CN101501931B - 线圈部件 - Google Patents

线圈部件 Download PDF

Info

Publication number
CN101501931B
CN101501931B CN2007800277578A CN200780027757A CN101501931B CN 101501931 B CN101501931 B CN 101501931B CN 2007800277578 A CN2007800277578 A CN 2007800277578A CN 200780027757 A CN200780027757 A CN 200780027757A CN 101501931 B CN101501931 B CN 101501931B
Authority
CN
China
Prior art keywords
eddy current
current production
production part
coil
coil antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007800277578A
Other languages
English (en)
Other versions
CN101501931A (zh
Inventor
工藤良树
目黑文仁
佐藤刚
六嘉孝信
冈村真二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumida Corp
Original Assignee
Sumida Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumida Corp filed Critical Sumida Corp
Publication of CN101501931A publication Critical patent/CN101501931A/zh
Application granted granted Critical
Publication of CN101501931B publication Critical patent/CN101501931B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • H01Q1/3241Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems particular used in keyless entry systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core

Abstract

本发明是一种线圈部件,其具备磁芯和缠绕在磁芯上的线圈。并且,本发明的线圈部件具备从使用导电性金属箔的带材部件、使用导电性金属材料的薄膜、使用导电性金属材料的薄带、使用导电性金属材料的涂膜、使用导电性金属材料的板状部件中选择任一个、或者将它们组合而成的涡流产生部件。在采用本发明的线圈部件的线圈天线系统中,不增大直流电阻值而能够将Q值调整为所期望的值。

Description

线圈部件
技术领域
本发明涉及一种由磁芯和绕组线圈构成的线圈部件,例如涉及一种在发送和接收信号电波的无钥匙进入系统(キ一レスエントリシステム)、电波时钟等中优选采用的线圈部件。
背景技术
近年来,例如通过发送和接收信号电波,不直接接触汽车、房屋等的门就能够对其加锁、解锁的无钥匙进入系统被实用化。并且,为了实现无钥匙进入系统,大多采用能够发送和接收信号电波的线圈天线。另外,在希望通过无线电波正确地调整时间的所谓的电波时钟等中,也大多采用线圈天线。此外,由磁芯和绕组线圈构成的线圈部件优选用于线圈天线。并且,将线圈天线作为结构要素而包括的系统还被称为线圈天线系统。
在此,参照图12说明发送用的代表性的线圈天线的例子。
图12的(a)表示以往的线圈天线100的结构例。
图12的(b)表示对线圈流通电流而产生的磁场的例子。
在线圈天线100中,由以铁氧体(フエライト)系列材料形成的磁芯102、在磁芯102周围缠绕导线的线圈103、以及串联连接在线圈103上的电容器104构成串联谐振电路。由该串联谐振电路决定线圈天线100的谐振频率f0。在此,设想将与谐振频率f0相当的频率特性的交流电流施加到线圈天线100上的情况。此时,线圈天线100产生如图12的(b)所示的磁通而形成磁场105。并且,线圈天线100能够利用所产生的磁场105来发送信号电波。
近年来,在宽带中能够发送和接收稳定的无线信号的线圈天线的需求变高(在以下说明中还称作线圈天线的宽带化)。为了使线圈天线宽带化,需要向线圈天线施加特定频率的较强的交流电流,产生较强的磁场从而能够发送无线信号。为此,将用于发送和接收无线信号所允许的允许特性范围设定得较宽。由此,即使每个线圈天线产品的特性分散,也都集中在允许范围内,因此能够提高与线圈天线的制造有关的设计的简单化和自由度。其结果,能够实现线圈天线产品的成本降低等。
在此,参照图13说明线圈天线的谐振频率f0附近的通过特性(通過特性)。图13中,纵轴表示线圈天线的通过特性T,横轴表示施加到线圈天线的交流电流的频率f。
通常,为了实现线圈天线的宽带化,通过将线圈天线的品质系数Q值调整为特定值来使通过特性“钝化”是有效的。此外,“钝化”意味着减小谐振频率中的通过特性的变化幅度。当使通过特性“钝化”时,即使线圈天线的谐振频率相对于所要求的谐振频率有偏移的情况下,也能够将线圈天线的通过特性的下降抑制得较小。
图13所示的实线106a表示Q值足够大的情况下的通过特性。以实线106a表示的通过特性的峰值T1的频率与谐振频率f0一致。虚线106b表示在相对于原本应得到的谐振频率f0略微有偏移的频率f0′下将交流电流施加到线圈天线的情况下的通过特性。实线107a表示将Q值调整为特定值的情况下的通过特性。以实线107a表示的通过特性的峰值T2的频率与谐振频率f0一致。虚线107b表示在相对于原本应得到的谐振频率f0略微有偏移的频率f0′下将交流电流施加到线圈天线的情况下的通过特性。
此时,实线106a的峰值的Q值T1与谐振频率的偏移f0′的实线106a的Q值T1′之差ΔT1是ΔT1=T1-T1′。
另外,实线107a的峰值的Q值T2与谐振频率的偏移f0′的实线107a的Q值T2′之差ΔT2是ΔT2=T2-T2′。
此时,由图13示出ΔT1>ΔT2。即,可以说由谐振频率的偏移所引起的通过特性的下降幅度在Q值高的一方比Q值低的一方大。
在此,参照图14说明降低以往的线圈天线100的Q值的结构例。以往,为了降低Q值,广泛采用对线圈天线100所具备的电容器104在外部串联连接电阻元件108的结构。在此,利用下式(1)能够求出线圈天线的品质系数Q。
Q=ω·L/R=2πf·L/R  ……式(1)
由式(1)可知,通过改变线圈的电感L和电阻R的两者或者一个,能够调整Q值。
另外,当通过改变线圈的卷数等来改变电感L的值时,导致线圈天线的谐振频率f0的值也发生变化,因此并非良策。为此,以往希望通过改变电阻R的值来调整线圈天线的品质系数Q的值。
在专利文献1中公开有以往的线圈天线。
专利文献1:专利第3735104号公报
发明内容
另外,为了调整Q值而将电阻元件外部连接在线圈天线上时,导致增大以线圈天线为结构要素的线圈天线系统整体的电阻值。在此,参照图15说明针对施加到线圈天线的交流电流的频率f的阻抗Z。
图15中,纵轴表示阻抗Z,横轴表示频率f。利用下式求出此时的阻抗Z。在此,根据线圈和电容器求出的电抗设为X。
Z = ( R 2 + X 2 )
X=ωL-1/ωC
在施加到线圈天线的交流电流的频率与谐振频率一致的情况下,如下导出阻抗Z。
X=ωL-1/ωC=0
Z = R 2 = R
根据该结果可知阻抗Z取最小值R。另外,通过图15示出了交流电流的谐振频率f0下阻抗Z取最小值R。
因而,当将与线圈天线的谐振频率一致的交流电流施加到线圈天线时,阻抗Z只依赖于电阻R成分。因此,在线圈天线上串联连接电阻元件的结构中,当向线圈天线施加较大的交流电流来产生强力磁场时,线圈天线的发热等成为显著问题。
本发明是鉴于上述课题而完成的,其目的在于提供一种线圈部件,其为了达成线圈天线的宽带化,不增大直流电阻值就能够将Q值调整为所期望的值,并且能够发送和接收稳定的无线信号。
本发明是具备磁芯、缠绕磁芯的线圈、以及涡流产生部件的线圈部件。
本发明所涉及的线圈部件在磁芯上形成有涡流产生部件,因此当施加电流时产生涡流。
本发明通过利用在涡流产生部件中产生的涡流,不增大采用本发明的线圈部件的线圈天线系统的直流电阻值而能够将Q值调整为所期望的值。
附图说明
图1是表示本发明的第一实施方式中的线圈天线的立体图。
图2是表示针对本发明的第一实施方式中的涡流产生部件的Q值的例子的说明图。
图3是表示本发明的第一实施方式中的线圈和磁场的例子的说明图。
图4是表示在本发明的第一实施方式中的磁芯上形成的涡流产生部件的例子的立体图。
图5是表示本发明的第二实施方式中的线圈天线的立体图。
图6是表示在本发明的第二实施方式中的外包装部件上形成的涡流产生部件的例子的立体图。
图7是表示本发明的第三实施方式中的线圈天线的立体图。
图8是本发明的第三实施方式中的基座(ベ一ス)的放大立体图。
图9是表示本发明的第四实施方式中的线圈天线的立体图。
图10是表示本发明的第五实施方式中的线圈天线的立体图。
图11是表示本发明的第五实施方式中的外包装部件上形成的涡流产生部件的例子的立体图。
图12是表示以往的线圈天线的例子的结构图。
图13是表示以往的线圈天线的通过特性的例子的说明图。
图14是表示在以往的线圈天线上连接电阻元件的例子的结构图。
图15是表示以往的线圈天线的阻抗的例子的说明图。
附图标记说明
10:线圈天线;11:外包装部件;12a、12b:线束(ハ一ネス)端子;13:绝缘层;14:基座;14a、14b:槽部;15:线圈缠绕部;15a~15c:线圈;16:主体部;17:电容器;18:磁芯;19a~19c:涡流产生部件;20:线圈天线;21:外包装部件;25:线圈缠绕部;25a:线圈;26:主体部;29a~29c:涡流产生部件;30:线圈天线;39a、39b:涡流产生部件;40:线圈天线;49a、49b:涡流产生部件;50:线圈天线;51:外包装部件;52a、52b:端子电极;53a、53b:凸缘部;55:线圈;58:磁芯;59、59a~59d:涡流产生部件。
具体实施方式
下面参照图1~图14说明本发明的第一实施方式所涉及的线圈天线的结构例。在本实施方式中,说明在通过信号电波的发送和接收来不直接接触汽车、房屋等的门就能够对其加锁、解锁的无钥匙进入系统中采用的线圈天线10。线圈天线10主要设置在门侧。此外,由磁芯和绕组线圈构成的本发明的线圈部件优选适用于线圈天线10。
首先,参照图1说明线圈天线10的结构例。
图1的(a)是表示线圈天线10的外观结构例的立体图。线圈天线10由形成有线圈的主体部16、嵌设于主体部16上的线束端子12a、12b、以及覆盖主体部16的由非导电性树脂形成的外包装部件11形成。外包装部件11形成为其一端开口而另一端闭合的管状,具有保护在主体部16中形成的线圈等的功能。并且,用于与外部端子相连接的线束端子12a、12b嵌设于主体部16的一端部。
图1的(b)是表示从线圈天线10卸下外包装部件11的状态的例子的立体图。外包装部件11是具有与主体部16的宽度方向的横截面的形状大致相同的中空形状的截面的长方体状壳体。主体部16具备由非导电性树脂形成的基座14和隔着绝缘层形成线圈15a的线圈缠绕部15。并且,线圈15a是在作为橡胶系列的绝缘管的绝缘层13上以所期望的卷数缠绕导线(线圈线)而形成。绝缘层13覆盖作为平板的棒状的磁芯18(参照后述的图1的(c)),使缠绕的导线和磁芯18绝缘。另外,绝缘层13使缠绕的导线和形成在磁芯18上的涡流产生部件19(参照后述的图1的(c))绝缘。
在基座14中形成用于装载电容器17的凹部,将该凹部作为电容器装载部14c。在基座14中形成以不接触外包装部件11的方式对导线进行引导的槽部14a、14b。线圈15a的一端部沿着槽部14a捆扎在线束端子12a上。线圈15a的另一端部沿着槽部14b连接在形成于电容器装载部14c的端子电极上。在电容器装载部14c中装载有电容器17,电容器17的一个电极连接在线束端子12b的端子电极上。电容器17的另一个端子电极连接在线圈15a的另一个端部上。这样,通过将电容器17与线圈15a串联连接来构成串联谐振电路。
图1的(c)是表示分解了主体部16的状态的例子的立体图。线圈缠绕部15是通过在作为橡胶系列绝缘管的绝缘层13上插入以铁氧体为材质的磁芯18而形成。磁芯18是平板形状,作为材质使用导磁率、最大饱和磁通密度等磁特性优良的Mn-Zn系列铁氧体,使得能够激励强力磁场。在磁芯18的上下表面上形成有通过磁场、磁通的产生而在表面产生涡流的涡流产生部件19。涡流产生部件19是大小相对于磁芯18的上下表面大致相同的矩形状。在电容器装载部14c中装载层叠片型的电容器17。在基座14的端部(磁芯18侧)中形成有未图示的容纳部,能够容纳并粘接固定线圈缠绕部15。
通过由绝缘层13覆盖磁芯18和涡流产生部件19,能够抑制导线和涡流产生部件19、导线和磁芯18的两者、或者一方之间有可能产生的短路(short)。另外,还能够抑制当导线缠绕在线圈缠绕部15上时,磁芯18的有棱角的部分中剥开导线被膜的情况。此外,磁芯18的材质并不限定于Mn-Zn系列铁氧体,也可以采用具有所期望的磁特性的Ni-Zn系列铁氧体、金属系列磁性体等作为材质。另外,将磁芯18的形状设为平板的棒状,但是也可以根据用途设为任意形状。
在此,说明本实施方式中采用的涡流产生部件19。涡流产生部件19是用于利用所产生的涡流来改变线圈天线10的Q值的部件。当向线圈天线10施加电流时,由线圈15a产生磁场,在涡流产生部件19的表面产生涡流。并且,由于所产生的涡流而涡流损失将增加。其结果,通过涡流损失,不增加电阻成分而能够改变Q值。在本实施方式中,以覆盖磁芯18的宽幅面(上下两表面)的大致整个面的方式粘贴金属带部件、即用不锈钢(SUS)箔的带材部件,从而形成涡流产生部件19。
下面举出作为在涡流产生部件19中采用的金属带材的材料而优选的例子。例如,在汽车等各种环境中使用线圈天线10的情况下,希望采用不锈钢(SUS:电阻率5~10×10-6[Ω·cm])、铝(Al:电阻率2.655×10-6[Ω·cm])等具有某种程度的导电性且耐蚀性优良的材料。但是,在不考虑耐蚀性等的环境中使用线圈天线10的情况下,采用由铜(Cu:电阻率1.678×10-6[Ω·cm])、银(Ag:电阻率1.62×10-6[Ω·cm])、金(Au:电阻率2.2×10-6[Ω·cm])等电阻率低的材质形成的金属带。当采用金属带时,能够产生很多的涡流,能够有效地进行Q值的调整。另外,也容易形成涡流产生部件19。
此外,作为涡流产生部件19,除了能够使用将导电性金属箔形成于表面上的金属带部件之外,还能够采用如下所述的部件。
(1)通过金属蒸镀法形成的导电性金属薄膜:
当通过金属蒸镀法形成导电性金属薄膜时,能够在磁芯18上不夹置带材的粘接层而形成涡流产生部件19。因此,在涡流产生部件19上能够高效地产生涡流。另外,通过控制蒸镀膜的生成过程,能够使蒸镀膜(金属薄膜)的膜厚容易达到所期望的厚度。并且,能够在将成为蒸镀目标的磁芯18排列多个的状态下进行蒸镀处理。因此,具有能够形成适于大量生产、且维持固定品质的金属薄膜的效果。
(2)通过电镀处理法形成的导电性金属电镀薄膜:
另外,通过电镀处理法形成导电性金属电镀薄膜,也能够在磁芯18上不夹置带材的粘接层而形成涡流产生部件19。因此,与上述的通过金属蒸镀法形成的导电性金属薄膜同样地,能够在涡流产生部件19上高效地产生涡流。另外,具有能够形成适于大量生产、且维持固定品质的金属薄膜的效果。另外,作为电镀处理法能够采用电解电镀法、无电解电镀法等。
(3)通过单辊成型法、或者双辊成型法形成的导电性金属薄带:
通过单辊成型法、或者双辊成型法,能够形成导电性金属薄带作为涡流产生部件19。当粘贴到磁芯18上时,最好使用粘接剂等固定部件。在使用这种方法的情况下,在适于大量生产这一点上起到与上述金属蒸镀法相同的效果。
(4)通过涂装形成的含有导电性金属材料的涂膜:
当通过涂装形成导电性金属涂膜作为涡流产生部件19时,处理设备、制造工序等非常简单,适于大量生产,因此具有有助于大大降低制造成本的效果。另外,由所得到的涂膜而产生的涡流的程度有与上述(1)导电性金属薄膜~(3)导电性金属薄带相比差的倾向,但是能够通过控制涂膜的厚度等来充分地进行Q值的调整。
接着,参照图2说明改变粘贴在磁芯18上的涡流产生部件19的材质而实测的Q值。在图2中记载有作为涡流产生部件19而采用不锈钢(SUS)带材部件、或者铝(Al)带材部件的情况下的Q的实测值和相对于基准例的Q值的比率。在此,基准例是指表示对未配设涡流产生部件19或者电阻元件的线圈天线10进行单体实测的情况下的通过特性的例子。
各个涡流产生部件19(金属带材部件)的研究例的详细条件如下。
(研究例1)
·金属带材质:不锈钢(SUS)
·带粘贴条件:设长度方向的尺寸与磁芯18的长度方向的尺寸大致相等。
·设宽度方向的尺寸与磁芯18的宽度方向的尺寸大致相等。
·带粘贴位置:粘贴在磁芯18的宽幅面的两面。
(研究例2)
·金属带材质:铝(Al)
·带粘贴条件:设长度方向的尺寸与磁芯18的长度方向的尺寸大致相等。
·宽度方向的尺寸与磁芯18的宽度方向的尺寸大致相等。
·带粘贴位置:粘贴在磁芯18的宽幅面的两面。
(研究例3)
·金属带材质:铝(Al)
·带粘贴条件:设长度方向的尺寸与磁芯18的长度方向的尺寸大致相等。
·设宽度方向的尺寸是磁芯18的宽度方向的尺寸的大约1/3。
·带粘贴位置:粘贴在磁芯18的宽幅面的单面。
(比较例)
·将把电阻值4.7[Ω]的电阻元件串联连接在线圈天线10上的以往的线圈天线作为比较例进行实测,并揭示在图2中。
(基准例)
·将对未配设涡流产生部件19和电阻元件的线圈天线10进行单体实测的通过特性作为基准例而进行实测,并揭示在图2中。
根据图2可知,相对于对线圈天线10未配设涡流产生部件19和电阻元件的基准例的Q值150.20,与研究例1~3有关的实测得到的Q值都表示-70%以上的降低率。
特别是当与比较例(对线圈天线10串联连接4.7[Ω]电阻元件)中实测的Q值24.98进行比较时,可知研究例1的SUS带的Q值25.70是最近似的结果(都相对于基准例是-83%)。由此,在线圈天线10上连接4.7[Ω]的电阻元件的以往的线圈天线、和形成涡流产生部件19的线圈天线10是不同的方式,但是同样都能够调整Q值。另外,可知能够容易实现线圈天线的宽带化。
在此,使用研究例1的SUS带的Q值和式(1):Q=2πf·L/R来说明涡流产生部件19的作用。此外,作为使用式(1)时所需的电气特性,比较例的线圈天线10的电感值190.5[μH]、直流电阻值5.132[Ω](详细:附加电阻元件4.7[Ω]、其它线等的电阻量0.432[Ω])。此时,利用式(1)如下求出电阻R0
24.98=(2×3.14×125[kHz]×190.5[μH]/(R0[Ω]+5.132[Ω])
R0=0.854[Ω]
另外,研究例1的线圈天线10的电感值191.6[μH]、直流电阻值0.436[Ω]。此时,利用式(1)如下求出电阻R1
25.70=(2×3.14×125[kHz]×191.6[μH])/(R1[Ω]+0.436[Ω])
R1=5.416[Ω]
根据以上的计算结果,示出了:用于调整Q值而连接电阻元件的情况下的电阻的增加量4.7[Ω]、和将由涡流产生部件19所产生的涡流(损失)视作电阻成分的情况下的电阻的增加量5.41[Ω]是相近似的值。即,当将涡流产生部件19(例如导电性金属带材部件)粘贴在磁芯18上的状态下施加电流时,由于所产生的涡流而涡流损失增加。其结果,得到不增加电阻成分而能够改变Q值的作用。
接着,当比较研究例1的Q值25.70与研究例2的Q值21.29时,示出了Al带材部件的Q值降低率比SUS带材部件还大。可以认为这是由于,相对于SUS的电阻率5~10×10-6[Ω·cm],Al的电阻率低至2.655×10-6[Ω·cm],因此与SUS带材部件相比,涡流的产生程度大。
另外,当比较研究例2与研究例3时,涡流产生部件19在都使用了用Al箔的带材部件这点上一致,但是粘贴带材部件的面积不同(研究例2中粘贴在磁芯18的上下表面,研究例3中粘贴在磁芯18的上下表面中的单面)。因此,相对于基准例的Q值的减少率约变化10%。其结果,可知由于涡流产生部件19的面积、体积的变化而Q值发生变化。即,可以说通过控制涡流产生部件19的面积、体积或者形成位置的变化,能够高精确度地调整Q值。
如以上所说明地那样,在线圈天线10中,在磁芯18上的所期望的位置形成涡流产生部件19。因此,不增大线圈天线系统整体的直流电阻值而能够将Q值调整为所期望的值。其结果,能够容易地实现线圈天线的宽带化,并且能够得到在宽带下能够确保稳定的通过特性的线圈天线。另外,涡流产生部件能够容易地形成在线圈天线10上,因此具有能够容易地调整Q值的效果。
另外,除了在磁芯18上粘贴金属带之外,通过使用金属蒸镀法、电镀处理法等各种技术,能够在磁芯上形成涡流产生部件。因此,只要根据用途形成适当的涡流产生部件即可,具有设计的自由度变高的效果。
此外,在上述的第一实施方式中,将形成在线圈天线10上的涡流产生部件19(金属带材部件、金属薄膜、金属薄带等)以大致覆盖磁芯18的宽幅面、即上下两表面的整个面的方式粘贴或者形成。但是,也可以根据进行Q值的调整的程度来各种各样地改变涡流产生部件的形状。
在此,参照图3说明根据缠绕在磁芯18上的线圈的缠绕方式而激励起的磁场的例子。
图3的(a)表示与磁芯18的长度尺寸大致相等地缠绕线圈15b的例子。在这种情况下,当施加电流时从磁芯18的两端部产生磁场18a。
图3的(b)表示在磁芯18的一部分上缠绕线圈15c的例子。在这种情况下,当施加电流时从磁芯18的两端部产生磁场18b。并且,有在线圈15c的端部也产生磁场18c的倾向。
这样,如图3的(a)和图3的(b)所示,根据缠绕在磁芯18上的线圈的缠绕方式,磁通、磁场的产生程度发生变化。因而,只要根据缠绕的线圈的缠绕方式而任意形成涡流产生部件即可。
在此,参照图4说明在磁芯18上形成涡流产生部件的位置的例子。
图4的(a)是在磁芯18的上下表面形成了涡流产生部件19a的例子。涡流产生部件19a的大小相对于磁芯18的上表面的大小要稍小一些。当然,也可以与所期望的Q值调整相对应地仅配设在上下表面中的某一表面上。
图4的(b)是在磁芯18的两侧面部形成了涡流产生部件19b的例子。涡流产生部件19b的大小相对于磁芯18的侧面大小要稍小一些。当然,也可以与所期望的Q值调整相对应地仅配设在两侧面中的某一侧面上。
图4的(c)是在磁芯18的端面形成了涡流产生部件19c的例子。涡流产生部件19c的大小相对于磁芯18的端面大小要稍小一些。当然,也可以与所期望的Q值调整相对应地仅配设在两端面中的某一端面上。当如图4的(c)所示那样构成涡流产生部件19c时,从端面发射并吸收的磁通、磁场的大部分通过涡流产生部件19c。因此,能够有效地产生涡流,能够增大Q值的调整幅度。
如图4的(a)~图4的(c)所示,涡流产生部件也可以形成在磁芯18上的任何位置上。另外,涡流产生部件的大小能够各种各样地变形。这样,能够在磁芯18上的所期望的位置上形成涡流产生部件,因此具有能够精细调整Q值的效果。另外,能够容易地形成涡流产生部件,因此对成本降低也有效果。此外,通过复合地组合图4的(a)~图4的(c)所示的涡流产生部件,当然能够对Q值进行微调整。
接着,参照图5和图6说明本发明的第二实施方式所涉及的线圈天线的结构例。在本实施方式中,也作为适用于在无钥匙进入系统中采用的线圈天线20的例子进行说明。此外,由磁芯和绕组线圈构成的本发明的线圈部件优选适用于线圈天线20。另外,对于与已说明的第一实施方式的图1相对应的部分标记同一附图标记。
首先,参照图5说明线圈天线20的结构例。
图5的(a)是线圈天线20的外观立体图。线圈天线20由如下部分形成:形成线圈的主体部26;嵌设于主体部26上的线束端子12a、12b;以及由覆盖主体部26的非导电性树脂形成的外包装部件21。外包装部件21形成为其一端开口而另一端闭口的管状,具有保护在主体部26内形成的线圈等的功能。并且,用于与外部端子相连接的线束端子12a、12b嵌设于主体部26的一个端部。外包装部件21的上下表面形成有通过磁场、磁通的产生而在表面产生涡流的涡流产生部件29(例如金属带材部件)。涡流产生部件29是其大小相对于外包装部件21的上下表面大致相同的矩形状。
图5的(b)是表示从线圈天线20卸下外包装部件21的状态的例子的立体图。外包装部件21是具有与主体部26的宽度方向的横截面形状大致相同的中空形状的截面的长方体状壳体。并且,外包装部件21的上下表面上形成涡流产生部件29。主体部26具备由非导电性树脂形成的基座14、和隔着绝缘层形成线圈25a的线圈缠绕部25。并且,在作为橡胶系列的绝缘管的绝缘层13上以所期望的卷数缠绕导线(线圈线)而形成线圈25a。绝缘层13覆盖作为平板的棒状的磁芯18(参照后述的图5的(c)),使缠绕的导线和磁芯18绝缘。
在基座14中形成用于装载电容器17的凹部,将该凹部作为电容器装载部14c。在基座14中形成以不接触到外包装部件21的方式对导线进行引导的槽部14a、14b。线圈25a的一端部沿着槽部14a捆扎在线束端子12a上。线圈25a的另一端部沿着槽部14b连接在电容器装载部14c的端子电极上。在电容器装载部14c中装载有电容器17,电容器17的一个电极连接在线束端子12b的端子电极上。电容器17的另一个端子电极连接在线圈25a的另一端部。这样,通过将电容器17与线圈25a进行串联连接来构成串联谐振电路。
图5的(c)是表示分解了主体部26的状态的例子的立体图。通过在作为橡胶系列的绝缘管的绝缘层13上插入以铁氧体为材质的磁芯18而形成线圈缠绕部15。磁芯18是平板形状,作为材质使用导磁率、最大饱和磁通密度等磁特性优良的Mn-Zn系列的铁氧体,使得能够激励起强力磁场。通过由绝缘层13覆盖磁芯18,能够抑制导线与磁芯18之间可能产生的短路(short)。另外,还能够抑制当导线缠绕在线圈缠绕部15上时磁芯18的有棱角的部分中剥开导线被膜的情况。并且,通过由外包装部件21对缠绕在线圈缠绕部25上的导线(线圈线)进行绝缘,能够抑制导线与涡流产生部件29(例如金属带材部件)之间可能产生的短路(short)。
此外,磁芯18的材质并不限定于Mn-Zn系列铁氧体,也可以采用具有所期望的磁特性的Ni-Zn系列铁氧体、金属系列磁性体等作为材质。另外,将磁芯18的形状设为平板的棒状,但是也可以根据用途设为任意形状。
在此,关于改变在线圈天线20中使用的涡流产生部件29的材质或薄膜的生成方法、或者涡流产生部件29的材质和形成位置的情况下的通过特性,与已说明的第一实施方式所涉及的线圈天线10的涡流产生部件19的情况相同,因此省略其详细说明。
以上所说明的线圈天线20在将涡流产生部件29形成在外包装部件21这一点上与第一实施方式不同。但是,线圈天线20表现出与线圈天线10相同的作用,起到相同效果。并且,涡流产生部件29形成在外包装部件21上,因此能够一边确认通过特性一边更容易地调整Q值。这样,具有用于将Q值设为所期望的值的微调整变得容易的效果。
此外,作为形成在线圈天线20上的涡流产生部件29而采用了金属带材部件,但是与上述的第一实施方式同样地也可以采用金属薄膜、金属镀膜、金属薄带以及金属涂膜等。
另外,将形成在线圈天线20上的涡流产生部件29(金属带材部件、金属薄膜、金属薄带等)以大致覆盖外包装部件21的宽幅面、即上下两表面的整个面的方式粘贴或者形成。此时,也可以根据调整Q值的程度来各种各样地改变涡流产生部件的形状。
另外,线圈天线20是仅在外包装部件21的宽幅面(上下两表面或者一个表面)上形成涡流产生部件29。并且,只要考虑当在线圈形成位置、磁通分布或磁场分布强的位置形成涡流产生部件时对Q值的调整有效的情况,涡流产生部件也可以形成在任意位置上。在此,参照图6说明将涡流产生部件形成在外包装部件21上的情况下的结构例。
图6的(a)是在外包装部件21的上下表面形成了涡流产生部件29a的例子。涡流产生部件29a的大小相对于外包装部件21的上下表面的大小要稍小一些。当然,也可以与所期望的Q值调整相对应地仅配设在上下表面中的某一表面上。
图6的(b)是在外包装部件21的侧面部形成了涡流产生部件29b的例子。涡流产生部件29b的大小相对于外包装部件21的两侧面的大小要稍小一些。当然,也可以与所期望的Q值调整相对应地仅配设在两侧面中的某一侧面上。
图6的(c)是在外包装部件21中闭塞的一侧的端面上形成涡流产生部件29c的例子。涡流产生部件29c的大小相对于外包装部件21的端面的大小要稍小一些。在这种情况下,从端面发射并吸收的磁通、磁场的大部分通过涡流产生部件29c。因此,能够有效地产生涡流,Q值的调整幅度变大。
如图6的(a)~图6的(c)所示,涡流产生部件也可以形成在外包装部件21上的任何位置上。另外,涡流产生部件的大小能够各种各样地变形。这样,能够在外包装部件21上的期望位置上形成涡流产生部件,因此具有能够精细调整Q值的效果。另外,能够容易地形成涡流产生部件,因此对成本降低也有效果。此外,当然能够复合地组合图6的(a)~图6的(c)所示的涡流产生部件来对Q值进行微调整。
接着,参照图7和图8说明本发明的第三实施方式所涉及的线圈天线的结构例。在本实施方式中,也作为适用于在无钥匙进入系统中采用的线圈天线30的例子进行说明。此外,由磁芯和绕组线圈构成的本发明的线圈部件优选适用于线圈天线30。另外,对于与已说明的第二实施方式的图5相对应的部分附加同一附图标记。
首先,参照图7说明线圈天线30的结构例。此外,线圈天线30的基座14、线圈缠绕部25、主体部26与已说明的线圈天线20的各部分是相同的结构,因此省略其详细说明。
另外,关于改变了线圈天线30中使用的涡流产生部件39a的材质、涡流产生部件39a的材质和形成位置的情况下的通过特性,与已说明的第一实施方式所涉及的线圈天线10的涡流产生部件19相同,因此省略详细的说明。
图7的(a)是表示线圈天线30的例子的立体图。如图7的(a)所示,第三实施方式所涉及的线圈天线30相对于已说明的线圈天线20的不同之处在于,在外包装部件31上未形成涡流产生部件。
图7的(b)是表示从线圈天线30卸下外包装部件21的状态的例子的立体图。如图7的(b)所示,线圈天线30是在未安装有基座14的主体部26的端部嵌入树脂制的树脂封盖32的结构。树脂封盖32是具有与主体部26的宽度方向的横截面的形状大致相同的中空形状的截面的长方体状壳体。
在此,参照将树脂封盖32放大后的放大区域33来说明在A-A’线上对树脂封盖32剖视的状态的例子。在树脂封盖32中,通过嵌入(インサ一ト)成型而配设将由导电性金属材料(例如铜板、铝板、不锈钢板)构成的板状部件弯曲加工为日语“コ”字状的涡流产生部件39a。嵌入成型是指当以射出成型来制造树脂封盖32时以预先在模具腔体内设置涡流产生部件39a的状态射出熔融树脂的成型方法。
并且,线圈天线30构成为:当将主体部26(包括内部线圈。)容纳在外包装部件31中时基座14和树脂封盖32的外表面与外包装部件31的内表面抵接。因此,能够将主体部26相对于外包装部件31可靠地定位并保持。
构成以上所说明的线圈天线30的涡流产生部件39a仅通过对由导电性金属材料构成的板状部件进行弯曲加工而形成。因此,涡流产生部件39a的制造变得容易。另外,虽然涡流产生部件39a的构造简单,但是产生大量涡流,因此具有能够高效地调整Q值的效果。
配设了涡流产生部件的树脂封盖32仅嵌入在磁芯18内就能够容易且可靠地保持。因此,具有能够使线圈天线30的组装工序简单化的效果。另外,这样构成的线圈天线30具有能够将制造成本抑制得较低的效果。
此外,涡流产生部件39a能够采用各种形状。即,通过变更板状部件的厚度、面积,能够调整涡流产生程度。另外,图7所示的涡流产生部件39a形成为日语“コ”字状。换言之,形成为覆盖磁芯18的三个表面。为了进行所期望的Q调整,也可以以覆盖磁芯18的两个表面的L字状形成涡流产生部件。
另外,涡流产生部件的配设位置也可以是插入有磁芯18而保持磁芯18的基座14的部位。在此,参照图8说明配设在基座14上的涡流产生部件39b的结构例。
图8的(a)是表示从安装线圈缠绕部25的一侧观察基座14的立体图。基座14的内部配设有涡流产生部件39b。
图8的(b)是图8的(a)中说明的基座14中的、在B-B’线上剖视的状态的立体图。在基座14中,通过嵌入成型而配设对由导电性金属材料(例如铜板、铝板、不锈钢板)构成的板状部件进行弯曲加工为日语“コ”字状的涡流产生部件39b。
以上所说明的线圈天线30能够在预先测量内部线圈单体中的电气特性(谐振频率f0、Q值)后(电气特性是在附加外包装部件的前一阶段中测量)提供符合应调整的条件的涡流产生部件(厚度、表面积、配置位置等)。因此,具有使线圈天线30的设计变得容易的效果。
涡流产生部件39b的功能、效果与已说明的涡流产生部件39a相同。另外,配设了涡流产生部件的树脂封盖32并不只限定于嵌入到磁芯18上,即使形成为嵌入到外包装部件31,也能够得到与涡流产生部件39a相同的功能、效果。另外,也可以将涡流产生部件的形状设为与树脂封盖32相同的形状。
接着,参照图9说明本发明的第四实施方式所涉及的线圈天线的结构例。在本实施方式中,也作为适用于在无钥匙进入系统中采用的线圈天线40a、40b的例子进行说明。此外,由磁芯和绕组线圈构成的本发明的线圈部件优选适用于线圈天线40a、40b。另外,对于与已说明的第二实施方式的图5相对应的部分附加相同的附图标记。
首先,参照图9说明线圈天线40a、40b的结构例。此外,线圈天线40a、40b的基座14、线圈缠绕部25、主体部26是与已说明的线圈天线20的各部分相同的结构,因此省略其详细说明。
另外,关于改变了在线圈天线40a、40b中使用的涡流产生部件49a、49b的材质和形成位置的情况下的通过特性,与已说明的第一实施方式所涉及的线圈天线10的涡流产生部件19的情况相同,因此省略其详细说明。
图9的(a)是表示从线圈天线40a卸下外包装部件31的状态的例子的立体图。线圈天线40a的结构为:在未安装有基座14的线圈缠绕部25的端部中嵌入并粘接固定日语“コ”字状的导电性涡流产生部件49a。
在本实施方式中,是如下结构:在磁芯18上仅嵌入并粘接固定将由导电性金属材料构成的板状部件设成日语“コ”字状的涡流产生部件49a。在此,当考虑到磁场不仅从磁芯18的端面产生还从缠绕有线圈的位置附近产生的情况时,也可以以图9的(b)所示的配置形成涡流产生部件49b。
图9的(b)是表示从线圈天线40b卸下外包装部件31的状态的例子的立体图。线圈天线40b的结构为:在未安装基座14的线圈缠绕部25的一方的侧面部嵌入并粘接固定日语“コ”字状的导电性涡流产生部件49b。在这种情况下,可以说为了可靠防止在线圈与涡流产生部件之间可能发生的短路,希望将在线圈中使用的线的绝缘树脂被膜设定得较厚、或者在涡流产生部件中在与线圈接触的一侧的表面形成绝缘被膜或者绝缘片。
制造以上所说明的线圈天线40a、40b时,首先预先测量内部线圈单体中的电气特性(例如谐振频率f0、Q值)。在附加外包装部件的前一阶段中测量该电气特性。之后,作为应调整的条件,以与厚度、面积、配置位置等相符合的状态将涡流产生部件49a、49b安装到线圈天线40a、40b。涡流产生部件49a、49b能够通过改变板状部件的厚度、面积来调整涡流产生程度。经过这种工序,具有如下效果:能够预见包括电气特性调整的生产效率的提高,并且使线圈天线40a、40b的电气特性最佳化而使设计变得容易。
此外,涡流产生部件49a、49b嵌入并粘接固定在磁芯18的前端部,但是也可以构成为配置在磁芯18的后端部(基座侧)。另外,当通过射出成型制造外包装部件31时,还能够利用嵌入成型方法将涡流产生部件49a、49b配设在外包装部件31侧。
另外,如果涡流产生部件49b是日语“コ”字状,则也可以覆盖线圈的任意方向。另外,也可以弯曲为日语“ロ”字状使得覆盖线圈全周,但是为了防止来自线圈的漏电而优选为在线圈与涡流产生部件之间隔着绝缘层。
接着,参照图10和图11说明本发明的第五实施方式所涉及的线圈天线的结构例。在本实施方式中,也作为适用于在无钥匙进入系统、电波时钟等中采用的线圈天线50的例子进行说明。此外,由磁芯和绕组线圈构成的本发明的线圈部件优选适用于线圈天线50。
首先,参照图10说明线圈天线50的结构例。
图10的(a)是主要优先用于电波时钟等的线圈天线50的立体图。所谓绕组片型的线圈天线50形成为方形状。在线圈天线50的上表面形成通过磁场、磁通的产生而在表面产生涡流的涡流产生部件59(例如金属带材部件)。并且,线圈天线50在两端具备凸缘(つば)部53a、53b。各个凸缘部53a、53b的下表面形成用于连接基板的端子电极52a、52b。并且,以覆盖线圈55(参照后述的图10的(c))的方式形成由非导电性的树脂成形体构成的外包装部件51。
图10的(b)是从线圈天线50卸下涡流产生部件59的状态的立体图。涡流产生部件59的大小相对于外包装部件51的上表面的大小要稍小一些。此外,也可以与所期望的Q调整想对应地仅在上下表面中的某一表面配设涡流产生部件59。
图10的(c)是从线圈天线50卸下外包装部件51的状态的立体图。通过在以铁氧体为材质的磁芯58上以所期望的匝数缠绕导线(线圈线)而形成线圈55。导线的两端部分别连接在端子电极52a、52b上。
图10的(d)是从线圈55卸下导线的状态的立体图。作为线圈55的芯部而形成作为方形状的鼓型芯的磁芯58。
关于改变了在线圈天线50中使用的涡流产生部件59的材质或薄膜的生成方法、涡流产生部件59的材质和形成位置的情况下的通过特性,与已说明的第一实施方式所涉及的线圈天线10的涡流产生部件19的情况相同,因此省略其详细说明。
以上所说明的线圈天线50在形成为方形状的外包装部件51上形成涡流产生部件59,这一点与第一实施方式不同,但是表现出与线圈天线10相同的作用,起到相同效果。并且,涡流产生部件59形成在外包装部件51上,因此能够更容易地调整Q值。此时,一边确认通过特性一边调整涡流产生部件59。因此,具有用于使Q值成为所期望的值的微调整变得容易的效果。
此外,作为形成在线圈天线50上的涡流产生部件59而采用金属带材部件,但是能够与上述的第一实施方式同样地进行各种变更。
另外,在上述的第五实施方式中,将形成在线圈天线50上的涡流产生部件59(金属带材部件、金属薄膜、金属薄带等)粘贴或者形成在外包装部件51的上表面。此外,根据进行Q值的调整的程度,也可以各种各样地改变涡流产生部件的形状。
线圈天线50以仅在外包装部件51的上表面形成涡流产生部件59为例。此外,只要考虑在线圈的形成位置、磁通分布或磁场分布较强的位置形成涡流产生部件是有效的情况,形成涡流产生部件的位置也可以是任意位置。
在此,参照图11说明在外包装部件51上形成涡流产生部件的情况下的结构例。
图11的(a)是在外包装部件51的上表面和方形状的鼓型芯的凸缘部53a、53b的上表面形成涡流产生部件59a的例子。涡流产生部件59a被设为大小相对于外包装部件51和凸缘部53a、53b的上表面大致相同的矩形状。当然,也可以与所期望的Q调整相对应地配设在外包装部件51的下表面或者上下表面。
图11的(b)是在外包装部件51的两侧面形成涡流产生部件59b的例子。涡流产生部件59b的大小相对于外包装部件51的侧面的大小要稍小一些。当然,也可以与所期望的Q调整相对应地仅在两侧面中的某一面配设涡流产生部件59b。
图11的(c)是遍及外包装部件51的两侧面和方形状的鼓型芯的凸缘部53a、53b的侧面而形成涡流产生部件59c的例子。涡流产生部件59c被设为大小相对于外包装部件51和凸缘部53a、53b的侧面大致相同的矩形状。当然,也可以与所期望的Q调整相对应地仅配设在两侧面中的某一面上。
图11的(d)是在鼓型芯的凸缘部53a、53b的两端面形成涡流产生部件59d的例子。涡流产生部件59d的大小相对于外包装部件51的端面的大小要稍小一些。这样,当形成涡流产生部件时,从端面发射或者吸收的磁通、磁场的大部分通过涡流产生部件59d。因此,能够有效地产生涡流,Q值的调整幅度变大。
如图11的(a)~图11的(d)所示,形成涡流产生部件的位置也可以是外包装部件51上的任意位置。另外,涡流产生部件的大小能够各种各样地变形。这样,能够在外包装部件51上的所期望位置形成涡流产生部件,因此具有能够精细调整Q值的效果。另外,能够容易地形成涡流产生部件,因此对成本降低也有效果。此外,当然能够通过复合地组合图11的(a)~图11的(d)所示的涡流产生部件来对Q值进行微调整。
在以上所说明的第一~第五实施方式所涉及的线圈天线中,通过积极利用涡流,得到与以往所连接的串联电阻相同的功能。通过将本发明所涉及的线圈部件应用于线圈天线,能够以宽带确保稳定的通过特性。关于涡流产生部件,只要从使用导电性金属箔的带材部件、使用导电性金属材料的薄膜、使用导电性金属材料的薄带、使用导电性金属材料的涂膜、使用导电性金属材料的板状部件中选择任一个或者将它们组合而使用即可。
另外,通过使用涡流产生部件,在不提高采用了第一~第五实施方式所涉及的线圈天线的线圈天线系统整体的直流电阻而能够利用所产生的涡流使通过特性“钝化”。即,具有能够抑制线圈部件的通过特性的变化幅度的效果。另外,能够容易地形成涡流产生部件,因此具有能够降低制造成本的效果。另外,不需要使用在以往所用的线圈天线上连接的串联电阻,因此具有能够容易地实现线圈天线系统整体的小型化、单元化的效果。
另外,如上所述,通过涡流产生部件的附加来调整Q值,使通过特性“钝化”,能够使发送和接收信号的通信速度高速化。其结果,在无钥匙进入系统中能够进行正确的ID信息的通信,其结果,能够实现安全级别的提高。
另外,应用了本发明所涉及的线圈部件的线圈天线,积极利用了通过涡流产生部件将所激励的磁场的一部分或者全部变换为涡流损失的现象。因此,能够容易地将Q值调整为所期望的值。因而,无需对线圈天线外部连接电阻元件,因此能够实现线圈天线系统中的部件数的降低、直流电阻值的降低。另外,将涡流产生部件设置为与磁芯接触,因此能够将磁场和磁通有效地变换为涡流,从而能够调整Q值。另外,例如在将金属薄膜、金属薄带、金属镀膜、金属涂膜、板状部件等用于涡流产生部件的材料的情况下,能够在线圈天线的设计条件的允许范围内适当增减其厚度尺寸。通过增减厚度尺寸,能够增减Q值的调整范围。
此外,在本发明所涉及的第一~第五实施方式中,分别说明了设为矩形状的涡流产生部件,但是涡流产生部件的形状并不限定于矩形。涡流产生部件也可以是接触外包装部件的结构、或接触外包装部件以及磁芯的结构。另外,涡流产生部件也可以形成为覆盖磁芯以及/或者外包装部件的至少两个面以上。另外,涡流产生部件只要是能够对线圈的形成位置、磁通或磁场分布较强的位置集中产生涡流的形状就可以是任意形状。
如下确定线圈天线的谐振频率:在至少包括谐振频率的特定频带中,一边改变频率一边施加交流电流,将该电流值最大时的频率判别为谐振点。
此时,如本发明的第一实施方式那样,存在如下问题:当在线圈天线上形成涡流产生部件(调整Q值,使通过特性钝化)后想确定谐振频率时,为了使上述电流值的变化量变小,难以通过操作者的肉眼确认来确定谐振频率。
然而,本发明所涉及的第二~第四实施方式采用在制作内部线圈单体后形成涡流产生部件的结构。由此,通过采用如下方法来具有能够有效地制造具有准确的谐振频率的线圈天线的优点:在考虑了附加涡流产生部件时产生的谐振频率的变化量Δf的基础上调整内部线圈单体的谐振频率,之后形成涡流产生部件。
另外,关于涡流产生部件,从使用导电性金属箔的带材部件、由导电性金属材料形成的薄膜、由导电性金属材料形成的薄带、使用导电性金属材料的涂膜、使用导电性金属材料的板状部件中选择任一个、或者将它们组合而形成。因此,能够根据使用状况、制造条件来自由地选定涡流产生部件的材质,具有提高设计的自由度的效果。
另外,上述实施方式所涉及的线圈天线应用于无钥匙进入系统、电波时钟中,但是即使在其它用途中作为线圈部件使用也当然能够得到相同的功能、效果。

Claims (2)

1.一种线圈部件,其特征在于,具备:
被形成为平板状的磁芯;
缠绕所述磁芯的线圈;
外包装部件,其由具有中空部的长方体状的壳体形成;以及
带状的涡流产生部件,
其中,所述磁芯被插入于所述外包装部件的中空部,并且所述涡流产生部件形成为粘贴在所述磁芯以及所述外包装部件上。
2.根据权利要求1所述的线圈部件,其特征在于,
所述外包装部件由非导电性树脂形成。
CN2007800277578A 2006-07-21 2007-03-14 线圈部件 Active CN101501931B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006199881 2006-07-21
JP199881/2006 2006-07-21
PCT/JP2007/055100 WO2008010329A1 (fr) 2006-07-21 2007-03-14 Composant de bobine

Publications (2)

Publication Number Publication Date
CN101501931A CN101501931A (zh) 2009-08-05
CN101501931B true CN101501931B (zh) 2012-10-17

Family

ID=38956664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800277578A Active CN101501931B (zh) 2006-07-21 2007-03-14 线圈部件

Country Status (6)

Country Link
US (1) US8552827B2 (zh)
EP (1) EP2045878B1 (zh)
JP (1) JP5149180B2 (zh)
KR (1) KR101060115B1 (zh)
CN (1) CN101501931B (zh)
WO (1) WO2008010329A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024146A (ja) * 2009-07-18 2011-02-03 Mitsubishi Cable Ind Ltd アンテナ装置
JP5839036B2 (ja) * 2011-07-22 2016-01-06 日立金属株式会社 アンテナ
KR101823542B1 (ko) * 2012-10-04 2018-01-30 엘지이노텍 주식회사 무선충전용 전자기 부스터 및 그 제조방법
JP6229305B2 (ja) * 2013-05-17 2017-11-15 スミダコーポレーション株式会社 アンテナ装置およびアンテナ装置の製造方法
JP6186907B2 (ja) * 2013-06-06 2017-08-30 スミダコーポレーション株式会社 アンテナ用コイル装置
US9768509B2 (en) * 2013-08-09 2017-09-19 Sumida Corporation Antenna coil component, antenna unit, and method of manufacturing the antenna coil component
WO2015107797A1 (ja) * 2014-01-20 2015-07-23 株式会社村田製作所 アンテナ部品
KR101762778B1 (ko) 2014-03-04 2017-07-28 엘지이노텍 주식회사 무선 충전 및 통신 기판 그리고 무선 충전 및 통신 장치
JP6364906B2 (ja) * 2014-04-15 2018-08-01 スミダコーポレーション株式会社 アンテナ装置およびアンテナ装置の製造方法
JP6435699B2 (ja) * 2014-08-08 2018-12-12 スミダコーポレーション株式会社 コイル部品およびコイル部品の製造方法
US10403979B2 (en) * 2015-03-13 2019-09-03 Samsung Electro-Mechanics Co., Ltd. Antenna apparatus and electronic device including the same
JP6280898B2 (ja) * 2015-08-26 2018-02-14 株式会社東海理化電機製作所 アンテナ装置
JP2017098648A (ja) * 2015-11-19 2017-06-01 株式会社リコー アンテナ装置、通信装置、及びアンテナ装置の製造方法
JP2017103549A (ja) * 2015-11-30 2017-06-08 スミダコーポレーション株式会社 アンテナ装置およびアンテナ装置の製造方法
JP6923052B2 (ja) * 2016-04-28 2021-08-18 スミダコーポレーション株式会社 アンテナ装置
CN109196717B (zh) * 2016-06-03 2020-12-08 株式会社村田制作所 线圈天线
JP6950159B2 (ja) * 2016-09-29 2021-10-13 スミダコーポレーション株式会社 アンテナ装置
DE102016121335B4 (de) 2016-11-08 2018-11-29 Epcos Ag Magnetantenne mit verringerten Verlusten und Verwendung derselben
KR20180090078A (ko) * 2017-02-02 2018-08-10 삼성전기주식회사 무선 통신 안테나
JP6847752B2 (ja) * 2017-04-27 2021-03-24 株式会社ユーシン アンテナ装置、及びこれを備えたドアハンドル、移動体
JP6645622B2 (ja) * 2017-05-25 2020-02-14 株式会社村田製作所 アンテナ装置
JP7120602B2 (ja) * 2018-04-09 2022-08-17 東京パーツ工業株式会社 アンテナコイルおよびアンテナ装置
ES2940074T3 (es) * 2020-05-26 2023-05-03 Premo Sa Antena de baja frecuencia de largo alcance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1659742A (zh) * 2002-09-11 2005-08-24 西铁城时计株式会社 天线结构和无线电控制的时计
JP2006081140A (ja) * 2003-12-11 2006-03-23 Hitachi Metals Ltd アンテナ及びこれを用いた電波時計、キーレスエントリーシステム、rfidシステム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332049A (en) * 1965-11-30 1967-07-18 Tdk Electronics Co Ltd Magnetic core unit with shielded winding
JPS53130108A (en) 1977-04-20 1978-11-13 Takeda Chemical Industries Ltd Paper contained seed
JPS57153408A (en) * 1981-03-17 1982-09-22 Matsushita Electric Ind Co Ltd Coil and its manufacture
JP3517019B2 (ja) * 1995-03-15 2004-04-05 株式会社東芝 磁気共鳴診断装置
JP4223155B2 (ja) * 1999-08-31 2009-02-12 アジレント・テクノロジーズ・インク トランス装置
WO2003036760A1 (fr) 2001-10-22 2003-05-01 Sumida Corporation Bobine d'antenne et antenne de transmission
JP3512782B1 (ja) * 2002-09-11 2004-03-31 シチズン時計株式会社 アンテナ構造体及び電波利用時計
US6925893B2 (en) * 2002-09-17 2005-08-09 The Furukawa Electric Co., Ltd. Rotation sensor
EP1611639A1 (de) * 2003-04-10 2006-01-04 Schaffner Emv Ag Antenne mit einem ferritkern fur ein autotür-schliessystem
JP4415195B2 (ja) * 2005-12-08 2010-02-17 カシオ計算機株式会社 アンテナ装置及び電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1659742A (zh) * 2002-09-11 2005-08-24 西铁城时计株式会社 天线结构和无线电控制的时计
JP2006081140A (ja) * 2003-12-11 2006-03-23 Hitachi Metals Ltd アンテナ及びこれを用いた電波時計、キーレスエントリーシステム、rfidシステム

Also Published As

Publication number Publication date
CN101501931A (zh) 2009-08-05
JPWO2008010329A1 (ja) 2009-12-17
EP2045878A1 (en) 2009-04-08
EP2045878B1 (en) 2016-11-30
JP5149180B2 (ja) 2013-02-20
KR101060115B1 (ko) 2011-08-29
US8552827B2 (en) 2013-10-08
KR20090031698A (ko) 2009-03-27
EP2045878A4 (en) 2012-10-10
US20120176215A1 (en) 2012-07-12
WO2008010329A1 (fr) 2008-01-24

Similar Documents

Publication Publication Date Title
CN101501931B (zh) 线圈部件
JP3896965B2 (ja) リーダ/ライタ用アンテナ及び該アンテナを備えたリーダ/ライタ
JP5533136B2 (ja) アンテナ装置
JP3289572B2 (ja) チップアンテナ
CN101253587B (zh) 噪音滤波器
EP1640893B1 (en) Antenna for RFID tag
US7821371B2 (en) Flat magnetic element and power IC package using the same
JP2007537637A (ja) 誘導エネルギー伝送用アンテナ装置およびこのアンテナ装置の使用方法
CN105321655B (zh) 片式电子器件和用于安装片式电子器件的板
JP2002325013A (ja) アンテナコイル
JP2006295981A (ja) リーダ/ライタ用アンテナ及び該アンテナを備えたリーダ/ライタ
JP4117443B2 (ja) Rfid用アンテナコイルの製造方法
KR102198528B1 (ko) 코일 전자부품 및 그 제조방법
JP2011029678A (ja) アンテナ素子およびその製造方法
JPS6171609A (ja) インダクタンス素子
CN1971777A (zh) 线圈部件
US6344781B1 (en) Broadband microwave choke and a non-conductive carrier therefor
US6236289B1 (en) Broadband microwave choke with a hollow conic coil filled with powdered iron in a leadless carrier
JP2008022056A (ja) 送信用アンテナ及びキーレスエントリシステム
CN108695039A (zh) 线圈部件
KR200166183Y1 (ko) 전자파 차폐 전선
US20070279300A1 (en) Transmitting Antenna Arrangement For Emitting A Longwave Wake-Up Signal For An Id Transmitter In A Keyless Motor Vehicle Access System
JP2021068279A (ja) 磁性シート及び無線通信用タグ
JP6825226B2 (ja) アンテナ装置およびアンテナ装置の製造方法
JP2018019165A (ja) アンテナ装置、通信装置、およびアンテナ装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant