CN101548397B - 用于led光源的光学粘合组合物 - Google Patents

用于led光源的光学粘合组合物 Download PDF

Info

Publication number
CN101548397B
CN101548397B CN200780042714.7A CN200780042714A CN101548397B CN 101548397 B CN101548397 B CN 101548397B CN 200780042714 A CN200780042714 A CN 200780042714A CN 101548397 B CN101548397 B CN 101548397B
Authority
CN
China
Prior art keywords
tube core
light source
surface modification
optical
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200780042714.7A
Other languages
English (en)
Other versions
CN101548397A (zh
Inventor
埃米·S·巴尔内斯
D·斯科特·汤姆森
布兰特·U·科尔布
托德·A·巴伦
杰奎琳·C·罗尔夫
罗伯特·L·布罗特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN101548397A publication Critical patent/CN101548397A/zh
Application granted granted Critical
Publication of CN101548397B publication Critical patent/CN101548397B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

本文公开了一种可以用于光学应用的光学粘合组合物。本文还公开了一种利用该组合物的LED光源以及制备所述光源的方法。所述LED光源可以包括:LED管芯;光学耦合到所述LED管芯的光学元件;以及包括在无定形硅酸盐网中的表面改性的金属氧化物纳米粒子的粘合层,所述粘合层将所述LED管芯和所述光学元件粘合在一起。当使用光学提取器作为所述光学元件时可以增加所述LED光源的效率。

