CN101528991B - 蓝宝石衬底、使用该蓝宝石衬底的氮化物半导体发光元件及氮化物半导体发光元件的制造方法 - Google Patents

蓝宝石衬底、使用该蓝宝石衬底的氮化物半导体发光元件及氮化物半导体发光元件的制造方法 Download PDF

Info

Publication number
CN101528991B
CN101528991B CN2007800389535A CN200780038953A CN101528991B CN 101528991 B CN101528991 B CN 101528991B CN 2007800389535 A CN2007800389535 A CN 2007800389535A CN 200780038953 A CN200780038953 A CN 200780038953A CN 101528991 B CN101528991 B CN 101528991B
Authority
CN
China
Prior art keywords
face
sapphire substrate
nitride semiconductor
growth
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007800389535A
Other languages
English (en)
Other versions
CN101528991A (zh
Inventor
罗伯特·大卫·阿米蒂奇
近藤行广
平山秀树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Panasonic Holdings Corp
Original Assignee
Institute Of Physics And Chemistry
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Physics And Chemistry, Matsushita Electric Industrial Co Ltd filed Critical Institute Of Physics And Chemistry
Publication of CN101528991A publication Critical patent/CN101528991A/zh
Application granted granted Critical
Publication of CN101528991B publication Critical patent/CN101528991B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明提供通过气相法使晶体m面生长的廉价的蓝宝石衬底,使用该蓝宝石衬底的氮化物半导体发光元件及该氮化物半导体发光元件的制造方法。蓝宝石衬底(1),作为晶体(2)的生长面(3),具有相对于m面(4)倾斜预先设定的微小角度的斜切面。使用廉价的蓝宝石衬底(1),通过气相法,使GaN晶体从作为a面的各台阶(5)的面起在平台(6)上沿c轴生长,外延生长的良好的GaN单结晶继续生长,使m面为平台(6)的表面的相反侧,同时各台阶(5)一体化(融合),获得m面GaN晶体,进而能够利用穿透位错(threading dislocation)少的GaN单结晶衬底制造器件。而且,通过使用m面能够消除压电电场的影响。

Description

蓝宝石衬底、使用该蓝宝石衬底的氮化物半导体发光元件及氮化物半导体发光元件的制造方法
技术领域
本发明涉及一种蓝宝石衬底、使用该蓝宝石衬底的氮化物半导体发光元件及该氮化物半导体发光元件的制造方法。 
背景技术
近年来,具有由III-V族等的氮化物半导体构成的发光层的氮化物半导体发光元件受到关注。该发光元件结构,例如可以如下来形成,即,使用蓝宝石衬底,用InGaN等形成发光层,在该发光层的下部形成掺硅n+-GaN接触层,在上述发光层的上部形成掺镁p-AlXGa1-XN电子阻挡层(electron blocking layer),进而在电子阻挡层的上部形成p-GaN接触层。 
目前,这种GaN器件是形成在c面生长的衬底上。然而,为了进一步提高LED及LD的性能,取代c面生长,m面的生长更有前景。已报导有m面p层的电导率比c面p层高20倍。该p层有助于电气特性的改善,例如提高电流扩散及降低正向电压等。而且,m面具有垂直于晶体生长面的晶体的极性,所以是能够消除晶体内的内在高电场的无极性面,通过在该无极性的m面进行结晶生长,能够增大电子与空穴的波动函数的重叠,具有很多优势。例如,实现了更高效率的内量子效率(能够提高发光复合效率)、更高的注入效率等。然而,到目前为止,上述m面的GaN的发光还需要非常昂贵的SiC衬底以及LiAlO2衬底等。 
对此,日本专利公开公报特开2006-124268号(以下称作“专利文献1”)公开了采用溶剂热法(solvothermal method),通过调整籽晶和溶媒的对流方向之间的角度,在上述m面进行ZnO的结晶生长的技术。 
在上述现有技术中,通过液相法(溶剂热法)使ZnO等的籽晶生长。从而,制作器件时,需从炉中先取出后再通过MOCVD法等制作器件,与连续地进行从衬底的制备到器件制作的气相法(vapor phase method)相比,工序烦杂。 
此外,《日本应用物理》杂志中的文章(Japanese Journal of Applied Physics,45,L154(2006),以下称作“非专利文献1”),公开了使用m面蓝宝石衬底来生长非极性GaN的方法,但是未能生长出m面GaN,而只获得半极性GaN。 
发明内容
本发明的目的在于提供一种能够通过气相法使氮化物半导体晶体m面生长的蓝宝石衬底、使用该蓝宝石衬底的氮化物半导体发光元件以及氮化物半导体发光元件的制造方法。 
本发明的蓝宝石衬底、使用该蓝宝石衬底的氮化物半导体发光元件以及氮化物半导体发光元件的制造方法,在结晶生长时使用蓝宝石衬底,并且在使用上述蓝宝石衬底的m面作为生长面时,包括在结晶生长的工序之前制作相对于上述m面以预先设定的微小角度倾斜的面的切割工序。通过这种结构,即使使用通常不生长m面(无极性面)GaN膜的廉价的蓝宝石衬底来作为结晶生长用衬底,通过控制其台阶(step),以MOCVD法等气相法,GaN的c面从作为a面的各台阶面起生长到平台(terrace)上,外延生长的良好的GaN单结晶继续生长,以使m面为平台面的相反侧,同时各台阶之间一体化(融合),能够进行m面GaN单结晶的生长。而且,通过使用m面能够消除压电电场的影响,增大电子与空穴的波动函数的重叠。这样,能够实现可提高发光复合效率即内量子效率的衬底及器件。 
附图说明
图1是表示采用本发明的一实施方式所涉及的蓝宝石衬底的氮化物半导体发光元件的生长过程的立体图。 
图2是图1的纵剖视图。 
图3是表示不采用本发明的条件的情况下的生长过程的立体图。 
图4是图3的纵剖视图。 
图5是表示X射线衍射结果的图。 
具体实施方式
下面,基于附图说明本发明所涉及的一实施方式。另外,在各图中,标注相同附图标记的结构表示相同结构,并省略其说明。 
图1是表示使用本发明的一实施方式所涉及的蓝宝石衬底1的氮化物半导体发光元件的生长过程的立体图,图2是其纵剖视图。值得注意的是,在本实施方式的蓝宝石衬底1中,在使GaN等III-V族等的氮化物半导体即晶体2生长时,首先,作为该晶体2的模板(template)的生长面3,通过切割工序,制作相对于m面4以预先设定的微小角度θ倾斜的斜切面,比较理想的是朝[1120]方向,即从m面朝向a面的方向倾斜0.2至10度,优选0.5至4度,尤其优选2度左右的斜切面。即,使用调整了斜切角的蓝宝石衬底1。 
具体而言,本发明的发明人通过实验得知,在蓝宝石c面上GaN沿a轴生长,即在蓝宝石a面上GaN沿c轴生长,因此通过从蓝宝石m面朝上述[1120]方向形成斜切角进行切割,该蓝宝石衬底1形成在上述生长面3中具有a面的台阶5和m面的平台6的阶梯状台阶衬底,能够使GaN从该a面的台阶5沿c轴生长。 
例如设定θ=1度,则上述平台6的长度为12nm左右,台阶5的高度为1nm左右。在这样制作的生长面3中,如上所述台阶5成为蓝宝石的a面,晶体2的a面从该各台阶5的面起在平台6上生长(GaN从台阶5的面起沿c轴生长)。这样,外延生长的良好的晶体2继续生长,以使m面为平台6的表面的相反侧(在图1、图2中为上侧)。之所以出现这样的生长,推测是因为,使晶体2生长时,为使其从晶核变为岛状晶体时结晶生长能量为最小,而引起同一面内的结晶生长。该晶体2成为籽晶,同时各台阶5之间一体化(融合),从而能够利用氮化物的m面生长获得器件。 
在此,若设定θ小于0.2度,即加长平台6的长度,则出现2维及3维结晶生长的晶核形成,作为一例,如图3及图4所示,各晶体2的面在m面4内显示两个以上的晶体取向,在平台6上(11-22)或者(10-13)面等非m面生长发生,不能实现缺陷少的m面生长。 
此外,若θ超过10度,则平台6的长度变小,与通常的凹凸明显的衬底相同,不能生长出良好的结晶。 
接下来,值得注意的是,在上述切割工序之后,进一步进行如下的工序,即,减轻上述切割损伤的退火工序,和使因上述退火处理而被氧化的上述生长面成为富铝(aluminium-rich)面以阻止氮化的工序。 
下面,详细叙述本发明的发明人的具体实验方法以及结果。 
将朝[1120]方向具有0.5至4度的适当斜切角的m面蓝宝石衬底1放入MOCVD装置中,并在氢环境中加热到700℃至1000℃,除去表面的杂质。此时,尽量避免表面暴露于氨。选择蓝宝石的上述[1120]方向的理由是,从该方向的蓝宝石台阶开始的台阶流动 (step flow)(结晶沿着台阶生长)有利于m面(10-10)方向的GaN。 
然后,将衬底冷却至500℃,以高V/III比的气体条件形成膜厚为20至100nm的AlN的核形成层。再将衬底加热到1000至1100℃的温度范围,在与通常的c面GaN生长相同的条件下形成GaN层。 
图5示出了用本发明的方法制造的在蓝宝石衬底1上结晶生长的GaN的X射线2θ/ω扫描曲线。由于仅观察到源于m面蓝宝石的3个峰和m面GaN的3个的峰,确认了无m面以外的结晶生长,仅出现m面的生长。这样,即使使用廉价的蓝宝石衬底1作为结晶生长用衬底,也能够通过气相法进行良好的氮化物晶体的m面生长。 
另外,在形成上述AlN层和GaN层之前,作为通过切割形成有台阶5的上述蓝宝石衬底1,分别使用(i)没有进行任何处理、(ii)只在1400℃进行了退火处理、(iii)在1400℃进行退火处理之后,浇(flowing)TMA(三甲基铝(trimethyl aluminium)),使表面处于上述富铝的状态的衬底,来生长AlN,其结果是,对于上述(i)没有进行任何处理以及(iii)表面处于富铝的状态下的衬底,m面(10-10)GaN生长,而对于(ii)只在1400℃进行了退火处理的表面处于富氧(oxygen-rich)状态的蓝宝石衬底1,非m面(11-22)面GaN生长。 
这是因为在蓝宝石衬底1上形成AlN层之际,其最外表面没有氮化。即,由于在形成AlN层之际,通过防止仅N先沉积,从而能够以AlN的形式沉积。从而,在退火处理之后,为防止生长面3即最外表面被氮化,而使其成为富铝面,由此能够有效率地使m面生长的GaN(m-face oriented GaN)单结晶生长。 
在此,虽然日本专利公开公报特开2005-343713号公开了通过采用台阶衬底改善结晶性的技术,但是该技术是使c面生长,并不是使能够增大上述电子和空穴之间的波动函数的重叠的m面生长的技术。 
本发明的蓝宝石衬底,用于结晶生长,特征在于,作为生长面,具有相对于m面以预先设定的微小角度倾斜的斜切面。 
此外,本发明的氮化物半导体发光元件的制造方法,是将蓝宝石衬底用于结晶生长,使氮化物半导体发光元件在该蓝宝石衬底上结晶生长的氮化物半导体发光元件的制造方法,较为理想的是,包括切割工序,即在上述结晶生长工序之前,在使用上述蓝宝石衬底的m面作为生长面之际,制作相对于上述m面以预先设定的微小角度倾斜的面。 
根据上述结构,在用于GaN发光二极管等所使用的如上述GaN等的结晶生长的蓝宝石衬底中,作为该结晶的模板的生长面,通过切割等,制作相对于m面以预先设定的微小 角度倾斜的面,即朝[1120]方向倾斜0.2至10度,优选0.5至4度,更优选2度左右的面。从而,该蓝宝石衬底成为在上述生长面中具有台阶和平台的阶梯状台阶衬底。 
从而,即使使用通常不生长m面(无极性面)GaN膜的廉价的蓝宝石衬底作为结晶生长用衬底,通过控制其台阶,以MOCVD法等气相法,GaN的a面从作为蓝宝石a面的各台阶面起在平台上生长,并且外延生长的良好的GaN单结晶继续生长,以使m面为平台面的相反侧,同时各台阶间一体化(融合),能够由m面的GaN单结晶衬底获得器件。而且,通过使用m面能够消除压电电场的影响,增大电子与空穴的波动函数的重叠。这样,能够实现可提高发光复合效率即内量子效率的衬底以及器件。 
此外,较为理想的是,在本发明的蓝宝石衬底中,上述生长面是蓝宝石组成元素铝和氧中的富铝面。 
另外,较为理想的是,在本发明的蓝宝石衬底中,上述生长面是富铝面,没有发生氮化。 
此外,较为理想的是,本发明的氮化物半导体发光元件的制造方法在上述切割工序之后,还包括:用于减轻上述切割工序所造成的损伤的退火工序;以及使因上述退火工序而被氧化的上述生长面成为富铝面以阻止氮化的工序。 
根据上述结构,通过使上述生长面即最外表面处于富铝状态,能够有效率地使m面生长的GaN单结晶生长。 
此外,较为理想的是,本发明的氮化物半导体发光元件使用上述蓝宝石衬底。 
根据上述结构,能够实现可提高发光复合效率即内量子效率的氮化物半导体发光元件。 
在上述蓝宝石衬底1中,使用的面不局限于上述[1120]面,也可以是[0001]面。这是因为,在从m面朝[0001]方向形成斜切角来切割的情况下,图1的台阶5成为c面,GaN在与台阶5所形成的面相垂直的方向上沿a轴生长。 
此外,在本说明书中,为了实现某些功能而记载的结构不仅限于说明书中记载的用于实现这些功能的结构,也包括能够实现这些功能的单元、部分等结构。 
产业上的可利用性 
根据本发明,即使使用廉价的蓝宝石衬底作为结晶生长用衬底,也能够使m面GaN结晶生长,获得具有优异特性的器件。 

Claims (3)

1.一种蓝宝石衬底,用于通过气相法使m面氮化物半导体结晶生长,其特征在于:
作为生长面,具有相对于m面以预先设定的微小角度倾斜的斜切面,
所述倾斜的角度相对于
Figure FSB00000841532400011
方向为0.5至4度,
所述生长面是蓝宝石的组成元素铝和氧中的富铝面,
所述生长面是富铝面,没有发生氮化。
2.一种氮化物半导体发光元件,其特征在于:使用如权利要求1所述的蓝宝石衬底。
3.一种氮化物半导体发光元件的制造方法,将蓝宝石衬底用于通过气相法使m面氮化物半导体结晶生长,使氮化物半导体发光元件在该蓝宝石衬底上结晶生长,其特征在于包括以下工序:
在所述结晶生长的工序之前,作为生长面在利用所述蓝宝石衬底的m面之际,制作相对于所述m面以预先设定的微小角度倾斜的面的切割工序;
在所述切割工序之后,减轻所述切割工序所造成的损伤的退火工序;以及
通过使因所述退火工序而被氧化的所述生长面成为富铝面,以阻止氮化的工序,
其中,所述倾斜的角度相对于
Figure FSB00000841532400012
方向为0.5至4度。
CN2007800389535A 2006-10-20 2007-10-19 蓝宝石衬底、使用该蓝宝石衬底的氮化物半导体发光元件及氮化物半导体发光元件的制造方法 Active CN101528991B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP286096/2006 2006-10-20
JP2006286096 2006-10-20
PCT/JP2007/070449 WO2008047907A1 (fr) 2006-10-20 2007-10-19 Substrat de saphir, élément luminescent à semi-conducteur nitrure utilisant le substrat de saphir, et procédé destiné à fabriquer l'élément luminescent à semi-conducteur nitrure

Publications (2)

Publication Number Publication Date
CN101528991A CN101528991A (zh) 2009-09-09
CN101528991B true CN101528991B (zh) 2012-10-03

Family

ID=39314117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800389535A Active CN101528991B (zh) 2006-10-20 2007-10-19 蓝宝石衬底、使用该蓝宝石衬底的氮化物半导体发光元件及氮化物半导体发光元件的制造方法

Country Status (6)

Country Link
US (1) US8390023B2 (zh)
EP (1) EP2090680A4 (zh)
JP (1) JP4890558B2 (zh)
KR (1) KR101172942B1 (zh)
CN (1) CN101528991B (zh)
WO (1) WO2008047907A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078613A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
JP5145120B2 (ja) * 2008-05-26 2013-02-13 パナソニック株式会社 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法
JP5295871B2 (ja) * 2008-07-03 2013-09-18 古河機械金属株式会社 Iii族窒化物半導体基板の製造方法
KR101253874B1 (ko) 2008-10-29 2013-04-16 파나소닉 주식회사 검지 소자, 검지 장치 및 산소 농도 검사 장치
JP5453780B2 (ja) 2008-11-20 2014-03-26 三菱化学株式会社 窒化物半導体
KR101173072B1 (ko) * 2009-08-27 2012-08-13 한국산업기술대학교산학협력단 경사진 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
CN102334204B (zh) * 2010-01-06 2013-11-20 松下电器产业株式会社 氮化物系半导体发光元件及其制造方法
CN102893374A (zh) * 2010-02-10 2013-01-23 八百隆文 结构体、及半导体基板的制造方法
CN102687292B (zh) 2010-04-01 2014-09-24 松下电器产业株式会社 氮化物系半导体元件及其制造方法
WO2011125301A1 (ja) * 2010-04-02 2011-10-13 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP5849215B2 (ja) 2010-06-21 2016-01-27 パナソニックIpマネジメント株式会社 紫外半導体発光素子
EP2701183A4 (en) * 2011-08-09 2014-07-30 Panasonic Corp STRUCTURE FOR BREEDING A NITRID SEMICONDUCTOR LAYER, STACKING STRUCTURE, NITRID BASE SEMICONDUCTOR ELEMENT, LIGHTING SOURCE AND MANUFACTURING METHOD THEREFOR
CN103107153B (zh) * 2011-11-15 2016-04-06 精材科技股份有限公司 晶片封装体及其形成方法
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
US9221289B2 (en) 2012-07-27 2015-12-29 Apple Inc. Sapphire window
JP5891390B2 (ja) 2012-10-05 2016-03-23 パナソニックIpマネジメント株式会社 窒化物半導体構造、積層構造、および窒化物半導体発光素子
US9232672B2 (en) 2013-01-10 2016-01-05 Apple Inc. Ceramic insert control mechanism
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US9225056B2 (en) 2014-02-12 2015-12-29 Apple Inc. Antenna on sapphire structure
US10351969B2 (en) * 2015-03-26 2019-07-16 Kyocera Corporation Sapphire member and method for manufacturing sapphire member
US10406634B2 (en) 2015-07-01 2019-09-10 Apple Inc. Enhancing strength in laser cutting of ceramic components
WO2017057271A1 (ja) * 2015-09-30 2017-04-06 日本碍子株式会社 エピタキシャル成長用配向アルミナ基板
CN107180743B (zh) * 2016-03-11 2019-12-27 中国科学院苏州纳米技术与纳米仿生研究所 一种制备半极性AlN模板的方法
EP3537188B1 (en) * 2016-11-02 2021-10-27 Kyocera Corporation Color wheel and method for manufacturing a color wheel
CN106784181B (zh) * 2016-12-14 2020-06-23 中国科学院苏州纳米技术与纳米仿生研究所 提高绿光或更长波长InGaN量子阱发光效率的方法及结构
JP2018101701A (ja) * 2016-12-20 2018-06-28 住友電工デバイス・イノベーション株式会社 半導体基板およびその製造方法
US10535518B1 (en) 2017-03-26 2020-01-14 Hrl Laboratories, Llc In situ fabrication of horizontal nanowires and device using same
CN108461594A (zh) * 2018-01-23 2018-08-28 聚灿光电科技(宿迁)有限公司 Led芯片及其制造方法
US10903074B2 (en) * 2018-03-02 2021-01-26 Sciocs Company Limited GaN laminate and method of manufacturing the same
CN108511323A (zh) * 2018-04-04 2018-09-07 中国科学院苏州纳米技术与纳米仿生研究所 基于大斜切角蓝宝石衬底外延生长氮化镓的方法及其应用
US10868213B2 (en) * 2018-06-26 2020-12-15 Lumileds Llc LED utilizing internal color conversion with light extraction enhancements
CN110491774B (zh) * 2019-08-19 2021-10-26 中国科学院苏州纳米技术与纳米仿生研究所 一种蓝宝石衬底的表面处理方法及其使用的坩埚
CN110993737B (zh) * 2019-12-12 2021-04-13 中国科学院长春光学精密机械与物理研究所 AlGaN基同质集成光电子芯片及其制备方法
CN112670383B (zh) * 2020-12-25 2023-07-14 广东省科学院半导体研究所 一种紫外光电器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216497A (ja) * 1999-01-22 2000-08-04 Sanyo Electric Co Ltd 半導体素子およびその製造方法
US6586819B2 (en) * 2000-08-14 2003-07-01 Nippon Telegraph And Telephone Corporation Sapphire substrate, semiconductor device, electronic component, and crystal growing method
JP2004288934A (ja) * 2003-03-24 2004-10-14 Kyocera Corp サファイア基板とその製造方法、エピタキシャル基板および半導体装置とその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083812A (en) * 1993-02-02 2000-07-04 Texas Instruments Incorporated Heteroepitaxy by large surface steps
JP2002145700A (ja) * 2000-08-14 2002-05-22 Nippon Telegr & Teleph Corp <Ntt> サファイア基板および半導体素子ならびに電子部品および結晶成長方法
US6852161B2 (en) 2000-08-18 2005-02-08 Showa Denko K.K. Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
TW546850B (en) 2000-08-18 2003-08-11 Showa Denko Kk Manufacturing method for crystallization of group III nitride semiconductor, manufacturing method for gallium nitride compound semiconductor, gallium nitride compound semiconductor, gallium nitride compound semiconductor light emitting elements and light
JP4671580B2 (ja) 2002-12-20 2011-04-20 日本碍子株式会社 エピタキシャル基板及び半導体素子
JP4581490B2 (ja) 2004-05-31 2010-11-17 日立電線株式会社 Iii−v族窒化物系半導体自立基板の製造方法、及びiii−v族窒化物系半導体の製造方法
JP5276769B2 (ja) 2004-10-01 2013-08-28 東京電波株式会社 六方晶系ウルツ鉱型単結晶、その製造方法、および六方晶系ウルツ鉱型単結晶基板
WO2007123093A1 (ja) 2006-04-17 2007-11-01 Inter Optec Co., Ltd. 単結晶サファイア基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216497A (ja) * 1999-01-22 2000-08-04 Sanyo Electric Co Ltd 半導体素子およびその製造方法
US6586819B2 (en) * 2000-08-14 2003-07-01 Nippon Telegraph And Telephone Corporation Sapphire substrate, semiconductor device, electronic component, and crystal growing method
JP2004288934A (ja) * 2003-03-24 2004-10-14 Kyocera Corp サファイア基板とその製造方法、エピタキシャル基板および半導体装置とその製造方法

Also Published As

Publication number Publication date
KR20090068374A (ko) 2009-06-26
EP2090680A1 (en) 2009-08-19
JPWO2008047907A1 (ja) 2010-02-25
EP2090680A4 (en) 2011-08-17
CN101528991A (zh) 2009-09-09
US20100207136A1 (en) 2010-08-19
JP4890558B2 (ja) 2012-03-07
KR101172942B1 (ko) 2012-08-14
US8390023B2 (en) 2013-03-05
WO2008047907A1 (fr) 2008-04-24

Similar Documents

Publication Publication Date Title
CN101528991B (zh) 蓝宝石衬底、使用该蓝宝石衬底的氮化物半导体发光元件及氮化物半导体发光元件的制造方法
TWI489668B (zh) 利用金屬有機化學汽相沉積之高品質氮面GaN、InN及AlN及其合金之異質磊晶生長的方法
US8835988B2 (en) Hybrid monolithic integration
EP0551721B1 (en) Gallium nitride base semiconductor device and method of fabricating the same
TWI449086B (zh) 半導體基板、半導體基板之製造方法及電子裝置
JP2006210578A (ja) 窒化物半導体素子および窒化物半導体結晶層の成長方法
KR20000005908A (ko) 반도체디바이스
JP4860736B2 (ja) 半導体構造物及びそれを製造する方法
CN104518062A (zh) 制造半导体发光器件的方法
JPH11145514A (ja) 窒化ガリウム系半導体素子およびその製造方法
US8878211B2 (en) Heterogeneous substrate, nitride-based semiconductor device using same, and manufacturing method thereof
US6531716B2 (en) Group-III nitride semiconductor light-emitting device and manufacturing method for the same
JP2008108924A (ja) 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法
TW200939536A (en) Nitride semiconductor and method for manufacturing same
WO2014196471A1 (ja) Si基板上に成長した閃亜鉛鉱型(立方晶とも言う。)AlyInxGa1-y-xN結晶(y≧0、x>0)からなる母結晶にナノドット(「量子ドット」とも言う。)を有する活性領域及びこれを用いた発光デバイス(LED及びLD)
JP4705384B2 (ja) 窒化ガリウム系半導体素子
TW200416831A (en) Boron phosphide-based compound semiconductor device, production method thereof and light-emitting diode
JP2007103955A (ja) 窒化物半導体素子および窒化物半導体結晶層の成長方法
US10763395B2 (en) Light emitting diode element and method for manufacturing same
JP5537890B2 (ja) 酸化亜鉛系半導体発光素子の製造方法
JP7008292B2 (ja) 窒化物半導体発光素子及びその製造方法
KR100834698B1 (ko) 질화 갈륨 박막 형성 방법 및 이 방법에 의해 제조된 질화갈륨 박막 기판
JP2006024903A (ja) 窒化ガリウム系半導体積層構造体
JP3592616B2 (ja) Iii族窒化物半導体発光素子
TW565959B (en) Optoelectronic integrated circuit device and the fabrication method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Japan's Osaka kamato city characters really 1006 times

Applicant after: Matsushita Electric Industrial Co.,Ltd.

Co-applicant after: RIKEN

Address before: Japan Osaka

Applicant before: Matsushita Electric Works, Ltd.

Co-applicant before: RIKEN

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: MATSUSHITA ELECTRIC WORKS LTD. TO: MATSUSHITA ELECTRIC INDUSTRIAL CO, LTD.

C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Japan's Osaka kamato city characters really 1006 times

Co-patentee after: RIKEN

Patentee after: Matsushita Electric Industrial Co.,Ltd.

Address before: Japan's Osaka kamato city characters really 1006 times

Co-patentee before: RIKEN

Patentee before: Matsushita Electric Industrial Co.,Ltd.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20170706

Address after: Japan's Osaka kamato city characters really 1006 times

Patentee after: Matsushita Electric Industrial Co.,Ltd.

Address before: Japan's Osaka kamato city characters really 1006 times

Co-patentee before: RIKEN

Patentee before: Matsushita Electric Industrial Co.,Ltd.

TR01 Transfer of patent right