CN101542609A - 制造离散轨道记录介质的方法和离散轨道记录介质 - Google Patents

制造离散轨道记录介质的方法和离散轨道记录介质 Download PDF

Info

Publication number
CN101542609A
CN101542609A CNA2008800006602A CN200880000660A CN101542609A CN 101542609 A CN101542609 A CN 101542609A CN A2008800006602 A CNA2008800006602 A CN A2008800006602A CN 200880000660 A CN200880000660 A CN 200880000660A CN 101542609 A CN101542609 A CN 101542609A
Authority
CN
China
Prior art keywords
substrate
nonmagnetic substance
magnetic
recording medium
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008800006602A
Other languages
English (en)
Inventor
镰田芳幸
白岛聪志
木村香里
樱井正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN101542609A publication Critical patent/CN101542609A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

根据本发明一个实施例,一种制造离散轨道记录介质的方法包括:在衬底上形成突起的磁性图形;伴随着将所述衬底沿其平面旋转小于一周的角度而两次或更多次重复这样的工艺,即,沉积非磁性材料以填充在所述磁性图形之间的凹进中和回蚀所述非磁性材料。

Description

制造离散轨道记录介质的方法和离散轨道记录介质
技术领域
本发明的实施例涉及制造离散轨道记录介质的方法和通过这种方法制造的离散轨道记录介质。
背景技术
近来,在纳入硬盘驱动器(HDD)的磁性记录介质中,由于相邻轨道之间的干扰,使轨道密度增加的干扰问题增大。特别地,一个重要的技术主题是减少由来自写磁头的磁场的边缘效应所造成的写模糊。
为了解决这样的问题,提出了例如离散轨道记录型构图介质(DTR介质),其中记录轨道物理分开。DTR介质能够减少写入过程中擦除邻近轨道上的信息的侧擦除现象或读取过程中读出邻近轨道上信息的侧读取现象,由此公知可以增加轨道密度。因此,预期DTR介质为一种能够提供高记录密度的磁记录介质。
为了用浮动(flying)磁头读和写DTR介质,期望将DTR介质的表面整平。具体地,为了完全分离邻近轨道,例如移除厚度约4nm的保护层和厚度约20nm的磁记录层以形成深度约24nm的凹进,从而形成磁性图形。另一方面,由于浮动磁头的设计浮动高度约为10nm,如果留下很深的凹进会使得磁头浮动不稳定。因此,已经尝试用非磁性材料填充磁性图形之间的凹进,由此整平介质的表面,以保证磁头的浮动稳定性。
传统地,已经提出下面的方法来通过利用非磁性材料填充磁性图形之间的凹进获得具有平整表面的DTR介质。例如,在一种公知的方法中,通过两阶段偏压溅射,用非磁性材料填充磁性图形之间的凹进,制造出平坦表面的DTR介质(参见日本专利N0.3686067)。然而,在通过偏压溅射使用非磁性材料填充DTR介质的凹进时,公知衬底偏压带来的温度升高会导致磁记录介质劣化和退化。
可以通过在执行偏压溅射的同时强制地冷却衬底来避免温度升高,但是为了强制地冷却衬底,衬底的后表面必须紧密固定到冷却机构上。在这种情况下,衬底的后表面会受到损坏,并且已经发现,基本上通过偏压溅射不能处理两个表面。如果不能处理两个表面,DTR介质的记录容量会减少到一半。
因此,通过采用能够处理两个表面的沉积方法,并且为了整平DTR介质的表面,可以考虑重复这样的过程,即在磁性图形之间的凹进中以及在磁性图形上沉积非磁性材料,并回蚀非磁性材料。然而,在重复非磁性材料的沉积和回蚀时,非磁性材料的厚度可能不均匀,很难令人满意地重现。由于这样的非磁性材料的厚度偏差会根据制造装置而变化,因此,通过单独调整制造装置的方法基本上不能解决该问题。
发明内容
根据本发明一个实施例,提供一种制造离散轨道记录介质的方法,包括:在衬底上形成突起的磁性图形;伴随着将所述衬底沿其平面旋转小于一周的角度而两次或更多次重复这样的工艺,即,沉积非磁性材料以填充在所述磁性图形之间的凹进中和回蚀所述非磁性材料。根据本发明另一实施例,提供一种离散轨道记录介质,包括:在衬底上形成的突起的磁性图形以及在所述磁性图形之间的凹进中填充的非磁性材料,其中在衬底的外围边缘部分中形成六个或更多的指作为在沉积非磁性材料时所述衬底的夹持部分的标记。
附图说明
图1是根据实施例的DTR介质沿圆周方向的平面图;
图2A到2K是示出根据实施例的DTR介质的制造方法的截面图;
图3是根据实施例用于制造DTR介质的装置的顶视图;
