乎不会产生朝在电极剥离方向的应力。
然而,专利文献2中,设法使焊锡114a、114b于长度方向上具有预定的分开距离,以免相互接触,但于构造上,将引线112a、112b相对于热敏电阻111的长度方向平行地配置,故在受到来自外部的冲击等时,可能会导致焊锡114a、114b剥离。进而,在引线112a、112b与热敏电阻111的连接部分容易集中应力,从而可能导致电性连接不稳定。因此,在专利文献2中,需要以热收缩绝缘体115来包覆热敏电阻111及导线112a、112b等。即,在专利文献2类型的产品中,必须以热收缩绝缘体115来包覆从热敏电阻111直至导线112a、112b为止的空间上较大的区域。
然而,由于构成热收缩绝缘体115之绝缘性树脂的热传导率低,故在以热收缩绝缘体115包覆该等区域后,与未设置热收缩绝缘体115之情形相比,检测灵敏度降低。
本发明系鉴于上述情形研制而成,其目的在于提供一种带引线的温度传感器,即便在负载有过度的热应力的情况下亦可避免产生应力,且与温度传感器的电性连接稳定,检测灵敏度良好,从而具有高可靠性。
解决问题的技术方案
为达成上述目的,本发明之带引线的温度传感器具备:于传感器本体的两端上形成有端子电极的温度传感器、以及金属线被绝缘部件包覆的第1及第2引线,上述第1引线与上述第2引线分别与上述端子电极电性连接,其中:上述第1及第2引线的上述金属线表面露出,并且至少上述第1引线的前端形状系以如下方式切断而形成,即,使该第1引线及与其连接的其中一个端子电极之侧面折回部之间具有特定角度,且上述第1引线与上述其中一个端子电极经由焊锡而连接,上述第2引线与另一个端子电极经由焊锡而连接。
又,本发明之带引线的温度传感器的特征在于,上述第1引线形成为较上述第2引线更长,且以使上述传感器本体之长度方向附着于上述第1引线的状态,将上述其中一个端子电极与上述第1引线经由焊锡而连接,并且上述第1引线之前端形状为倾斜状、弯曲状、L字状、阶梯状、尖锐状、以及这些形状的组合中之任一者。
又,本发明之带引线的温度传感器之特征在于,上述第2引线的前端形状系以与另一个端子电极的端面部之间具有特定角度之方式切断而形成。
进而,本发明之带引线的温度传感器之特征在于,上述第2引线的前端形状为倾斜状、弯曲状、L字状、阶梯状、尖锐状、以及这些形状的组合中之任一者。
又,本发明之带引线的温度传感器之特征在于,上述第1引线的长度与上述第2引线的长度相同或者大致相同,且上述第2引线的前端形状形成为与上述另一个端子电极的侧面折回部之间具有特定角度。
进而,本发明之带引线的温度传感器之特征在于,上述温度传感器为表面安装型热敏电阻。
又,本发明之带引线的温度传感器之特征在于,上述表面安装型热敏电阻具有内部电极。
进而,本发明之带引线的温度传感器之特征在于,上述表面安装型热敏电阻的表面被玻璃层所包覆。
又,本发明之带引线的温度传感器之特征在于,上述第1引线与第2引线在长度方向上接合成为一体,形成一组平行引线。
发明的有益效果
根据上述带引线的温度传感器,由于第1及第2引线的金属线表面露出,并且至少上述第1引线的前端形状系以使该第1引线及与其连接的其中一个端子电极之侧面折回部之间具有特定角度之方式切断而形成,且上述第1引线与上述其中一个端子电极经由焊锡而连接,因此第1引线与其中一个端子电极之间形成有间隙(凹部)。并且,将焊锡涂布于上述间隙并使其熔融,由此,焊锡上不会产生裂缝,从而于焊锡的表面张力的作用下,温度传感器自然地移动至可保持于稳定位置并固定。
又,由于在引线的断面上金属线表面露出,故可于该断面上涂布焊锡以确保导通。
因此,即便不将温度传感器以绝缘部件包装,亦可充分确保导通性,且即便于焊锡凝固时负载有机械应力,亦可稳定地静止于特定位置上,从而可以低成本实现具有高灵敏度、高可靠性之带引线的温度传感器。
又,由于上述第1引线形成为较上述第2引线更长,且以使上述传感器本体的长度方向附着于上述第1引线的状态,将上述其中一个端子电极与上述第1引线经由焊锡而连接,并且上述第1引线之前端形状为倾斜状、弯曲状、L字状、阶梯状、尖锐状、以及这些形状的组合中之任一者,故温度传感器可于第1引线上保持为,从其端子电极之端面至侧面折回部的角部被覆盖。因此,对于第1引线与温度传感器的接合部分,在垂直方向上负载有应力。而且由此,即便热冲击或机械应力从外部负载于焊锡部,亦可极大避免端子电极从传感器本体上剥离或者传感器自身破损。
进而,由于上述第2引线的前端形状形成为与另一个端子电极的端面部之间具有特定角度,故表面张力作用于欲将介于第2引线与另一个端子电极间的焊锡亦保持稳定形状的方向上,由此,不会将另一个端子电极向第2引线侧过度地拉拢,从而温度传感器被牢固地固定于稳定的特定位置上。
又,即便上述第2引线的前端形状为倾斜状、弯曲状、L字状、阶梯状、尖锐状、及这些形状的组合中之任一者,亦可发挥大致相同的作用效果。
另外,由于上述第1引线长度与上述第2引线长度为相同或者大致相同,且上述第2引线的前端形状形成为与上述另一个端子电极的侧面折回部之间具有特定角度,故可将焊锡涂布于由特定角度而形成的间隙中并使其熔融。而且,在焊锡表面张力的作用下,温度传感器自然地移动至保持稳定的位置并固定。由此,可极大排除导线、焊锡及来自外部之应力的影响,从而可得到具有充分的导通性、且热方面及机械方面稳定的具有高灵敏度的可靠性优异的带引线的温度传感器。
进而,由于上述温度传感器系表面安装型热敏电阻,故与板状的温度传感器相比,可使端子电极间的距离变大。因此,不易产生焊锡桥接或迁移,从而可极大避免端子电极间短路。而且,即便不将温度传感器以绝缘部件来包装,亦可实现保持充分的稳定性、构造简单且具有高可靠性的小型的带引线的温度传感器。
又,由于上述表面安装型热敏电阻具有内部电极,故即便端子电极与热敏电阻之间产生剥离,亦会因电阻值受到内部电极支配,而使得对热敏电阻的电阻值所造成的影响比板状的热敏电阻明显少。
进而,由于本发明的带引线的温度传感器中,上述表面安装型热敏电阻之表面被玻璃层所包覆,故耐湿性进一步提高,从而可获得较高可靠性。
又,由于本发明之带引线的温度传感器中,上述第1引线与第2引线在长度方向上接合成为一体,形成一组平行引线,故在端子电极与第1及第2引线之间的接合部上,不负载有使其相互剥离的应力。因此,可获得可靠性更高的带引线的热敏电阻。又,亦会提高使用较长引线时的使用便利性。
【附图说明】
图1系表示本发明之带引线的温度传感器所使用的表面安装型热敏电阻之一实施方式的正面视图。
图2系图1的剖面图。
图3系表示作为表面安装型热敏电阻的叠层热敏电阻的一实施方式的剖面图。
图4系表示本发明之带引线的温度传感器一实施方式(第1实施方式)局部正面视图。
图5系用以说明第1实施方式的作用的示图。
图6(a)~图6(f)系表示第1实施方式的带引线的温度传感器制造顺序的制造步骤图。
图7(c’)~图7(e’)系表示上述制造顺序的变形例的主要部分制造步骤图。
图8系表示使用平行引线时的带引线的温度传感器之一例的正面视图。