Description

用于LED光源的光学粘合组合物
相关专利申请的交叉引用
本专利申请要求2006年11月17日提交的美国临时专利申请No.60/866280的优先权,该专利的公开内容以引用方式全文并入本文。 
技术领域
本发明涉及LED光源,并且尤其涉及具有使用光学粘合组合物粘合到LED管芯的光学元件的LED光源。 
背景技术
LED光源具有提供常规光源的亮度、输出和运行寿命的固有潜能。不幸地是,LED光源在通常称为LED管芯的半导体材料中产生光,并且在基本上不降低亮度或增加LED光源表观发光面积的情况下,难以有效地从LED管芯中提取光。这种困难通常由于LED管芯(折射率n为2.4或更大)和空气(n=1)之间的大折射率失配产生,使得在LED管芯中生成的大部分光发生全内反射并且不可以逸出管芯,从而降低亮度。 
先前用于从LED管芯中提取光的方法包括使用封装LED管芯的密封剂。密封剂通常具有高于空气的折射率(对于典型的环氧密封剂,n约为1.5),使得在管芯界面处与其周围的折射率失配降低。因此,浪费较少的光并且光源更为明亮。然而,需要进一步改善效率和亮度。另外,密封剂易受来自在LED管芯生成的热的大的温度漂移的影响,随着多个温度循环,其引起可以损坏管芯的应力。密封剂还可以黄化或者随时间推移降解。 
提取器也可以用于从LED管芯中提取光。这些光学元件通常为透 明聚合物或玻璃并且接触或紧邻LED管芯表面设置。提取器和LED管芯光学耦合使得光从LED管芯中提取出来。提取器的输入表面通常具有特定尺寸和形状以和LED管芯的主发光表面大体配合。然而,难以粘合提取器和LED管芯已经妨碍提取器的使用。已知的粘合方法需要高温(大于350℃)和高压,这两者会负面地影响LED光源的功能。已知的粘合方法还需要涉及到的制造方法,例如化学气相沉积法、多种形式的外延等,其限制了这些方法在选择应用场合方面的有效性。 
发明内容
本文所公开的是光学粘合组合物以及包括该组合物的LED光源。LED光源可以包括:LED管芯;光学耦合到LED管芯的光学元件;以及包括在无定形硅酸盐网中的表面改性的金属氧化物纳米粒子的粘合层,粘合层将LED管芯和光学元件粘合在一起。无定形硅酸盐网可以衍生自硅酸盐、硅烷、硅酸、硅酸的聚合物形式、烷氧基硅烷、或它们的组合。表面改性的金属氧化物纳米粒子包括金属氧化物纳米粒子和表面改性剂。可用的金属氧化物纳米粒子包括氧化锆、二氧化钛、氧化锌、氧化钽、氧化铌、氧化镧、氧化锶、氧化钇、二氧化铪、氧化锡、氧化锑、以及它们的组合。还可以使用上述的混合氧化物。在一个具体实例中,金属氧化物纳米粒子包括具有大于约1.8的折射率的结晶氧化锆纳米粒子。可用的表面改性剂包括羧酸、膦酸、烷氧基硅烷或它们的组合或混合物。光学元件通常为通过为光从LED管芯内部逸出提供便利而增加光源效率的光学提取器。 
另外本文所公开的是制备LED光源的方法,该方法包括:a)提供LED管芯;b)提供光学元件;c)提供包括表面改性的金属氧化物纳米粒子和在具有大于约8的pH值水溶液中的硅源的光学粘合组合物,硅源选自由硅酸盐、硅烷、硅酸、硅酸的聚合物形式、烷氧基硅烷以及它们的组合组成的组;以及d)通过使LED管芯和光学元件与光学粘合组合物接触,将LED管芯和光学元件粘合在一起。 
本文所公开的LED光源可用于多种照明应用中,例如用于可以是侧光式或直下式的背光指示牌和液晶显示器。本文所公开的LED光源还可以用作用于LED标牌、汽车应用、投影应用和一般照明(包括建筑照明、调光(mood)照明和艺术照明)的光源。 
本发明的这些方面以及其他方面在下面的具体实施方式中将显而易见。然而,在任何情况下上述发明内容都不应理解为是对受权利要求书保护的主题的限制,该主题仅受所附权利要求的限定,在专利申请过程中可以对其进行修正。 
附图说明
结合以下附图以及以下具体实施方式及实例可以更加全面地理解本发明。在任何情况下都不应将附图理解为是对受权利要求书保护的主题的限制,该主题仅受本文所阐述的权利要求的限定。 
图1示出示例性LED光源的示意性横截面。 
图2a-2d示出示例性会聚式提取器。 
图3a-3c和4a-4b示出示例性发散式提取器。 
具体实施方式
图1示出示例性LED光源100的示意性横截面,LED光源100包括通过粘合层106粘合在一起的LED管芯102和光学元件104。粘合层包括在无定形硅酸盐网中的表面改性的金属氧化物纳米粒子。一般来讲,LED管芯和光学元件光学耦合使得由LED管芯发射的光能够传播并且到达光学元件。取决于元件的具体性质,光学元件可以为光能够以多种方法进入并射出的提取器。 
为简单起见,LED管芯在图1中一般性示出并且可以包括在本领域已知的常规设计特征。例如,LED管芯可以包括截然不同的p和n型半导体层,其通常由III-V半导体形成,包括氮化物,例如AlN、GaN、 InN;磷化物,例如InGaP、AlP、GaP、InP;以及其他例如AlAs、GaAs、InAs、AlSb、GaSb和InSb。LED管芯还可以由II-VI半导体(例如ZnS、ZnSe、CdSe和CdTe)、IV族半导体Ge、Si和碳化物(例如SiC)形成。LED管芯还可以包括缓冲层、基底层和覆盖层。LED管芯在光源(其中存在LED管芯)的典型发射波长处的折射率为约1.7至约4.1。 
虽然示出的是矩形的LED管芯,但是还可以想到其他已知的构型,例如LED管芯可具有可形成截短的倒锥体的倾斜侧面。为简单起见没有示出LED管芯的电触点,但可以将其布置在任何一个或多个表面上以施加电力给装置通电。实例包括焊接回流、引线键合、卷带式自动键合(TAB)、或者倒装键合。元件或芯片的各个层和其他功能元件通常以晶片级形成,然后将加工好的晶片切成单个元件,以生产多个LED管芯。可以用表面贴装、薄芯片直接贴装或其他已知的贴装构型来构造LED管芯。 
本文所公开的光学元件由具有相对高的折射率的固态、透明材料制成。用于光学元件的合适的材料包括无机材料,例如光学玻璃,如得自肖特北美有限公司(Schott North America,Inc.)的肖特玻璃型号LASF35或N-LAF34,以及在美国序列No.11/381518(Leatherdale等人)中描述的那些,该专利的公开内容以引用方式并入本文。其他适合的无机材料包括陶瓷,如蓝宝石、氧化锌、氧化锆、金刚石和碳化硅。蓝宝石、氧化锌、金刚石和碳化硅尤其是有用的,因为这些材料另外具有相当高的热导率(0.2-5.0W/cmK)。光学元件还可以包括热固性高折射率聚合物,例如丙烯酸树脂、环氧树脂、硅树脂、聚碳酸酯和多环类聚合物;或热塑性高折射率聚合物,例如聚碳酸酯和环烯烃。光学元件可以包括与陶瓷纳米粒子结合的热固性或热塑性聚合物,陶瓷纳米粒子包括氧化锆、氧化锌、二氧化钛和硫化锌。 
提取器的折射率在LED管芯的发射波长处至少为约1.5,例如,大于约1.8,或大于约2。在一个实例中,光学元件的折射率可以与LED 管芯的发光表面的折射率相同、几乎相同或不大于LED管芯的发光表面的折射率。这将允许光的最大限度提取。例如,折射率可以在约0.2以内。或者,提取器的折射率可以大于或小于LED管芯发光表面的折射率。例如,如果LED管芯的发光表面为1.75,则提取器可以具有1.7、1.75、1.9、2.1或2.3的折射率。 
在一个实例中,光学元件包括具有至少约1.7的折射率的光学玻璃。在另一个实例中,光学元件包括具有至少约2.0,优选地至少2.1、2.2或2.3或更大折射率的玻璃或玻璃陶瓷材料,如在美国序列No.11/381518(Leatherdale等人)中描述的。一般来讲,这些材料包括小于20重量%的B2O3,小于20重量%的SiO2,以及小于40重量%的P2O5。在一些情况下,限制下列材料小于20重量%:As2O3、Bi2O3、GeO2、NaO、TeO2、V2O5、SiO2、B2O3,以及P2O5。可用的玻璃或玻璃陶瓷材料包括至少两种金属氧化物,例如Al2O3;TiO2;稀土氧化物;或碱土金属氧化物。这些材料的结晶温度Tx优选地高于它们的玻璃化转变温度Tg至少5℃,这有利于材料模制成光学元件。 
光学元件的一个实例为可以用于从LED管芯中提取光的提取器。一般来讲,提取器修饰光的角分布,转变第一光发射图案为不同的第二光发射图案。根据提取器的形状,发射光的图案为总体上向前方向并且可以为围绕提取器的圆形或在侧边以某种对称或非对称分布。 