图4A到4D是示出衬底旋转腔中的载体状态的平面图;
图5是解释在衬底旋转腔中旋转衬底的方法的截面图;以及
图6是示出了实例4中DTR介质中出现的指的示图。
具体实施方式
图1是根据本发明实施例的DTR介质沿圆周方向的平面图。如图1所示,伺服区2和数据区3沿DTR介质1的圆周方向交替形成。伺服区2包括前导区段21、地址区段22以及脉冲(burst)区段23。数据区3包括离散轨道31。
现在参照图2A到2K,描述根据本发明实施例的DTR介质制造方法。为了简化说明,这里仅处理衬底的一面。
在玻璃衬底51上,相继形成由CoZrNb制成的厚度为120nm的软磁性底层(未示出),由Ru制成的厚度为20nm的、用于取向控制的底层(未示出),由CoCrPt-SiO2制成的厚度为20nm的磁记录层52,以及由碳(C)制成的厚度为4nm的保护层53。为了简化说明,没有示出软磁性底层和取向控制层。在保护层53上,通过旋涂(spin-coating)形成厚度100nm的旋涂玻璃(SOG)作为抗蚀剂54。将压模(stamper)61布置为面对抗蚀剂54。压模61具有与图1中示出的磁性图形相反形式的突起和凹进图形(图2A)。
通过使用压模61进行压印(imprinting)形成与压模61中的凹进对应的抗蚀剂54突起54a(图2B)。
利用ICP(感应耦合等离子体)蚀刻装置进行蚀刻,以移除残留在构图的抗蚀剂54的凹进底部上的抗蚀剂残余物。该工艺中的条件如下:例如,使用CF4作为工艺气体,腔压力被设定为2毫托,线圈RF功率和台板RF功率被分别设定为100W,蚀刻时间被设定为30秒(图2C)。
利用留下的没有移除的抗蚀剂图形(SOG)作为蚀刻掩模,使用ECR(电子回旋共振)离子枪进行离子刻蚀以蚀刻具有4nm厚度的保护层53和具有20nm厚度的磁记录层52(图2D)。该工艺中的条件如下:例如,使用氩作为工艺气体,微波功率被设定为800W,加速电压被设定为500V,蚀刻时间被设定为3分钟。
然后,利用RIE装置将抗蚀剂图形(SOG)剥离(图2E)。该工艺中的条件如下:例如,使用CF4气体作为工艺气体,腔压力被设定到100毫托,功率被设定为100W。
接下来,通过DC溅射沉积由Ru制成的非磁性材料55以填充到磁性图形之间的凹进中并堆叠在磁性图形上(图2F)。该工艺中的条件如下:在DC溅射时使用Ru靶材,氩流速被设定为100sccm,腔压力被设定为0.5帕,溅射时间被设定为10秒,沉积厚度为50nm的Ru薄膜。非磁性材料55的厚度优选为30到100nm。如果非磁性材料的厚度小于凹进的深度,磁记录介质在接下来的回蚀工艺中会受到损坏。在这个阶段,如图2F所示,表面并不平整,凹进的深度约为20nm。然而,图形的宽度变窄。
在该工艺中,使用Ru作为非磁性材料55是因为提供了更快的DC溅射率,不容易出现粉尘。同时,可以使用SiOC、SiO2、SiC、SiN或其他基于Si的非磁性材料作为非磁性材料55。
接下来,回蚀非磁性材料55(图2G)。该工艺中的条件如下:使用ECR离子枪,微波功率被设定为800W,加速电压被设定为500V,施加氩离子30秒。在这些条件下,将非磁性材料55蚀刻20nm。结果,表面凹进的深度减小到10nm。通过这样的工艺,介质的表面粗糙度降低,凹进深度减小到一半。该工艺旨在通过回蚀非磁性材料55修整表面,因此ECR离子枪的条件,诸如处理时间,并不是非常重要的参数。离子辐射的时间越长,降低表面粗糙度并减小凹进深度的效果越显著,但是有必要在图2F的填充非磁性材料55的过程中使沉积的非磁性材料更厚。
当在图2F的沉积过程中使用SiOC、SiO2、SiC、SiN或其他基于Si的非磁性材料作为非磁性材料55时,通过使用氩和诸如CF4的含氟气体的混合气体可以将其回蚀。在这种情况下,与单独使用氩进行回蚀的情况相比较,降低表面粗糙度的效果更差,但是减小凹进深度的效用得到提高。
然后,在本实施例中,衬底51沿其平面旋转小于一周的角度(图2H)。相继地重复非磁性材料的沉积(图2F)和非磁性材料的回蚀(图2G)。例如,当衬底51旋转120度时,两次重复步骤3f、3g和3h。然后执行步骤3i和3j,因此,在衬底旋转角度为120度时,非磁性材料的沉积和回蚀总共重复三次。因此,伴随着将衬底在平面内旋转小于一周的角度而两次或更多次地重复沉积和回蚀非磁性材料可以使衬底表面上的非磁性材料的厚度均匀。
衬底旋转角度和重复步骤3f、3g和3h的次数之间的关系为对于90度三次,对于60度五次,对于45度七次,对于30度11次,对于15度23次。在180度,上述操作仅执行一次。因此,衬底旋转角度优选为每次旋转15到180度。如果衬底旋转角度小于15度,重复图2F,2G和2H的过程要花费多于一小时,从产出率的角度来说不太实际。
在这样的衬底旋转过程中,可以将衬底冷却。通过图2F和2G的过程,在衬底中积累了热,优选在衬底旋转过程中冷却衬底。如果仅仅在衬底旋转腔保持在高度真空(1.0×10-4帕或更小)的状态下旋转衬底,只能预期辐射的冷却效应,而这要花费很长的时间来冷却。于是,这导致降低的产量。因此,通过将氩或氮气(N2)引入衬底旋转腔来将腔压力设定到0.3到10帕,可以预期除辐射的冷却效应之外,还有气体分子的热传导产生的冷却效应。例如,通过将氩以100sccm引入到衬底旋转腔,将腔压力调整到7帕,并保持衬底30秒,获得足够的冷却效应。进一步地,可以通过在衬底旋转腔中安装冷却块来增强冷却功效。优选地,冷却块由大热容材料形成,冷却块的表面成波浪状以增加表面面积,制冷剂可以在冷却块中循环。
作为要引入到衬底旋转腔中的气体,因为H2不安全而He很昂贵,H2和He并不适于批量生产。
接下来,通过DC溅射再次沉积Ru的非磁性材料55(图2I)。该工艺中的条件如下:在DC溅射中,腔压力被设定到0.52帕,溅射时间被设定到70秒,沉积厚度为50nm的Ru薄膜。
回蚀非磁性材料55(图2J)。该工艺中的条件如下:使用ECR离子枪,微波功率被设定为800W,加速电压被设定为700V,蚀刻进行大约三分钟。使用四级质谱仪(Q-MASS),当检测到磁记录层中包含Co时确定回蚀的结束点。在根据本发明实施例的方法中,由于不能精确判断图2G的回蚀过程中非磁性材料55蚀刻了多少,很难基于回蚀时间控制回蚀过程。相反,利用Q-MASS或诸如SIMS(二级离子质谱仪)之类的其他蚀刻结束点检测器检测结束点使得有可能实现高精度回蚀。
最后,通过CVD(化学气相沉积法)沉积碳(C)以形成保护层57(图2K)。进一步地,向保护层57施加润滑剂以保护DTR介质。
接下来,与制造装置一起描述根据制造方法的实施例的两面处理方法。
首先,通过使用两面旋涂器,在用于HDD的直径1.8英寸的玻璃衬底的两个表面上施加抗蚀剂。在该情况下,衬底的内周边部分被卡住并旋转。旋转速度可以任意变化至6,000rpm。例如,当以500rpm的低速旋转时,移动抗蚀剂分配器喷嘴直至将抗蚀剂施加到衬底的内周边,喷出抗蚀剂。在喷出抗蚀剂的同时,抗蚀剂分配器喷嘴沿着朝向盘的外周边的方向移动,在该外周边处停止喷射抗蚀剂。然后,旋转速度增加到6000rpm,抗蚀剂被抛开并干燥。SOG(旋涂玻璃)如上所述成为抗蚀剂,其厚度被调整为100nm。
为了从前后侧将涂布有抗蚀剂的衬底夹在中间,将两个压模紧密固定到两个表面上,并利用专用的印模用30吨压机压印衬底,所述专用印模特别设计为在1.8英寸直径的衬底的整个表面上施加均匀负载。
然后,通过使用修改自Canon Anerva C3010溅射机的如图3所示的DTR介质制造装置,处理衬底的两个表面。图3是实施例中使用的制造装置的顶视图。该制造装置包括装载/卸载(L/UL)腔100,ICP(感应耦合等离子体)蚀刻腔101,ECR(电子回旋共振)离子枪腔102,ICP蚀刻腔103,溅射腔104,ECR离子枪腔105,衬底旋转腔106,溅射腔107,ECR离子枪腔108,以及保护层沉积腔109。在常规状态下,所有腔保持在高度真空(1.0×10-4帕或更小)。
衬底设置在图3中的制造装置的L/UL腔100中,通过使用运载体70首先将衬底运送到ICP蚀刻腔101,然后移除抗蚀剂凹进底部上残留的抗蚀剂残余物,如图2C所示。在ICP蚀刻腔101中,诸如O2或CF4的工艺气体被引入到腔内,并通过线圈产生感应耦合等离子体(ICP),等离子体中的离子和自由基被其上安装有衬底的阴极(压板)吸引,并进行反应离子蚀刻(RIE)。
将衬底运送到ECR离子枪腔102,如图2D所示利用抗蚀剂图形作为蚀刻掩模对保护层和磁记录层进行蚀刻,形成磁性图形。在ECR离子枪腔102中,在ECR(电子回旋共振)产生的等离子体中将诸如Ar、O2、CF4之类的气体离子化,并通过格栅(grid)将其加速,于是原子与衬底表面相撞击以进行蚀刻。
将衬底运送到ICP蚀刻腔103,如图2E所示剥离抗蚀剂(SOG)。该ICP蚀刻腔103具有与ICP蚀刻腔101同样的功能。
将衬底运送到溅射腔104,如图2F所示沉积非磁性材料。将衬底运送到ECR离子枪腔105,如图2G所示回蚀所述非磁性材料。
将衬底运送到衬底旋转腔106,如图2H中描述的那样将衬底在其平面上旋转一个小于一周的角度。通过将冷却气体引入衬底旋转腔106可在这时冷却衬底。可选地,可在衬底旋转腔106内安装冷却块。
为了多次重复非磁性材料的沉积和回蚀,将衬底返回到溅射腔104以在衬底上沉积非磁性材料,将衬底运送到ECR离子枪腔105以回蚀非磁性材料,并将衬底运送到衬底旋转腔106以将衬底在其平面上旋转小于一周的角度。
将衬底运送到溅射腔107,如图2I所示沉积非磁性材料。将衬底运送到ECR离子枪腔108,如图2I所示回蚀非磁性材料。
将衬底运送到保护层沉积腔109,如图2J所示沉积碳保护层。在保护层沉积腔109中,优选使用C2H4等等作为材料气体,通过CVD(化学气相沉积法)沉积碳保护膜。可选地,可以通过简单DC溅射来溅射沉积碳保护膜。
现在参照图4A到4D和图5,描述在衬底旋转腔106中旋转衬底的方法。图4A到4D是示出衬底旋转腔106中运载体的状态的平面图。图5是说明衬底旋转腔106中旋转衬底的方法的截面图。
如图4A所示,衬底51位于运载体70的中心孔中,并在其外围边缘由具有板簧(leaf spring)的压爪71和两个固定压爪72、72夹持时被运送。如图5所示,衬底旋转腔106具有能够推动移动和旋转的衬底夹盘120,衬底51的外圆周由三个爪121夹持。衬底旋转腔106还具有冷却块130。冷却块130的表面为波浪状,其内循环冷却剂。
首先,如图4B所示,衬底51的外周边边缘由衬底夹盘120的三个爪121夹持(hold),在运载体70上的具有板簧的压爪71被松弛。如图4C所示,夹持衬底51的衬底夹盘120旋转指定角度(例如,90度)。如图4D所示,衬底51再次由具有板簧的压爪71和两个固定压爪72,72夹持从而被运载体70夹持,衬底夹盘120被拉回。因此,衬底51在其面上旋转小于一周的角度,运载体70返回到溅射腔104。
接下来,将描述本发明实施例中将使用的优选材料。
<衬底>
可以使用例如玻璃衬底、基于铝的合金衬底、陶瓷衬底、碳衬底或具有氧化物表面的Si单晶衬底作为衬底。可以使用非晶玻璃或晶化玻璃作为玻璃衬底。非晶玻璃的实例有普通钠钙玻璃和铝硅酸盐玻璃。晶化玻璃的实例有基于锂的晶化玻璃。陶瓷衬底的实例包括普通氧化铝、氮化铝或包含氮化硅作为主要成分的烧结体,以及这些材料的纤维增强材料。可以使用在上述金属衬底或非金属衬底上通过电镀或溅射形成的具有NiP层的衬底作为衬底。
<软磁性底层>
软磁性底层(SUL)作用为磁头的这样一部分功能,即通过来自用于沿水平方向磁化垂直磁记录层的单级磁头的记录磁场,并将磁场传播到磁头一侧,以及向记录层施加尖锐且足够的垂直磁场,从而提高读/写效率。对于软磁性底层,可以使用包含Fe、Ni或Co的材料。这样的材料的实例包括基于FeCo的合金,诸如FeCo和FeCoV,基于FeNi的合金,诸如FeNi、FeNiMo、FeNiCr和FeNiSi、基于FeAl的合金和基于FeSi的合金、诸如FeAl、FeAlSi、FeAlSiCr、FeAlSiTiRu以及FeAlO、基于FeTa的合金、诸如FeTa、FeTaC和FeTaN、以及基于FeZr的合金、诸如FeZrN。也可以使用具有微晶结构的材料,诸如含Fe量在60%或更多的FeAlO、FeMgO、FeTaN和FeZrN、或者具有其中在矩阵中分散精细晶粒的颗粒结构的材料。也可以使用包含Co和Zr、Hf、Nb、Ta、Ti和Y中的至少一种的Co合金作为用于软磁性底层的其他材料。这样的Co合金优选包含80at%或者更多的Co。在这样的Co合金的情况下,当通过溅射沉积时很容易形成非晶层。由于非晶软磁性材料不具有晶体各向异性、晶体缺陷和晶界,因此表现出优异的软磁性,能够减少介质噪声。非晶软磁性材料的优选实例包括基于CoZr-、CoZrNb-和CoZrTa-的合金。
还可在软磁性底层之下形成底层以提高软磁性底层的结晶度或提高软磁性底层对衬底的粘附。可以使用Ti、Ta、W、Cr、Pt、包含这些金属的合金或这些金属的氧化物或氮化物作为这样的底层的材料。可在软磁性底层和记录层之间形成由非磁性材料制成的中间层。中间层具有两个功能,包括切断软磁性底层和记录层之间的交换耦合作用的功能,和控制记录层的结晶度的功能。可以使用Ru、Pt、Pd、W、Ti、Ta、Cr、Si、包含这些金属的合金或这些金属的氧化物或氮化物作为用于中间层的材料。
为了防止尖峰噪声,可以将软磁性底层分为多个层,并在其间插入厚度为0.5到1.5nm的Ru层,以获得反铁磁耦合。此外,软磁性层可以与诸如具有纵向各向异性的CoCrPt、SmCo或FePt之类的硬磁膜的钉扎(pinning)层或诸如IrMn和PtMn之类的反铁磁膜交换耦合。可以在Ru层下面和上面提供磁性膜(诸如Co)和非磁性膜(诸如Pt)以控制交换耦合力。
<磁记录层>
对于垂直磁记录层,优选使用包含Co作为主要成分、至少包含Pt并进一步包含氧化物的材料。垂直磁记录层可在需要时包含Cr。作为氧化物,硅氧化物或钛氧化物特别优选。垂直磁记录层优选具有这样的结构,其中磁颗粒,也就是,具有磁性的晶粒在层中被分散。磁颗粒优选具有沿厚度方向穿透垂直磁记录层的柱状结构。形成这样的结构会改善垂直磁记录层的磁颗粒的取向和结晶度,因此可以提供适于高密度记录的信号噪声比率(SN比率)。要包含的氧化物的量对提供这样的结构非常重要。
垂直磁记录层中氧化物的含量优选为基于Co、Cr和Pt的总量的3mol%或更多以及12mol%或更少,更优选为5mol%或更多以及10mol%或更少。垂直磁记录层中氧化物的含量之所以优选在上述范围中的原因是,在形成垂直磁记录层时,氧化物围绕磁颗粒沉淀,并能够分离精细磁颗粒。如果氧化物含量超过上述范围,氧化物就残留在磁颗粒中,损害磁颗粒的取向和结晶度。此外,氧化物在磁颗粒的上部分和下部分上沉淀,产生不期望的结果,即没有形成其中磁颗粒沿厚度方向穿透磁记录层的柱状结构。不希望氧化物的含量低于上述范围,因为没有足够地分离精细磁颗粒,导致重现信息时的噪声增加,因此不能提供适于高密度记录的信号噪声比率(SN比率)。
垂直磁记录层中Cr的含量优选为0at%或更多以及16at%或更少,更优选为10at%或更多以及14at%或更少。Cr含量之所以优选在上述范围的原因是,磁颗粒的单轴晶体磁各向异性常数Ku没有降低太多,保留了很高的磁化,于是提供适于高密度记录的读/写特性和足够的热起伏特性。不希望Cr含量超过上述范围,因为磁颗粒的Ku降低,因此热起伏特性劣化,并且磁颗粒的结晶度和取向受到损害,导致读/写特性的劣化。
垂直磁记录层中Pt的含量优选为10at%或更多以及25at%或更少。Pt含量之所以优选在上述范围的原因是,提供了垂直磁性层所要求的Ku值,并且改善了磁颗粒的结晶度和取向,于是提供了适于高密度记录的热涨落特性和读/写特性。不希望Pt含量超过上述范围,因为在磁颗粒中形成具有fcc结构的层,有损害结晶度和取向的风险。不希望Pt含量低于上述范围,因为没有提供适于高密度记录的用于热涨落特性的令人满意的Ku值。
除了Co、Cr、Pt和氧化物之外,垂直磁记录层还可包含选自B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru和Re的一种或多种类型的元素。当包含上述元素时,促进了精细磁颗粒的形成或者可以改善结晶度和取向,并提供适于高密度记录的读/写特性和热涨落特性。上述元素的总含量优选为8at%或更少。不希望含量超过8at%,因为在磁颗粒中形成非hcp相的相,扰乱磁颗粒的结晶度和取向,于是不能提供适于高密度记录的读/写特性和热涨落特性。
可以使用基于CoPt的合金、基于CoCr的合金、基于CoPtCr的合金、CoPtO、CoPtCrO、CoPtSi、CoPtCrSi、包含选自Pt、Pd、Rh和Ru和Co层中的至少一种类型的合金层的多层结构、以及通过向这些层添加Cr、B或O获得材料,诸如CoCr/PtCr、CoB/PdB和CoO/RhO,作为垂直磁记录层。
垂直磁记录层的厚度优选为5到60nm,更优选为10到40nm。当厚度在该范围内时,可以制造适于更高记录密度的磁记录装置。如果垂直磁记录层的厚度小于5nm,读取输出太低,噪声分量趋向更高。如果垂直磁记录层的厚度超过40nm,读取输出太高,波形趋向扭曲。垂直磁记录层的矫顽力优选为237000A/m(3000Oe)或更多。如果矫顽力小于237000A/m(3000Oe),热涨落抗性趋向于劣化。垂直磁记录层的垂直矩形比(squareness)优选为0.8或更多。如果垂直矩形比小于0.8,热涨落抗性趋向于劣化。
<保护层>
提供保护层用于防止垂直磁记录层的腐蚀,并防止介质的表面在磁头与介质接触时免于损坏。保护层材料的实例包括含有C、SiO2或ZrO2的材料。保护层的厚度优选为1到10nm。这对于高密度记录是优选的,因为可以减小磁头和介质之间的距离。碳可以分类为sp2键合碳(石墨)和sp3键合碳(金刚石)。尽管sp3键合碳在耐久性和腐蚀抗性上比石墨更为优越,但在表面平滑度上不如石墨,因为它是晶体材料。通常,通过使用石墨靶材利用溅射来沉积碳。在这个方法中,形成非晶碳,其中混合sp2键合碳和sp3键合碳。其中sp3键合碳的比例更大的碳称为类金刚石碳(DLC)。DLC在耐久性和腐蚀抗性以及在表面平滑度上都很优越,因为它是非晶的,因此用作磁记录介质的表面保护层。利用CVD(化学气相沉积法)沉积DLC是通过在等离子体和化学反应中激发并分解原料气体产生DLC,因此,可以通过调整条件来形成sp3键合碳更丰富的DLC。
接下来,将描述本发明实施例的每个工艺中的优选制造条件。
<压印>
通过旋涂将抗蚀剂施加到衬底表面,然后在抗蚀剂上按压压模,从而将压模的图形传递到抗蚀剂。可以使用例如普通酚醛树脂(novolak)型光刻胶或旋涂玻璃(SOG)作为抗蚀剂。将其上形成有对应于伺服信息和记录轨道的突起和凹进图形的压模表面面对衬底上的抗蚀剂。在该工艺中,压模、衬底和缓冲层置于模具(die set)的下板上,并被夹在模具的上板和下板之间,在2000bar压力下被按压例如60秒。通过压印在抗蚀剂上形成的图形的突起高度例如为60到70nm。上述条件维持大约60秒用以运移要排除的抗蚀剂。在该情况下,如果向压模施加含氟剥离剂,可以令人满意地将压模从抗蚀剂剥离。
<移除抗蚀剂残余物>
通过RIE(反应离子蚀刻)移除抗蚀剂凹进底部上留下的没有移除的抗蚀剂残余物。在该过程中,使用与抗蚀剂材料相应的适当工艺气体。能够在低压下产生高密度等离子体的ICP(感应耦合等离子体)装置优选作为等离子体源,但是也可使用ECR(电子回旋共振)等离子体或普通平行板RIE装置。
<蚀刻磁记录层>
在将抗蚀剂残余物移除之后,使用抗蚀剂图形作为蚀刻掩模来处理磁记录层。对于处理磁记录层来说,使用氩离子束蚀刻(氩离子刻蚀)是优选的。可以通过使用Cl气体或CO和NH3的混合气体的RIE进行处理。在使用CO和NH3的混合气体的RIE的情况下,使用由Ti、Ta或W制成的硬掩模作为蚀刻掩模。当使用RIE时,在突起的磁性图形的侧壁上几乎不形成锥体。在通过能够蚀刻任何材料的Ar离子铣(milling)来处理磁记录层时,如果在这样的条件下进行蚀刻,该条件例如为加速电压被设定到400V,离子的入射角在30°和70°之间变化,那么在突起的磁性图形的侧壁上几乎不形成锥体。在使用ECR离子枪的刻蚀中,如果在静态相对设置(离子的入射角为90°)下进行铣削,那么在突起的磁性图形的侧壁上几乎不形成锥体。
<剥离抗蚀剂>
在蚀刻磁记录层之后,将抗蚀剂剥离掉。当使用普通光刻胶作为抗蚀剂时,可以通过氧等离子体处理容易地将其剥离。具体地,通过在腔压力为1托,功率为400W,处理时间为5分钟的条件下使用氧灰化(ashing)装置将光刻胶剥离。当使用SOG作为抗蚀剂时,通过使用含氟气体的RIE剥离SOG。CF4或SF6适于作为含氟气体。注意到,优选用水进行冲洗,因为含氟气体与空气中的湿气发生反应会产生诸如HF和H2SO4之类的酸。
<回蚀非磁性材料>
进行非磁性材料的回蚀直到露出铁磁膜(或者铁磁膜上的碳保护膜)。优选通过氩离子铣或利用ECR离子枪的蚀刻来进行这样的回蚀过程。
<沉积保护层和后处理>
在回蚀之后,沉积碳保护层。可通过CVD、溅射或真空蒸发来沉积碳保护层。CVD产生包含大量sp3键合碳的DLC薄膜。厚度小于2nm的碳保护层是不优选的,因为其导致不令人满意的覆盖。然而,厚度超过10nm的碳保护层也不是优选的,因为它增加读/写头和介质之间的磁性间隔,导致SNR下降。向保护层的表面施加润滑剂。使用例如全氟聚醚(perfluoropolyether)、氟化乙醇、氟化羧酸等作为润滑剂。
实例
实例1
使用其上形成有如图1所示的伺服图形(前导、地址、脉冲)和记录轨道的突起和凹进图形的压模,在图2A到2K的方法中制造DTR介质。在图2F的工艺中,通过DC溅射以100sccm的氩流速和在0.52帕的腔压力下沉积厚度为50nm的Ru膜。在图2G的过程中,利用ECR离子枪在800W微波功率和500V的加速电压下通过施加氩离子60秒来回蚀Ru膜。在图2H的工艺中,在衬底旋转腔中将衬底旋转120度。重复图2F、2G和2H的工艺。接着,在图2I的过程中,通过DC溅射以100sccm的氩流速和0.52帕的腔压力下沉积厚度为50nm的Ru膜。在图2J的工艺中,利用ECR离子枪在800W微波功率和500V的加速电压下回蚀Ru膜,直到在磁记录层中检测到Co。然后,通过溅射沉积厚度为4nm的碳保护层以提供DTR介质。
用光学表面分析仪(OSA)测量面内厚度分布。结果,没有观察到非磁性材料的厚度偏差。局部TEM(透射电镜)观察揭示出,在介质表面留有深度约4nm的精细凹进。当使用自旋支架(spin-stand)研究读信号时,没有观察到信号强度的偏差。
对比实例1
用与实例1中相同的方法制造DTR介质,但是不旋转衬底。
用OSA测量的面内厚度分布的结果是,观察到非磁性材料的厚度偏差。当使用自旋支架研究读信号时,用OSA观察到的较厚非磁性材料的部分中的信号强度是观察到的较薄非磁性材料的部分中的信号强度的1/2。由于读信号强度正比于磁头与DTR介质的记录层之间的距离(磁间距),局部观察到弱信号强度的原因被认为是由保留的过量非磁性材料导致的。在读信号强度存在偏差的情况下,该介质不能用于HDD。
实例2
用与实例1中相同的方法制造DTR介质,但是衬底旋转角度设定为45度,并且图2F、2G和2H的过程重复七次。
局部TEM观察揭示出,介质表面被非常平滑地整平。用OSA测量的面内厚度分布的结果是,没有观察到非磁性材料的厚度偏差。当使用自旋支架研究读信号时,没有观察到信号强度的偏差。因此,减小衬底旋转角度并增加非磁性材料的沉积和回蚀的重复数目可增强介质表面的平整性。
然而,信号强度的绝对值降低到实例1中制造的DTR介质的0.8倍。认为该结果的原因是,非磁性材料的沉积和回蚀的重复数目增加,使热在衬底中积累,因此DTR介质的磁特性劣化。
DTR介质的磁特性用Kerr测量设备评估。结果,矫顽力(Hc)为5.2kOe,反转磁畴成核磁场(Hn)为1.8kOe,饱和磁场(Hs)为10.0kOe。该DTR介质相比于其自身的磁记录层来说显示出稍微更高的Hc和Hs。由于Hs高至10kOe,在已有的记录头中不会实现饱和记录。
实例3
用与实例1中相同的方法制造DTR介质,但是衬底旋转角度设定为15度,并且图2F、2G和2H的过程重复23次,同时在衬底旋转中以10sccm将氩气引入腔中并将腔压力设定到7帕。
局部TEM观察揭示出,介质表面被非常平滑地整平。用OSA测量的平面内厚度分布的结果是,没有观察到非磁性材料的厚度偏差。当使用自旋支架研究读信号时,没有观察到信号强度的偏差,也没有观察到信号强度的劣化。
DTR介质的磁特性用Kerr测量设备评估。结果,矫顽力(Hc)为4.8kOe,反转磁畴成核磁场(Hn)为2.0kOe,饱和磁场(Hs)为8.0kOe。该DTR介质相比于其自身的磁记录层来说显示出的磁场特性区别不大。通过在衬底旋转期间引入气体,衬底得到有效冷却,可以抑制DTR介质的磁特性劣化。
通过引入N2替代Ar进行了相似的实验,磁特性没有发生太大改变。因此,通过在衬底旋转期间引入气体来旋转衬底并同时冷却衬底被认为是有效的。
实例4
用与实例1中相同的方法制造DTR介质,但是衬底旋转角度设定为90度,并且图2F、2G和2H的过程重复三次。
用OSA测量平面内厚度分布,如图6所示,在衬底的周边边缘的12个部分处观察到沉积非磁性材料时形成的运载体压爪的标记。这样的标记被称为“指(finger)”。
因此,当使用三个压爪的运载体时,在衬底旋转过程中形成六个或更多的指。
相似地,当使用四个压爪的运载体时,在衬底旋转过程中形成八个或更多的指。
尽管描述了本发明的特定实施例,但是这些实施例仅作为实例呈现,而不意图限制本发明的范围。实际上,可以用各种其他形式实现这里描述的新颖的方法和系统,并且,可以对这里描述的方法和系统的形式做出各种省略、替换和改变,而不偏离本发明的精神。所附的权利要求及其等同物旨在将这样的形式或变体涵盖为落入本发明的范围和精神之内。

Claims (4)

1.一种制造离散轨道记录介质的方法,包括:
在衬底上形成突起的磁性图形;以及
伴随着将所述衬底沿其平面旋转小于一周的角度而两次或更多次重复这样的工艺,即,沉积非磁性材料以填充在所述磁性图形之间的凹进中和回蚀所述非磁性材料。
2.如权利要求1所述的方法,其中所述衬底每次旋转都沿其平面旋转15度到180度之间的角度。
3.如权利要求1所述的方法,其中在所述衬底沿其平面旋转期间,在旋转所述衬底的腔中引入Ar或N2,并将腔压力设定为0.3到10帕。
4.一种离散轨道记录介质,包括:
在衬底上形成的突起的磁性图形以及在所述磁性图形之间的凹进中填充的非磁性材料,
其中在所述衬底的周边边缘部分中形成六个或更多的指作为在沉积所述非磁性材料时所述衬底的夹持部分的标记。
CNA2008800006602A 2007-06-28 2008-06-20 制造离散轨道记录介质的方法和离散轨道记录介质 Pending CN101542609A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP171075/2007 2007-06-28
JP2007171075A JP4703608B2 (ja) 2007-06-28 2007-06-28 ディスクリートトラック媒体の製造方法

Publications (1)

Publication Number Publication Date
CN101542609A true CN101542609A (zh) 2009-09-23

Family

ID=40185720

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008800006602A Pending CN101542609A (zh) 2007-06-28 2008-06-20 制造离散轨道记录介质的方法和离散轨道记录介质

Country Status (4)

Country Link
US (2) US7927467B2 (zh)
JP (1) JP4703608B2 (zh)
CN (1) CN101542609A (zh)
WO (1) WO2009001908A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995333A (zh) * 2013-02-19 2015-10-21 应用材料公司 使用可流动式cvd膜的hdd图案化

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703608B2 (ja) * 2007-06-28 2011-06-15 株式会社東芝 ディスクリートトラック媒体の製造方法
JP5360894B2 (ja) * 2009-06-30 2013-12-04 ダブリュディ・メディア・シンガポール・プライベートリミテッド 磁気記録媒体の製造方法
JP5371731B2 (ja) * 2009-12-24 2013-12-18 キヤノンアネルバ株式会社 成膜方法及び基板回転装置並びに真空処理装置
JP5570296B2 (ja) * 2010-05-19 2014-08-13 キヤノンアネルバ株式会社 基板回転装置及び真空処理装置並びに成膜方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963209A (en) * 1984-12-21 1990-10-16 Minnesota Mining And Manufacturing Company Method for making stretched surface recording disk
JP3273980B2 (ja) * 1992-10-06 2002-04-15 株式会社アルバック 両面同時エッチング装置
JP2002187060A (ja) * 2000-10-11 2002-07-02 Ebara Corp 基板保持装置、ポリッシング装置、及び研磨方法
JP2002212713A (ja) 2001-01-18 2002-07-31 Shimadzu Corp 陰極アーク放電を用いた成膜装置
JP3431617B2 (ja) * 2001-10-03 2003-07-28 株式会社東芝 ディスク記録装置の組立て方法および組立て装置
JP2003141719A (ja) * 2001-10-30 2003-05-16 Anelva Corp スパッタリング装置及び薄膜形成方法
JP2004213700A (ja) * 2002-11-15 2004-07-29 Fuji Electric Device Technology Co Ltd 磁気記録媒体用マスタディスクならびに位置決め装置および方法
JP2005071543A (ja) * 2003-08-27 2005-03-17 Tdk Corp 磁気記録媒体の製造方法
JP3686067B2 (ja) 2003-10-28 2005-08-24 Tdk株式会社 磁気記録媒体の製造方法
JP4008420B2 (ja) * 2004-02-23 2007-11-14 Tdk株式会社 磁気記録媒体の製造方法
JP4419622B2 (ja) * 2004-03-18 2010-02-24 Tdk株式会社 磁気記録媒体の製造方法
JP4358067B2 (ja) * 2004-08-06 2009-11-04 株式会社東芝 磁気記録媒体および磁気記録装置
WO2006078709A2 (en) * 2005-01-19 2006-07-27 Tosoh Smd Etna, Llc Automated sputtering target production
JP4634874B2 (ja) * 2005-06-28 2011-02-16 株式会社東芝 磁気記録媒体の製造方法
JP2007213730A (ja) * 2006-02-10 2007-08-23 Tdk Corp 基板保持装置及び磁気記録媒体の製造方法
JP2007257801A (ja) * 2006-03-24 2007-10-04 Toshiba Corp パターンド媒体の製造方法
JP2008034034A (ja) * 2006-07-28 2008-02-14 Toshiba Corp 磁気記録媒体の製造方法、磁気記録媒体および磁気記録装置
JP2008299912A (ja) * 2007-05-29 2008-12-11 Hitachi Global Storage Technologies Netherlands Bv アライメント用パターンを備えたハードディスクメディアおよびアライメント方法
JP4703608B2 (ja) * 2007-06-28 2011-06-15 株式会社東芝 ディスクリートトラック媒体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995333A (zh) * 2013-02-19 2015-10-21 应用材料公司 使用可流动式cvd膜的hdd图案化
CN104995333B (zh) * 2013-02-19 2017-09-22 应用材料公司 使用可流动式cvd膜的hdd图案化

Also Published As

Publication number Publication date
US7927467B2 (en) 2011-04-19
US20090195929A1 (en) 2009-08-06
JP4703608B2 (ja) 2011-06-15
US20110165438A1 (en) 2011-07-07
WO2009001908A1 (en) 2008-12-31
JP2009009651A (ja) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4634874B2 (ja) 磁気記録媒体の製造方法
JP4489132B2 (ja) 磁気記録媒体の製造方法
US20070224339A1 (en) Method of manufacturing patterned media
JP4309945B1 (ja) 磁気記録媒体の製造方法
US8043516B2 (en) Method of manufacturing magnetic recording medium and magnetic recording medium
JP4575499B2 (ja) 磁気記録媒体の製造方法
JP4309944B2 (ja) 磁気記録媒体の製造方法
JP4937371B2 (ja) 磁気記録媒体の製造方法
JP2010033636A (ja) 磁気記録媒体の製造方法
JP4686623B2 (ja) 磁気記録媒体の製造方法
CN101542609A (zh) 制造离散轨道记录介质的方法和离散轨道记录介质
JP5002692B2 (ja) 磁気記録媒体の製造方法
JP5121902B2 (ja) 磁気記録媒体
JP2008159146A (ja) 磁気記録媒体及び磁気記録媒体の製造方法
US20120028076A1 (en) Magnetic recording medium and manufacturing method thereof
US20090161257A1 (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording apparatus
JP2008146737A (ja) ディスクリートトラック媒体の製造方法および製造装置
US20090166323A1 (en) Method of manufacturing magnetic recording medium
JP4630850B2 (ja) パターンド磁気記録媒体およびその製造方法
JP4538090B2 (ja) 磁気記録媒体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090923