图9系表示第1实施方式的第1安装构造例的示图。
图10系表示第1实施方式的第2安装构造例的示图。
图11系表示第1实施方式的第3安装构造例的示图。
图12系表示第1实施方式导线的前端形状的变形例之一例的示图。
图13(a)~图13(i)系表示第1实施方式的引线的前端形状之种种变形例的示图。
图14(a)、(b)系表示第1实施方式的带引线的温度传感器之变形例的主要部分示图。
图15系表示本发明的带引线的温度传感器之第2实施方式的局部正面视图。
图16系用以说明第2实施方式的作用的示图。
图17(a)~图17(f)系表示第2实施方式的带引线的温度传感器制造顺序的制造步骤图。
图18系表示第2实施方式的引线前端形状的变形例之一例的示图。
图19系示意性表示本发明之带引线的温度传感器之一应用例的示图。
图20系示意性表示本发明之带引线的温度传感器之另一应用例的示图。
图21系专利文献1中记载的带引线的温度传感器的剖面图。
图22系专利文献2中记载的带引线的温度传感器的剖面图。
【附图标记说明】
1、1’    表面安装型热敏电阻(温度传感器)
2、2’    热敏电阻本体(传感器本体)
3a、3b、3a’、3b’    端子电极
4a、4b                端面部
5a、5b                侧面折回部
9a、9a’、9a″        第1引线
9b、9b’、9b″        第2引线
10a、10b              焊锡
12a、12b              金属线
13                    绝缘部件
15                    第1引线
16a、16b、16c         第2引线
17a~26a               第1引线
17b~26b               第2引线
28a                   第1引线
28b                   第2引线
29a、29b              金属线
30a、30b              绝缘部件
32a、32b              焊锡
34a                   第1引线
34b                   第2引线
【具体实施方式】
以下,结合附图详细说明本发明的实施方式。
图1系表示本发明之带引线的温度传感器所使用的表面安装型热敏电阻(温度传感器)之一实施方式的正面视图,图2系其剖面图。
图1及图2中,该热敏电阻1具备:形成为大致长方体形状的以陶瓷材料为主成分的热敏电阻本体2、以及端子电极3a、3b,端子电极3a、3b系通过烧制处理等而形成在该热敏电阻本体2两端部的、由Ag、Cu、Ni、Sn等导电性材料所构成。
上述端子电极3a、3b具有端面部4a、4b及侧面折回部5a、5b,并且如图2所示,形成为覆盖热敏电阻本体2的端面6a、6b及热敏电阻本体2的四个侧面。
与专利文献1的在板状的热敏电阻本体的两主面上形成有电极层的单板形状的热敏电阻相比,使用上述表面安装型的热敏电阻1可使端子电极3a、3b间之距离较大,从而难以产生迁移,故可极大防止端子电极之间的短路。
又,表面安装型热敏电阻1中,端子电极3a、3b形成为覆盖热敏电阻本体2的端面6a、6b。此处,端面部4a、4b的电极与侧面部的电极相比,被牢牢固定于热敏电阻本体2上,并焊接于其上,因而难以产生电极剥离。又具有如下优点:即便产生电极剥离,电极剥离对电阻值造成之影响亦较小。即,在表面安装型热敏电阻的情况下,在影响电阻值的电极部分中,与经焊接的端面部4a、4b相比,侧面折回部5a、5b更具有支配性,因此端面电极剥离对电阻值造成之影响较少。
又,作为该种表面安装型热敏电阻,较好的是使用如图3所示的叠层型热敏电阻1’。即,该热敏电阻1’以并列状埋设于热敏电阻本体2’内部的内部电极45a~45d的层叠方向上。而且,内部电极45a、45c电性连接于端子电极3a’,内部电极45b、45d电性连接于端子电极3b’。叠层型热敏电阻1’的电阻值受到内部电极45a~45d的支配,故即便在端子电极3a’、3b’与热敏电阻本体2’之间产生剥离,对热敏电阻1’的电阻值造成的影响亦会比板状的热敏电阻明显少。
又,表面安装型热敏电阻1、1’原本设计成耐于外部环境中使用,故具有较高的可靠性及耐环境性,因此具有如下优点:不存在引线安装加工所造成的影响,进而使安装以后的热敏电阻组件的特性调整或者特性选择简单化等。
进而,表面安装型热敏电阻1、1’亦具有在端子电极3a、3b、3a’、3b’的劣化及耐环境性方面优异的优点。特别是,当在3a、3b、3a’、3b的表面上形成有Ni或Sn等电镀膜时,不产生迁移等,因而更佳。又,亦可在热敏电阻本体2、2’的表面上设置玻璃层(未图示)。借此,耐湿性进一步提高,从而可获得较高可靠性。
再者,作为表面安装型热敏电阻1、1’,可使用外径尺寸例如为长度1.0mm、宽度0.5mm、厚度0.5mm或者为长度0.6mm、宽度0.3mm、厚度0.3mm的芯片型热敏电阻。
在以下实施方式中,以不具有内部电极45a~45d的热敏电阻1作为代表例加以说明。
图4系表示本发明之带引线的热敏电阻(温度传感器)之一实施方式(第1实施方式)的局部正面视图。
该带引线的热敏电阻8中,长条形的第1及第2引线9a、9b经由焊锡10a、10b而连接于热敏电阻1,进而第1及第2引线9a、9b之前端区域、热敏电阻1、以及焊锡10a、10b被绝缘部件11所包装。
再者,该第1实施方式中,图示的是使用2根单线引线之情形,但如下述将2根引线用作一组平行引线亦较佳。
将第1引线9a与第2引线9b配置成平行状,并且第1引线9a形成为较第2引线9b更长。
具体而言,第1引线9a中,金属线(芯线)12a被绝缘部件13a包覆。而且,其前端形状如图5所示,使上述金属线12a表面露出,并形成为与其中一个端子电极3a之侧面折回部5a之间具有特定角度θ之倾斜状。又,引线9a之终端部14a如图4所示,去除绝缘部件13a并实施焊锡涂布处理。
又,第2引线9b亦与第1引线9a相同,金属线(芯线)12b被绝缘部件13b包覆,终端部14a中,去除上述绝缘部件13b而实施焊锡涂布处理。又,第2引线9b之前端形状如图5所示,形成为与另一个端子电极3b之端面部4b之间具有特定角度φ之倾斜状,使上述金属线12b表面露出。
热敏电阻1中,以使端子电极3a之侧面折回部5a与第1引线9a具有特定角度θ的状态,将热敏电阻本体2之长度方向附着于第1导线9a之侧面特定位置,且端子电极3b由第2引线9b所支持。然后,对包含形成于端子电极3a与第1引线9a前端之间隙中的V字状凹部之区域涂布焊锡10a并使其熔融,由此将第1引线9a与端子电极3a电性连接。又,对形成于第2引线9b之前端与端子电极3b之间的间隙亦涂布焊锡10b并使其熔融,由此将第2引线9b与端子电极3b电性连接。