光学元件可以包括会聚式提取器,如在美国序列No.11/381324(Leatherdale等人)中描述的,该专利的公开内容以引用方式并入本文。会聚式提取器具有至少一个汇聚侧边、基部和顶端,并且顶端至少部分地设置在基部上并且具有小于基部表面积的表面积,并且至少一个会聚侧边从基部向顶端会聚。会聚式提取器的形状可以为锥形、多面的、类楔形、类锥形等,或它们的某种组合。基部可以具有任何形状(如方形、圆形、对称、非对称、规则或不规则)。顶端可以为点、线或平的或圆形表面,并且其位于基部上,或保持居中或从基部 的中心偏移。对于会聚式提取器,基部通常邻近LED管芯设置并且一般与LED管芯平行。另外,基部和LED管芯可以在尺寸上基本匹配,或基部可以小于或大于LED管芯。 
图2a-2d示出示例性会聚式提取器的透视图:图2a示出四侧面的椎体;图2b示出六侧面的多面体;并且图2c和2d示出楔形体,其中顶端(线条)设置在基部上,并且顶端分别保持居中和从中心偏移。在图2d中示出的提取器还具有两个起到准直光作用的发散侧边,会聚侧边使得光重新导向至侧边。会聚式提取器的其他实例在美国专利序列No.11/381324(Leatherdale等人)中示出。 
光学元件可以包括发散式提取器,如在美国专利申请Nos.2006/0091784 A1(Connor等人)、2006/0091411 A1(Ouderkirk等人)、2006/0091798 A1(Ouderkirk等人)和2006/0092532 A1(Ouderkirk等人)中描述的,其公开内容以引用方式并入本文。发散式提取器具有至少一个发散侧边、输入表面以及大于输入表面的输出表面。发散式提取器一般以锥形的形式成形。图3a-3c示出示例性发散式提取器:图3a示出具有四个侧边的截短的倒多面体的透视图;图3b示出具有抛物线侧壁的截短的倒锥体的透视图;并且图3c示出具有凸的输出表面的截短的倒锥的示意性横截面。 
发散式提取器的实例也在美国序列No.11/381518(Leatherdale等人)中此前描述的图4a和4b中示出。这些提取器的表面被布置为将来自LED管芯的光的方向改变为基本上边路的方向,而不是沿着LED管芯的中心轴的向前方向。侧发光LED尤其适合用在液晶显示面板的薄直下式背光源中,因为可以使光在短距离内横向地扩展,避免了显示器整个观察区域的亮区和暗区或热点。 
图4a为楔形提取器400的示意性侧视图。提取器400具有输入表面402、输出表面404以及侧面406a和406b。输入和输出表面可以彼 此设置为具有很大的角度,标称地约90度。对于这种布置方式,穿过输入表面进入的光线408a从侧面的一个或两个反射(是通过全内反射还是在反射材料或涂层的帮助下没有示出)并且大约向侧边重新导向,如由光线408b表示的。随后光线408b穿过输出表面射出。提取器400的形状或周边的俯视图可以显示出多种形状,包括矩形、梯形、派形、半圆形或它们的任何组合。 
图4b为另一个楔形提取器410的示意性侧视图。提取器410具有输入表面412、输出表面414和侧面416。提取器410可以具有将提取器400绕竖直的轴旋转而成的形状,该竖直的轴与侧面406a重合。在一些情况下,该提取器可以通过将复合构造的两个提取器400在它们各自的侧面406a处连接而制成。在一种不同的复合构造中,虚线418表示在组成提取器410的截然不同的光学主体之间可能的界面或边界。 
类似于提取器400,提取器410的输入和输出表面彼此设置为具有很大的角度,标称地约90度。穿过输入表面进入的来自LED的光从侧面的一个或两个反射(是通过全内反射还是在反射材料或涂层的帮助下没有示出)并且大约向侧边重新导向,随后穿过输出表面射出。从俯视图(未示出)看,提取器410的形状可以是包括(例如)多边形(如正方形或矩形)、圆形或椭圆形的多种形状中的任何一种。对于圆形或椭圆形的形状或周边,穿过输入表面进入的光重新导向以形成输出光的环。 
就会聚式提取器来说,发散式提取器的输入表面通常紧邻LED管芯设置并且一般平行于LED管芯。另外,输入表面和LED管芯可以在尺寸上基本匹配,或输入表面可以小于或大于LED管芯。发散式提取器的其他实例在美国7,009,213 B2和美国6,679,621 B2中有所描述。 
如上所述,LED管芯包括交替的半导体层。最外层中的一个可以称为发光层,并且该层具有可以称为发光表面的最外表面。另外如上 所述,光学元件包括光输入表面。在一个可用的构造中,LED光源包括粘合在一起的LED管芯和光学元件,使得发光表面和光输入表面与粘合层接触,如在例如图1中示出的。 
光学粘合组合物用于形成粘合层。光学粘合组合物包括表面改性的金属氧化物纳米粒子;以及在具有大于约8的pH值的水溶液中的硅源。硅源可以包括硅酸盐、硅烷、硅酸、硅酸的聚合物形式、烷氧基硅烷、或它们的组合。溶解在水中的二氧化硅可以用于形成硅酸Si(OH)4,其由于二氧化硅的水解形成。通过保持pH值大于约8,通过氢氧根离子催化聚合缩合反应,形成硅酸的聚合物形式。通过增加pH值,例如至大于约8,或至大于约11可以形成硅酸盐。 
光学粘合组合物可以包括一种或多种烷氧基硅烷,其具有化学式: 
(R1)x-Si-(OR2)y
其中R1可以为烷基、一元醇、聚乙二醇或聚醚基团,或它们的组合或混合物;R2可以为烷基、乙酰氧基,或甲氧基乙氧基,或它们的混合物;x=从0至3;y=从1至4,前提条件是x+y=4。可以加入一种或多种烷氧基硅烷以降低交联密度并对硅酸盐网增加柔韧性。 
光学粘合组合物可以包括一种或多种硅烷,其具有化学式: 
(R1)x-Si-Hy
其中R1可以为烷基、一元醇、聚乙二醇、或聚醚基团,或它们的组合或混合物;x=从1至3;y=从1至3,前提条件是x+y=4。 
可以使用多种材料以调整光学粘合组合物的pH值。实例包括强碱,例如氢氧化钠、氢氧化钾、氢氧化钙、氢氧化锶、氢氧化铵,以及乙醇钠。如果希望减慢氢氧化物催化作用,还可以使用例如聚偏磷酸钠的弱碱。 
当将LED管芯和光学元件粘合在一起时在LED管芯和光学元件之间形成粘合层。据信光学粘合组合物发生反应以形成硅酸盐网。通过施加热可以加速反应。硅酸盐网是指化学键合的网,类似于二氧化硅的整体结构,但比二氧化硅的整体结构松散。二氧化硅的三维结构根据硅氧烷跨接(Si-O-Si),在四面体几何形状中每一个硅原子键合到四个氧原子。类似于二氧化硅,硅酸盐网包括硅氧烷跨接,然而,硅酸盐网还包括在网内作为局部封端基团的嵌入和/或暴露的非跨接氧原子。非跨接氧原子以硅烷醇基团(Si-OH)的形式或以具有阳离子(通常金属阳离子(Si-O-M+))的更阴离子形式存在。例如,在R.K.Iler的“The Chemistry of Silica”(二氧化硅的化学)(Wiley,New York 1979)中可以发现硅酸盐网的进一步讨论。 
光学组合物还包括表面改性的金属氧化物纳米粒子。表面改性的金属氧化物纳米粒子可以包括选自由下列组成的组的金属氧化物纳米粒子:氧化锆、二氧化钛、氧化锌、氧化钽、氧化铌、氧化镧、氧化锶、氧化钇、二氧化铪、氧化锡、氧化锑、以及它们的组合。氧化物纳米粒子还可以包括至少两种选自由下列组成的组的氧化物的混合氧化物纳米粒子:氧化硅、氧化铝、氧化锆、二氧化钛、氧化锌、氧化钽、氧化铌、氧化镧、氧化锶、氧化钇、以及它们的组合。二氧化钛纳米粒子可以为金红石或锐钛矿形式。混合氧化物纳米粒子的具体实例包括含氧化硅和氧化锆;氧化硅和二氧化钛;以及氧化硅、氧化锆和二氧化钛的那些。使用的具体金属氧化物纳米粒子可以取决于多种因素,例如折射率、光学组合物中的相容性、成本等。 
金属氧化物纳米粒子用一种或多种表面改性剂表面改性以增加金属氧化物纳米粒子与粘合层和/或光学组合物中的其他组分的相容性。 例如,氧化锆纳米粒子在具有2至4pH值的水酸性环境中是稳定的,并且可以使用表面改性以保护纳米粒子防止在光学组合物的水碱性环境中的絮凝。表面改性涉及金属氧化物纳米粒子与表面改性剂的反应,表面改性剂附连到纳米粒子的表面并且改性其表面特性。 
表面改性剂可以由化学式A-B表示,其中A基团能够附连到金属氧化物纳米粒子的表面,并且B基团为相容基团。一般来讲,需要考虑具体金属氧化物和光学组合物的性质来选择A基团,即,表面改性的金属氧化物纳米粒子应稳定,使得在高碱性环境中保持相容性。可用的A基团包括羧酸、膦酸、烷氧基硅烷、胺、以及它们的组合和混合物。烷氧基硅烷可以由下列化学式表示: 
-Si-(OR3)z
其中R3为烷基、乙酰氧基、甲氧基乙氧基,或它们的混合物;并且z=从1至3。 
