CN101423932A - 制造氧化镧复合物的方法 - Google Patents

制造氧化镧复合物的方法 Download PDF

Info

Publication number
CN101423932A
CN101423932A CNA2008101739405A CN200810173940A CN101423932A CN 101423932 A CN101423932 A CN 101423932A CN A2008101739405 A CNA2008101739405 A CN A2008101739405A CN 200810173940 A CN200810173940 A CN 200810173940A CN 101423932 A CN101423932 A CN 101423932A
Authority
CN
China
Prior art keywords
lanthanum
base material
raw material
molecule
molecule number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101739405A
Other languages
English (en)
Inventor
高岛章
村冈浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN101423932A publication Critical patent/CN101423932A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31641Deposition of Zirconium oxides, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31645Deposition of Hafnium oxides, e.g. HfO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

在基材上制造氧化镧复合物的方法,包括:基于每个镧原子,将H2O分子数、CO分子数和CO2分子数分别设定为二分之一或更小、五分之一或更小和十分之一或更小,所述H2O分子、CO分子和CO2分子来源于制造时气氛中的H2O气体组分、CO气体组分和CO2气体组分;和在基于每个镧原子将O2分子数设定为20或更大的条件下,同时向基材供给含有选自由镧、铝、钛、锆和铪组成的组的至少一种的金属原料以及氧原料气体,从而在所述基材上制造氧化镧复合物。