如此,根据本第1实施方式,由于将第1及第2引线9a、9b之前端形状形成倾斜状,金属线12a、12b表面露出,故可确保充分的表面露出部分。由此,可充分扩大焊锡接合部之面积,进而可使第1及第2引线9a、9b各自的金属线12a、12b之露出部与热敏电阻1之端子电极3a、3b间的距离接近,从而可确保充分的焊锡接合强度。因此,即便在金属线12a、12b极细(例如,线径0.3mm以下)之情况下,亦无需剥离所包覆的绝缘部件13a、13b即可取得稳定的导通。
再者,在切断第1及第2引线9a、9b之步骤中,该绝缘部件13a、13b亦会有少许剥离之情况,即便存在上述剥离部亦无妨。
又,本第1实施方式中,无需具有剥离绝缘部件而使金属线露出之步骤,故可使制造步骤简单,并且可避免金属线氧化。
即,一直以来,由于需防止设置温度传感器时引线彼此接触而造成短路,故通常情况是使用以绝缘部件包覆金属线而形成之引线。因此,在将引线与热敏电阻接合时,必须具有将与热敏电阻之接合部分对应之绝缘部件从导线上剥离以使金属线露出之步骤,由此导致步骤增加。而且加工精度方面亦有困难,从而难以实现小型化、低价格化。进而,由于金属线易氧化,故若将绝缘部件剥离而使金属线表面露出后保持原样地放置,则可能会导致检测精度劣化。
然而,本第1实施方式中,如上所述,无需具有剥离绝缘部件以使金属线露出之步骤,从而可使制造步骤简化,并且可避免金属线氧化。
又,本第1实施方式中,由于使金属线12a、12b之断面表面露出,故可高精度地控制端子电极3a、3b与金属线12a、12b之接合面积。
即,在如现有技术将绝缘部件从引线上剥离以使金属线露出的方法中,易产生焊锡涂布量或接合面积之不均,故难以精度良好地进行控制。
然而,本第1实施方式中,由于使金属线12a、12b之断面表面露出,故可通过其断面积或第1及第2引线9a、9b之线径而精度良好地控制焊锡的安装面积量。亦即,可使安装中使用的焊锡量的不均现象减少,且可进行稳定的安装。而且由此,可削减焊锡10a、10b之涂布量,并且可抑制短路不良,从而可得到提高可靠性。进而,亦可实现金属线12a、12b的小径化或降低成本。
而且,上述第1实施方式中,对包含第1引线9a与端子电极3a之间隙的区域、以及第2引线9b与端子电极3b之间隙处分别涂布焊锡10a、10b并使其熔融,故表面张力作用于图5之箭头所示之方向。因此,热敏电阻1自然地移动至稳定保持的特定位置并固定,由此可实现机械性及电性均稳定的带引线的热敏电阻。
又,热敏电阻1以如下方式保持于第1引线9a上:从端子电极3a之端面部4a至侧面折回部5a的端子电极3a之角部被覆盖。因此,当在热敏电阻1从第1引线9a剥离之方向上有外力时,在端子电极3a之端面部4a上,在相对于第1引线9a之垂直方向上负载有来自外部之应力。因此,即便从外部负载有热冲击或机械应力,亦可避免端子电极3a、3b从热敏电阻本体2上剥离,或者热敏电阻本体2破损。
再者,本第1实施方式中,以绝缘部件11来包装热敏电阻1等,但即便不以绝缘部件11来包装,亦可抑制从第1及第2引线9a、9b受到之应力以及从外部受到之冲击等的影响从而具有良好灵敏度。
又,由于热敏电阻1被第1及第2引线9a、9b稳定地固定,故即便在为了提高耐环境性能而以绝缘部件11来包装之情况下,亦可极大避免绝缘部件11之热膨胀所造成之影响。
图6系表示上述带引线的热敏电阻之制造顺序之制造步骤图。
首先,如图6(a)所示,准备长度不同的第1及第2引线9a、9b。其次,如图6(b)所示,对第1及第2引线9a、9b之前端实施切断加工,以使其等相互向内侧倾斜,并使金属线12a、12b表面露出。接着,如图6(c)所示,将热敏电阻1配置成使热敏电阻本体2之长度方向附着于第1导线9a之侧面特定位置,并以第2引线9b之前端支持端子电极3b。
继而,如图6(d)所示,对第1及第2引线9a、9b与端子电极3a、3b之接合点涂布由Sn-Ag-Cu等组成之焊锡膏10a、10b。并且其后,使用暖风加热器等,以特定温度(例如,240℃)加热特定时间(例如,5秒钟)而使其熔融,从而如图6(e)所示,使第1及第2引线9a、9b与热敏电阻1经由焊锡10a、10b而连接固定。然后,如图6(f)所示,以包覆第1及第2引线9a与9b、焊锡10a与10b、以及热敏电阻1之方式来涂布绝缘部件11,并以特定温度(例如,150℃)进行特定时间(例如,1小时)之固化处理。其后,为了将离第1及第2引线9a、9b之下端特定距离(例如,5mm)之处作为终端部14a、14b而剥离该处的绝缘部件13a、13b,使其浸渍于特定温度(例如,360℃)之焊锡槽中,并实施焊锡涂布处理,由此制造带引线的热敏电阻8。
图7系表示上述带引线的热敏电阻之制造步骤之变形例的主要部分制造步骤图。
首先,与图6(a)、图6(b)相同,对长度不同的第1及第2引线9a、9b之前端进行切断加工后,如图7(c’)所示,对使金属线12a、12b表面露出之部分预涂布焊锡10a、10b。
该焊锡之预涂布可通过如下方法而形成:仅使第1及第2引线9a、9b之前端部浸渍于熔融焊锡中,或者对第1及第2引线9a、9b之前端部涂布焊锡膏之后,加热而使其熔融,从而使焊锡在金属线12a、12b表面露出之部分润湿扩散。
其次,如图7(d’)所示,将热敏电阻1设置成使经预涂布之焊锡10a、10b与热敏电阻1相接触。其后,对焊锡进行加热而使其熔融,并如图7(e’)所示,使热敏电阻1之端子电极3a、3b与金属线12a、12b表面露出部分接合。
并且其后,实施与图6(f)相同之步骤,由此可制造带引线的热敏电阻8。
该图7之变形例中,在设置热敏电阻1之前,对第1及第2引线9a、9b预涂布焊锡,然后将热敏电阻1焊接于第1及第2引线9a、9b上,因而适于大量生产,且可容易获得适合于热敏电阻1之小型化的带引线的温度传感器。
再者,在热敏电阻1与第1引线9a接合时,将热敏电阻1按压于第1引线9a上并加热,由此可获得接合得更优良之带引线的热敏电阻8。
图8系使用有平行引线9’之带引线的热敏电阻8’之正面视图,该平行引线9’中,第1及第2引线9a’、9b’于长度方向上接合成为一体。
通过使用上述平行引线,可在端子电极3a、3b与第1及第2引线9a’、9b’之间的接合部上,不负载有使各自剥离之应力,从而可获得可靠性更高的带引线的热敏电阻。
而且,图4之带引线的热敏电阻8中,第1引线9a及第2引线9b各自独立,呈散乱状,故使用长引线时可能会使组件的使用便利性较差。因此,特别是在长引线时,较理想的是如图8之实施方式。
再者,构造及制造方法与图4~图7相同,故省略说明。
图9系表示第1实施方式之第1安装构造例之正面视图,其表示使用平行引线来制造本发明之带引线的温度传感器时的安装构造例。
即,该第1安装构造例中,将第1及第2引线9a’、9b’之终端部14a’、14b’折曲成L字状后,以成为与安装基板之插入间隔相对应的引线间隔之方式,使第1及第2引线9a’、9b’进一步折曲成L字状。然后,使终端部14a’、14b’之正上方以适当次数(例如,1~5次)旋转180°以上,形成扭曲部40。
