CN101421860A - 在高温超导体上施用金属覆盖层的方法 - Google Patents

在高温超导体上施用金属覆盖层的方法 Download PDF

Info

Publication number
CN101421860A
CN101421860A CNA2007800128357A CN200780012835A CN101421860A CN 101421860 A CN101421860 A CN 101421860A CN A2007800128357 A CNA2007800128357 A CN A2007800128357A CN 200780012835 A CN200780012835 A CN 200780012835A CN 101421860 A CN101421860 A CN 101421860A
Authority
CN
China
Prior art keywords
solution
layer
metal
temperature superconductor
metal level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800128357A
Other languages
English (en)
Inventor
M·贝克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Zenergy Power GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zenergy Power GmbH filed Critical Zenergy Power GmbH
Publication of CN101421860A publication Critical patent/CN101421860A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/83Element shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemically Coating (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

为了在条形高温超导体(HTSC)的超导层上施用金属层,首先向超导层施用有机金属盐或无机金属盐溶液。然后,当使用有机金属盐溶液时通过加热该溶液,当使用无机金属盐溶液时通过施用还原溶液并然后加热已施用的溶液,从而使该溶液中所含金属沉积在HTSC层上。

Description

在高温超导体上施用金属覆盖层的方法
本发明涉及制造包含基底的条形高温超导体(HTSC)的方法,该基底上施用了用于高温超导的层,在该层上施用金属层。
条形HTSC由主要为金属的基底、缓冲层和施用在缓冲层上的HTSC层构成。HTSC层是铜酸盐超导体,主要是稀土金属-钡-铜氧化物的超导体,例如钇-钡-铜氧化物(YBCO)的超导体。从WO 01/08233中获知,将两个这类条形导体结合以形成所谓的中性纤维导体。为此,在每一HTSC层施用薄金属覆盖层。然后,将两个覆盖层焊接在一起。覆盖层用于使HTSC层钝化,并充当促进粘合的底涂层。
还已知将附加金属层,例如铜,电镀到金属覆盖层上。在电镀之前,必须对HTSC层施用金属覆盖层,否则HTSC层会参与电化学反应。如果HTSC层参与电化学反应,则HTSC层的载流能力降低。
这种金属覆盖层是通过物理方法制备的,例如溅射法。这些方法在真空下进行,并要求高的装置支出。
本发明的目的是提供制造具有覆盖层的条形HTSC的方法,其比相应的物理方法更经济。
该目的通过金属覆盖层的湿化学施用得以实现。为此,首先在用于高温超导的层上施用金属-有机或无机金属盐溶液。然后,使溶液中包含的金属或所含金属沉积在HTSC层上;在使用金属-有机盐溶液的情况下,这通过加热该溶液进行,在使用无机金属盐溶液的情况下,通过施用还原溶液并然后加热施用的溶液而进行。通过最后提到的步骤加速金属层的形成。在这两种情况下,都通过施加热,例如通过分解,特别是通过热解和/或气化,从金属层上去除在其制成后留在金属层上的金属盐溶液残留物,即各个所用的金属盐的溶剂和剩余配体。
用于高温超导的层可以是完成的HTSC,例如YBa2Cu3O6.6,或是尚未掺杂的“HTSC”的所谓HTSC前体层,例如YBa2Cu3O6
从US 4,971,944中获知HTSC-金复合体,其通过将预先涂有金的HTSC粒子压制而制得。为此,首先制备AuCl3溶液和HTSC粒子的悬浮液。然后,通过施用热并任选添加还原剂,在HTSC粒子上制备金层。但是,该方法尚未证实是可实行的,因为必须通过过滤去除所有反应产物。这对条形HTSC而言不可能。此外,必须小心以使所用溶剂绝对不含水,否则会形成侵蚀铜酸盐HTSC的盐酸。即使注意这一点,后面与空气中所含的水蒸气的接触也会不可避免地导致盐酸形成,因为在过滤过程中,含Cl的反应产物始终会留在HTSC粒子上。但是,当进行本发明的方法时,在条形HTSC粒子上没有留下侵蚀HTSC的残留物。
优选地,所用金属盐含有贵金属离子,例如银和/或金和/或铂的离子。这样沉积的金属层对环境影响特别惰性,并且不会侵蚀HTSC层。
优选地,在金属盐溶液中加入纳米级金属粒子。纳米级金属粒子具有小于大约120纳米的平均最大直径。如果使用无机金属盐溶液,纳米级金属粒子也可以加入还原溶液中。由于纳米级金属粒子,覆盖层的厚度增加。
优选地,金属盐溶液饱和。这也增加了所得覆盖层的厚度。
如果在用于高温超导的层上施用金属-有机盐溶液,则这优选由Me-(六氟乙酰丙酮)(1,5-环辛二烯)和/或Me-五氟丙酸盐和/或Me-β-二酮化物和/或Me-碳酸盐和/或Me-NR-R和/或Me-(CR2)n-R和/或Me-CO-R和/或Me-COO-R和/或Me-CONR-R和/或Me=CR-R构成,其中Me代表贵金属,R代表有机残基,n代表化学计量因数。
如果使用无机金属-盐溶液,则该金属-盐溶液优选可以含有Me-硝酸盐和/或Me-乙酸盐和/或Me-柠檬酸盐和/或Me-三氟乙酸盐和/或Me-酒石酸盐和/或Me-OH。还原溶液优选含有甲醛和/或肼和/或硼烷和/或硫化合物。一些金属盐也可以被脲还原。
如果还原溶液仅含甲醛作为还原剂,则金属与甲醛的比率优选为大约1:1至大约5:1。
如果还原溶液仅含二甲胺-硼烷作为还原剂,则金属与二甲胺-硼烷的比率优选为大约1:2至大约1:10。
一些金属,例如银,例如在较高温度下可被O2扩散渗透。如果在用于高温超导的层上施用这类金属的金属层,则也可以在施用金属层后实现O2对HTSC的掺杂。在施用金属层之前的部分掺杂和之后的部分掺杂也是可以的。
可以重复所述方法以施用其它金属层。本发明方法的不同实施方案可以彼此结合。例如,首先可以根据权利要求1在超导层上施用金属-有机盐溶液,然后加热产生金属层,然后可以根据权利要求4,在之前施用的金属覆盖层上施用无机金属-盐溶液,然后施用还原溶液。然后,将该溶液加热以促进金属层的形成,并使过量溶剂蒸发。
以相同方式,可以以电化学方式施用另一金属层。
下面,在三个实施例中更详细描述本发明。
要被涂布的HTSC样品各自具有在单晶基底(STO(100))上或在缓冲金属基底条上的YBCO层(厚度d~300纳米)。YBCO层是以湿化学方式制备的。YBCO层和缓冲金属基底的制备分别从DE 10 2004 041 053.4和DE 10 2004 038 030.9中获知。类似地,根据其它方法制成的YBCO层也可以如实施例中所述涂布。
实施例1:
使用(1,5-环辛二烯)-(六氟乙酰丙酮)-银(I)(Aldrich公司供应,99%)在用于光谱学的甲苯(Merck公司供应)中的、浓度大约1.5M的溶液作为涂布溶液。通过浸涂法以大约0.4厘米/秒的牵拉(drawing-through)速度、在溶液中最多40秒的停留时间制备样品。或者,通过“喷墨”法,即用根据喷墨原理操作的印刷头,在1平方厘米上施用大约1微升溶液(也可以是大约0.5至大约10微升/平方厘米)。在每次涂布操作后,蒸发挥发性组分,并在大约300℃在大约2分钟内热解。第一涂层是在HTSC层上的不可抹去的银层。该方法重复最多三次。由此形成几乎致密的、即封闭的银膜。
在该方法的一个变体中,将Ag纳米粒子悬浮在涂布溶液中。纳米粒子在涂料悬浮液中的浓度为最多5重量%。以1至2重量%的浓度获得了较佳涂布结果。该浓度仅在一个涂布周期后就产生了封闭的覆盖层。
在矩形的所谓短样品上以及在条带上测试该方法的该变体。在涂布操作后,在牵拉程序中用铜电镀这些条带。作为电解质,使用被硫酸酸化的铜电解质(硫酸铜相当于50克/升Cu;硫酸相当于25毫升/升;盐酸相当于60毫克/升Cl)。电镀操作在15至40℃、优选在25℃的浴温度进行。电流密度为0.3或0.5kA/m2。在浴中5分钟的停留时间产生了2至10微米铜的层厚度。层是致密的,但不是最佳地平滑和光泽的。通过添加浓度<0.1%的匀平剂和光亮剂,例如硫脲、硫代羧酸衍生物和/或聚乙二醇化合物,可显著改进电镀结果。由此,制备3微米厚的层,其尽管厚度小,但与不用所示添加剂制成的8微米厚的铜层相比明显更平滑和更致密,即更“不含间隙”。
实施例2:
借助两个印刷头在具有金属条基底的条形HTSC上连续进行涂布操作,这两个印刷头各自根据“喷墨”法直接相继地将溶液施用到各个HTSC的表面上。经由第一印刷头,在基底上施用0.1-2微升/平方厘米的硝酸银溶液。紧接此后经由第二印刷头将含有甲醛(优选比率Ag/甲醛=2:1,可以是1:1至5:1)或二甲胺-硼烷(优选比率Ag/二甲胺-硼烷=1:6,可以是1:2至1:10)的还原溶液“印刷”到条形HTSC上,由此在之前涂施的硝酸银溶液上施用各还原溶液。然后通过连续穿过炉子将条带干燥:首先在60℃(可以是40-80℃)下2分钟(可以是0.5至4分钟),然后在150℃(可以是100-210℃)下5分钟(可以是3-15分钟)。由此,根据施用的硝酸银溶液的浓度和量,获得了0.2至3微米的致密的不可抹去的银层。饱和的未酸化硝酸银溶液的使用经证实是最佳的。
为了减少可溶组分的量和为了更迅速获得致密的覆盖层,可以以最多大约5重量%(最好大约1重量%)的浓度在第二涂施溶液(即还原溶液)中加入纳米粒子。试验了Ag和Cu,但其它金属或合金也可行,例如贵金属或贵金属合金。
作为电化学最终涂布操作,一方面进行根据实施例1的镀铜,另一方面镀镍。镀铜的结果与第一实施例的那些相当。
对于电化学镀镍,选择基于氨基磺酸镍的电解质(氨基磺酸镍相当于100克/升Ni;氯化镍相当于25克/升Cl;硼酸40克/升)。用硼酸调节电解质的pH值至大约3.5至大约4.5。在60℃的浴温进行电镀操作。不应该超过65℃的值。电流密度为大约0.5kA/m2至大约2kA/m2。在浴中3-5分钟的停留时间下,获得了2至30微米的镍层厚度。可以通过添加润湿剂(大约1毫升/升)提高层的均匀性。一般而言,<0.6kA/m2的较低电流强度和较长停留时间产生更硬和更光滑的层,即孔隙非常少。与大约5微米的镍层厚度对应的0.5kA/m2的电流强度和大约5分钟的停留时间经证实是最佳的。
实施例3:
在已经结晶但尚未负载氧的钇-钡-铜氧化物层上进行涂布操作。相应地,YBCO层尚未掺杂,并因此是反铁磁性的。作为涂布溶液,使用(1,5-环辛二烯)-(六氟乙酰丙酮)-银(I)(Aldrich公司供应,99%)在用于光谱学的甲苯(Merck公司供应)中的、浓度大约1.5M的溶液。通过浸涂法以大约0.4厘米/秒的牵拉速度和在溶液中最多40秒的停留时间制备样品。或者,通过“喷墨”法,即用根据喷墨原理操作的印刷头,在1平方厘米上施用大约1微升溶液(也可以是大约0.5至大约10微升/平方厘米)。在每次涂布操作后,蒸发挥发性组分。然后在500℃在大约2小时内热解。使用这种热解,还能够使钇-钡-铜氧化物层充氧。第一涂层是在HTSC层上的不可抹去的银层。该方法重复最多三次。由此形成基本致密的、即封闭的银膜。
权利要求书(按照条约第19条的修改)
1.制造条形薄层HTSC的方法,其中在条形基底上施用用于高温超导的层,并在该层上施用金属层,其特征在于该金属层是使用具有配体的金属盐的溶液以湿化学方式施用的,所述溶液在金属层制成之后留下的残留物通过加热而从用于高温超导的层上去除。
2.根据权利要求1的方法,其特征在于:
(a)在用于高温超导的层上施用至少一种金属-有机盐溶液,和
(b)将施用的溶液加热以形成金属层。
3.根据权利要求2的方法,其特征在于所述溶液含有Me-(六氟乙酰丙酮)(1,5-环辛二烯)、和/或Me-五氟丙酸盐、和/或Me-β-二酮化物、和/或Me-碳酸盐、和/或Me-NR-R、和/或Me-(CR2)n-R、和/或Me-CO-R、和/或Me-COO-R、和/或Me-CONR-R、和/或Me=CR-R,其中Me代表贵金属,R代表有机残基,n代表化学计量因数。
4.根据权利要求1的方法,其特征在于:
(a)在用于高温超导的层上施用无机金属盐溶液,
(b)在该溶液上施用还原溶液,和
(c)将施用的溶液加热以促进金属层的形成。
5.根据权利要求4的方法,其特征在于在步骤(a)中施用的溶液含有Me-硝酸盐、和/或Me-乙酸盐、和/或Me-柠檬酸盐、和/或Me-酒石酸盐、和/或Me-三氟乙酸盐、和/或Me-OH,其中Me代表贵金属。
6.根据权利要求4或5任一项的方法,其特征在于所述还原溶液含有甲醛、和/或肼、和/或硼烷、和/或脲、和/或硫化合物。
7.根据权利要求6的方法,其特征在于金属与甲醛的比率为大约1:1至大约5:1。
8.根据权利要求7的方法,其特征在于金属与二甲胺-硼烷的比率为大约1:2至大约1:10。
9.根据权利要求2至8任一项的方法,其特征在于在富氧气氛中将所述用于高温超导的层和制成的金属层加热。
10.根据权利要求2至9任一项的方法,其特征在于至少步骤(a)重复至少一次。
11.根据权利要求2至10任一项的方法,其特征在于步骤(b)重复至少一次。
12.根据权利要求2至11任一项的方法,其特征在于步骤(a)中所用的金属盐含有银和/或金和/或铂的离子。
13.根据权利要求2至12任一项的方法,其特征在于在所述溶液的至少之一中加入纳米级金属粒子。
14.根据权利要求13的方法,其特征在于所用纳米级金属粒子为银和/或金和/或铂的粒子。
15.根据权利要求2至14任一项的方法,其特征在于所述溶液之一是饱和的。
16.根据权利要求2至15任一项的方法,其特征在于施用至少一个追加的金属层。
17.根据权利要求16的方法,其特征在于所述追加的金属层是以电化学方式施用的。
18.根据权利要求17的方法,其特征在于,在电化学沉积法中,使用含铜和/或贵金属和/或镍和/或铁和/或锡和/或锌和/或磷的离子的电解质。
19.根据权利要求1至18任一项的方法,其特征在于施用HTSC前体作为用于高温超导的层。
20.根据权利要求1至18任一项的方法,其特征在于在施用金属层之前用O2将用于高温超导的层掺杂。

Claims (20)

1.制造条形薄层HTSC的方法,其中在条形基底上施用用于高温超导的层,并在该层上施用金属层,其特征在于该金属层是使用具有配体的金属盐的溶液以湿化学方式施用的,所述溶液在金属层制成之后留下的残留物能够通过加热从用于高温超导的层上去除。
2.根据权利要求1的方法,其特征在于:
(a)在用于高温超导的层上施用至少一种金属-有机盐溶液,和
(b)将施用的溶液加热以形成金属层。
3.根据权利要求2的方法,其特征在于所述溶液含有Me-(六氟乙酰丙酮)(1,5-环辛二烯)、和/或Me-五氟丙酸盐、和/或Me-β-二酮化物、和/或Me-碳酸盐、和/或Me-NR-R、和/或Me-(CR2)n-R、和/或Me-CO-R、和/或Me-COO-R、和/或Me-CONR-R、和/或Me=CR-R,其中Me代表贵金属,R代表有机残基,n代表化学计量因数。
4.根据权利要求1的方法,其特征在于:
(a)在用于高温超导的层上施用无机金属盐溶液,
(b)在该溶液上施用还原溶液,和
(c)将施用的溶液加热以促进金属层的形成。
5.根据权利要求4的方法,其特征在于在步骤(a)中施用的溶液含有Me-硝酸盐、和/或Me-乙酸盐、和/或Me-柠檬酸盐、和/或Me-酒石酸盐、和/或Me-三氟乙酸盐、和/或Me-OH,其中Me代表贵金属。
6.根据权利要求4或5任一项的方法,其特征在于所述还原溶液含有甲醛、和/或肼、和/或硼烷、和/或脲、和/或硫化合物。
7.根据权利要求6的方法,其特征在于金属与甲醛的比率为大约1:1至大约5:1。
8.根据权利要求7的方法,其特征在于金属与二甲胺-硼烷的比率为大约1:2至大约1:10。
9.根据权利要求2至8任一项的方法,其特征在于在富氧气氛中将所述用于高温超导的层和制成的金属层加热。
10.根据权利要求2至9任一项的方法,其特征在于至少步骤(a)重复至少一次。
11.根据权利要求2至10任一项的方法,其特征在于步骤(b)重复至少一次。
12.根据权利要求2至11任一项的方法,其特征在于步骤(a)中所用的金属盐含有银和/或金和/或铂的离子。
13.根据权利要求2至12任一项的方法,其特征在于在所述溶液的至少之一中加入纳米级金属粒子。
14.根据权利要求13的方法,其特征在于所用纳米级金属粒子为银和/或金和/或铂的粒子。
15.根据权利要求2至14任一项的方法,其特征在于所述溶液之一是饱和的。
16.根据权利要求2至15任一项的方法,其特征在于施用至少一个追加的金属层。
17.根据权利要求16的方法,其特征在于所述追加的金属层是以电化学方式施用的。
18.根据权利要求17的方法,其特征在于,在电化学沉积法中,使用含铜和/或贵金属和/或镍和/或铁和/或锡和/或锌和/或磷的离子的电解质。
19.根据权利要求1至18任一项的方法,其特征在于施用HTSC前体作为用于高温超导的层。
20.根据权利要求1至18任一项的方法,其特征在于在施用金属层之前用O2将用于高温超导的层掺杂。
CNA2007800128357A 2006-06-29 2007-06-28 在高温超导体上施用金属覆盖层的方法 Pending CN101421860A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006029947A DE102006029947B4 (de) 2006-06-29 2006-06-29 Verfahren zum Aufbringen einer metallischen Deckschicht auf einen Hochtemperatursupraleiter
DE102006029947.7 2006-06-29

Publications (1)

Publication Number Publication Date
CN101421860A true CN101421860A (zh) 2009-04-29

Family

ID=38456526

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800128357A Pending CN101421860A (zh) 2006-06-29 2007-06-28 在高温超导体上施用金属覆盖层的方法

Country Status (9)

Country Link
US (1) US8389444B2 (zh)
EP (1) EP1920472B1 (zh)
JP (1) JP5476120B2 (zh)
KR (1) KR101175828B1 (zh)
CN (1) CN101421860A (zh)
AT (1) ATE438931T1 (zh)
DE (2) DE102006029947B4 (zh)
DK (1) DK1920472T3 (zh)
WO (1) WO2008000485A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916772A (zh) * 2015-05-15 2015-09-16 富通集团(天津)超导技术应用有限公司 一种超导线材的制备方法
CN104953022A (zh) * 2015-05-15 2015-09-30 富通集团(天津)超导技术应用有限公司 超导线材的制备方法
CN105102555A (zh) * 2013-02-26 2015-11-25 C3奈米有限公司 熔合金属纳米结构网络和具有还原剂的熔合溶液
CN107408619A (zh) * 2015-03-26 2017-11-28 巴斯夫欧洲公司 用于制备高温超导体线材的方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024166B4 (de) 2007-05-24 2011-01-05 Zenergy Power Gmbh Verfahren zum Bearbeiten eines Metallsubstrats und Verwendung dessen für einen Hochtemperatur-Supraleiter
US8809237B2 (en) * 2008-02-19 2014-08-19 Superpower, Inc. Method of forming an HTS article
KR101322815B1 (ko) * 2011-06-08 2013-10-28 케이조인스(주) 전기 도금을 이용한 rebco 박막형 초전도체의 은 안정화제층 형성 방법
WO2013181587A1 (en) * 2012-06-01 2013-12-05 University Of Houston System Superconductor and method for superconductor manufacturing
US9920207B2 (en) 2012-06-22 2018-03-20 C3Nano Inc. Metal nanostructured networks and transparent conductive material
US10029916B2 (en) 2012-06-22 2018-07-24 C3Nano Inc. Metal nanowire networks and transparent conductive material
RU2606959C1 (ru) * 2013-02-15 2017-01-10 Фудзикура Лтд. Оксидный сверхпроводящий провод
US11274223B2 (en) 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
US11343911B1 (en) 2014-04-11 2022-05-24 C3 Nano, Inc. Formable transparent conductive films with metal nanowires
US9183968B1 (en) 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
US9757898B2 (en) 2014-08-18 2017-09-12 Lord Corporation Method for low temperature bonding of elastomers
CN111357126A (zh) 2017-11-28 2020-06-30 巴斯夫欧洲公司 接合超导带
KR102636346B1 (ko) 2018-04-25 2024-02-15 커먼웰스 퓨젼 시스템스 엘엘씨 초전도 테이프의 품질 관리 장치
WO2020064505A1 (en) 2018-09-24 2020-04-02 Basf Se Process for producing highly oriented metal tapes
WO2020212194A1 (en) 2019-04-17 2020-10-22 Basf Se Sealed superconductor tape
DE102019219615A1 (de) 2019-12-13 2021-06-17 Heraeus Deutschland GmbH & Co. KG Herstellungsverfahren für Edelmetall-Elektroden

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971944A (en) * 1958-10-20 1961-02-14 Union Carbide Corp Maleimide polymers
US3035944A (en) * 1960-08-05 1962-05-22 Ben C Sher Electrical component preparation utilizing a pre-acid treatment followed by chemical metal deposition
US3589916A (en) * 1964-06-24 1971-06-29 Photocircuits Corp Autocatalytic gold plating solutions
DE2856885C2 (de) * 1978-12-30 1981-02-12 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur Herstellung eines flexiblen Supraleiters, bestehend aus einer C-Faser mit einer dünnen Schicht einer Niobverbindung der allgemeinen Formel NbC χ Ny und einer äußeren hochleitfähigen Metallschicht
US5147851A (en) * 1988-11-02 1992-09-15 Hitachi Chemical Company Ltd. Superconducting thick film circuit board, production thereof, thick film superconductor and production thereof
FI95816C (fi) * 1989-05-04 1996-03-25 Ad Tech Holdings Ltd Antimikrobinen esine ja menetelmä sen valmistamiseksi
FR2652822B1 (fr) * 1989-10-11 1993-06-11 Onera (Off Nat Aerospatiale) Bain a l'hydrazine pour le depot chimique de platine et/ou de palladium, et procede de fabrication d'un tel bain.
US5132278A (en) * 1990-05-11 1992-07-21 Advanced Technology Materials, Inc. Superconducting composite article, and method of making the same
JP3355832B2 (ja) * 1994-12-08 2002-12-09 三菱マテリアル株式会社 回路パターンの形成方法及びそのペースト
US5859916A (en) * 1996-07-12 1999-01-12 Symphonix Devices, Inc. Two stage implantable microphone
US6002951A (en) * 1997-11-12 1999-12-14 International Business Machines Corporation Multi-layer ceramic substrate having high TC superconductor circuitry
WO2001008231A2 (en) * 1999-07-23 2001-02-01 American Superconductor Corporation Methods of making a superconductor
AU2000225122A1 (en) * 2000-01-21 2001-07-31 Midwest Research Institute Method for forming thin-film conductors through the decomposition of metal-chelates in association with metal particles
DE10048844A1 (de) * 2000-10-02 2002-04-11 Basf Ag Verfahren zur Herstellung von Platinmetall-Katalysatoren
US6951666B2 (en) * 2001-10-05 2005-10-04 Cabot Corporation Precursor compositions for the deposition of electrically conductive features
US20040266628A1 (en) * 2003-06-27 2004-12-30 Superpower, Inc. Novel superconducting articles, and methods for forming and using same
JP2005276465A (ja) * 2004-03-23 2005-10-06 Sumitomo Electric Ind Ltd 超電導線材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102555A (zh) * 2013-02-26 2015-11-25 C3奈米有限公司 熔合金属纳米结构网络和具有还原剂的熔合溶液
CN105102555B (zh) * 2013-02-26 2018-02-16 C3奈米有限公司 熔合金属纳米结构网络和具有还原剂的熔合溶液
CN107408619A (zh) * 2015-03-26 2017-11-28 巴斯夫欧洲公司 用于制备高温超导体线材的方法
CN107408619B (zh) * 2015-03-26 2020-06-05 巴斯夫欧洲公司 用于制备高温超导体线材的方法
CN104916772A (zh) * 2015-05-15 2015-09-16 富通集团(天津)超导技术应用有限公司 一种超导线材的制备方法
CN104953022A (zh) * 2015-05-15 2015-09-30 富通集团(天津)超导技术应用有限公司 超导线材的制备方法

Also Published As

Publication number Publication date
DE102006029947B4 (de) 2013-01-17
US20090088326A1 (en) 2009-04-02
DE102006029947A1 (de) 2008-01-03
JP5476120B2 (ja) 2014-04-23
JP2009541957A (ja) 2009-11-26
DK1920472T3 (da) 2009-10-12
EP1920472A1 (de) 2008-05-14
ATE438931T1 (de) 2009-08-15
KR20080097988A (ko) 2008-11-06
US8389444B2 (en) 2013-03-05
WO2008000485A1 (de) 2008-01-03
EP1920472B1 (de) 2009-08-05
DE502007001238D1 (de) 2009-09-17
KR101175828B1 (ko) 2012-08-24

Similar Documents

Publication Publication Date Title
CN101421860A (zh) 在高温超导体上施用金属覆盖层的方法
Walsh et al. A review of developments in the electrodeposition of tin-copper alloys
EP2644753B1 (en) Surface-treated copper foil
EP2449154B1 (en) Plating or coating method for producing metal-ceramic coating on a substrate
Christie et al. Gold electrodeposition within the electronics industry
KR20070026832A (ko) 주석계 도금 피막 및 그 형성 방법
Feldstein et al. Electron microscope investigation of mixed stannous chloride/palladium chloride catalysts for plating dielectric substrates
US5470820A (en) Electroplating of superconductor elements
Carlos et al. Effect of tartrate on the morphological characteristics of the copper–tin electrodeposits from a noncyanide acid bath
KR20090001161A (ko) 주석-나노다이아몬드 무전해 복합 도금액, 이를 이용한도금피막
JP2010138452A (ja) Snめっき材及びその製造方法
Djurfors et al. Pulsed electrodeposition of the eutectic Au/Sn solder for optoelectronic packaging
CN110219026B (zh) 一种多元配位体系的碱性无氰电刷镀溶液及其制备方法
Rajamani et al. Electrodeposition of tin-bismuth alloys: Additives, morphologies and compositions
CN113416989A (zh) 一种镀银工艺及镀银件
DE60111727T2 (de) Komplexes palladiumsalz und seine verwendung zur anpassung der palladiumkonzentration in elektrolytischen bädern bestimmt für die abscheidung von palladium oder einer seiner legierungen
Van Der Putten et al. Electrochemistry of colloidal palladium: an experimental study of sol formation and electrocatalysis
Kazimierczak et al. Electrodeposition of tin-zinc-bismuth alloys from aqueous citrate-EDTA baths
Ondoño-Castillo et al. Superconducting YBa2Cu3O7-. delta. coatings by simultaneous electrodeposition of Y, Ba, and Cu in the presence of cyanide
An et al. Electrodeposition of La–Ni alloy films in a nonaqueous system
CN110528031B (zh) 基于edta多元配位体系的无氰电刷镀溶液及其制备方法
US5244875A (en) Electroplating of superconductor elements
Vitina et al. Formation of intermediate intermetallic layers on interaction of electrodeposited Sn, Ni-Fe, Ni-B coatings with different metallic substrata
CN114622194B (zh) 一种锌合金环保着色液及其着色工艺
Zhang et al. A Process Improvement in Silver-indium Transient Liquid Phase Bonding Method for the High-Power Electronics and Photonics Packaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: BASF SE

Free format text: FORMER OWNER: ZENERGY POWER GMBH

Effective date: 20120802

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20120802

Address after: Ludwigshafen, Germany

Applicant after: BASF SE

Address before: Bach, Rhine, Germany

Applicant before: Zenergy Power GmbH

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20090429