Description

制造氧化镧复合物的方法
相关申请的交互参考
本申请基于并要求享有于2007年10月31日提交的在先日本专利申请No.2007-284108的优先权权益;在此将其全部内容引入作为参考。
技术领域
本发明涉及制造氧化镧复合物的方法,所述复合物可表现令人满意的电绝缘和高介电常数。
背景技术
到目前为止,氧化物硅膜或氧氮化物硅将用作半导体集成电路中MOSFETs(金属氧化物半导体场效应晶体管)的栅极绝缘膜或FLUSH存储器中存储单元的电极绝缘膜。随着近来MOSFET和存储单元的小型化要求,同样强烈地需要降低栅极绝缘膜的厚度和绝缘膜(例如阻挡氧化物)的厚度。在这点上,氧化硅物膜和氧氮化物硅膜不能保持所述栅极绝缘膜和绝缘膜所需的绝缘。因此,尝试使用厚度降低的新型绝缘材料替代传统的氧化硅物膜和氧氮化物硅膜,同时可以充分保持电绝缘。因为氧化镧复合物如铝酸镧(LAO)和铪酸镧(LHO)具有高的介电常数和大的带隙,氧化镧有希望作为新的替代材料(参考文献1)。
为了在工业上使用氧化镧,需要开发一种可实现大规模生产的新的成膜方法和成膜装置。通常,在半导体生产过程的生产线中,在成膜步骤中会使用一些CVD(化学蒸气沉积)法。然而,因为镧的蒸气压很低,可能难以借助CVD法形成氧化镧复合物。在这点上,认为氧化镧复合物膜优选借助PVD(物理蒸气淀积)法形成,而不是CVD法(参考文献2)。
PVD法的例示可以是MBE(分子束外延)法。与溅射法等相比,MBE可表现良好的性能,例如原料供给率的易可控性和在原料供给期间对基材的低损害。
在由MBE法形成氧化物膜的情形下,同时供给金属原料和氧原料。例如,可以通过向预定基材同时供给铝原料、镧原料和氧原料而形成氧化镧(LAO)复合物膜。然而,通过MBE法形成氧化镧复合物膜时存在如下一些问题。
在镧原料供给率太高以致不能实现预定氧化的情形下,在得到的氧化镧复合物膜中可能产生一些氧化物缺陷。相反,在大规模生产中希望增加镧原料的供给率,然而氧化镧复合物的氧缺陷可能其固有的电绝缘。结果,不能形成实现最初设计的电绝缘的氧化镧膜。
[参考文献1]J.Appl.Phys.第76卷,第9期,1006(2007),Yasuo Nara
[参考文献2]USP 6,770,923
发明内容
本发明的一方面涉及在基材上制造氧化镧复合物的方法,包括:基于每个镧原子,将气氛中的H2O分子数、CO分子数和CO2分子数分别设定为二分之一或更小、五分之一或更小和十分之一或更小;和供给镧原料,含有选自由铝、钛、锆和铪组成的组的至少一种的金属原料。
附图说明
图1是显示要在一种实施方式中使用的MBE装置的结构示意图。
图2是显示一个实施例中MIS电容器的结构示意图。
图3是显示所述实施例中MIS电容器的电容-电压特性的曲线图。
图4也是显示所述实施例中MIS电容器的电容-电压特性的曲线图。
图5是显示所述实施例中MIS电容器的电流-电压特性的曲线图。
图6是显示所述实施例中MIS电容器的电容-电压特性的曲线图。
图7是显示在制造MONOS存储器的方法中的一个步骤的横断面视图。
图8是显示图7中所示步骤后的一个步骤的横断面视图。
图9是显示图8中所示步骤后的一个步骤的横断面视图。
图10是显示图9中所示步骤后的一个步骤的横断面视图。
图11是显示图10中所示步骤后的一个步骤的横断面视图。
发明详述
下文中,将参考附图详细描述本发明。图1是显示将根据这个实施方式中的制造方法使用的MBE装置的结构示意图。如图1所示的MBE装置只是举例说明,所以此实施方式中的制造方法不局限于所示的MBE装置,并因此可以使用另一种MBE装置。
因为在预定氧化镧复合物膜中作为主要组分的镧原料的蒸气压很低,通过MBE装置可以使镧原料的蒸气压增加到一定程度。在这点上,根据MBE装置可以有效并高效地迅速形成预定的氧化镧复合物膜。此外,与溅射装置等相比,根据MBE装置可以容易地控制预定氧化镧复合物膜的原料供给率和在原料供给期间降低基材损伤。
在如图1所示的MBE装置中,成膜室1放置在几乎MBE装置的中心,以便通过真空泵如涡轮式分子泵(未显示)将成膜室1的内部抽成真空。用于固定基材9的固定器10置于成膜室1中,而用于将基材9加热到预定温度的加热器12置于基材9的后侧。
旋转机构(未显示)连到固定器10上以便保持基材9上方的预定氧化镧复合物膜的厚度均匀。可以使旋转机构设置成在轴上并绕轴旋转。在此情形下,可以提高预定氧化镧复合物膜的厚度均匀性。然后,将闸门13放置在基材9上方以便开启和终止原料的供给。
在此实施方式中,固定器10由铬镍铁合金(Inconel)制成。铬镍铁合金是由铁、铬、铌、钼等制成的过渡金属合金并可表现高的耐氧性。因此,如下所述,即使供给较大量的氧,也可以抑制由氧造成的固定器10的腐蚀,由此可以延长固定器10的寿命。
在此实施方式中,与基材9接触的固定器10的固定部分11可以由氧化铝和氧化硅中的至少一种制成。在固定器10由铬镍铁合金制成的情况下,如果基材9是半导体基材如硅基材,铬镍铁合金的元素铬在某种程度上能掺入到半导体基材中,以致形成深杂质能级,并因此劣化半导体基材的性能。然而,如果固定部分11由如上所述的氧化铝等制成,则可以避免上述劣化半导体性能的缺点。
固定部分11可以由氧化铝等制成的膜覆盖,而不必直接由氧化铝等形成。
在此实施方式中,由铬镍铁合金制成固定器10不是必要的。在此实施方式中,由氧化铝等制成固定部分11也不是必要的。根据如下所述的实施方式中固有的制造方法,可以以高产出率(yield ratio)形成预定的氧化镧复合物膜。
然后,测量成膜室1中残留气体的分压的四极质谱仪2放置在成膜室1中基材9(固定器10)的附近。然后,用于测量来自相应金属原料源的金属原料的供给率的晶体振荡器类膜厚度计3也放置在成膜室1中基材9(固定器10)的附近。
然后,用于形成预定氧化镧复合物膜的原料源在成膜室1中基材9的对面放置。如图1所示,具体地说,努森池(Knudsen cell)14、15、16和电子束沉积源17、18、19顺时针放置。例如,将镧原料放入努森池14中,钛原料放入努森池15中,而铝原料放入努森池16中。然后,将铪原料放入电子束沉积源17中,锆原料放入电子束沉积源18中,而镧原料放入电子束沉积源19中。
在此实施方式中,将铪原料和锆原料放入电子束沉积源中,因为铪原料和锆原料的熔点非常高以致仅仅通过加热努森池可能使铪原料和锆原料的蒸气压变得很低,并因此不能形成预定的氧化镧复合物膜。此外,在此实施方式中,将镧原料放入努森池和电子束沉积源中,以致可以在宽范围内自由地控制镧原料的蒸气压,并因此可以有效且高效地形成预定的氧化镧膜。
然后,分别使闸门23位于努森池的开口上方,和使闸门24分别位于电子束沉积源的开口上方。通过打开和关闭相应的闸门可以开启和终止每种原料的供给。
在此实施方式中,努森池14和15的坩埚由钽制成而努森池16的坩埚由热解氮化硼(PBN)制成。PBN含少量杂质并可表现高导热率和高耐酸性。
这样设置努森池16以使开口缩成孔口,以便保持铝原料的供给量随时间恒定。或者,可以将努森池16的开口温度设定成高于努森池16的底部温度。在此情形下,可以如上所述保持铝原料的供给量恒定。在后一情形下,可以将努森池16的开口温度设定在990至1000℃的范围内,而可以将努森池16的底部温度设定在970至980℃的范围内。
在前一情形下,因为努森池的开口设置成孔口,经由孔口仅仅可以得到通过努森池中心区域的铝原料,与在努森池开口处铝原料的沉积无关,所以可以保持铝原料的供给量恒定。在后一情形下,因为将努森池的开口加热到预定温度,努森池开口处的沉积物熔融并移除,以保持努森池的开口表面,以致可以保持铝原料的供给量恒定。
然后,在努森池14至16和电子束沉积源17至19之间提供氧原料源(未显示)。氧原料经由管7从氧原料源供给臭氧发生器8。在此情形下,氧原料转化成臭氧原料,然后供到成膜室1中,即经由氧气阀4供到基材9。或者,氧原料通过臭氧发生器8供给氧自由基源6。在此情形下,氧原料转化成氧自由基原料,然后供到成膜室1中,即经由氧气阀4供到基材9。
氧原料(臭氧原料)的流速由位于管7中点的质量流量控制器5控制。
然后,为成膜室1提供制备室20,以便通过制备室20将成膜室1内部大致抽空。在此情形下,可以容易地将成膜室1的内部保持在高真空度下。没有制备室20,就需要长期抽空处理和烘焙处理以便达到高真空度,并因此劣化了预定氧化镧复合物膜的产出率。在此实施方式中,仅仅提供了制备室20,但除了制备20之外还可以提供另外的室。即,可以提供多个制备室。
此外,在制备室20中设置使基材9脱气的加热器22。然后,在成膜室1和制备室20之间设置闸阀21,以便基材9可以通过闸阀21的开关而在成膜室1和制备室20之间转移。
接着,将描述使用如图1所示的MBE装置制造预定氧化镧复合物膜的方法。在此情形下,将描述作为氧化镧复合物膜的代表性之一的铝酸镧(LAO)的制造方法。分别将镧原料和铝原料放入努森池14和16中。基材9选取n型Si基材。
首先,将努森池14和16的温度分别设定到规定温度,然后保持规定时间直到努森池14和16的坩埚温度可达到完全恒定。然后,打开闸门23以将镧原料和铝原料供给基材9。在此情形下,通过晶体振荡器类膜厚度计3测量镧原料和铝原料的供给率。例如,将镧原料的供给率和铝原料的供给率设定为“1”(即镧原料的供给率:铝原料的供给率=1:1)。
照常规用稀氢氟酸处理Si基材,以便实现Si基材表面的氢终止,然后将其引入到制备室20中。在制备室20中的真空度达到规定真空度后,通过制备室20中设置的脱气加热器22加热Si基材9。进行使用脱气加热器22的加热过程,以便在100℃或更高温度下使吸收在Si基材9上的湿气(H2O)脱气。加热过程的上限温度没有限制,但可以设定到400℃。
在脱气过程后,Si基材9经由闸阀21转移到成膜室1中,并安装在固定器10上。然后,在必要时将Si基材9加热到预定温度,以使吸收在Si基材9的(100)表面上的氢分子释放,并因此可以清洁Si基材9的(100)表面。例如,可以在400至800℃的温度范围内进行加热过程1至60分钟。
通过RHEED(反射高能电子衍射)、LEED(低能电子衍射)或STM(扫描隧道显微术)可以原位观察到Si基材9的清洁(100)表面。
然后,同时开启努森池闸门22和基材闸门9,以使镧原料、铝原料和氧原料同时供给Si基材9的表面。以此方法,可以形成预定的LAO膜。在此情形下,基于每个镧原子,需要在成膜过程气氛中将H2O分子数、CO分子数和CO2分子数分别设定为二分之一或更小、五分之一或更小和十分之一或更小。此外,基于每个镧原子,还需要在成膜过程气氛中将要供给Si基材9的氧原料中的O2分子数设定为20或更大。结果,可以以高产出率稳定地制造预定的LAO膜(即氧化镧复合物膜),该膜由于预定的介电常数而具有高电绝缘。
为了实现基于每个镧原子在成膜过程气氛中将H2O分子数、CO分子数和CO2分子数分别设定为二分之一或更小、五分之一或更小和十分之一或更小的要求,可以预先烘焙成膜室1,和/或可以将镧原料和铝原料预先在努森池14和16中脱气。
如果不与氧原料中O2分子反应的镧原料中的金属镧原子与保持在成膜过程气氛中的H2O分子、CO分子和CO2分子反应,则可以产生氢氧化镧复合物和/或碳酸镧复合物。因为氢氧化镧复合物和碳酸镧复合物的介电常数低,如果将大量氢氧化镧和/或碳酸镧引入氧化镧复合物膜中,则可不良地降低氧化镧复合物膜的介电常数。然而,如果满足上述关于H2O分子数、CO分子数和CO2分子数的要求,则可抑制氢氧化镧和碳酸镧的产生,以致防止氧化镧复合物膜介电常数的降低。
通过将努森池中的镧原料和铝原料加热到比其各自供料温度略低的各自规定温度,进行与上述关于H2O分子数、CO分子数和CO2分子数要求有关的脱气过程。例如,铝原料的脱气过程可以在800至1200℃的温度范围内进行,镧原料的脱气过程可以在900℃或更高,优选在1200至1400℃的温度范围内进行。脱气过程的时间取决于镧原料和铝原料中所含的H2O分子、CO分子和CO2分子的量,但通常设定为大约几个小时到几天。特别地,因为镧是镧系元素,尽管将镧原料保持在气氛中,镧原料也吸收大量O2分子。在这点上,为了达到上述关于H2O分子数、CO分子数和CO2分子数的要求,镧原料的脱气过程很重要。经过发明人的深入研究与开发,发现镧原料的脱气温度出人意料地非常高。
通过使用质量流量控制器5控制来自氧原料源的氧原料的供给量,可以达到基于每个镧原子在成膜过程气氛中将氧原料中的O2分子数设定为20或更大的要求。
从下列实施例可以阐明上述关于在成膜过程气氛中的H2O分子数、CO分子数和CO2分子数的要求和上述关于氧原料中O2分子数的要求,这些要求用于以高产出率制造由于预定介电常数而具有高电绝缘的氧化镧复合物膜。
(实施例)
表1列出了实验实施例1至4中的镧原料和铝原料的供给率以及O2分压。在此,O2分压通过四极质谱仪3来测量。
表1
镧原料和铝原料的供给率以及O2分压
 
O2分压[托] 镧原料和铝原料的供给率[cm-2·s-1] 编号
5×10-7 1×1013 实验实施例1
3×10-7 1×1013 实验实施例2
5×10-7 6×1012 实验实施例3
3×10-7 6×1012 实验实施例4
然后,H2O分压、CO分压和CO2分压分别是1×10-8托,5×10-9托和3×10-9托。H2O分压、CO分压和CO2分压同样通过四极质谱仪3来测量。
通过如上所述成膜过程形成LAO膜后,通过将固定器10从成膜室1转移到制备室20中,将其上具有LAO膜24的Si基材9从成膜室1转移到制备室20中。然后,从制备室20中取出具有LAO膜24的Si基材9。然后,使用LAO膜24制造MIS(金属-绝缘体-半导体)电容器。图2是MIS电容器的结构示意图。从图2可以明显看出,钼电极25通过电子束沉积形成于LAO膜24上,而铝电极26通过电阻加热沉积形成于Si基材9的后表面上。
图3和图4分别显示了实验实施例1和2中MIS电容器的电容-电压特性(CV特性),而图5显示了实验实施例1、3和4中MIS电容器的电流-电压特性(IV特性)。
在图3中,实验的CV特性曲线与理想的CV特性曲线相一致,作为实验实施例1中MIS电容器上计算的拟合曲线。此外,在图5中,实验的IV特性曲线与理论的FN隧道电流曲线相一致。因此,在实验实施例1中MIS电容器的LAO膜可以呈现令人满意的电绝缘。
参照图4,实验实施例2中MIS电容器的CV特性曲线呈现与各自测量频率相称的不同的平带(flat bands),并且与理想的CV特性曲线不一致。结果,实验实施例2中MIS电容器的CV特性劣化了。将实验实施例1和2中的MIS电容器比较,认为实验实施例2中MIS晶体管的CV特性的劣化是由氧原料供给不足引起的氧缺陷造成的,因为实验实施例2中仅仅O2分压与实验实施例1中的O2分压不同,而实验实施例2中的镧原料和铝原料的供给率与实验实施例1中的镧原料和铝原料的供给率相同。由此证明,在镧原料和铝原料的供给率设定为1×1013[cm-2·s-1]的条件下,O2分压需要为5×10-7托或更高。换句话说,证明了考虑到O2分压与镧原料供给率的比例,必须将O2分压设定到足够高。
如下所述获得镧原料和铝原料的供给率:首先通过ICP(电感耦合等离子体)分析来分析LAO膜,以便测量LAO膜中镧组分和铝组分的重量。然后,然后使LAO膜中镧组分和铝组分的重量分别除以镧原子量和铝原子量,以便得到每单位体积的元素镧的数目和元素铝的数目。然后,使每单位体积元素镧的数目和元素铝的数目乘以LAO膜的厚度,然后除以成膜时间。结果,可以获得镧原料和铝原料的预定供给率。
表2列出了实验实施例1至4中MIS晶体管的电特性。
表2
电特性结果
 
编号 CV特性 IV特性
实验实施例1
实验实施例2 × -
实验实施例3 ×
实验实施例4 ×
参照表2,实施例1中具有LAO膜的MIS晶体管可以表现令人满意的CV特性和IV特性。在这点上,将成膜条件量化,以便可以计算在氧原料中的将与Si基材碰撞的O2分子数,和残留在成膜过程气氛中的将与Si基材碰撞的H2O分子数、CO分子数和CO2分子数。如上所述,每种气体组分以压力(分压)单位表示,但每单位时间和单位面积将与Si基材碰撞的每种气体组分的数量可以通过“Hertz-Knudsen”公式计算:
J = 3.53 × 10 22 × P MT [ cm - 2 · s - 1 ] . . . . . . ( 1 )
P[托]:压力,M:分子量,T[K]:温度
因此,可以根据实验实施例1由公式(1)计算将与Si基材碰撞的O2分子数以及将与Si基材碰撞的H2O、CO和CO2分子数。表3列出了由此计算出的O2分子数和计算出的H2O、CO和CO2分子数,以及镧原料中的镧原子数和铝原料中的铝原子数。在公式(1)中,因为每种气体组分如O2气充满成膜室1并与Si基材接触,所以不把Si基材和每种气体组分如O2气的气体源之间的距离视为一个参数。
表3
将与基材碰撞的原子数或分子数
 
单位 Al La O2 H2O CO CO2
真空度[托] - - 5×10-7 1×10-8 5×10-9 3×10-9
原子数或分子数[cm-2·s-1] 1×1013 1×1013 2×1014 5×1012 2×1012 1×1012
参照表3,分别可以计算H2O分子数、CO分子数和CO2分子数与镧原子数和铝原子数的比例。在此情形下,使H2O分子数、CO分子数和CO2分子数除以镧原子数和铝原子数,并由此通过镧原子数和铝原子数标准化(其定义为“1”)。表4列出了由此计算的结果。
表4
O2分子、H2O分子、CO分子和CO2分子与镧原子和铝原子的比例
 
单位 Al La O2 H2O CO CO2
原子数或分子数[cm-2·s-1] 1 1 20 1/2 1/5 1/10
如上所述,O2分子数表示达到令人满意的电特性如CV特性和IV特性的下限值。然后,H2O分子数、CO分子数和CO2分子数来源于保留在成膜过程气氛中的H2O分子、CO分子和CO2分子,并因此并不来源于用于形成预定氧化镧复合物膜(LAO膜)的各自原料气体。在这点上,不应由镧原料和铝原料的供给率而考虑H2O分子数、CO分子数和CO2分子数,而由氧化镧复合物膜(LAO膜)的电绝缘来考虑。结果,在表3中列出的H2O分子数、CO分子数和CO2分子数相当于在O2分子数由于同样原因而设定为下限值的条件下,达到表2中列出的令人满意的电特性的上限值。
另一方面,为了以高产出率稳定地制造由于高介电常数而具有令人满意的电绝缘的氧化镧复合物膜,需要增加O2分压。因此,考虑到在成膜室1中安装的电离压力计、Si基材和将被氧原料中O2分子氧化的加热器上的氧原料消耗,可以将O2分压的上限值设置为1×10-4托。在此情形下,通过以与表3相同的方式使用公式(1),可以将要与Si基材碰撞的O2分子数计算为4×1016,然后,通过镧原子和铝原子数(=1×1013)标准化为4000。换句话说,基于每个镧原子,要供给Si基材的O2分子数的上限值可以计算为4000。
如上所述,另一方面,H2O分子数、CO分子数和CO2分子数来源于保留在成膜过程气氛中的H2O分子、CO分子和CO2分子,并因此并不来源于用于形成预定氧化镧复合物膜(LAO膜)的各自原料气体。在这点上,不应由镧原料和铝原料的供给率而考虑H2O分子数、CO分子数和CO2分子数,而由氧化镧复合物膜(LAO膜)的电绝缘来考虑。结果,尽管O2分子数的上限值设为4000,但还需要基于每个镧原子,在成膜过程气氛中将H2O分子数、CO分子数和CO2分子数分别设定为二分之一或更小、五分之一或更小和十分之一或更小,因为当氧原料中的O2分子数增加时H2O等分子数并不增加,H2O分子、CO分子和CO2分子保留在成膜过程的气氛中并在制造时被吸收到氧化镧复合物膜上,结果劣化了预定氧化镧复合物膜的电特性。
图6显示了实验实施例3和4中MIS晶体管的电容-电压特性(CV特性)。参照图6,实验的CV特性曲线与计算的理想CV特性曲线一致。因此证明,实验实施例3和4中的MIS晶体管可以表现令人满意的电特性。
相反,参照图5中的IV特性曲线,实验实施例3和4中MIS晶体管的漏电流比实验实施例1中MIS晶体管的漏电流大很多,这是因为在实验实施例1中,基于每个镧原子,H2O分子数、CO分子数和CO2分子数分别设定为二分之一、五分之一和十分之一,而在实验实施例3和4中,基于每个镧原子,H2O分子数、CO分子数和CO2分子数分别设定为超过二分之一、五分之一和十分之一。换句话说,因为在实验实施例3和4中H2O分子数、CO分子数和CO2分子数设定为超过相应上限值,劣化了相应MIS晶体管的IV特性,以致从相应MIS晶体管产生大的漏电流(参照表格)。从对LAO膜的HRBS(高分辨率卢瑟福反向散射(High-resolution Rutherford Back Scattering))分析表明,实验实施例1中得到的LAO膜中的碳含量低于实验实施例3和4中得到的LAO膜中的碳含量。
可以认为,LAO膜的碳组分来源于保留在成膜过程气氛中的CO气体组分和CO2气体组分。即,可以认为,保留在气氛中的CO气体组分和CO2气体组分在制造时掺入到LAO膜中,因为不与氧原料中O2分子反应的镧原料中的镧原子可以与保留在气氛中的H2O分子、CO分子和CO2分子反应,以致产生氢氧化镧和碳酸镧。在这点上,因为实验实施例3和4中的H2O分子数、CO分子数和CO2分子数设定为大于实验实施例1中的H2O分子数、CO分子数和CO2分子数,实验实施例3和4中氢氧化镧和碳酸镧的产生率可大于实验实施例1中氢氧化镧和碳酸镧的产生率,从而劣化了在实验实施例3和4中得到的LAO膜的电绝缘,并由此增加了含LAO膜的MIS晶体管的漏电流。
通常,H2O分子、CO分子和CO2分子在氧化硅膜和氧化铝膜的形成中分别起助氧化剂的作用。然而,已经证明,H2O分子、CO分子和CO2分子劣化LAO膜。
在实验实施例2中,基于每个镧原子将H2O分子数、CO分子数和CO2分子数分别设定为相应上限值,即二分之一、五分之一和十分之一,但O2分子数设定为小于20这个相应下限值(参照表格)。
在实验实施例中,镧原料来自于相应的努森池,但铝原料、钛原料等可以来自于相应的电子束沉积源。此外,在实验实施例中制造LAO膜,但通过使用另外组分如铪、锆和钛替换氧化镧复合物膜的铝组分可以制造另外的氧化镧复合物膜。在这些情形下,由此获得的具有相应氧化镧复合物膜的MIS晶体管的电特性以上述相同方式取决于H2O分子数、CO分子数、CO2分子数和O2分子数。即,如果氧化镧复合物膜掺入保留在气氛中的H2O分子、CO分子和CO2分子,则可能劣化氧化镧复合物膜的电特性,其特征在于氧化镧复合物膜。
在制造LAO膜的情形下,可以使用自由基氧原料和臭氧原料来代替氧原料气体。因为自由基氧原料和臭氧原料的氧化性高于氧原料气体的氧化性,即使自由基氧原料或臭氧原料的分压设定为小于5×10-7托也可获得如上所述相同的功能/效果,因为在较低分压下可降低氧缺陷的产生率。
在使用LAO膜时,可以容易地形成氧化铝膜和LAO膜的多层结构。例如,首先,在关闭镧原料努森池的闸门的条件下,供给铝原料与氧原料以便形成铝膜,然后通过打开相应努森池的闸门供给镧原料,以便形成LAO膜。在如图1所示的MBE装置中,因为可以借助电子束沉积供给铪原料,可以形成二氧化铪膜和LAO膜的多层结构。
可以使用另外的镧系元素以便形成另外的铝酸盐膜或铪酸盐膜。在此情形下,通过控制相应努森池的温度可以以与LAO膜相同的方式制造具有另外镧系元素的铝酸盐膜和铪酸盐膜,因为镧系元素原料很可能象镧原料那样在高温下供给。在这点上,氧化镧复合物除镧(La)之外还可能含有另外的镧系元素。
在实验实施例中,使用Si基材,但可以使用另外的半导体基材或除半导体基材以外的市场上可买到的另外基材。
然后,将MONOS存储器描述为使用如上所述获得的氧化镧复合物膜的实际装置。
图7至11是解释本实施方式中MONOS存储器的制造过程的横断面视图。首先,如图7所示,氮氧化硅膜32作为例如5nm厚的隧道(tunneling)绝缘层形成于Si基材31上,然后借助CVD法形成作为例如5nm厚的电荷储存层的氮化硅层33,然后借助CVD法形成作为例如5nm厚的阻挡绝缘层的氧化铝层34。此后,借助如上所述的MBE法形成例如5nm厚的铝酸镧层35,然后借助溅射形成作为控制栅电极的氮化钽层36。
在此实施方式中,在形成氧化铝层34后,在1000℃的温度下加热由此得到的层状结构以便使氧化铝层34稳定,然后在氧化铝层34上形成铝酸镧层35。在此情形下,可以防止作为电荷储存层的氮化硅层33和铝酸镧层35之间的反应。
然后,如图8所示,在氮化钽层36上形成掩模37,以便借助离子蚀刻沿分层方向蚀刻氮化钽层36至氮氧化硅层32,从而使Si基材31的表面部分暴露(图9)。然后,如图10所示,将作为施主杂质的无机发光材料离子植入Si基材31,以便形成离子植入区域38。通过在900℃的温度下的热处理活化离子植入区域38,以便将其转化成相应的活化区域39。以此方式,可以制造预定的MONOS存储器。
尽管参考上述实施例详细描述了本发明,但本发明不局限于上述公开内容,而且在不脱离本发明范围的情况下可以做出每个种类的改变和改进。

Claims (13)

1.在基材上制造氧化镧复合物的方法,该方法包括:
基于每个镧原子,在气氛中将H2O分子数、CO分子数和CO2分子数分别设定为二分之一或更小、五分之一或更小和十分之一或更小;和
在基于每个镧原子将O2分子数设定为20或更大的条件下,同时向所述基材供给镧原料、含有选自由铝、钛、锆和铪组成的组的至少一种的金属原料以及氧原料气体,从而在所述基材上制造含有所述选自由铝、钛、锆和铪组成的组的至少一种的所述氧化镧复合物。
2.如权利要求1所述的方法,其中通过使用努森池的电子束沉积法或分子束外延法将选自由镧、铝和钛组成的组的至少一种供给所述基材。
3.如权利要求1所述的方法,其中通过电子束沉积将锆和铪中的至少一种供给所述基材。
4.如权利要求1所述的方法,进一步包括:在将所述镧原料供给所述基材之前,在900℃或更高的温度下加热所述镧原料。
5.如权利要求1所述的方法,进一步包括:当铝原料被选为所述金属原料时,在将所述铝原料供给所述基材之前,在800至1200℃的温度范围内加热所述铝原料。
6.如权利要求1所述的方法,其中所述氧原料气体含有氧自由基和臭氧中的至少一种。
7.如权利要求1所述的方法,进一步包括:在所述基材上制造所述氧化镧复合物之前,在100℃或更高的温度下加热所述基材。
8.如权利要求2所述的方法,其中当铝原料被选为所述金属原料时,在将所述努森池开口的温度设定为高于所述努森池底部温度的条件下,通过使用所述努森池的分子束外延法将所述铝原料供给所述基材。
9.如权利要求2所述的方法,其中当铝原料被选为所述金属原料时,在使所述努森池的开口变窄的条件下,通过使用所述努森池的分子束外延法将所述铝原料供给所述基材。
10.如权利要求1所述的方法,进一步包括:使用由铬镍铁合金制成的固定器固定所述基材。
11.如权利要求10所述的方法,其中与所述基材接触的所述固定器的固定部分含有氧化铝和氧化硅中的至少一种。
12.如权利要求1所述的方法,其中所述基材是半导体基材。
13.如权利要求12所述的方法,其中所述半导体基材是硅基材。
CNA2008101739405A 2007-10-31 2008-10-31 制造氧化镧复合物的方法 Pending CN101423932A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007284108 2007-10-31
JP2007284108A JP5100313B2 (ja) 2007-10-31 2007-10-31 酸化ランタン化合物の製造方法

Publications (1)

Publication Number Publication Date
CN101423932A true CN101423932A (zh) 2009-05-06

Family

ID=40581305

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101739405A Pending CN101423932A (zh) 2007-10-31 2008-10-31 制造氧化镧复合物的方法

Country Status (4)

Country Link
US (1) US7736446B2 (zh)
JP (1) JP5100313B2 (zh)
KR (1) KR20090045106A (zh)
CN (1) CN101423932A (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575362B2 (ja) * 2003-03-17 2010-11-04 シグマ−アルドリッチ・カンパニー 金属酸化物層または膜を成膜するための前駆体
JP5178152B2 (ja) * 2007-11-05 2013-04-10 株式会社東芝 相補型半導体装置及びその製造方法
TWI467045B (zh) * 2008-05-23 2015-01-01 Sigma Aldrich Co 高介電常數電介質薄膜與使用鈰基前驅物製造高介電常數電介質薄膜之方法
TW200949939A (en) * 2008-05-23 2009-12-01 Sigma Aldrich Co High-k dielectric films and methods of producing using titanium-based β -diketonate precursors
FR3025220B1 (fr) * 2014-09-03 2016-09-09 Riber Dispositif sous vide pour le traitement ou l'analyse d'un echantillon
FR3025219B1 (fr) * 2014-09-03 2016-12-02 Riber Dispositif sous vide pour le traitement ou l'analyse d'un echantillon
JP6562248B2 (ja) * 2015-05-12 2019-08-21 国立研究開発法人情報通信研究機構 超伝導トンネル接合素子の形成方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3482094D1 (de) * 1983-07-01 1990-06-07 Hitachi Ltd Bei hoher temperatur stabiler katalysator, verfahren zu dessen herstellung und verfahren zur durchfuehrung von chemischen reaktionen unter dessen verwendung.
US4879079A (en) * 1984-07-16 1989-11-07 Gte Products Corporation Formation of lanthanum aluminate
JPH0682651B2 (ja) * 1985-05-30 1994-10-19 株式会社日立製作所 半導体装置用エピタキシヤル絶縁膜とその製造方法
US5055169A (en) * 1989-03-17 1991-10-08 The United States Of America As Represented By The Secretary Of The Army Method of making mixed metal oxide coated substrates
JPH04285012A (ja) * 1991-03-15 1992-10-09 Fujitsu Ltd 酸化物超伝導体薄膜の形成方法
US5470668A (en) * 1994-03-31 1995-11-28 The Regents Of The University Of Calif. Metal oxide films on metal
US5478610A (en) * 1994-09-02 1995-12-26 Ceram Incorporated Metalorganic chemical vapor deposition of layered structure oxides
US6077344A (en) * 1997-09-02 2000-06-20 Lockheed Martin Energy Research Corporation Sol-gel deposition of buffer layers on biaxially textured metal substances
JP3965711B2 (ja) * 1996-10-25 2007-08-29 株式会社日立製作所 窒素酸化物の浄化触媒及び浄化方法
US6156630A (en) * 1997-08-22 2000-12-05 Micron Technology, Inc. Titanium boride gate electrode and interconnect and methods regarding same
EP1029101B1 (de) * 1997-11-03 2001-09-12 Siemens Aktiengesellschaft Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht, und verfahren zu dessen herstellung
US6404027B1 (en) * 2000-02-07 2002-06-11 Agere Systems Guardian Corp. High dielectric constant gate oxides for silicon-based devices
JP2002134485A (ja) * 2000-10-23 2002-05-10 Matsushita Electric Ind Co Ltd 絶縁膜製造装置
US6770923B2 (en) * 2001-03-20 2004-08-03 Freescale Semiconductor, Inc. High K dielectric film
US6893984B2 (en) * 2002-02-20 2005-05-17 Micron Technology Inc. Evaporated LaA1O3 films for gate dielectrics
US7049192B2 (en) * 2003-06-24 2006-05-23 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
US7105886B2 (en) * 2003-11-12 2006-09-12 Freescale Semiconductor, Inc. High K dielectric film
US20050242387A1 (en) * 2004-04-29 2005-11-03 Micron Technology, Inc. Flash memory device having a graded composition, high dielectric constant gate insulator
US7494939B2 (en) * 2004-08-31 2009-02-24 Micron Technology, Inc. Methods for forming a lanthanum-metal oxide dielectric layer
US7514387B2 (en) * 2005-02-15 2009-04-07 Umicore Ag & Co. Kg Reformer and method of making the same
US7504085B2 (en) * 2005-05-12 2009-03-17 Basf Catalysts Llc Alumina-based perovskite catalysts and catalyst supports
JP4868910B2 (ja) * 2006-03-30 2012-02-01 株式会社東芝 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US20090107586A1 (en) 2009-04-30
US7736446B2 (en) 2010-06-15
KR20090045106A (ko) 2009-05-07
JP2009111275A (ja) 2009-05-21
JP5100313B2 (ja) 2012-12-19

Similar Documents

Publication Publication Date Title
Wilk et al. Hafnium and zirconium silicates for advanced gate dielectrics
US8088678B2 (en) Semiconductor manufacturing apparatus and method
CN101423932A (zh) 制造氧化镧复合物的方法
Van Hemmen et al. Plasma and thermal ALD of Al2O3 in a commercial 200 mm ALD reactor
TW564549B (en) Semiconductor device and the manufacturing method thereof
US20050238808A1 (en) Methods for producing ruthenium film and ruthenium oxide film
CN101471254B (zh) 形成介电膜的方法
Chin et al. Sm2O3 gate dielectric on Si substrate
Kukli et al. Evaluation of a praseodymium precursor for atomic layer deposition of oxide dielectric films
JP2007513498A (ja) FETゲート電極用のCVDタンタル化合物(TaおよびNを含む化合物の化学的気相堆積方法および半導体電界効果デバイス)
Cho et al. High-k properties of atomic-layer-deposited HfO 2 films using a nitrogen-containing Hf [N (CH 3) 2] 4 precursor and H 2 O oxidant
CN101523593A (zh) 半导体装置制造方法以及半导体装置
TWI269370B (en) Film formation method for forming metal oxide on the substrate surface
Kim et al. Electrical properties of low-temperature SiO2 thin films prepared by plasma-enhanced atomic layer deposition with different plasma times
Torrison et al. Stoichiometric and non-stoichiometric films in the Si–O–N system: mechanical, electrical, and dielectric properties
CN111430228A (zh) 一种超高介电常数介质薄膜的制备方法
JP2004311782A (ja) 成膜方法及び成膜装置
Papadatos et al. Characterization of ruthenium and ruthenium oxide thin films deposited by chemical vapor deposition for CMOS gate electrode applications
JP5187736B2 (ja) 薄膜堆積方法
JPH0290568A (ja) 薄膜トランジスタの製造方法
Wang et al. Effect of NH3 on the fabrication of HfN as gate-electrode using MOCVD
EP3413333B1 (en) Formation of metal oxide layer
Karim et al. AVD and MOCVD TaCN-based Films for Gate Metal Applications on High k Gate Dielectrics
Shao et al. Interfacial structure and electrical properties of LaAlO 3 gate dielectric films on Si by metalorganic chemical vapor deposition
Sprenger Electron Enhanced Atomic Layer Deposition (EE-ALD) for Room Temperature Growth of Gallium Nitride, Silicon, and Boron Nitride Films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090506