在平行引线的情况下,第1引线9a’与第2引线9b’之接合强度较弱,因而可将第1引线9a’与第2引线9b’之间拉裂。
因此,在该第1安装构造例中,使第1及第2引线9a’、9b’之终端部14a’、14b’之间折曲成为与安装基板之插入间隔相对应的间隔后,在该终端部14a’、14b’之正上方形成扭曲部40,如此便不易导致第1引线9a’与第2引线9b’拉裂。
又,在平行引线之情况下,由于2根引线处于接合状态,故于图5(f)中,相对于平行方向之左右方向上易弯曲,但于前后方向上难以弯曲。
因此,如上所述形成扭曲部40,由此,可于任一方向上均容易弯曲,从而适于多个方向弯曲。
图10系表示第1实施方式之第2安装构造例之正面视图,其表示使用2根单线引线来制造本发明之带引线的温度传感器时的安装构造例。
即,第2安装构造例亦与第1安装构造例(图9)相同,使第1及第2引线9a″、9b″之终端部14a″、14b″折曲成L字状后,使第1及第2导线9a″、9b″进一步折曲成L字状,以成为与安装基板之插入间隔相对应的引线间隔。然后,在该第2安装构造例中,对从绝缘部件11露出之第1及第2引线9a″、9b″之部分(除终端部14a″、14b″以外)进行扭曲而形成扭曲部41,并实现一体化。
如此,使作为单线引线之第1及第2引线9a″、9b″一体化,由此可与使用平行引线之情况相同,将2根引线9a″、9b″一体处理。
图11系表示第1实施方式第3安装构造例之示图,其表示将多个热敏电阻1连接之例。
即,该第3安装构造例中,将3个热敏电阻1a~1c配置成附着在第1引线15之侧面特定位置,且第1引线15经由焊锡10a与前端之热敏电阻1电性连接。又,第2引线16a、16b、16c分别经由各个焊锡10b、10a’、10b’、10a″、10b″而与各热敏电阻1a~1c电性连接。
当具有串联的多个测量点时,较好的是,将多个本发明之带引线的热敏电阻连接而使用。
进而,上述实施方式中,使第1引线9a之前端形状为倾斜状,但只要与端子电极3a之侧面折回部7a所成之角度具有特定角度θ,则前端形状亦可为阶梯状、弯曲状、尖锐状、以及这些形状的组合。又,对于第2引线9b,亦可具有相同之各种变形。
图12系表示第1实施方式之第1引线之前端形状的变形例之示图,该变形例中,第1引线17a形成为倾斜状,另一方面,第2引线17b以水平状切断而使金属线表面露出。
即,端子电极3b易在向外侧拉伸之方向上负载有应力,故第2引线之前端形状较好的是形成如图5之倾斜状,使垂直方向之长度从外侧向内侧变短,但如图12所示,焊锡10b表面张力作用于箭头方向以保持稳定之形状,故即便第2引线之前端形状成为水平状,亦不损及导通性及机械强度,从而可获得具有所需之高灵敏度的带引线的热敏电阻。
图13表示第1及第2引线之各种变形例,图中之箭头表示表面张力之作用方向。
即,图13(a)中,第1引线18a从外侧至内侧整体弯曲成凹状。又,第2引线18b从外侧至内侧形成为倾斜状,并且从中途开始形成为凹状之弯曲形状。图13(b)中,第1引线19a从外侧至内侧弯曲成凸状;第2引线19b从外侧至内侧形成为倾斜状,并且从中途开始形成为凸状之弯曲形状。图13(c)中,第1及第2引线20a、20b之外侧附近之一部分形成为水平状,且从中途至内侧形成为倾斜状。
图13(d)中,第1及第2引线21a、21b形成为L字状或者大致L字状。图13(e)中,第1及第2引线22a、22b从外侧至内侧向下方侧形成为阶梯状,图13(f)中,第1及第2引线23a、23b均形成为尖锐状。
图13(g)中,第1引线24a系与图4具有相同之倾斜形状,第2引线24b系与第1引线24a向同一方向倾斜。图13(h)中,第1引线25a之侧面弯曲成凹状,第2引线25b之上表面弯曲成凹状。图13(i)中,第1引线26a具有与图13(g)相同之前端形状,第2引线26b之前端附近向外侧弯曲,并且从外侧形成为倾斜状,且从中途开始弯曲成凹状。
上述任一变形例中,第1引线18a~26a都与端子电极3a之侧面折回部形成特定角度θ,焊锡之表面张力作用于箭头所示之方向。又,第2引线18b~26b与端子电极3b之端面部形成特定角度φ,焊锡之表面张力作用于箭头所示之方向。其结果为,热敏电阻1移动至可稳定保持的特定位置并固定。
并且,由此,即便负载有来自外部之热冲击,亦难以产生机械应力,且可确保充分的导通,从而可获得检测灵敏度良好且可靠性高带引线的热敏电阻。
进而,图14系表示上述第1实施方式之带引线的温度传感器之变形例的主要部分之示图,图14(a)系左视图,图14(b)系正面视图。
本变形例中,热敏电阻1载设于第1及第2引线9a、9b上。即,将热敏电阻1载置于第1及第2引线9a、9b上之后,于稳定状态下将热敏电阻1焊锡接合于第1及第2引线9a、9b。
该图14之变形例中,当负载有使第1及第2引线9a、9b张开的应力时,焊锡接合部上负载有剪应力,而非拉伸应力。而且,剪应力与拉伸应力不同,剪应力难以产生电极剥离,从而可获得可靠性高的带引线的温度传感器。
其次,对本发明之带引线的温度传感器之第2实施方式进行详细描述。
图15系第2实施方式之带引线的热敏电阻的局部正面视图。
该带引线的热敏电阻27中,第1引线28a及第2引线28b形成为相同长度或者大致相同长度,并配置成平行状。而且,与第1实施方式相同,第1及第2引线28a、28b中,金属线(芯线)29a、29b被绝缘部件30a、30b包覆。进而,如图16所示,前端形状从内侧至外侧形成为倾斜状,以与端子电极3a、3b之侧面折回部5a、5b之间具有特定角度η,且使上述金属线29a、29b表面露出。又,终端部31a、31b中,将绝缘部件30a、30b去除并实施焊锡涂布处理。
热敏电阻1被第1及第2引线28a、28b之顶部所支持,且第1及第2引线28a、28b与热敏电阻1经由焊锡32a、32b而电性连接。
再者,本第2实施方式与第1实施方式相同,第1及第2引线28a、28b之前端区域、热敏电阻1、以及覆盖焊锡32a与32b之区域,被绝缘部件33所包装。
如此,本第2实施方式中,第1及第2引线28a、28b具有相同或者大致相同之长度,但以与侧面折回部5a、5b之间具有特定角度η的状态形成为倾斜状,使金属线29a、29b表面露出。因此,可使金属线29a、29b之露出面积较大,以可确保充分的表面露出部分,从而即便在金属线29a、29b极细(例如,0.3mm以下)之情况下,亦无需剥离所包覆的绝缘部件30a、30b即可取得稳定的导通。
又,由于使金属线29a、29b之断面表面露出,故可高精度地控制端子电极3a、3b与金属线29a、29b之接合面积,可削减焊锡32a、32b之涂布量,并且可抑制短路不良,从而可提高可靠性。
又,使焊锡32a、32b熔融后,表面张力作用于图16箭头所示之方向,故热敏电阻1自然地移动至稳定保持的位置并固定。因此,在电性方面及配置方面的浪费均较少,从而可获得高灵敏度的带引线的热敏电阻27。