可用的B基团为使得金属氧化物纳米粒子在光学组合物中相容的亲水性基团;实例包括一元醇、聚乙二醇和聚醚。表面改性剂的实例包括聚乙烯烷氧基硅烷和聚乙烯类羧酸衍生物,例如2[-2-(2-甲氧基乙氧基)乙氧基]乙酸和(2-甲氧基乙氧基)乙酸。 
表面改性的金属氧化物纳米粒子具有小于光波长,例如小于约300nm的平均粒度。 
表面改性的金属氧化物纳米粒子可以按重量计以大于硅源二分之一的量存在于光学组合物中。相对于将LED管芯和光学元件粘合在一起形成的粘合层,表面改性的金属氧化物纳米粒子可以以相对于粘合层的重量以约1至约95重量%的量存在。通常,相对于粘合层的总重,希望具有约40至约95重量%的表面改性的金属氧化物纳米粒子。使用 的具体量部分由对于粘合层的所需折射率确定,如下面描述的。然而,如果在粘合层中纳米粒子的量太大,则在LED管芯和光学元件之间难以获得合适的粘合,并且另外,LED光源的效率可能变差。 
具体地讲,表面改性的金属氧化物纳米粒子包括具有至少约1.8,优选地至少约2.0的折射率的高度结晶的氧化锆纳米粒子,例如在美国6,376,590 B2中描述的纳米粒子,其公开内容以引用的方式并入本文。高度结晶的氧化锆纳米粒子通过用上述对化学式A-B描述的烷氧基硅烷中的一种或多种表面改性掺入到光学组合物中。高度结晶的氧化锆纳米粒子具有小于约100nm的平均粒度。 
上述描述的氧化锆纳米粒子的折射率比无定形氧化锆的折射率高得多。当掺入到硅酸盐网以得到无定形硅酸盐网时,氧化锆纳米粒子使得粘合层的折射率增加。因此,粘合层的光学特性可以如下面描述定制,取决于将要粘合的具体LED管芯和光学元件。具体地讲,硅酸盐网的折射率为约1.4,并且对于表面改性的氧化锆纳米粒子为约1.8至约2.1。表面改性的金属氧化物纳米粒子还可以包括具有大于约2.0,并且优选地大于约2.2的折射率的结晶二氧化钛纳米粒子。 
LED光源的效率与LED管芯和光学元件光学耦合的程度直接相关。应该指出的是,在整个公开中,对LED管芯折射率的参考为对LED管芯的光发射层的折射率的参考。LED管芯和光学元件光学耦合的程度取决于若干因素,包括粘合层的厚度以及粘合层、LED管芯和光学元件的折射率。一般来讲,当粘合层的厚度显著地小于空气中发射光的波长,例如小于约50nm时,粘合层的折射率对于LED管芯和光学元件之间的光学耦合不太重要。随着厚度增加,相对于光学耦合,粘合层的折射率变得越来越重要。 
粘合层可以具有小于50nm的厚度,但其通常为大约约50nm,例如高达约200nm或300nm,或甚至高达10μm或100μm。粘合层可以 具有约5nm至约300nm,或大于约50nm至约100μm的厚度。为优化LED管芯和光学元件之间的光学耦合,期望粘合层的厚度在第一和第二表面之间的整个接触区域基本上是均匀的。粘合层的最小必须厚度可以取决于将要粘合的表面的平坦性或不规则性。 
为最大化效率,粘合层的折射率紧密匹配LED管芯光发射表面(或上面描述的光发射层)的折射率,例如,在约0.2以内。如果粘合层的折射率太低,由LED管芯发射的光困在管芯中并且损失于吸收,即使粘合层本身是非吸收的。通过增加粘合层的折射率至光发射层的折射率,较大比率的由LED发射的光可以耦合出管芯并且进入光学元件,即使粘合层吸收发射光的一部分。 
如上所述,LED管芯或光发射层的折射率在LED管芯的发射波长处为约1.7至约4.1。没有表面改性的金属氧化物纳米粒子的无定形硅酸盐网的折射率大于约1.4。表面改性的金属氧化物纳米粒子用于增加折射率高达约2.4。在一个实例中,在LED管芯的发射波长处粘合层的折射率至少为约1.5,例如,大于约1.8,或大于约2。 
在一个具体的实例中,LED管芯包括具有大于1.9的折射率的光发射层,并且粘合层具有约50nm至约100μm的厚度。在另一个实例中,LED管芯包括具有小于或等于1.9的折射率的光发射层,并且粘合层具有大于约5nm至约300nm的厚度。 
粘合层对由LED管芯发射的特定波长的光基本上为透明的。在大部分情况下,至少约70%的透射是理想的并且可以通过透射路径长度(粘合层厚度)和吸收常数的优化获得。 
本文另外公开了制备LED光源的方法,该方法包括:a)提供LED管芯;b)提供光学元件;c)提供包括表面改性的金属氧化物纳米粒子和在具有大于约8pH值的水溶液中的硅源的光学粘合组合物,硅源选 自由硅酸盐、硅烷、硅酸、硅酸的聚合物形式、烷氧基硅烷以及它们的组合组成的组;以及d)通过使LED管芯和光学元件与光学粘合组合物接触,将LED管芯和光学元件粘合在一起。 
使用滴管或通过浸涂、旋涂、气溶胶分配、浇注、分配、用水喷雾或通过在光学组合物的容器中连接表面或通过其他类似方法可以将光学组合物施加到LED管芯、光学元件或两者的一个或多个表面。然后使表面接触以夹住光学组合物,使得组合物在表面中每一个的整个上扩散并且形成均匀的层。如果形成气泡,可以通过施加真空来移除它们。然后允许在室温下保持组件直到在没有粘合失效的情况下其为可处理的;这个过程可以从几分钟至几天。外部压缩力或真空可以用于加快粘合处理和/或用于促进良好的粘合。 
可以施加热以加快粘合层的形成和/或加强粘合层,然而,组件的温度必须保持在任一组分的最低玻璃化转变温度之下。通常使用小于约300℃的温度,例如,小于约200℃,或小于或等于150℃。为了最小化由LED管芯和光学元件的热膨胀系数的差值引起的在界面处的残余应力和双折射,使用可能的最低温度是理想的。在一些情况下,必须当心,以使得粘合层的温度不超过在光源工作期间将达到的温度。 
实例
实例
通过将氧化锆溶胶与聚乙二醇三烷氧基硅烷(得自迈图高新材料集团(GE Advanced Materials)的 
Figure G2007800427147D00131
A-1230)以每克氧化锆提供1.2毫摩尔硅烷的比率混合制备表面改性的氧化锆纳米粒子。将混合物加热至80℃持续4小时,并冷却至室温。然后将所得溶胶加入到40重量%的硅酸钠溶液(得自EMD化学品有限公司(EMD Chemicals Inc.)的 
Figure G2007800427147D00132
SX-0755-6)以得到硅酸钠∶氧化锆的比率为0.4∶1。 
将上述溶液旋涂到涂底漆的PET上并在150℃下干燥1小时。使 用得自Metricon有限公司的Metricon棱镜耦合器型号2010测量所得薄膜的折射率为1.7。将没有加入氧化锆纳米粒子的硅酸钠溶液的薄膜也旋涂到涂底漆的PET上并在150℃下干燥1小时。再次使用Metricon测量没有氧化锆纳米粒子的这种薄膜的平均折射率为1.5。 
在上述描述的硅酸钠中表面改性的氧化锆纳米粒子的溶液用于将得自O′Hara有限公司的S-LAH-66粘合至抛光的蓝宝石(卢比肯科技公司(Rubicon Technology))。通过在丙酮然后异丙醇中的超声处理来清洁玻璃和蓝宝石。用N2干燥板并且使用10分钟的暴露于紫外/臭氧清洁系统来移除有机残余。将S-LAH-66板放置在光阻涂布机上并将1滴氧化锆/硅酸钠溶液放置在玻璃板的中心。板在400rpm下旋转30秒。将清洁的、抛光的蓝宝石片与S-LAH-66玻璃表面接触。施加适度压力30秒。允许接合的样品在室温下保持1小时。然后接合样品以1℃/min加热至150℃并保持1小时,然后以2℃/min冷却。 
使用没有加入表面改性氧化锆纳米粒子的水玻璃溶液重复上述描述的接合实验。通过在去离子水中稀释保持溶液中硅酸钠的浓度与先前实例中的浓度相同(6重量%硅酸钠)。再次将薄膜旋涂到S-LAH-66玻璃的干净板上。将蓝宝石的抛光板放置到玻璃的顶部上并且施加适度的压力30秒。再次将接合样品在室温下保持1小时,然后在150℃下热处理1小时(以1℃/min加热)。 
在冷却至室温后,具有表面改性氧化锆的样品和仅具有硅酸钠的样品两者的粘合强度都足够高以允许在没有断裂玻璃和蓝宝石之间新形成的粘合的情况下处理。 
比较例
在没有表面改性的情况下氧化锆溶胶与硅酸钠混合
在没有首先表面改性PEG-硅烷中氧化锆的情况下将硅酸钠溶液加入到氧化锆溶胶中。硅酸盐对ZrO2的比率再次设置为0.4∶1。氧化 锆粒子立即从溶液中沉降,在溶液中形成大的白色凝聚块。 
在不脱离本发明精神和范围的前提下,本发明的各种修改和更改对于本领域的技术人员来说将是显而易见的。应该理解,本发明并非意图通过本文所述的示例性实施例和实例进行不当地限制,而且以举例的方式提出的仅在本发明范围内的这些实例和实施例旨在仅受本文如下所述的权利要求书的限制。 

Claims (10)

1.一种LED光源,包括:
LED管芯;
光学元件,所述光学元件光学耦合到所述LED管芯;以及
粘合层,所述粘合层包括在无定形硅酸盐网中的表面改性的氧化物纳米粒子,所述粘合层将所述LED管芯和所述光学元件粘合在一起。
2.根据权利要求1所述的LED光源,所述无定形硅酸盐网衍生自硅酸盐、硅烷、硅酸、硅酸的聚合物形式、烷氧基硅烷、或它们的组合。
3.根据权利要求1所述的LED光源,所述表面改性的氧化物纳米粒子包括表面改性的混合氧化物纳米粒子,该表面改性的混合氧化物纳米粒子包括氧化硅和氧化锆。
4.根据权利要求1所述的LED光源,所述表面改性的氧化物纳米粒子包括表面改性的混合氧化物纳米粒子,该表面改性的混合氧化物纳米粒子包括氧化硅和二氧化钛。
5.根据权利要求1所述的LED光源,所述表面改性的氧化物纳米粒子包括折射率大于1.8的结晶氧化锆纳米粒子。
6.根据权利要求1所述的LED光源,所述粘合层包括40重量%至95重量%的所述表面改性的氧化物纳米粒子。
7.根据权利要求1所述的LED光源,其中所述LED管芯包括发光表面,所述光学元件包括光输入表面,并且所述粘合层将所述发光表面和所述光输入表面粘合在一起。
8.根据权利要求1所述的LED光源,所述光学元件包括折射率至少1.7的光学玻璃。
9.一种光学粘合组合物,包括:
表面改性的氧化物纳米粒子;以及
在pH值大于8的水溶液中的硅源,所述硅源包括硅酸盐、硅烷、硅酸、硅酸的聚合物形式、烷氧基硅烷、或它们的组合。
10.根据权利要求9所述的光学粘合组合物,其中所述表面改性的氧化物纳米粒子存在的量按重量计大于所述硅源的二分之一。
CN200780042714.7A 2006-11-17 2007-11-15 用于led光源的光学粘合组合物 Expired - Fee Related CN101548397B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US86628006P 2006-11-17 2006-11-17
US60/866,280 2006-11-17
PCT/US2007/084806 WO2008064070A1 (en) 2006-11-17 2007-11-15 Optical bonding composition for led light source

Publications (2)

Publication Number Publication Date
CN101548397A CN101548397A (zh) 2009-09-30
CN101548397B true CN101548397B (zh) 2011-12-21

Family

ID=39430051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780042714.7A Expired - Fee Related CN101548397B (zh) 2006-11-17 2007-11-15 用于led光源的光学粘合组合物

Country Status (7)

Country Link
US (1) US8026115B2 (zh)
EP (1) EP2092576A1 (zh)
JP (1) JP2010510671A (zh)
KR (1) KR20090089431A (zh)
CN (1) CN101548397B (zh)
TW (1) TW200835765A (zh)
WO (1) WO2008064070A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE526371T1 (de) 2006-01-18 2011-10-15 Sparkxis B V Neue monomere und polymere materialien
DE102008016487A1 (de) * 2008-03-31 2009-10-01 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
DE102010024545B4 (de) * 2010-06-22 2022-01-13 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements
JP5087672B2 (ja) * 2010-12-13 2012-12-05 株式会社東芝 半導体発光素子
KR20120071960A (ko) 2010-12-23 2012-07-03 삼성모바일디스플레이주식회사 광학 접촉 결합을 이용한 금속 및 글라스 접합 방법, 이를 이용한 표시 장치의 제조 방법, 및 상기 제조 방법에 의해 만들어진 표시 장치
KR101293791B1 (ko) 2011-05-16 2013-08-06 제일모직주식회사 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용한 반도체 소자
KR101644051B1 (ko) * 2011-05-20 2016-08-01 삼성전자 주식회사 광전자 소자 및 적층 구조
US10043942B2 (en) * 2013-10-17 2018-08-07 Luminus Devices, Inc. Vertical multi-junction light emitting diode
EP2953176A1 (de) * 2014-06-02 2015-12-09 Swarovski Energy GmbH Beleuchtungsvorrichtung
CN104531052A (zh) * 2015-01-06 2015-04-22 段志春 一种纳米锆铌硅酮密封胶及其制作方法
JP6668608B2 (ja) * 2015-04-27 2020-03-18 日亜化学工業株式会社 発光装置の製造方法
WO2017196824A1 (en) 2016-05-12 2017-11-16 Koninklijke Philips N.V. Collimating on-die optic
JP6850816B2 (ja) * 2016-05-12 2021-03-31 ルミレッズ ホールディング ベーフェー ダイ上平行光学系
US10290779B2 (en) * 2016-12-15 2019-05-14 Panasonic Intellectual Property Management Co., Ltd. Light emitting element
CN108864952A (zh) * 2018-04-26 2018-11-23 华中光电技术研究所(中国船舶重工集团有限公司第七七研究所) 光学玻璃零件粘合胶及粘接技术
CN113474307A (zh) * 2019-02-28 2021-10-01 Agc株式会社 带胶粘层的光学构件和发光装置
CN113614635A (zh) * 2019-04-19 2021-11-05 美题隆精密光学(上海)有限公司 用于波长转换装置的耐高温反射层
KR102269020B1 (ko) * 2019-12-13 2021-06-25 한국전자기술연구원 Led 실장형 디스플레이 및 그의 제조 방법
JP7011195B2 (ja) * 2020-02-27 2022-01-26 日亜化学工業株式会社 発光装置
CN114368947B (zh) * 2022-01-11 2023-07-25 澳门大学 一种可用于门板的纳米泡沫玻璃微珠混凝土及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139894A (ja) * 1999-11-15 2001-05-22 Dow Corning Toray Silicone Co Ltd シリコーン系接着性シート、および半導体装置
CN1707326A (zh) * 2004-06-03 2005-12-14 日东电工株式会社 剥离力调整方法、粘合剂层及带粘合剂的光学构件
CN1777999A (zh) * 2003-02-26 2006-05-24 美商克立股份有限公司 复合式白色光源及其制造方法

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69715504T2 (de) * 1996-04-26 2003-06-05 Dow Corning Toray Silicone Elektrisch leitfähige Silikonkautschukzusammensetzung und ihre Anwendung zur Herstellung von Halbleiteranordnungen
JP3950493B2 (ja) * 1996-04-26 2007-08-01 東レ・ダウコーニング株式会社 導電性シリコーンゴム組成物、半導体装置の製造方法およびその半導体装置
AU3137097A (en) * 1996-05-16 1997-12-05 Lockheed Martin Energy Systems, Inc. Low temperature material bonding technique
US5777433A (en) * 1996-07-11 1998-07-07 Hewlett-Packard Company High refractive index package material and a light emitting device encapsulated with such material
US6548176B1 (en) * 1997-04-03 2003-04-15 The Board Of Trustees Of The Leland Stanford Junior University Hydroxide-catalyzed bonding
US6784463B2 (en) * 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
US6340824B1 (en) * 1997-09-01 2002-01-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device including a fluorescent material
US6501091B1 (en) * 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
US6291839B1 (en) * 1998-09-11 2001-09-18 Lulileds Lighting, U.S. Llc Light emitting device having a finely-patterned reflective contact
US6307218B1 (en) * 1998-11-20 2001-10-23 Lumileds Lighting, U.S., Llc Electrode structures for light emitting devices
US6455100B1 (en) * 1999-04-13 2002-09-24 Elisha Technologies Co Llc Coating compositions for electronic components and other metal surfaces, and methods for making and using the compositions
US6376590B2 (en) * 1999-10-28 2002-04-23 3M Innovative Properties Company Zirconia sol, process of making and composite material
US7064355B2 (en) * 2000-09-12 2006-06-20 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
US7053419B1 (en) * 2000-09-12 2006-05-30 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
TWI250190B (en) * 2001-10-03 2006-03-01 Dow Corning Toray Silicone Adhesive sheet of cross-linked silicone, method of manufacturing thereof, and device
US6836602B2 (en) * 2001-10-26 2004-12-28 Corning Incorporated Direct bonding of optical components
US6734465B1 (en) * 2001-11-19 2004-05-11 Nanocrystals Technology Lp Nanocrystalline based phosphors and photonic structures for solid state lighting
US6791120B2 (en) * 2002-03-26 2004-09-14 Sanyo Electric Co., Ltd. Nitride-based semiconductor device and method of fabricating the same
KR20020035819A (ko) 2002-04-25 2002-05-15 주식회사 포스기술 방수, 방진 구조를 가진 방열판 겸용 반사면을 구비한발광소자 매트릭스 모듈 및 그 형성방법
US6679621B2 (en) * 2002-06-24 2004-01-20 Lumileds Lighting U.S., Llc Side emitting LED and lens
GB0217900D0 (en) * 2002-08-02 2002-09-11 Qinetiq Ltd Optoelectronic devices
TW200406829A (en) * 2002-09-17 2004-05-01 Adv Lcd Tech Dev Ct Co Ltd Interconnect, interconnect forming method, thin film transistor, and display device
US7118438B2 (en) * 2003-01-27 2006-10-10 3M Innovative Properties Company Methods of making phosphor based light sources having an interference reflector
TW200427111A (en) * 2003-03-12 2004-12-01 Shinetsu Chemical Co Material for coating/protecting light-emitting semiconductor and the light-emitting semiconductor device
US7078735B2 (en) * 2003-03-27 2006-07-18 Sanyo Electric Co., Ltd. Light-emitting device and illuminator
KR100550491B1 (ko) * 2003-05-06 2006-02-09 스미토모덴키고교가부시키가이샤 질화물 반도체 기판 및 질화물 반도체 기판의 가공 방법
JP4645071B2 (ja) * 2003-06-20 2011-03-09 日亜化学工業株式会社 パッケージ成型体およびそれを用いた半導体装置
US7391153B2 (en) * 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation
US7009213B2 (en) * 2003-07-31 2006-03-07 Lumileds Lighting U.S., Llc Light emitting devices with improved light extraction efficiency
US6942360B2 (en) * 2003-10-01 2005-09-13 Enertron, Inc. Methods and apparatus for an LED light engine
JP4332407B2 (ja) * 2003-10-31 2009-09-16 シャープ株式会社 半導体発光素子及びその製造方法
KR100592327B1 (ko) 2003-12-19 2006-06-21 주식회사 코스텍시스 전자기기용 발광다이오드 모듈
JP4231418B2 (ja) * 2004-01-07 2009-02-25 株式会社小糸製作所 発光モジュール及び車両用灯具
KR100574628B1 (ko) 2004-03-10 2006-04-28 서울반도체 주식회사 색 필름을 이용한 발광 다이오드 모듈
WO2005103562A2 (en) * 2004-04-23 2005-11-03 Light Prescriptions Innovators, Llc Optical manifold for light-emitting diodes
US7070300B2 (en) * 2004-06-04 2006-07-04 Philips Lumileds Lighting Company, Llc Remote wavelength conversion in an illumination device
TWI374552B (en) * 2004-07-27 2012-10-11 Cree Inc Ultra-thin ohmic contacts for p-type nitride light emitting devices and methods of forming
JP2006066449A (ja) * 2004-08-24 2006-03-09 Toshiba Corp 半導体発光素子
US7304425B2 (en) * 2004-10-29 2007-12-04 3M Innovative Properties Company High brightness LED package with compound optical element(s)
US7329982B2 (en) * 2004-10-29 2008-02-12 3M Innovative Properties Company LED package with non-bonded optical element
US7404756B2 (en) * 2004-10-29 2008-07-29 3M Innovative Properties Company Process for manufacturing optical and semiconductor elements
US20060091411A1 (en) * 2004-10-29 2006-05-04 Ouderkirk Andrew J High brightness LED package
US7330319B2 (en) * 2004-10-29 2008-02-12 3M Innovative Properties Company High brightness LED package with multiple optical elements
US20060091412A1 (en) * 2004-10-29 2006-05-04 Wheatley John A Polarized LED
US7192795B2 (en) * 2004-11-18 2007-03-20 3M Innovative Properties Company Method of making light emitting device with silicon-containing encapsulant
US20060186428A1 (en) * 2005-02-23 2006-08-24 Tan Kheng L Light emitting device with enhanced encapsulant adhesion using siloxane material and method for fabricating the device
US20060226429A1 (en) * 2005-04-08 2006-10-12 Sigalas Mihail M Method and apparatus for directional organic light emitting diodes
US7494519B2 (en) * 2005-07-28 2009-02-24 3M Innovative Properties Company Abrasive agglomerate polishing method
US7169031B1 (en) * 2005-07-28 2007-01-30 3M Innovative Properties Company Self-contained conditioning abrasive article
US7594845B2 (en) * 2005-10-20 2009-09-29 3M Innovative Properties Company Abrasive article and method of modifying the surface of a workpiece
CN101313417B (zh) * 2005-11-22 2011-04-20 3M创新有限公司 发光制品的阵列及其制造方法
US7285791B2 (en) * 2006-03-24 2007-10-23 Goldeneye, Inc. Wavelength conversion chip for use in solid-state lighting and method for making same
US7525126B2 (en) 2006-05-02 2009-04-28 3M Innovative Properties Company LED package with converging optical element
US20070257270A1 (en) * 2006-05-02 2007-11-08 3M Innovative Properties Company Led package with wedge-shaped optical element
US7423297B2 (en) * 2006-05-03 2008-09-09 3M Innovative Properties Company LED extractor composed of high index glass
US7525162B2 (en) * 2007-09-06 2009-04-28 International Business Machines Corporation Orientation-optimized PFETS in CMOS devices employing dual stress liners

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139894A (ja) * 1999-11-15 2001-05-22 Dow Corning Toray Silicone Co Ltd シリコーン系接着性シート、および半導体装置
CN1777999A (zh) * 2003-02-26 2006-05-24 美商克立股份有限公司 复合式白色光源及其制造方法
CN1707326A (zh) * 2004-06-03 2005-12-14 日东电工株式会社 剥离力调整方法、粘合剂层及带粘合剂的光学构件

Also Published As

Publication number Publication date
CN101548397A (zh) 2009-09-30
EP2092576A1 (en) 2009-08-26
KR20090089431A (ko) 2009-08-21
US20100059776A1 (en) 2010-03-11
US8026115B2 (en) 2011-09-27
TW200835765A (en) 2008-09-01
JP2010510671A (ja) 2010-04-02
WO2008064070A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
CN101548397B (zh) 用于led光源的光学粘合组合物
CN101548398A (zh) 用于led光源的光学粘合组合物
TWI691103B (zh) 光源裝置及發光裝置
US10825967B2 (en) Light emitting device, method of manufacturing covering member, and method of manufacturing light emitting device
US9954153B2 (en) Light-emitting device and method of manufacturing same
JP6257764B2 (ja) 発光半導体コンポーネント及びその製造方法並びに当該発光半導体コンポーネントを備えた波長変換素子の製造方法
JP6327220B2 (ja) 発光装置
JP6702280B2 (ja) 発光装置、被覆部材の製造方法及び発光装置の製造方法
CN102347427B (zh) 发光装置及其制造方法
JP6711021B2 (ja) 発光装置及びその製造方法
CN105423238A (zh) 波长变换部件、发光装置、投影机、以及波长变换部件的制造方法
TW200822403A (en) Light-emitting device and method for manufacturing the same
JP6512201B2 (ja) 線状発光装置の製造方法及び線状発光装置
CN107887490B (zh) 发光装置
WO2007123239A1 (ja) 発光装置
JP7111939B2 (ja) 発光装置及びその製造方法
JP2017201666A (ja) 発光装置の製造方法
JP2016224394A (ja) 光源装置
JP2019102565A (ja) 発光装置及びその製造方法
JP7248935B2 (ja) 発光装置
US20220165924A1 (en) Method for Producing Optoelectronic Semiconductor Devices and Optoelectronic Semiconductor Device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111221

Termination date: 20171115