又,特别是引线28a之前端形状形成为从引线内侧向外侧之倾斜状,故焊锡32a、32b不会流入至热敏电阻1之侧面中央部,因而可防止端子电极3a、3b短路,故较佳。
再者,本第2实施方式中,以绝缘部件33来包装热敏电阻1等,但可与第1实施方式相同,即便不以绝缘部件33来包装,亦可抑制从第1及第2引线28a、28b受到之应力以及从外部受到之冲击等的影响,从而具有良好灵敏度者。
又,由于热敏电阻1被稳定地固定于第1及第2引线28a、28b上,故即便为了提高耐环境性能而以绝缘部件33来包装时,亦可极力避免绝缘部件33之热膨胀所造成的影响。
图17系表示第2实施方式的带引线的热敏电阻之制造顺序的制造步骤图。
首先,如图17(a)所示,准备长度相同或者大致相同的第1及第2引线28a、28b。其次,如图17(b)所示,对第1及第2引线28a、28b实施切断加工,以使两者的前端向各自外侧形成倾斜状,并使金属线29a、29b表面露出。接着,如图17(c)所示,将热敏电阻1配置成使热敏电阻1受到第1及第2引线28a、28b前端之支持。
继而,如图17(d)所示,对第1及第2引线28a、28b与热敏电阻1之间的间隙涂布由Sn-Ag-Cu等组成之焊锡膏32a、32b。并且其后,使用暖风加热器等,以特定温度(例如,240℃)加热特定时间(例如,5秒钟)而使其熔融,从而如图17(e)所示,使第1及第2引线28a、28b与热敏电阻1经由焊锡32a、32b而固定。然后,如图17(f)所示,以包覆第1及第2引线28a与28b、焊锡32a与32b、以及热敏电阻1之方式来涂布绝缘部件33,并以特定温度(例如,150℃)进行特定时间(例如,1小时)之固化处理。其后,将离第1及第2引线28a、28b之下端为特定距离(例如,5mm)之处作为终端部31a、31b而剥离绝缘部件30a、30b,使其浸渍于特定温度(例如,360℃)之焊锡槽中并实施焊锡涂布处理,由此制造带引线的热敏电阻27。
该第2实施方式中,与第1实施方式相同,亦实施加工处理以形成为如图9~图11所示之安装构造,从而可形成适合于安装的形状。
图18系表示第2实施方式的导线前端形状之变形例的示图。
即,上述第2实施方式中,第1及第2引线28a、28b之前端形状从内侧至外侧全体形成为倾斜状,但该变形例中,第1及第2引线34a、34b之前端的一部分形成为水平状,并且从中途开始至外侧形成为倾斜状。
此时,使焊锡32a、32b熔融后,表面张力作用于图18之箭头所示之方向,故与图16之情形相同,热敏电阻1自然地移动至稳定保持的特定位置并固定。即,焊锡32a、32b沿着第1及第2引线28a、28b而固化。因此,亦可使热敏电阻1固定于稳定位置,故于电性方面及配置方面之浪费均较少,从而可获得高灵敏度的带引线的热敏电阻27。
再者,上述第2实施方式中,对使用2根单线引线的情形进行了说明,但对于使用以2根引线作为一组的平行引线之情形亦相同。
而且,通过使用平行引线,可如上述,在端子电极与第1及第2引线之间的接合部上,不负载有使各自剥离之应力,从而可获得可靠性更高的带引线的热敏电阻。
又,本发明并非限定于上述实施方式。例如,对于温度传感器,当然亦可应用于正特性热敏电阻、负特性热敏电阻中之任一者。
另外,对于构成第1及第2引线之金属线,较理想的是使用焊锡润湿性良好的铜,但只要是可进行焊锡接合者,则并无特别限定,可使用铁、镍、或者这些的合金、复合材料等。对于包覆金属线之绝缘部件,只要是具有经得住回焊处理之耐热性材料,则并无特别限定,可使用聚氨酯树脂、丙烯酸树脂、氟树脂等。
此外,本发明之优点之一在于,无需如现有技术那样以绝缘部件来包装温度传感器,由此,可得到灵敏度更高的温度传感器,但如第1及第2实施方式所示,本发明并非不能利用绝缘部件11、33进行包装。在该情形下,作为包装用的绝缘部件11、33,可使用环氧树脂、丙烯酸树脂、聚氨酯树脂、硅树脂、乙烯树脂等。
应用例
本发明之带引线的热敏电阻可应用于需要进行温度检测的各种领域。
例如,将行动电话的电池单元之最易发热之点作为测量点而配置热敏电阻的感温部,由此可精密地进行电池充电、放电控制。
图19及图20表示将本发明之带引线的热敏电阻应用于燃料电池温度检测之例。
该燃料电池中,电池框体35内部同时设有3个电池单元36a、36b、36c,电池框体35的端部配置有控制基板37。
并且,欲测量电池单元36b温度时,因为将引线安装于控制基板37上,所以必须使测量点与控制基板37分开。
此时,如图19所示,使用图9之带引线的热敏电阻8’来安装,便可容易地以高灵敏度而检测出电池单元36b之温度。
当希望测量3个电池单元36a~36c之全部温度时,如图20所示,使用图11之带引线的热敏电阻8″来安装,便可容易的以高灵敏度检测出各电池单元36a~36c之温度。
除此之外,亦可在用于电源之FET(埸效应晶体管)之发热部位上配置热敏电阻感温部,以便在FET产生异常发热时能够快速准确地进行控制。
此外,在个人计算机等电子机器上安装有多个FET及大型电池,通过使用如图20的多个连接的热敏电阻,可高效率地进行测温。

Claims (9)

1.一种带引线的温度传感器,其具备:在传感器本体的两端形成有端子电极的温度传感器、以及金属线由绝缘部件包覆之第1及第2引线,所述第1引线与所述第2引线分别与所述端子电极电性连接;其中,
上述第1及第2引线中,使所述金属线表面露出,并且
至少所述第1引线之前端形状系被切断而形成为使该第1引线与其所连接的其中一个端子电极的侧面折回部之间具有特定角度,
且所述第1引线与所述其中一个端子电极经由焊锡而连接,所述第2引线与另一个端子电极经由焊锡而连接。
2.根据权利要求1所述的带引线的温度传感器,特征在于:所述第1引线较所述第2引线长,且以使所述述传感器本体的长度方向附着在所述第1引线上的状态,将所述其中一个端子电极与所述第1引线经由焊锡而连接,并且所述第1引线的前端形状为倾斜状、弯曲状、L字状、阶梯状、尖锐状、以及这些形状的组合中之任一者。
3.根据权利要求2所述的带引线的温度传感器,其特征在于:上述第2引线的前端形状系被切断而形成为与另一个端子电极的端面部之间具有特定角度。
4.根据权利要求3所述的带引线的温度传感器,其特征在于:所述第2引线的前端形状为倾斜状、弯曲状、L字状、阶梯状、尖锐状、以及这些形状的组合中之任一者。
5.根据权利要求1所述的带引线的温度传感器,其特征在于:所述第1引线的长度与所述第2引线的长度相同或者大致相同,且所述第2引线的前端形状系被切断而形成为与所述另一个端子电极的侧面折回部之间具有特定角度。
6.根据权利要求1至5中任一项所述的带引线的温度传感器,其特征在于:所述温度传感器系表面安装型热敏电阻。
7.根据权利要求6所述的带引线的温度传感器,其特征在于:所述表面安装型热敏电阻具有内部电极。
8.根据权利要求6所述的带引线的温度传感器,其特征在于:所述表面安装型热敏电阻的表面被玻璃层所包覆。
9.根据权利要求1~8中任一项所述的带引线的温度传感器,其特征在于:所述第1引线与第2引线在长度方向上接合成为一体,形成一组平行引线。
CN2008800018084A 2007-06-19 2008-06-17 带引线的温度传感器 Active CN101583858B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007161626 2007-06-19
JP161626/2007 2007-06-19
PCT/JP2008/061048 WO2008156082A1 (ja) 2007-06-19 2008-06-17 リード線付き温度センサ

Publications (2)

Publication Number Publication Date
CN101583858A true CN101583858A (zh) 2009-11-18
CN101583858B CN101583858B (zh) 2011-11-09

Family

ID=40156241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800018084A Active CN101583858B (zh) 2007-06-19 2008-06-17 带引线的温度传感器

Country Status (7)

Country Link
US (1) US8092085B2 (zh)
EP (1) EP2159556B1 (zh)
JP (1) JP4868264B2 (zh)
KR (1) KR101125432B1 (zh)
CN (1) CN101583858B (zh)
TW (1) TWI393869B (zh)
WO (1) WO2008156082A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934406A (zh) * 2010-09-08 2011-01-05 浙江达峰科技有限公司 太阳能水温水位传感器中不锈钢电极与导线的焊接方法
CN102468023A (zh) * 2010-11-12 2012-05-23 三星Sdi株式会社 热敏电阻器及包括该热敏电阻器的二次电池组
CN102655246A (zh) * 2011-03-02 2012-09-05 三星Sdi株式会社 电池组
CN103792019A (zh) * 2014-01-28 2014-05-14 南京时恒电子科技有限公司 一种温度传感器制造方法
CN104792432A (zh) * 2014-01-16 2015-07-22 株式会社村田制作所 温度传感器以及制造方法
WO2017050000A1 (zh) * 2015-09-25 2017-03-30 株式会社村田制作所 带引线的电子元件组件及其制造方法
CN106574940A (zh) * 2014-07-09 2017-04-19 株式会社村田制作所 带引线热敏电阻的电阻测量装置
CN106574872A (zh) * 2014-07-25 2017-04-19 爱普科斯公司 传感器元件、传感器装置和用于制造传感器元件的方法
CN106872061A (zh) * 2016-12-27 2017-06-20 中国科学院长春光学精密机械与物理研究所 一种玻璃封装热敏电阻器的快速响应表面贴装方法
CN107430036A (zh) * 2015-04-03 2017-12-01 株式会社电装 温度传感器
CN113994180A (zh) * 2019-12-24 2022-01-28 株式会社大泉制作所 温度传感器
US11346726B2 (en) 2014-07-25 2022-05-31 Epcos Ag Sensor element, sensor arrangement, and method for manufacturing a sensor element and a sensor arrangement

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347553B2 (ja) * 2009-02-20 2013-11-20 Tdk株式会社 サーミスタ素子
JP4834201B2 (ja) * 2009-03-05 2011-12-14 株式会社タムラ製作所 リードを有するセンサ素子の固定構造
EP2406603B1 (en) * 2009-03-13 2018-07-25 Danfoss A/S Method for making a temperature sensor unit
US8523430B2 (en) * 2010-07-28 2013-09-03 Lattron Co. Ltd. Ultra thin temperature sensor device
KR101209984B1 (ko) 2010-11-23 2012-12-07 삼성에스디아이 주식회사 배터리 팩
JP5974490B2 (ja) * 2011-01-17 2016-08-23 株式会社村田製作所 電子部品素子供給装置
JP5451793B2 (ja) * 2012-02-10 2014-03-26 東京エレクトロン株式会社 温度センサ及び熱処理装置
TW201434134A (zh) 2013-02-27 2014-09-01 Everlight Electronics Co Ltd 發光裝置、背光模組及照明模組
US9488535B2 (en) 2013-06-18 2016-11-08 Ford Global Technologies, Llc Battery pack thermistor test method
US9360377B2 (en) * 2013-12-26 2016-06-07 Rosemount Inc. Non-intrusive temperature measurement assembly
WO2015132832A1 (ja) * 2014-03-07 2015-09-11 株式会社芝浦電子 温度センサ、及び、温度センサの製造方法
JP6723690B2 (ja) * 2015-06-01 2020-07-15 株式会社村田製作所 被覆リードタイプ電子部品およびその製造方法
US11226242B2 (en) 2016-01-25 2022-01-18 Rosemount Inc. Process transmitter isolation compensation
CA3011963C (en) 2016-01-25 2021-08-24 Rosemount Inc. Non-intrusive process fluid temperature calculation system
US11067520B2 (en) 2016-06-29 2021-07-20 Rosemount Inc. Process fluid temperature measurement system with improved process intrusion
US11268862B2 (en) * 2016-06-30 2022-03-08 Semitec Corporation Temperature sensor and device provided with temperature sensor
US10288513B2 (en) * 2016-09-14 2019-05-14 Sensata Technologies Integrated pressure and temperature sensor
US11226255B2 (en) 2016-09-29 2022-01-18 Rosemount Inc. Process transmitter isolation unit compensation
WO2018061453A1 (ja) * 2016-09-29 2018-04-05 パナソニックIpマネジメント株式会社 コンデンサ
JP6821384B2 (ja) * 2016-10-17 2021-01-27 Koa株式会社 白金温度センサ素子
DE102017215262A1 (de) * 2017-08-31 2019-02-28 Seg Automotive Germany Gmbh Baueinheit mit einem Widerstandsbauteil, welches einen negativen Temperaturkoeffizienten aufweist und das zum Einbau in den Stromkreis einer elektrischen Baueinheit vorgesehen ist
US11467041B2 (en) * 2018-01-04 2022-10-11 Mediatek Inc. Thermal sensor integrated circuit, resistor used in thermal sensor and method for detecting temperature
US11525739B2 (en) * 2018-05-08 2022-12-13 Texas Instruments Incorporated Thermistor die-based thermal probe
JP7368462B2 (ja) 2018-09-28 2023-10-24 ローズマウント インコーポレイテッド 誤差が減少した非侵襲的プロセス流体温度表示
WO2020137964A1 (ja) * 2018-12-25 2020-07-02 株式会社村田製作所 温度センサ
DE102020116018A1 (de) * 2020-06-17 2021-12-23 Tdk Electronics Ag Sensor
DE102021118569B4 (de) 2021-07-19 2023-01-26 Tdk Electronics Ag NTC-Sensor und Verfahren zur Herstellung eines NTC-Sensors
US11990015B2 (en) * 2021-09-22 2024-05-21 Honeywell International Inc. Point heat detectors based on surface mounted thermistors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296633A (en) * 1979-06-01 1981-10-27 Gambro Ab Device for temperature measurement
JPH085468A (ja) * 1994-06-22 1996-01-12 Ooizumi Seisakusho:Kk サーミスタセンサ
JPH09297069A (ja) * 1996-05-07 1997-11-18 Tdk Corp 温度検知用センサ
JP3275739B2 (ja) 1996-11-15 2002-04-22 三菱マテリアル株式会社 サーミスタ素子及びその製造方法
JPH11108771A (ja) 1997-10-06 1999-04-23 Matsushita Electric Ind Co Ltd サーミスタ温度センサ
US6592253B2 (en) * 2001-10-09 2003-07-15 Northrop Grumman Corporation Precision temperature probe having fast response
CN1258199C (zh) * 2003-12-11 2006-05-31 中国科学院长春光学精密机械与物理研究所 深刻蚀平面电磁线圈及制作方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934406A (zh) * 2010-09-08 2011-01-05 浙江达峰科技有限公司 太阳能水温水位传感器中不锈钢电极与导线的焊接方法
CN102468023A (zh) * 2010-11-12 2012-05-23 三星Sdi株式会社 热敏电阻器及包括该热敏电阻器的二次电池组
US8822051B2 (en) 2010-11-12 2014-09-02 Samsung Sdi Co., Ltd. Protection circuit module including thermistor and secondary battery pack having the same
CN102468023B (zh) * 2010-11-12 2015-07-22 三星Sdi株式会社 热敏电阻器及包括该热敏电阻器的二次电池组
CN102655246A (zh) * 2011-03-02 2012-09-05 三星Sdi株式会社 电池组
US9269946B2 (en) 2011-03-02 2016-02-23 Samsung Sdi Co., Ltd. Battery pack having protection circuit module
CN102655246B (zh) * 2011-03-02 2016-07-27 三星Sdi株式会社 电池组
CN104792432A (zh) * 2014-01-16 2015-07-22 株式会社村田制作所 温度传感器以及制造方法
CN104792432B (zh) * 2014-01-16 2017-11-14 株式会社村田制作所 温度传感器以及制造方法
CN103792019A (zh) * 2014-01-28 2014-05-14 南京时恒电子科技有限公司 一种温度传感器制造方法
CN103792019B (zh) * 2014-01-28 2016-06-29 南京时恒电子科技有限公司 一种温度传感器制造方法
CN106574940A (zh) * 2014-07-09 2017-04-19 株式会社村田制作所 带引线热敏电阻的电阻测量装置
CN106574940B (zh) * 2014-07-09 2019-02-15 株式会社村田制作所 带引线热敏电阻的电阻测量装置
CN106574872A (zh) * 2014-07-25 2017-04-19 爱普科斯公司 传感器元件、传感器装置和用于制造传感器元件的方法
US10861624B2 (en) 2014-07-25 2020-12-08 Epcos Ag Sensor element, sensor arrangement, and method for manufacturing a sensor element
US11346726B2 (en) 2014-07-25 2022-05-31 Epcos Ag Sensor element, sensor arrangement, and method for manufacturing a sensor element and a sensor arrangement
CN107430036A (zh) * 2015-04-03 2017-12-01 株式会社电装 温度传感器
CN107430036B (zh) * 2015-04-03 2019-10-11 株式会社电装 温度传感器
CN106556468A (zh) * 2015-09-25 2017-04-05 株式会社村田制作所 带引线的热敏电阻组件及其制造方法
WO2017050000A1 (zh) * 2015-09-25 2017-03-30 株式会社村田制作所 带引线的电子元件组件及其制造方法
US10176909B2 (en) 2015-09-25 2019-01-08 Murata Manufacturing Co., Ltd. Electronic component module with leads and method for manufacturing the same
CN106872061A (zh) * 2016-12-27 2017-06-20 中国科学院长春光学精密机械与物理研究所 一种玻璃封装热敏电阻器的快速响应表面贴装方法
CN106872061B (zh) * 2016-12-27 2019-04-23 中国科学院长春光学精密机械与物理研究所 一种玻璃封装热敏电阻器的快速响应表面贴装方法
CN113994180A (zh) * 2019-12-24 2022-01-28 株式会社大泉制作所 温度传感器

Also Published As

Publication number Publication date
KR20090097177A (ko) 2009-09-15
US20090316752A1 (en) 2009-12-24
EP2159556B1 (en) 2017-03-22
KR101125432B1 (ko) 2012-03-27
JPWO2008156082A1 (ja) 2010-08-26
TW200921068A (en) 2009-05-16
EP2159556A1 (en) 2010-03-03
EP2159556A4 (en) 2014-01-01
TWI393869B (zh) 2013-04-21
CN101583858B (zh) 2011-11-09
JP4868264B2 (ja) 2012-02-01
US8092085B2 (en) 2012-01-10
WO2008156082A1 (ja) 2008-12-24

Similar Documents

Publication Publication Date Title
CN101583858B (zh) 带引线的温度传感器
KR100928131B1 (ko) Ptc 소자, ptc 소자를 포함하는 보호회로기판 및보호회로기판을 포함하는 이차전지
KR101038755B1 (ko) 세라믹 칩 어셈블리
CN101677151A (zh) 带引线的电子零件
US6462925B2 (en) Excess current interrupting structure
CN108934178B (zh) 传感器元件及传感器元件的制造方法
JPH0586061B2 (zh)
CN112951937A (zh) 太阳能电池串及其制备方法
US20220392674A1 (en) Method of fastening a contact element in an electrical component, and electrical component having a contact element
CN114787597A (zh) 传感器装置和用于制造传感器装置的方法
CN106052545A (zh) 用于钢材表面的应变片快速接线装置及应变测量方法
JP4919614B2 (ja) 太陽電池装置、及び太陽電池装置の製造方法
JP2008241566A (ja) 薄膜温度センサ、および薄膜温度センサの引出線接続方法
US10176909B2 (en) Electronic component module with leads and method for manufacturing the same
TWI294129B (en) A chip resistor component and a manufacturing process thereof
JP2004200517A (ja) 太陽電池モジュールおよびその製造方法
JP2005214641A (ja) 温度センサ
US20160055935A1 (en) Apparatus and Method for Establishing an Electrically Conductive and Mechanical Connection
CN219416481U (zh) 一种ntc温度传感器
CN116136435A (zh) 一种温度传感器及制造方法
JP2919310B2 (ja) ヒューズ機構内蔵の固体電解コンデンサ及びその製造方法
JPH0356032Y2 (zh)
JP5396304B2 (ja) 抵抗付き温度ヒューズの製造方法
JPH02106029A (ja) モールドチップタンタル固体電解コンデンサ
JP2001044321A (ja) 半導体素子収納用パッケージの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant