CN101196740B - 集成于过程控制网络的分析服务器 - Google Patents
集成于过程控制网络的分析服务器 Download PDFInfo
- Publication number
- CN101196740B CN101196740B CN2007101516008A CN200710151600A CN101196740B CN 101196740 B CN101196740 B CN 101196740B CN 2007101516008 A CN2007101516008 A CN 2007101516008A CN 200710151600 A CN200710151600 A CN 200710151600A CN 101196740 B CN101196740 B CN 101196740B
- Authority
- CN
- China
- Prior art keywords
- control
- process control
- routine
- server
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004886 process control Methods 0.000 title claims abstract description 134
- 238000000034 method Methods 0.000 claims abstract description 290
- 230000008569 process Effects 0.000 claims abstract description 229
- 230000006870 function Effects 0.000 claims abstract description 57
- 238000012545 processing Methods 0.000 claims abstract description 17
- 238000004422 calculation algorithm Methods 0.000 claims description 72
- 230000003044 adaptive effect Effects 0.000 claims description 53
- 238000003860 storage Methods 0.000 claims description 45
- 238000004891 communication Methods 0.000 claims description 23
- 230000000694 effects Effects 0.000 claims description 10
- 230000003993 interaction Effects 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 230000004069 differentiation Effects 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 3
- 241001269238 Data Species 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 abstract description 157
- 238000004364 calculation method Methods 0.000 abstract description 17
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000007728 cost analysis Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 34
- 230000008859 change Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 238000003745 diagnosis Methods 0.000 description 11
- 238000013461 design Methods 0.000 description 9
- 238000012351 Integrated analysis Methods 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 238000012369 In process control Methods 0.000 description 5
- 238000010965 in-process control Methods 0.000 description 5
- 238000007726 management method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000011217 control strategy Methods 0.000 description 4
- 238000010219 correlation analysis Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 230000005055 memory storage Effects 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000019771 cognition Effects 0.000 description 3
- 238000007405 data analysis Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012821 model calculation Methods 0.000 description 3
- 238000011112 process operation Methods 0.000 description 3
- GOLXNESZZPUPJE-UHFFFAOYSA-N spiromesifen Chemical compound CC1=CC(C)=CC(C)=C1C(C(O1)=O)=C(OC(=O)CC(C)(C)C)C11CCCC1 GOLXNESZZPUPJE-UHFFFAOYSA-N 0.000 description 3
- 238000003070 Statistical process control Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000012905 input function Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000003863 physical function Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/0275—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using fuzzy logic only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4185—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/31—From computer integrated manufacturing till monitoring
- G05B2219/31121—Fielddevice, field controller, interface connected to fieldbus
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/31—From computer integrated manufacturing till monitoring
- G05B2219/31378—Queue control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/31—From computer integrated manufacturing till monitoring
- G05B2219/31422—Upload, download programs, parameters from, to station to, from server
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/80—Management or planning
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Feedback Control In General (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Programmable Controllers (AREA)
Abstract
本发明公开了一种集成于过程控制网络的分析服务器。一种过程控制系统集成在相同的控制设备中用于执行某些计算代价昂贵过程控制功能(比如自适应模型产生及调谐参数产生)的过程控制数据的采集及分析,在所述相同的控制设备中,一个或多个过程控制例程被实施,从而为所述过程控制例程提供更快捷及更有效率的支持。这种系统通过集成一个分析服务器来取代使用多个处理设备的分层方式,所述分析服务器执行计算代价昂贵分析,这些分析由一个或多个控制例程直接用于所述一个或多个控制例程所在的实时控制设备。这个集成为由特定设备控制的多个过程环路提供以快捷及有效的方式分析大量数据的能力。
Description
相关申请
本专利申请是在2005年10月4日提交的标题为“过程控制系统中的过程模型识别”(Process Model Identification in a Process Control System)的美国11/243,862号专利申请(U.S.Patent Application Serial No.11/243,862)的部分连续申请案,所述美国专利申请的揭示在此通过引用明确地被并入本专利。
技术领域
本发明总体上涉及用于过程设备中的过程控制系统,尤其涉及一种能够快捷有效地支持使用计算代价昂贵算法的过程控制例程(比如在自适应程序进行时创建及更新过程模型的自适应过程控制例程)的控制系统。
背景技术
过程控制系统-如那些用于化学、石油、或其他过程的分布式或大型过程控制系统-典型地包括一个或多个过程控制器,过程控制器通过模拟总线、数字总线或模拟/数字混合总线相互通信连接,与至少一个主机或操作员工作站及与一个或多个现场设备通信连接。所述现场设备可能是阀、阀定位器、开关及传送器(例如温度传感器、压力传感器及流率传感器),它们在过程设备中发挥功能,如开启或关闭阀及测量过程参数。过程控制器接收所述现场设备所进行的过程测量的信号及/或关于现场设备的其他信息,并使用这些信息来实施控制例程,然后产生控制信号并通过总线传送至现场设备,以控制过程的操作。来自现场设备和控制器的信息一般由操作员工作站执行的一种或多种应用程序,使操作员能够执行针对过程所需要的任何功能,例如观察所述过程的当前状态、修正所述过程的操作等等。
某些过程控制系统,例如由艾默生过程控制有限公司(Emerson ProcessManagement)出售的DeltaVTM系统,使用位于控制器中或不同的现场设备中的功能块或称为模块的功能块组来执行控制操作。在这些情况中,控制器或其他设备能够包括以及执行一个或多个功能块或模块,其中的每一个功能块或模块接收来自其他功能块的输入及/或向其他功能块(在相同的设备中,或在不同的设备中)提供输出,而且所述控制器或其他设备执行一些过程操作,例如测量或检测过程参数、控制设备、或执行控制操作,例如执行比例微分积分(PID)控制例程。过程控制系统中的不同的功能块和模块通常设计为互相通信(例如通过总线),以形成一个或多个过程控制环路。
过程控制器一般编程为对过程中限定的或包含的多个不同环路中的每一个环路执行不同的算法、子例程或控制环路(指所有控制例程),例如流量控制环路、温度控制环路、压力控制环路等等。一般而言,每一个这样的控制环路包括:一个或多个输入块,例如模拟输入(AI)功能块;一个单输入单输出(SISO)控制块或一个多输入多输出(MIMO)控制块;或一个或多个输出块,例如模拟输出(AO)功能块。
用于控制环路的控制例程,以及实施这类例程的功能块,一直是根据多种不同类别的控制技术来配置,这些控制技术包括比例微分积分(PID)控制、模糊逻辑控制(FLC)、以及基于模型的技术,例如Smith预估器或模型预测控制(MPC)。在基于模型的控制技术中,在例程中用于确定闭合环路控制响应的参数,基于对过程的输入的受操控或被测量扰动集合中的变化的动态过程响应。多过程输入的变化作出的这种过程响应的表示,可以看作过程模型。例如,一阶参数化过程模型可以指定过程的增益、死区时间及时间常数的值。
一种基于模型的技术-模型预测控制(MPC)-涉及使用多个阶跃响应模型或脉冲响应模型,这些模型被设计来获取过程输入与过程输出之间的动态关系。采用模型预测控制(MPC)技术,过程模型被直接用来形成控制器。当用于经历了过程死区时间、过程延迟等等中的巨大变化的过程的时候,MPC控制器必须使用配合当前过程状态的新过程模型来进行重建。因此,在这些情况中,过程模型在多个操作状态中的每一状态得到识别。然而,多种过程模型的引入以及为配合当前过程状态而必须自动形成的控制器不合需要地增加过程控制系统的复杂程度及计算要求。
过程模型还被用来设置PID及其他使用自适应控制技术的控制设计的调谐参数,其中PID(或其他)控制器的调谐参数通常根据定义过程的过程模型的变化和用户选择的调谐规则来更新。开发及使用过程模型来调谐PID控制器的自适应PID调谐技术的范例,在标题为“基于状态的自适应反馈前馈比例微分积分控制器”(State Based Adaptive Feedback Feedforward PIDController)、在2006年9月26日发表的美国7,113,834号专利(U.S.PatentNo.7,113,834)及标题为“自适应反馈/前馈比例微分积分控制器”(AdaptiveFeedback/Feedforward PID Controller)、在2003年6月10日发表的美国6,577,908号专利(U.S.Patent No.6,577,908)中详细地描述,所述专利的全部揭示在此通过引用明确地被并入本专利。
因此,正在被建造的现代控制系统具有自动获悉它们控制的过程的状态的能力,以便提供自适应调谐及控制器形成。这个获悉过程状态的能力使得控制系统能够实时地对操作情况及过程设备的变化作出作出反应。所述获悉过程一般从采集来自过程环路及系统中的设备的实时数据开始,这些原始数据接着通过一集合的分析算法进行分析,以产生智能诊断、高保真过程模型及改善调谐,从而优化过程的全面控制。结果可以以建议的形式提供予操作员,可以存储在详细评估中,也可以用于以上所述的执行闭合环路的自适应。
然而,传统上,为这些控制活动而执行的数据分析及模型产生,一直都是以分层方式来执行,其中第三方工具检索来自控制网络(直接地或通过广为人知的OPC协议)的过程数据,并将这些数据馈入在与控制系统有关的工作站或第三方硬件上运行的、适当的分析算法(比如过程模型产生及调谐参数产生算法)。一种用于传统过程控制系统(比如用于标准分布式控制系统(DCS))的类似方式,在于将采集自控制网络的数据传送到一个或多个历史数据库或传送到其他工作站应用程序,以供稍后分析。然而,这个分层方式的问题在于,其响应度并不是很好,这是由于所述过程环境中的不同设备之间的数据采集及传送可能耗费可观时间。此外,这个方式只允许每次评估一个过程环路,而且一般要求可观的操作员干预。同样地,由于控制系统与数据分析应用程序之间的外部通信的需要,第三方分析应用程序的可靠性及可用性可能受损。由于这个缺点,在这些控制环路实施计算代价昂贵的控制技术(比如需要联机产生过程模型的自适应控制技术及MPC技术)时,很难为在一个单一控制设备中运行的多个控制环路提供及时的支持。
发明内容
一种过程控制系统集成在相同的控制设备中用于执行某些计算代价昂贵过程控制功能(比如自适应模型产生及调谐参数产生)的过程控制数据的采集及分析,在所述相同的控制设备中,一个或多个过程控制例程被实施,从而为所述过程控制例程提供更快捷及更有效率的支持。明确地说,这个系统通过集成一个分析服务器来取代使用多个处理设备的分层方式,所述分析服务器执行计算代价昂贵分析,这些分析由一个或多个控制例程直接用于其中定位所述一个或多个控制例程的实时控制设备。这个集成在不影响控制操作的完整性的情况下,为由特定设备控制的多个过程环路提供以非常快捷的方式分析大量数据的能力。
在一个实施例中,所述集成分析服务器是连同过程控制例程、在实时控制设备上运行的一个服务。所述服务直接地接收来自一个或多个控制功能块的原始实时数据,对所述数据运行一个或多个分析算法(比如模型产生算法及调谐参数产生算法),并将结果传送回所述过程控制例程,以便用于它们的控制活动。此外,如果需要,所述分析服务器可以将所述分析结果提供给一个或多个工作站应用程序,比如数据库及用户界面应用程序。
为了有效地管理其中实施过程控制例程及分析服务器的控制设备的中央处理单元(CPU)及存储资源,所述分析服务器向所述实时控制例程提供一个界面,以允许所述控制例程发出一个呼叫,要求对一个过程数据集合执行一个算法。这些要求可以被区分优先次序及排列,使得所述分析服务器接着能够与所述控制设备中的控制例程的操作异步地使用所采集的数据来执行所要求的算法。此外,所述分析服务器的操作可以与所述联机控制系统的操作分离,从而释放所述联机控制,以便在当前数据正在被所述分析服务器分析的同时,为另一学习迭代采集数据。一旦所述分析服务器已经完成所要求的操作,所产生的数据或结果被返回到所述联机控制系统(即返回到所述控制例程)。
虽然本讨论的中心在于执行PID控制环路或MPC例程的过程模型的识别的分析服务器,但应该理解,在此揭示的分析服务器技术可以应用于其他控制策略及块,包括单输入单输出(SISO)/多输入多输出(MIMO)块、PID块、FLC块、MPC块、神经网络(NN)控制块等等;以及应用于任何实时过程数据分析,比如模型产生/更新、联机控制器产生/更新、控制器调谐、快速傅里叶变换(FFT)分析及相关分析、优化、统计过程控制(SPC)、环路/设备性能指标产生等等。
附图说明
为了更完整地理解本公开,应参看以下的详细描述及附图,其中相同参考数字识别附图中的相同元件,及其中:
图1为一原理图,其显示一个过程控制系统,该过程控制系统包括集成于相同的控制器设备中的一个或多个控制例程,所述控制例程作为一个分析服务器,为所述一个或多个控制例程执行计算代价昂贵功能;
图2为一原理图,其显示图1的控制器,该控制器包括一个分析服务器,所述服务器与执行联机控制或实时控制的多个控制功能块进行通信;
图3为一原理图,其显示图1的控制器与一个工作站进行通信,及其中所述分析服务器被用来为一个自适应PID控制例程产生一个或多个过程模型;
图4为一原理图,其显示另一个控制器,该控制器带有多个控制例程,这些控制例程通信连接到部署于该控制器中的一个分析服务器;
图5为一原理图,其显示一个控制器,该控制器带有一个部署于其中的分析服务器,所述分析服务器与形式为工作站的一个外部设备进行通信;
图6为一原理图,其显示图4的控制器中的一个自适应控制功能块,该自适应控制功能块与一个集成分析服务器,其中所述自适应控制功能块根据所存储的模型及由所述分析服务器开发的操作状态信息来调整调谐;
图7为一原理图,其显示图4的控制器的一个自适应MPC功能块及一个分析服务器,其中所述MPC功能块使用所述分析服务器来实施随选检测,以用于模型识别;
图8为一原理图,其显示图4的控制器,该控制器根据一个实施例,其中所识别的模型存储在一个与历史事件信息有关的外部数据库中;以及
图9为一原理图,其显示一个工作站与一个控制器进行通信,所述工作站包括在其上运行的多个支持应用程序,以便与所述控制器通信。
虽然本专利所公开的系统及方法易于以多种形式实施,但是这些系统及方法是以本发明附图中的特定实施例图解,应该了解的是,本说明书旨在例证原理,而并非意在将本发明的范围限制于在此描述及图解的特定实施例。
具体实施方式
现在参看图1,一个过程控制系统10包括一个过程控制器11,该过程控制器11连接到一个历史数据库12,并连接到一个或多个主工作站或主计算机13(其可以是任何类别的个人计算机、工作站等等),每个主工作站或主计算机13带有一个显示设备14。控制器11可以是一个冗余控制器,其带有一个主控制器11A及一个备用控制器11B,并通过输入/输出(I/O)卡26及28连接到现场设备15-22。历史数据库12可以是任何期望类别的数据采集单元,其具有任何期望类别的存储器及任何期望或公知的用于存储数据的软件、硬件或固件。历史数据库12可以与其中一个工作站13分开(如图1所示)或可以成为其一部分。控制器11(举例而言,可以是由艾默生过程控制有限公司(Emerson Process Management)出售的DeltaVTM控制器)通信连接到主计算机13,并通过一个以太网连接29或任何其他期望的通信网络,通信连接到历史数据库12。控制器11还使用任何期望的硬件及软件(例如结合标准的4-20mA设备及/或任何智能通信协议,比如FOUNDATION Fieldbus协议、HART协议等等-的硬件及软件),通信连接到现场设备15-22。
现场设备15-22可以是任何类别的设备,比如传感器、阀、变送器、定位器等等,而输入/输出卡26及28可以是符合任何期望通信协议或控制器协议的输入/输出设备。在图1所示的实施例中,现场设备15-18是标准的4-20mA设备,它们沿着模拟线路通信连接到输入/输出卡26,而现场设备19-22是智能设备,比如Fieldbus现场设备,它们使用Fieldbus协议通信沿着数字总线通信连接到输入/输出卡28。当然,现场设备15-22可以遵循任何其他期望的一个或多个标准或协议,包括将来开发的任何标准或协议。
控制器11A及11B中的每个控制器(如明确图解的主控制器11A)包括一个或多个处理器23,处理器23实施或监视存储在一个存储器24的一个或多个过程控制例程,并与现场设备15-22、主计算机13及历史数据库12进行通信,以便以任何期望方式来控制过程。此外,控制器11A存储并实施一个分析服务器25,该分析服务器25与由控制器11A实施的控制例程协同,采用以下详细描述的方式工作,以便为这些控制例程提供支持,包括执行计算代价昂贵算法及功能,比如开发过程模型及调谐需在所述控制例程中使用的参数。如果需要,控制器11A及11B中的每个控制器可以包括一个单处理器23,该单处理器23执行所述控制例程及分析服务器25;或控制器11A及11B中的每个控制器可以包括多个处理器23,其中所述控制例程一般在其中一个第一处理器23上执行,而所述分析服务器则在其中一个第二处理器上执行。
应该注意的是,在此描述的任何控制例程或模块的部分可以由不同的控制器或其他设备实施或执行(如果需要的话)。同样地,在此描述的需在过程控制系统10中实施的控制例程或模块可以采用任何形式,包括软件、固件、硬件等等。出于本揭示的意图,过程控制模块可以是过程控制系统的任何部分或局部,例如包括在任何计算机可读媒介上的例程、块或任何元件。控制例程可以是一个控制程序的多个模块或任何部分,比如一个子例程、一个子例程的多个部分(比如多条代码线)等等,所述控制例程可以以任何期望软件格式实施,比如使用对象导向编程、梯形逻辑、顺序功能图、功能块图,或使用任何其他软件编程语言或设计范式。同样地,所述控制例程可以被固化成一个或多个可擦除可编程只读存储器(EPROMs)、电可擦除可编程只读存储器(EEPROMs)、专用集成电路(ASICs)、或任何其他硬件或固件元件。此外,所述控制例程可以使用任何设计工具来设计,包括图形设计工具或任何其他类别的软件/硬件/固件编程或设计工具。因此,控制器11可以配置成以任何期望方式来实施控制策略或控制例程。
然而,在一个实施例中,控制器11A可以使用通常称为功能块的元件来实施控制策略,其中每个功能块是一个完整控制例程的一个对象或其他部分(例如子例程),而且每个功能块(通过被称为“链接”的通信)与其他功能块一起工作,以便实施过程控制系统10中的过程控制环路。功能块典型地执行以下功能的其中之一,以便执行在过程控制系统10中操纵过程参数的一些物理功能,即:输入功能,比如与变送器、传感器或其他过程参数测量设备相关的输入功能;控制功能,比如与执行PID、模糊逻辑、MPC等控制有关的控制功能;或输出功能(其负责控制一些设备(比如阀)的操作)。当然,存在混合的及其他类别的功能块。在这些功能块用于或与标准的4-20mA设备及某些类别的智能现场设备(比如HART及Fieldbus设备)相关时,这些功能块可以典型地存储于控制器11A中并由其执行,而在这些功能块用户或与Fieldbus设备相关时,这些功能块可以存储于所述现场设备本身,并由所述现场设备本身执行。虽然在此使用功能块控制策略来描述所述控制系统,但本专利所公开的技术及系统也可以使用其他协议(比如梯形逻辑、顺序功能图等等)来实施或设计,或使用任何其他期望的编程语言或范式来实施或设计。
如图1的分解块30所示,控制器11A可以包括多个单环路、单输入单输出(SISO)控制例程,如图解的例程32及34,而且,如果需要,控制器11A可以实施一个或多个高级控制环路,如图解的多输入多输出(MIMO)控制环路36。每个这样的控制环路典型地称为控制模块。所述单环路控制模块32及34被图解为分别使用单输入/单输出模糊路基控制(FLC)块及单输入/单输出PID控制块来执行单环路控制,所述模糊路基控制(FLC)块及单输入/单输出PID控制块连接到适当的模拟输入(AI)功能块及模拟输出(AO)功能块,所述模拟输入(AI)功能块及模拟输出(AO)功能块可以与过程控制设备(比如阀)有关、与测量设备(比如温度变送器及压力变送器)有关、或与过程控制系统10中的任何其他设备有关。高级控制环路36被图解为包括一个高级控制块38,该高级控制块38具有通信连接到多个模拟输入(AI)功能块的多个输入,并具有通信连接到多个模拟输出(AO)功能块的多个输出,虽然高级控制块38的输入及输出可以连接到任何其他期望的功能块或控制元件,以接收其他类别的输入并提供其他类别的控制输出。高级控制块38可以是任何类别的模型预测控制(MPC)块、神经网络建模块或神经网络控制块、多变量模糊逻辑控制块、实时优化器块等等。应该了解的是,图1所示的功能块,包括高级控制块38,可以由控制器11A执行,此外,在主控制器设备11A发生故障时,这些例程的拷贝可以位于冗余控制器设备11B中,并由冗余控制器设备11B执行。
现在参看图2,控制器11A可以具有任何数目的控制模块32、34及36,它们定义并实施相应的过程控制例程,以执行过程的联机控制或实时控制。这些控制例程的实施典型地称为联机过程控制子系统。因此,控制模块32、34及36可以根据联机操作环境来实施,而且通常与过程的标准及预定控制有关。如以上所述,控制模块32、34、36中的每个控制模块可以具有任何数目的功能块,包括与其有关的控制功能块。
存储在控制器设备11A的控制模块在图2中被显示为包括多个不同的自适应模糊逻辑控制(FLC)模块32、多个不同的自适应PID控制模块34及多个不同的MPC控制模块36。在这个情况下,每个控制模块32、34、36被显示为一个标准控制模块,比如一个FLC控制模块、一个PID控制模块或一个MPC控制模块,每个控制模块分别具有一个自适应插件模块32A、34A或36A,其中每个自适应插件模块32A、34A或36A操作来执行其相关控制模块的自适应活动及/或在所述相关控制模块与分析服务器25之间提供一个界面,以便实施所述功能块(比如FLC功能块32、PID功能块34及MPC功能块36)与分析服务器25之间的通信。一般而言,插件模块32A、34A使用分析服务器25来将标准FLC及PID控制模块32及34转换为自适应FLC及自适应PID控制模块,以执行某些与这些自适应控制活动有关的计算代价昂贵算法。同样地,插件模块36A使得MPC控制例程36能够与分析服务器25进行通信,以执行与所述MPC例程有关的模型产生及控制器产生。如果控制模块32、34及36在分析服务器25所在的相同的处理器上执行,则控制模块32、34及36和分析服务器25可以使用一个通用处理器缓冲器,彼此相互通信。然而,如果控制模块32、34及36在控制器11A中与分析服务器25所在的不同的处理器上执行,则任何已知或期望的处理器间通信可以被用来实施控制模块32、34及36与分析服务器25之间的通信。
无论如何,如图2明确图解的那样,分析服务器25集成于过程控制器设备11A中,以使得能够与在过程控制器设备11A中实施的每个控制例程32、34及36直接通信。因此,分析服务器25能够直接地接收由控制块32、34及36采集的实时过程数据,即:不需要在外部通信网络上传送所述数据。在接收到所述原始过程数据及/或在接收到为控制例程32、34及36的其中之一实施一个支持功能的要求时,分析服务器25随即使用所采集的过程数据来执行一个或多个分析算法40,然后将所执行的分析的结果提供给控制块32、34及36,以及提供给其他过程组件,比如位于控制器设备11A外部的工作站应用程序、数据库及用户界面应用程序。
如图2所示,分析服务器25可以包括任何数目的算法或例程40,这些算法或例程40可以用于支持控制例程32、34及36的操作。仅作为一个范例,这些算法40可以涉及:模拟所述过程10的操作的过程模型,为控制例程产生(例如根据过程模型)一个或多个调谐参数,提供其他自适应功能,实施非线性算法、参数算法及非参数算法,执行MPC控制器产生功能、执行控制器优化功能、执行FFT(快速傅里叶变换)分析及/或相关分析等等。此外,由集成分析服务器25实施的算法40可以用于支持任何类别的过程控制技术及模块,包括单输入单输出(SISO)及多输入多输出(MIMO)过程控制模块。
在一个实施例中,分析服务器25包括一个界面42,该界面42用于在控制器11A中将信息传送到多个控制块32、34及36,并接收来自控制块32、34及36的呼叫及过程数据,以及将分析结果发送回控制块32、34及36。此外,分析服务器25包括一个外部界面44,该外部界面44可以用于与外部设备(比如用户界面、历史数据库等等)进行通信。
分析服务器25特别适合执行计算代价昂贵算法,这些计算代价昂贵算法支持控制模块32、34及36的操作或是控制模块32、34及36的操作需要的,但可能不需要在控制模块32、34及36的每个执行期间运行。因此,例如,美国6,577,908号专利(U.S.Patent No.6,577,908)及美国7,113,834号专利(U.S.Patent No.7,113,834)中描述的自适应、基于模型的控制技术需要过程模型再生,以执行自适应调谐。虽然这个自适应需要执行用于开发过程的不同区域或状态的多种过程模型的计算代价昂贵的过程模型再生技术,但新的过程模型典型地不需要在所述PID控制例程的每个执行周期重新计算。因此,美国6,577,908号专利(U.S.Patent No.6,577,908)及美国7,113,834号专利(U.S.Patent No.7,113,834)中描述的过程模型及调谐参数产生技术,只是在控制模块认可对新过程模型的需求时,可以由分析服务器25实施。
如以上所述,在一个实施例中,分析服务器25可以操作来执行一个或多个模型产生例程,所述模型产生例程产生过程模型,以供多个自适应控制例程32及34用于执行自适应控制,或供所述多个MPC控制例程36用于实施MPC模型或控制器再生。同样地,分析服务器25可以根据一个或多个所产生的过程模型来计算一个或多个自适应调谐参数,并可以发送这些调谐参数到控制块32、34及36。当然,如以上所述,分析服务器25可以为控制块32、34及3存储及实施其他分析算法(除了可以存储及实施模型及调谐参数产生算法之外),而且,除了支持图2所示的FLC、PID及MPC控制块之外,分析服务器25还可以支持不同类别的控制块的模型产生需要。
更独特地,分析服务器25通过对多个控制块32、34及36实施一个客户/服务器通信关系来进行操作,因此分析服务器25可以在控制块32、34及36需要实施存储在分析服务器25中的算法40的任何时候,由任何或所有的单独控制块32、34及36调用。因此,在分析服务器25存储及实施过程模型产生或调谐参数产生算法时,任何或所有控制块32、34及36可以向分析服务器25发出命令,使分析服务器25实施适当的模型产生或调协参数确定算法40,以计算新的过程模型,供所述控制块使用(或为所述控制块计算新的调谐参数)。由于分析服务器25部署在过程控制块32、34及36所在的相同的物理控制设备中,所以不需要进行外部通信来使分析服务器25接收为产生所述过程模型而需要的原始过程数据;与在不同设备(比如在图1的用户界面13)中执行的算法相比,这样的部署增加了数据数量及增加向分析服务器25提供过程数据的速度。无论如何,分析服务器25可以根据由多个控制块32、34及36向其提供的命令来操作,以执行其被要求的分析过程,然后将分析数据(比如新的过程模型)回馈到单独的控制块32、34及36,从而为这些控制块提供执行(例如)自适应控制或MPC控制器再生所需要的计算服务。
优选为分析服务器25与控制块32、34及36异步地执行(因此与所述联机或实时控制系统异步),所以分析服务器25的操作不以任何方式影响控制块32、34及36的操作-特别是当分析服务器25在控制块32、34及36所在的相同的处理器中执行时。更独特的是,分析服务器25可以在控制器设备11A中操作,以确保其执行不影响或占用实施多个控制块32、34及36所需要的处理时间。相反地,分析服务器25使用控制器设备11A中的所述控制器的、通常控制例程32、34及36不使用的处理时间或处理功率。换句话说,控制器设备11A中的所述控制器使控制例程32、34及36的操作及执行的次序优先于分析服务器25的操作(不论这些组件是在相同的处理器或不同的处理器上执行),以确保所述控制例程根据预定时序实施及确保这些例程有足够的处理功率或时间来执行正在进行的过程控制活动。控制器设备11A接着不时执行分析服务器25或使用不需要的处理功率来完全地实施控制例程32、34及36。
由于分析服务器25在控制器设备11A中按比控制例程32、34及36较低的整体优先顺序操作,分析服务器25可以对来自控制例程32、34及36的命令区分优先顺序,而且可以根据所确定的优先顺序来实施或执行所述命令。一个命令的优先权可以根据所述命令中的信息(比如从发出命令的控制例程发送的优先权指示)确定,根据不同类别的命令的相对重要性确定,根据发出所述命令的不同类别的控制块的相对重要性确定,根据发出命令的相同类别的不同控制块的相对重要性确定,或根据任何其他预设优先权因素确定。因此,在接收到来自每个这样的控制块的命令时,分析服务器25可以操作,以便在为优先权较低的控制块提供服务之前,为优先权较高的控制块提供服务。同样地,所述控制块本身可以根据由所述控制块确定的信息,在所述命令本身中提供所述命令的优先权的指示。无论如何,分析服务器25根据由控制器11A中的单独或不同控制例程32、34及36向其提供的命令及数据,执行存储在其中的多个算法40,并将所述多个算法40的结果提回馈给控制例程32、34及36。照这样,为所述多种不同命令而执行的所述多种算法40,是由分析服务器25以与所述联机控制系统的其余部分分离的方式执行,这使得所述联机控制系统(例如所述单独控制例程)能够在分析服务器25正在处理与当前认识迭代有关的数据的同时,为将来的认识迭代采集数据。同样地,分析服务器25的所述分离操作使得分析服务器25能够同时处理来自不同控制块的命令。
一旦分析服务器25已经完成被要求的操作,所产生的控制数据(例如过程模型)通过界面42及适当的插件模块32A、34A或36A,回馈到所述联机控制系统(例如提出要求的控制块32、34或36)。当然,分析服务器25也可以配置或构建成通过界面44将所产生的数据提供给外部设备(比如外部服务器)、提供给在不同设备中执行的另一个应用程序(比如诊断应用程序、用户界面应用程序等等)、提供给位于另一个设备的数据库等等。
图3图解一个控制器50,该控制器50存储一个特定范例分析服务器58,该分析服务器58与一个自适应PID控制例程56一起使用,分析服务器5 8向自适应PID控制例程56提供模型识别及产生服务。特别是,如图3所示,自适应PID控制模块56包括一个PID控制例程52,PID控制例程52与一个自适应调谐器插件模块54连接。亦如图3所示,分析服务器58包括一个模型产生算法,该模型产生算法为自适应PID控制模块56提供计算支持。分析服务器58还通信连接到一个外部服务器60,该外部服务器60可以位于一个工作站或其他设备62。如果需要,设备62可以是图1的历史数据库12、图1的其中一个用户界面设备13、或其他设备。
分析服务器58在图3中图解为一个模型识别服务器,其包括一个输入队列70、一个模型产生器算法72、一个调度器块74、以及多个模型存储块76及78,模型存储块76及78可以用于存储为控制器50中的多种不同控制块创建的过程模型。在操作期间,自适应PID控制模块56可以使用需要定期模型产生的自适应过程(比如美国6,577,908号专利(U.S.Patent No.6,577,908)及美国7,113,834号专利(U.S.Patent No.7,113,834)中更详细地描述的技术),为PID控制模块56执行自适应。当实施这个技术时,自适应PID控制模块56采集有关所述过程的操作的过程数据。在PID控制模块56-特别是插件块54-识别所述过程已经进入不同状态,因而必需或需要使用新过程模型(或识别某其他触发事件需要新过程模型的产生)之时,自适应插件块54可以发送一个命令到分析服务器58,以使用所采集的过程数据来开始模型产生技术。这个命令可以由控制块56使用一个触发事件命令79向输入队列70提供,作为命令的部分,自适应插件54可以提供优先权指示以及适当数量的已采集过程数据到分析服务器58,供分析服务器58用来产生新过程模型。要求更新的模型的所述命令,以及产生所述新模型所需要的过程数据,可以被提供给输入队列70及/或一个模型缓冲器池80(分析服务器58的部分)。当然,自适应PID控制模块56(以及控制器50中的其他控制模块)可以在任何时候发送一个命令到分析服务器58。此外,由于分析服务器58与控制模块56异步地操作,分析服务器58可以同时按来自相同的控制模块或来自不同的控制模块的多个命令进行操作。
无论如何,分析服务器58中的调度器块74分析缓冲器池80及/或所述事件队列中的要求或命令,并根据与所述不同命令有关的优先权信息,放置或指令这些要求在输入队列70上。当然,命令或要求的优先权可以根据控制块的实际特性或提出要求的控制块的类别来确定(这是由于某些类别的控制块或某些特定的控制块基于其对过程的操作的重要性的优先权可能高于其他控制块),可以根据由用户在某时间提供的优先权信息来确定,及/或可以根据由提出所述单独的要求的多个控制块的优先权来确定。因此,如以上所述,控制块可以根据控制模块可得的信息,区分命令或要求的优先权次序。在一个范例中,PID控制模块56可以识别,其在过程的状态发生重大变化时需要更快捷地被更新,而且在这种情况下,PID控制模块56可以产生具有比在过程状态中发生次要变化时产生的命令的优先权更高的优先权的模型更新命令。
模型产生器72根据所述命令在输入队列70中的次序来处理所述命令,并操作来实施一个或多个模型产生算法,以根据命令来产生模型及/或其他调谐参数。所产生的模型(及相关的调谐参数-如果需要)接着被提供给调度器块74,而调度器块74则将新产生的模型提供给模型存储块76及78。一旦一个模型已经放置在存储块76,这个模型(或与这个模型有关的调谐参数)可以接着被提供给控制模块56,特别是被提供给自适应插件模块54,而自适应插件模块54接着使用这个已更新的模型来为PID控制块52执行自适应控制。所提新模型要求及有关新产生的模型的数据,可以使用标识符-比如句柄标识符及参数标识符、在控制块56及分析服务器58之间的通信中追踪,一如图3所示。当然,如果需要,控制模块56可以向分析服务器58发出进一步的命令,以便实施使用所述新创建的过程模型来执行自适应控制所需要的进一步的程序。
如果需要,模型数据存储块76及78可以用于存储及追踪为特定控制例程或为所述过程的特定部分产生的模型。在一个范例中,模型数据存储块76用于为控制模块56(以及控制器50中的其他控制模块)存储模型及参数,而模型数据存储块78则可以用于向服务器60、向用户工作站或向另一外部应用程序提供所产生的模型。特别是,一旦创建或产生,模型可以首先存储在模型数据存储块76,而且模型可以从模型数据存储块76被提供到控制例程56,导致这个模型的创建。所述数据库76可以附加地存储过去产生的用于控制例程56的模型。在接收到模型后,控制例程56(或能够存取所述模型的用户)可以清除所述模型为不准确。在这种情况下,控制模块56可以发送信息到分析服务器25,以促成所述模型从模型数据库76删除或清除。
另一方面,模型数据库78可以用于反映存储在数据存储块76的模型,以便提供所创建的模型的拷贝到在其他设备中执行的应用程序或历史数据库。在这种情况下,模型存储模块78可以反映数据库76中的模型组合,但也可以追踪哪些模型已经被发送到外部设备(比如可以以更持久的方式存储所述模型的外部历史数据库),以供永久存储。如果需要,模型计数器82可以用于追踪已经被创建及被复制到模型存储块78但尚未被发送到外部设备(比如工作站62)以供永久存储的模型的数目。无论如何,模型数据库78可以操作为一个临时模型存储块,可以用于将所产生的模型以及其他信息提供给外部设备。
从图3的配置,可以理解,分析服务器58可以执行模型产生及存储,以及根据响应控制模块56(以及控制器50中的其他控制模块)发出的要求或命令而开发的模型,开发调谐参数。在一个范例中,分析服务器58在不影响或占用控制模块56的处理时间或工序的情况下,独立地操作于控制模块56之外,所以控制模块56以相同速度(周期)操作,不论分析服务器58是否存在或分析服务器58是否操作来处理过程数据。换句话说,分析服务器58特别地配置成只是使用未被实际控制例程56使用的处理器资源,以便不减缓或干扰控制例程56的实际操作。照这样,分析服务器58在控制器设备50中与控制例程56集成,但并未减缓或干扰控制例程56的关键操作。
应该理解,集成分析服务器58动态地根据实时过程数据来操作,以在不需要用户干预的情况下执行任何期望的分析及认识算法,而且因此可以自动地操作-如果需要的话。此外,如在此所作的描述,分析服务器58提供一个机制,以在不损及控制器50中的控制例程执行的时间临界控制的情况下,对过程数据及控制数据执行计算加强算法,因此使得能够在控制器设备中执行快捷及有效的自适应调谐以及其他功能。在一个范例中,集成分析服务器58允许同时为特定过程控制环路执行多个认识迭代。因此,分析服务器58可以根据命令或要求,同时为相同的过程控制环路进行不同时期长度的操作(即:为不同组合的已采集的过程数据),以便同时为过程的不同区域创建不同的过程模型。此外,集成分析服务器58使得能够同时为特定过程控制设备执行的控制例程进行多个过程分析。因此,分析服务器58可以同时为超过一个过程控制例程提供服务,为那些不同的过程控制例程产生模型或调谐参数或其他信息。
当然,当分析服务器58的输出(即由分析服务器58产生的控制器数据)正在提供给控制器50中的控制例程时,也可以提供给其他设备,比如用户应用程序及数据库,以供任何期望用途。此外,分析服务器58可以与用户直接连接,比如用户使用图1中的工作站13中的一个界面应用程序84。照这样,用户界面84可以用于读取来自分析服务器58的数据(比如已产生的模型);可以用于更改或更新由分析服务器58实施的一个或多个算法;可以用于清除或改变输入队列70;可以用于向分析服务器58提供优先权信息,以实施调度器74调度输入队列70上的要求或命令的方式;可以用于嵌入模型存储块76或78上所存储的过程模型等等。
如以上所述,虽然图3图解的是用于实施与自适应PID控制例程一同使用的模型识别技术的、一种特定的分析服务器58,但将一个分析服务器设置在与使用所述服务器的服务的控制例程所在的相同的控制设备上的概念,可以应用于其他控制例程活动,例如包括应用于为控制块(比如MPC控制块)提供优化服务、根据采集自过程的数据来产生模型(比如由MPC控制器使用的MPC模型)、执行相关分析、根据数据来产生傅里叶(Fourier)变换等等。在所有情况中,应该了解的是,所述控制例程可以简单地命令相同控制器设备中的所述分析服务器来执行所期望的算法,而所述服务器设备可以与所述控制例程操作异步地实施这些算法,以确保所述分析服务器的执行不会减缓或妨碍所述控制操作。此外,最好是使用所述分析服务器来执行一般不需要在特定控制例程的每个执行期间执行的计算活动,这是由于如果不然的话,所述分析服务器可能超载,特别是如果所述控制例程及所述分析服务器在相同的处理器上执行。在这种情况下,控制例程一般将以少于控制器设备中的控制例程的每个执行期一次的速率,对分析服务器发出命令。
虽然在此描述的集成分析服务器的操作与一个主控制设备(比如图1的主控制器11A)一起描述,但所述分析服务器也可以在具有功率中断再启动的能力的冗余控制设备中运行。为了实施这个操作,所述冗余控制设备中的冗余分析服务器(即:所述冗余控制器对中的主控制器及备用控制器中的服务器)将在所述过程的例常操作进行期间彼此相互通信,以便从而共享正在进行中的操作数据(比如命令及要求数据、过程模型数据等等),而所述冗余控制器在所述主控制器失效时可能需要这些数据来实施所述分析服务器的操作。
在实施过程控制例程的控制器设备中使用一个分析服务器的另一个范例,现在将以图4作为参考进行描述。明确地说,图4的控制器11被显示为具有任何期望数目的控制模块150、152及154,这些控制模块定义或实施相应的过程控制例程,以控制所述联机过程,而控制模块150、152及154的组合定义联机控制系统156。因此,控制模块150、152及154可以连同一个操作控制环境156实施,而且一般与所述过程的例常、预定控制有关。虽然没有明确地显示于图4,但控制模块150、152及154中的每个控制模块可以具有任何数目的功能块,包括控制功能块。
根据所揭示的技术的某些实施例,参数值及其他操作条件数据从控制模块150、152及154传送到实施模型识别例程的分析服务器160的一个数据采集功能158。一般而言,所述参数值及其他过程操作条件数据在控制模块150、152及154及它们的功能块的执行期间被提供(或传送)到服务器160。由于控制模块150、152及154的执行在所述调度过程控制活动期间连续,所述参数值及其他操作条件数据到服务器160的传送也可以是连续的,或所述参数值及其他操作条件数据到服务器160的传送可以通过以上描述的有关图3的方式,传送一个或多个命令到服务器160而得以进行。
分析服务器160的数据采集功能158可以实施,但不需要作为一个或多个对象(或对象实体)以对象导向方式实施。不论其结构,数据采集功能158可以包括一个或多个例程,所述例程定义需在所述数据采集中实施的程序,包括任何数据处理程序。数据采集功能158的例程因此可以协调、支持或实施所采集的数据在(例如)一个或多个寄存器162或其他存储器中的存储。由数据采集功能158执行的程序可以包括确定在什么时候采集来自控制模块150、152及154的数据-一如以下的描述。
更一般地,数据采集功能158可以包括一个或多个例程,以支持所述参数或其他操作条件数据的自动采集、聚集、接收或其他处理。在所述参数或数据的自动采集或其他处理的范围内,较少计算要求被置于联机控制系统156、控制模块150、152及154、以及它们的任何控制模块。由于所述模型识别程序(如由分析服务器160执行的模型识别程序)与所述控制功能块的这种分离,所述功能块存储器及执行要求将是相同,不论模型识别是否被允许或禁止。此外,为支持自适应(即:自适应控制)而添加到所述控制块的参数及相关存储器要求的数目被减到最少。
联机控制系统156与分析服务器160的分离也使得某些实施例能够提供一个禁止分析服务器160或其组件(比如数据采集功能158)的选项。禁止模型识别可能很有用处,如果(例如)确定控制器11具有的存储器或时间不足以用于所述计算或其他处理。一个相关的注释是,使用所识别的模型来提供自适应控制也可以基于环路、区域、系统或控制器,被允许或禁止。
分离的模型识别功能也支持过程输入变化的协调。可能进行这种协调是由于控制器11中的模型识别集中在一个过程。例如,在没有进行设定点变化时,由分析服务器160(或其他元件或例程)实施的模型识别可以自动地注入控制器输出的变化。这些变化以某种方式协调,以便减低对过程操作的影响。这些变化因此可能随着时间分布。
分离的模型识别也意谓,为模型识别而进行的数据处理可以在控制器11的自由时间或停歇时间执行,或在控制器11认为适合的时间执行。因此,模型识别处理的实施避免负面地影响由(例如)联机控制系统156提供的预定控制功能。因此,在有些实施例中,由服务器160实施的模型识别程序可以由背后的控制器11实施,而所述过程为联机,并且在由控制器11的其他模块或组件承担的预定控制及其他活动期间的策略优势时间进行。
在有些实施例中,只要一个控制块执行,所述参数数据及其他数据从控制模块150、152及154自动地传送到数据采集功能158。在这个意义上,数据采集功能158可以连续地实施,以便在所述过程的操作时的任何时间支持所述数据采集程序。在控制没有被预定执行的时间期间,数据采集功能158可以检查所采集的数据,以确定是否应产生(例如创建或识别)过程模型。在选择性的实施例中,控制器11可以定期地或以某种其他预定方式检查或处理所采集的数据。
由数据采集功能158采集的数据一般可以包括所述过程输入及输出的值、或由控制器11(或,更一般地,由过程控制系统10)实施的特定控制环路的操作设定点。对于这些参数的每个参数而言,这些值是在触发事件之前开始及持续直到达到稳定状态为止的时期中采集及存储的。在有些情况下,所述触发事件可以涉及(例如)由数据采集功能158监测所述过程输入或设定点中的变化。
在有些情况下,触发事件的构成可能视控制环路的操作模式而定。在控制环路位于操作的“自动”模式时,所述环路连续地调整控制器输出(即:被操纵的过程输入),以便使过程输出(即:所述环路的控制参数)保持在操作员指定的设定点。因此,在自动模式,设定点的变化将构成一个触发,以分析过程输入及输出中的变化,并因此开发模型。如果操作员从未(或很少地)更改所述设定点,而所述环路保持在自动模式,则微小的变化可以注入所述控制器输出,以至有一个触发来创建一个模型。
在所述环路位于“手动”模式时,则所述控制器输出由操作员设定,即:控制算法没有调整所述输出。因此,在手动模式中,由操作员引入的输出变化构成一个触发来分析过程输入及输出,以便获得一个模型。以上描述的触发事件可以用于反馈模型的开发。对于前馈模型识别而言,所述触发事件可以是前馈输入值的一个变化。
一旦所述触发事件被监测到,联机控制系统156及数据采集功能158以任何期望方式进行通信,以支持所述数据采集。在有些实施例中,所述数据采集是由控制系统156促成,其也可以指示触发事件的监测。更明确地,由控制模块150、152及154实施的控制环路可以连续地提供存取所述数据的通路或使得可以利用所述数据。因此,在所述触发事件之前的某段时间内采集的数据也可以被分析,以确定过程模型。例如,需要为之采集数据的PID控制环路可以提供存取用于模块执行的过程变量的当前数据值(例如PV)、模块输出值(例如OUT)、前馈控制输入值(例如FF_VAL)、设定点、及指示操作的环路模式的任何一个或多个参数的通路。在有些情况下,数据采集功能158可以促成选择所述参数或其他数据值。可选择地或附加地,实施模型识别算法的分析服务器160可以包括一个或多个配置清单块164,配置清单块164确定需要采集哪些参数。为了达到这点,配置清单块164可以包括一个存储器或其他存储装置,以用于存储清单数据。连同所识别的参数一起存储的可以是需为之产生所述模型的所述控制块或模块的一个清单或其他标识。
在与触发事件有关的数据采集之后的某个时候,分析服务器160可以实施一个模型识别算法或模型计算例程166。除了执行所述计算之外,模型计算例程166也可以分析所计算的模型。这种分析可以涉及过程诊断及/或控制诊断,以确定所述模型的品质(除了别的项目以外)。所述已计算模型可以接着传送到一个存储块或其他块168,存储块168为每个控制环路保存最后识别的模型。在有些情况中,控制环路可以将两个模型存储,以便支持反馈及前馈控制。如图4所示,所述已计算模型在由所述例程166的模型诊断确定其品质之后,并视由所述例程166的模型诊断所确定的品质而定,被传送到存储块168。
所述模型的品质也可以确定所述模型是否传送到控制模块150、152及154的控制功能块。在图4的模范实施例中,控制模块150、152及154中的每个控制模块集成至少一个具有自适应控制的控制环路,并因此接收来自分析服务器160实施的模型识别例程的多个过程模型,一如图中所示。然而,由本专利所公开的技术计算及识别的所述多个模型,可以根据上述由所述块166确定的模型品质(而且在有些情况下,根据接受新模型的控制功能块的操作状态)处理及提供。
现在参看图5,其中一个工作站13的用户可以通过选择经由在工作站13上实施的一个调谐或其他应用程序170提供的实时或历史数据,启动过程模型的创建。这样的用户启动过程模型创建对以参考图4进行描述的处理而言,可以是附加的。其实,在图5所示的模范实施例中,由调谐应用程序170创建的模型被传送到的控制器11也包括分析服务器160及其组成部分,即:数据采集功能158、模型计算例程166等等。
除了用于创建所述过程模型的参数值及他操作条件数据的来源之外,工作站13还可以实施相同或相似步骤,以创建所述过程模型。例如,工作站13可以包括一个与控制器11的块166相似的模型计算及诊断模块或块172。模型计算块172因此可以在传送所创建的块到控制器11及存储块168之前,或连同传送所创建的块到控制器11及存储块168,确定所创建的块的品质及其他方面,一如图中所示。
在有些实施例中,工作站13可以具有提供相似功能的附加或选择性应用程序。在一种情况中,其他应用程序可以提供一个或多个显示界面,显示界面支持通过本专利所公开的技术识别的过程模型的分析及/或检验。然而,以关于所述附加过程模型的产生而言,这些工作站应用程序可以产生趋势窗口或显示界面,从而提供机会来选择过程数据,以用于模型创建。使用这些趋势窗口或其他界面,用户可以选择数据,包括时间窗口。在这些情况中,到稳定状态的时间可以因此通过由用户选择的时间窗口来确定。选择性的实施例可以提供其他装置,以用于手动地或自动地选择所述时间窗口。
如以上所述,本专利所公开的技术的实行并未限于执行自适应控制例程的系统。然而,在需要时,通过本专利所公开的技术进行的过程模型识别也可以用于支持这样的例程。
如图6所示,与本专利所公开的技术连同使用的一个自适应控制功能块174可以包括一个或多个存储器或其他存储装置176,以保存或存储预定数目(例如五)的已经被识别如上述的过程模型。在操作中,存储在存储器176的其中一个过程模型可以接着被选择,以通过响应一个或多个参数的一个逻辑块178来使用。在图6的模范实施例中,块178根据通过一个输入180提供的一个已选或已确定过程状态参数来选择所述过程模型。也可以根据另两个参数182及184来确定所述过程模型,而且参数182及184可以相应于反馈及/或前馈规则或允许操作状态适应变化条件的设置。
用于功能块174的多个过程模型可以但不一定与操作区域(例如区域1、区域2等等,如图中所示)有关。所述多个过程模型也可以根据所述功能块的控制方案,成对地识别。在这个模范例子中,每个区域确定支持反馈及前馈处理的一对过程模型。在选择所述区域时,所述反馈及前馈模型可以由块178依次用来计算多个反馈及前馈调谐参数。在图6的模范例子中,所述多个前馈调谐参数被提供给一个动态补偿块188,动态补偿块188也响应一个前馈控制输入值(例如FF_VAL),以用于死区时间及超前/滞后动态补偿。所述动态补偿的结果,连同所述多个反馈调谐参数,可以传送到负责为所述功能块实施所述控制算法的一个块或例程188。在这种情况中,所述多个反馈及前馈参数修改PID及模糊逻辑算法,但任何控制方案或控制方案的组合也可以被使用。
功能块174也包括一个块或例程190,以支持所述控制环路调谐的随选修改。为了达到这点,块190可以响应通过控制器11、工作站13或过程控制系统10的任何其他元件或与过程控制系统10进行通信的任何其他元件输入的用户命令。一般上,为所述环路自动地识别的模型可以在要求时,与一个选定的调谐规则一起用于执行所述环路调谐。如果先前尚未识别模型,则用户命令可以启动一个继电器振荡或其他技术,以将变化注入到所述控制器输出中。从对控制器输出中的变化的过程响应开发而得的结果过程模型,可以接着与一个选定的调谐规则一起用于执行所述环路调谐或提供调谐建议。
在有些情况中,通过块190产生的或因触发实践(例如设定点或其他参数值变化)产生的过程模型在下载到控制器11或功能块174之前,可以首先保留以供观察。例如,这样的模型可以归类为“未经批准的模型”,直到通过用户界面进行的分析已经批准实施为止。在有些实施例中,这样的批准可以可选择地或附加地通过控制器11或工作站13中的诊断或其他功能,自动地被提供。
图7显示一个自适应MPC控制块192背景下的自适应块构架,其中也支持多个不同的操作区域。在这种情况下,通过由分析服务器160实施的模型识别例程识别的多个过程模型还是可以传送到一个存储器或存储块194(相似于图6的存储器176),一如图中所示;但所述模型参数可以在实施在功能块192之前,由一个MPC控制器产生例程196处理。更明确地,例程196可以产生一个相应的MPC控制器,以便根据所识别的多个模型,存储在一个存储器198。一个逻辑块200可以接着选择所述多个模型或在所述多个模型之间转换,这些模型根据状态参数中的变化及根据通过输入或存储器202、204及206提供的其他参数来产生所述MPC控制器,一如图中所示。
与所选择的过程模型有关的所述MPC控制器可以接着被提供给一个MPC控制器块208,以便实施与所述联机过程。所述MPC控制器块208可以支持所选择的MPC控制器的自动化随机检测,而所述自动化随机检测可以根据需要,通过引入一个扰动输入210或以其他方式来启动。
在有些情况中,图6及7中所显示的模范自适应控制功能块(以及其他与本专利所公开的技术一起使用的模块)一般支持三种模式的操作:一种认识模式、一种调度模式及一种自适应模式。在所述认识模式中,过程模型可以被采集但没有自动地被用来确定所述环路调谐。在所述调度模式中,新过程模型可以被采集,而且那些经批准的模型将自动地被用来确定环路调谐参数。在自适应MPC块的情况中,则这样的经批准及应用的模型将根据当前操作区域,用于控制产生,这是由于所述控制器将自动地随当前操作区域转换。在自适应模式中,过程模型被采集、自动地批准并接着自动地被用来确定环路调谐参数。虽然每个功能块的默认设置可以是所述认识模式,但通过(例如)在工作站13上实施的其中一个应用程序提供的显示界面可以根据需要,提供机会来更改所述设置。
现在参看图8,由工作站13实施的一个或多个应用程序为所述控制环路及通过本专利所公开的技术识别的过程模型提供性能监测、分析、管理及相关功能。例如,所述性能监测功能可以包括产生过程模型历史,其中有关所识别的过程模型的数据被输入,以用于随后的分析。有关过程模型历史的产生及使用的进一步细节在以下阐明。在一个级别,所述历史数据可以指定完全定义由本专利所公开的技术识别的每个过程模型的过程模型参数(例如死区时间、时间常数及增益)。具备了这些历史数据,可以进行多种有关所述控制环路、其调谐、控制方案(例如自适应或非自适应)等等的分析。
在有些实施例中,过程模型历史的一个方面是为所识别的过程模型产生事件时间顺序。更明确地,只要过程模型在控制器11(图4)中自动被识别或随选自实时或历史数据(图6),由分析服务器1 60实施的所述模型识别例程可以发送一个告警到一个事件时间顺序或追踪模块212。所述事件时间顺序模块212通过产生数据来指定所述模型识别的时间及日期,连同任何其他数据来促成所述模型与所述特定控制环路、设备、工厂区域等等相关,以响应所述告警。在图8所显示的模范实施例中,为每个事件存储的数据包括与所述节点或控制环路有关的设备的一个标记名称、一个日期/时间戳、一个模型类别(例如通过识别参数,比如死区时间、时间常数及增益)、一个控制环路类别(例如功能块)、一个工厂区域号码、一个调谐规则、及控制性能的一个诊断指示。上述(或其他)数据可以在处理可以(例如)添加一个或多个元件到数据集合的一个应用程序216之后,在一个数据库214中存储为所述过程模型历史的部分。所述应用程序216可以与被指示监测及/或管理每个控制环路的调谐的一个或多个例程通信。
数据库214可以为位于系统10中的多个控制器11的控制环路存储这样的历史数据,而且不需要被限于使用任何一个特定类别的控制器。例如,数据库214可以为多个第三方控制器存储这样的数据。
现在再次参看图1,通常工作站13包括(单独地、分布地或以任何其他方式)可以由任何授权用户(例如配置工程师、操作员等等)存取的一组合的操作员界面应用程序及其他数据结构240,以检视及提供有关在过程设备10中连接的设备、单元等等功能。所述组合的操作员界面应用程序240存储在工作站13的一个存储器中,而且所述组合的应用程序240的每个应用程序或实体适合在与每个工作站13的相应处理器上执行。虽然整个组合的应用程序240被图解为存储在工作站13中,但这些应用程序或其他实体中的有些应用程序或实体可以存储在与系统10有关的或与系统10进行通信的其他工作站或计算机设备。此外,所述组合的应用程序240可以提供显示输出到一个与工作站13有关的显示屏幕14或任何其他期望的显示屏幕或显示设备,包括手携式设备、膝上式计算机、其他工作站、打印机等等。同样地,所述组合的应用程序240中的应用程序可以分开并在两个或多个计算机或机器上执行,而且可以配置成彼此一起操作。
明确地,现在参看图9,所述组合的应用程序240可以包括多个用于实施控制系统10的基于模型监测及管理的应用程序、例程、模块及其他程序元件,一如在此描述的那样。所述应用程序、例程、模块及元件可以通过软件、固件及硬件的任何组合实施,而且不限于在此描述的模范配置。例如,一个或多个应用程序可以集成至任何期望程度。
所述应用程序组合240可以包括一个历史数据库应用程序248,该历史数据库应用程序248专用于在通过上述技术识别过程模型时,支持过程模型数据(例如参数)的记录。为了达到这点,历史数据库应用程序248可以与历史数据库12(图1)或任何存储器或存储装置进行通信。如以上所述,过程模型数据,可以与记录所述过程模型的识别(或导向所述过程模型的数据的采集)的时间顺序的数据连同存储。历史数据库应用程序248也可以提供分析功能,比如为所选择的模型参数计算总数、平均数及其他值。历史数据库应用程序248可以促成通过一个或多个显示界面,查看这些已计算的值,以及相关的存储数据。
显示界面可以由用于支持与控制器11进行通信的一个应用程序252提供。这样的通信可以涉及或包括在控制器11中执行的自适应控制例程的配置及维护。与整个所述应用程序组合一样,所述显示界面可以是任何形式,包括但不限于直流发电机、面板、详细显示、对话框及窗口,而且可以配置成在不同的显示类别上显示。
所述应用程序组合可以包括一个应用程序254,该应用程序254专用于与调谐有关的过程模型信息的使用。由于上述模型识别技术,调谐应用程序254通过根据工厂中的日常变化,或根据随机调谐测试,自动地计算调谐参数来改善过程控制性能。调谐结果可以用于“开环”调谐建议及“闭环”自适应控制。
更明确地,调谐应用程序254可以产生多个显示界面,以支持为开环或闭环操作中的所有控制环路执行连续调谐计算。所述调谐计算支持在PID、模糊逻辑及MPC控制器上的标准及自适应控制,因此,所述调谐计算为反馈及前馈控制提供调谐建议。调谐应用程序254也可以使用继电器振荡或其他程序来提供随机调谐,一如以上所述。
调谐应用程序254可以存取存储在历史数据库12(或他处-如有需要)中的过程模型历史数据,因此,调谐应用程序254可以使用历史过程模型数据来计算最佳调谐。为了达到这点,所述显示界面可以提供或包括工具,以便容易地细读所述历史,以查找及选择适合这样的调谐计算的数据。由调谐应用程序254产生的显示界面的这个方面一般允许用户更改模型参数(例如到稳定状态的时间、事件触发阀值)及再识别模型,或为先前未被允许自动模型识别的环路识别模型。调谐应用程序254可以提供一个界面来支持对调谐计算结果进行分析。这个能力可以促成自适应控制机会的分析及自适应控制配置的改善。
如以上所述,调谐应用程序254可以提供一个界面来支持引进控制“扰动”,控制“扰动”在所述过程只有很少手动变化(即:控制器输出上的自动注入)之时,帮助识别控制器调谐。通过所述界面,在良好调谐完成计算时便禁止扰动,可以提供一个选项。如果多个控制环路正在被扰动,可以使所述步骤同步化,以便分散及减低所述过程扰动。
调谐应用程序254可以响应过程状态及其他状况指示,以至任何计算结果都依此识别。照这样,本专利所公开的系统避免使用在错误状态计算的信息或带有不良过程数据的信息。为了达到这点,模型相关计算可以指示结果是否良好、不良或不能获得,并在适当时提供解释。调谐应用程序254也可以产生摘要报告,以传输(除了其他项目外)调谐建议信息及一个记录调谐变化及任何自适应控制调谐分析的用户日志。
此外,一个应用程序256一般被指示使用通过本专利所公开的技术识别的过程模型来进行自动控制性能监测。应用程序256更明确地被指示通过促成或自动地实施以下步骤来改善过程控制性能:(i)识别机会,以改善控制,(ii)分析及诊断控制问题来源,以及(iii)为操作、控制及维护人员产生有意义的性能报告。为了达到这点,应用程序256可以根据所述过程模型,产生控制性能指标。这个“基于模型的”指标提供一个更好的基准来识别需要再调谐的控制环路。所述新指标根据多个因素(比如过程变化性、所识别的过程模型及现有控制器调谐)来测量改善控制的机会。如果适用,这样的性能监测可以考虑单元状态,并在环路处于不适当的单元状态时、或在其他状况指示(例如Fieldbus状况)或输入/输出通信不良时排除性能计算。也可以为所有的阀提供阀阻力、阀间隙及其他阀诊断指标。
前述及以下所述的特征,一般通过比较通过使用以本专利所公开的技术自动创建的过程模型所执行的控制性能来提供。通过使用所述过程模型,可以识别调谐不佳的控制环路及所述过程中对控制性能造成影响的变化。所述过程模型相对于所述历史值的偏差可以用来标记所述控制环路为一个潜在过程问题。
此外,使用所述过程模型,所述应用程序256可以产生一个振荡指数,以识别正在振荡的环路。更明确地,振荡分析工具可以识别其他与所述主环路的振荡周期相同、而且可能正在与所述主环路互动的环路。这个信息可以接着被用来识别过程互动及可能的设计建议。
由应用程序256提供的诊断信息可以伴带预期不良控制性能导因指示。例如,诊断可以指示不良控制性能是否因仪器误差、阀阻力或阀间隙、过程互动或控制器调谐而导致。
一般而言,所述控制性能监测信息可以以任何期望形式提供,包括多个定制显示界面及报告。历史性能报告可以被提供,以显示控制环路在用户指定的时期内的性能如何。用于这样的报告的默认时期包括上个小时、上一班(8小时)、昨天、上星期、上个月。用户可以从摘要报告选择“向下钻取”,以存取详细环路信息。所述报告或界面可以为管理摘要定制,例如以全工厂及单独过程单元的整体加权性能指标、对当前时期与先前时期进行比较的趋势图及/或图表、及具有相应性能测量的最优先环路的清单,为管理摘要定制。管理报告可以提供控制环路性能指标,并根据它们对设备操作的相关重要性,区分工作项目的优先次序。其他报告可以提供统计,包括用于控制性能指标的数据、标准误差、振荡指数、过程模型(若有)、自相关及互相关分析、直方图、功率谱等等。
应用程序组合240也可以包括一个单独的控制环路分析应用程序258。在有些实施例中,应用程序258通过由应用程序256产生的一个或多个显示界面来提供。无论如何,应用程序258支持对有关上述模型识别技术采集的历史数据或实时数据进行分析。所述数据可以通过一个界面来提供,该界面促成检查因未测定扰动及测量噪声导致的控制偏差。例如,通过应用程序254及256识别的问题可以使用分析应用程序258来进行诊断。为了达到这点,由其产生的所述显示界面可以提供选项,以用于计算功率谱、自相关及直方图数据。
一个顾问应用程序260一般可以提供使用与诊断有关的所识别的模型来检测异常情况或机会,以便通过调谐或算法修改来改善控制方案。由顾问应用程序260提供的信息可以提供于任何类别的显示界面,包括通过工作站13、控制器11或任何其他与系统10进行通信的元件产生的一个面板。在一个特定范例中,所述显示界面可以具有一个标记,以指示显示一个新的咨询信息,比如“检查调谐”(Check Tuning)。
更一般地,顾问应用程序260可以提供由所述组合的应用程序的其中之一执行的分析或诊断的结果而产生的建议。此外,所述建议不需要由所述顾问应用程序产生的显示界面来提供,但却可以被发送,以便向所述组合的应用程序中的任何一个或多个应用程序显示。因此,建议及信息如“可用新调谐”(New Tuning Available)、“检查过程-已经检测到过程中的重大变化”(Examine Process-significant change in process has been detected)、“检查阀-死区带/磁滞太大”(Check Valve-dead band/hysteresis large)、“检查调谐-环路不稳定”(Check Tuning-loop unstable)及“可以使用MPC/自适应来改善控制”(Control could be improved using MPC/Adapt)一般可以通过多个工作站13或其他与过程控制系统10进行通信的设备来提供。除了所述信息或建议的显示之外,与所述相关情况有关的细节可以作为历史或其他参数,为所述控制环路存储。为所述控制环路存储的所述数据的随后的存取或使用,可以接着促使所述细节或相关的信息向所述应用程序组合中的所述顾问应用程序或其他应用程序显示。
其他支持实施本专利所公开的技术的应用程序包括一个控制工作间应用程序262,以促成过程控制系统10中的导航;其他支持实施本专利所公开的技术的应用程序也包括一个报告产生应用程序264,以产生所述报告。最后,一个或多个存储器或数据库266,也可以提供作为所述应用程序组合的部分。
以上描述的任何应用程序可以实施为一个或多个集成应用程序的例程、模块或其他组件。本专利所公开的应用程序功能的配置仅仅是为了方便说明原理,而且所述应用程序功能的配置并未界定可以向操作员或其他用户提供这些功能的方式的广泛范围。此外,上述应用程序可以根据需要,按用户资料、背景及其他参数,以不同的形式提供。例如,为一个用户类别(例如工程)产生的显示界面视图在内容上及其他方面,可以有异于为一个不同的用户类别(例如维护)产生的视图。
在实施时,在此描述的任何软件可以存储在任何计算机可读存储器,比如存储在磁盘、激光盘、或其他存储媒介上、存储在计算机或处理器的随机存取存储器(RAM)或只读存储器(ROM)中、等等。同样地,这个软件可以使用任何已知的或期望的传送方法-例如包括在计算机可读盘或其他移动式计算机存储装置上,或通过通信频道-比如互联网、万维网、任何其他局域网或广域网等等-传送到用户、过程设备或操作员工作站(其传送被当成与通过移动式存储媒介来提供这样的软件的方式相同或可与其互换)。此外,这个软件可以在没有调制或加密的情况下直接提供,或可以在通过通信频道传送之前,使用任何适合的调制载波及/或加密技术进行调制及/或加密。
虽然本发明已经参考特定范例进行描述,但这些范例只是在于阐明原理,而不是限制本发明包括的范围。本领域的普通技术的人员将很清楚,本专利揭示的实施例可以在不脱离本发明的精神及范围的条件下被修改、增加或删除。
Claims (52)
1.一种用于控制一个或多个现场设备以便在过程环境中实施过程的过程控制设备,包括:
通信连接到所述现场设备的控制器,所述控制器包括:
一个或多个控制模块,以便使用所述一个或多个现场设备来在所述过程环境中实施一个或多个控制环路;以及
一个服务器,所述服务器包括:
一个分析算法;以及
一个界面,其用于与所述一个或多个控制模块进行通信;
其中所述一个或多个控制模块通过所述界面,与所述服务器互动,以导致所述服务器执行所述分析算法以产生控制器数据,并且所述一个或多个控制模块使用所述控制器数据来执行与所述过程环境中的一个或多个控制环路有关的控制活动。
2.如权利要求1所述的过程控制设备,其中所述服务器进一步包括一个外部界面,以用于与一个外部设备进行通信,以便向所述外部设备提供所述控制器数据。
3.如权利要求1所述的过程控制设备,其中所述服务器进一步包括一个外部界面,以用于与一个外部设备进行通信,并且其中所述外部界面允许由所述服务器使用的所述分析算法的重新配置。
4.如权利要求1所述的过程控制设备,其中所述一个或多个控制模块通过所述界面,使用命令来与所述服务器互动,并且其中所述服务器包括一个队列,以用于存储有关使用所述分析算法来处理所述命令的顺序的信息。
5.如权利要求4所述的过程控制设备,其中所述服务器包括一个调度器,所述调度器根据每个所述命令的优先权,将所述信息置于所述队列。
6.如权利要求5所述的过程控制设备,其中所述每个所述命令的所述优先权是根据所述每个所述命令中的优先权信息。
7.如权利要求5所述的过程控制设备,其中所述每个所述命令的所述优先权是根据发出所述命令的控制例程的特性或类别。
8.如权利要求1所述的过程控制设备,其中所述分析算法是过程模型产生算法。
9.如权利要求8所述的过程控制设备,其中所述一个或多个控制模块的其中之一是自适应控制例程,所述自适应控制例程根据所述过程的过程模型更改其控制操作。
10.如权利要求8所述的过程控制设备,其中所述一个或多个控制模块的其中之一是模型预测控制例程,所述模型预测控制例程使用过程模型来执行过程控制活动。
11.如权利要求8所述的过程控制设备,其中所述一个或多个控制模块的其中之一是自适应比例积分微分(PID)控制例程,所述比例积分微分控制例程使用过程模型来执行自适应控制。
12.如权利要求8所述的过程控制设备,其中所述服务器进一步包括模型存储块,所述模型存储块存储由所述过程模型产生算法产生的一个或多个过程模型。
13.如权利要求1所述的过程控制设备,其中所述分析算法是控制优化器算法。
14.如权利要求1所述的过程控制设备,其中所述分析算法是控制器调谐算法。
15.如权利要求1所述的过程控制设备,其中所述分析算法是联机控制器产生算法。
16.如权利要求1所述的过程控制设备,其中所述分析算法是快速傅里叶变换(FFT)算法。
17.如权利要求1所述的过程控制设备,其中所述服务器在一个或多个处理器上执行,其执行与所述一个或多个控制模块异步。
18.如权利要求1所述的过程控制设备,其中执行所述一个或多个控制模块的一个或多个处理器以高于所述服务器的优先权,执行所述一个或多个控制模块。
19.如权利要求1所述的过程控制设备,其中一个或多个处理器在每个执行期执行所述一个或多个控制模块的其中之一一次,并且其中所述一个或多个控制模块的其中之一通过发送一个命令,通过所述界面与所述服务器互动,以促使所述服务器以少于每个执行期一次的速率执行所述分析算法。
20.如权利要求1所述的过程控制设备,其中所述控制器数据包括过程模型。
21.如权利要求1所述的过程控制设备,其中所述一个或多个控制模块在第一处理器上执行,而所述服务器在第二处理器上执行。
22.一种控制过程的方法,包括:
通过在一个过程控制设备的一个处理器上执行一个过程控制例程,在所述过程控制设备中实施所述过程控制例程,以便对所述过程实施联机过程控制操作;
在所述过程控制设备中实施一个服务器例程,所述服务器例程包括一个分析算法,包括在所述过程控制设备的一个处理器上执行所述服务器例程;
从所述过程控制例程发出一个或多个命令到所述服务器例程;
运行所述服务器中的所述分析算法在与所述过程控制例程有关的过程数据上,以便产生控制器数据来响应来自所述过程控制例程的所述一个或多个命令中的每个命令;以及
使用所述过程控制例程中的所述控制器数据来实施所述过程控制例程实施所述联机过程控制操作的方式。
23.如权利要求22所述的方法,包括与执行所述过程控制例程异步地执行所述服务器例程。
24.如权利要求22所述的方法,其中运行所述分析算法的步骤包括执行一个过程模型产生例程来产生一个过程模型。
25.如权利要求24所述的方法,包括使用所述过程控制例程来采集实时过程数据,及将所采集的实时过程数据作为所述命令的其中第一个命令的部分,发送到所述服务器例程。
26.如权利要求25所述的方法,包括在所述服务器例程正在运行所述分析算法在所采集的作为所述命令的所述第一个命令的部分发送的过程数据上时,使用所述过程控制例程来采集进一步的实时过程数据,以用于随后对所述服务器的命令。
27.如权利要求22所述的方法,进一步包括将所述控制器数据从所述服务器例程发送到所述控制设备外的一个第二设备。
28.如权利要求22所述的方法,包括通过所述服务器例程,同时处理来自所述过程控制例程的多个命令。
29.如权利要求28所述的方法,包括根据与所述多个命令有关的优先权信息,确定处理所述多个命令的顺序。
30.如权利要求28所述的方法,包括使用一个队列,在所述服务器例程处理所述多个命令。
31.如权利要求22所述的方法,其中“通过在一个过程控制设备的一个处理器上执行一个过程控制例程,在所述过程控制设备中实施所述过程控制例程,以便对所述过程实施联机过程控制操作”的步骤包括在所述过程控制例程的每个执行期、在一个处理器上执行所述过程控制例程一次;并且其中“从所述过程控制例程发出一个或多个命令到所述服务器例程”的步骤包括在所述过程控制例程的每个执行期、从所述过程控制例程发出一个命令到所述服务器例程少于一次。
32.如权利要求22所述的方法,包括在其上执行所述服务器例程的相同的处理器上执行所述过程控制例程。
33.如权利要求22所述的方法,包括在部署在一个控制设备中的一个第一处理器上执行所述过程控制例程,及在部署在所述控制设备中的一个第二处理器上执行所述服务器例程,其中所述第二处理器与所述第一处理器分离。
34.一种控制过程的方法,包括:
通过在一个单一过程控制设备的一个处理器上执行多个过程控制例程,在所述过程控制设备中实施所述多个过程控制例程,以便对所述过程实施多个联机过程控制操作;
在所述过程控制设备中实施一个服务器例程,所述服务器例程包括一个分析算法,包括在所述过程控制设备的一个处理器上执行所述服务器例程;
在不同时间从所述多个过程控制例程的每个过程控制例程发出至少一个命令到所述服务器例程;
为响应来自所述多个过程控制例程的所述命令中的每个命令,运行所述服务器中的所述分析算法在与所述多个过程控制例程的其中之一有关的过程数据上,以便为所述多个过程控制例程的所述其中之一产生控制器数据;以及
使用由所述多个过程控制例程中的所述服务器例程产生的所述控制器数据,实施所述多个过程控制例程实施所述多个联机过程控制操作的方式。
35.如权利要求34所述的方法,包括在所述过程控制设备的一个处理器上执行所述服务器例程,其执行与在所述过程控制设备的一个处理器上执行所述多个过程控制例程异步。
36.如权利要求34所述的方法,其中运行所述分析算法的步骤包括执行一个过程模型产生例程来产生一个过程模型。
37.如权利要求36所述的方法,包括在所述多个过程控制例程的其中之一采集实时过程数据,及将所采集的实时过程数据作为来自所述多个过程控制例程的所述其中之一的一个命令的部分,发送到所述服务器例程。
38.如权利要求34所述的方法,包括使用所述服务器例程来同时处理来自所述多个过程控制例程中的不同过程控制例程的多个命令。
39.如权利要求38所述的方法,包括根据与所述多个命令有关的优先权信息,确定处理所述多个命令的顺序。
40.一种过程控制系统,包括:
多个现场设备,所述现场设备部署在一个过程设备环境,以执行测量及过程参数操纵功能;
一个过程控制器,所述过程控制器通信连接到所述多个现场设备,所述过程控制器包括:
一个或多个控制模块,以便使用所述多个现场设备来实施一个或多个控制环路;及
一个服务器,所述服务器包括一个分析算法;
其中所述一个或多个控制模块与所述服务器互动,以促使所述服务器执行所述分析算法以产生控制器数据,并且其中所述一个或多个控制模块使用所述控制器数据来执行与一个或多个控制环路有关的控制活动;以及
另一设备,所述设备通信连接到所述过程控制器,以便与所述服务器互动。
41.如权利要求40所述的过程控制系统,其中所述另一设备包括一个数据库,所述数据库存储由所述服务器产生的所述控制器数据。
42.如权利要求40所述的过程控制系统,其中所述另一设备是一个用户界面设备,其使得用户能够重新配置所述服务器。
43.如权利要求42所述的过程控制系统,其中所述用户界面设备使得所述用户能够修改由所述服务器运行的所述分析算法。
44.如权利要求42所述的过程控制系统,其中所述用户界面设备使得用户能够删除存储在所述服务器中的控制器数据。
45.如权利要求40所述的过程控制系统,其中所述一个或多个控制模块使用命令来与所述服务器互动,并且其中所述服务器包括一个队列,以用于存储有关使用所述分析算法来处理所述命令的顺序的信息。
46.如权利要求45所述的过程控制系统,其中所述服务器包括一个调度器,所述调度器根据每个所述命令的优先权,将所述信息置于所述队列。
47.如权利要求40所述的过程控制系统,其中所述分析算法是过程模型产生算法。
48.如权利要求47所述的过程控制系统,其中所述一个或多个控制模块的其中之一是自适应控制例程,所述自适应控制例程根据所述过程的过程模型更改其控制操作。
49.如权利要求47所述的过程控制系统,其中所述服务器进一步包括一个模型存储块,所述模型存储块存储由所述过程模型产生算法产生的一个或多个过程模型。
50.如权利要求40所述的过程控制系统,其中所述服务器在所述过程控制器的一个第一处理器上执行,其执行与在所述过程控制器的所述第一处理器上执行的所述一个或多个控制模块异步。
51.如权利要求40所述的过程控制系统,其中所述一个或多个控制模块的其中之一在每个执行期执行一次,并且其中所述一个或多个控制模块的其中之一通过发送一个命令,与所述服务器互动,以促使所述服务器执行所述分析算法,以便以少于每个执行期一次的速率产生控制器数据。
52.如权利要求40所述的过程控制系统,其中所述过程控制器是一对冗余过程控制器的一个主过程控制器设备,并进一步包括一个冗余过程控制器设备,所述冗余过程控制器设备通信连接到主过程控制器设备及通信连接到所述多个现场设备,所述冗余过程控制器设备包括另一存储器、另一处理器、存储在所述另一存储器的所述一个或多个控制模块的一个拷贝、及存储在所述另一存储器的所述服务器的一个拷贝,其中所述主过程控制器设备与所述冗余过程控制器设备进行通信,以使所述服务器的所述拷贝保持与所述服务器同步,从而使所述服务器的所述拷贝在控制从所述主过程控制器设备转换到所述冗余过程控制器设备时,能够继续操作。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/537,826 | 2006-10-02 | ||
US11/537,826 US7738975B2 (en) | 2005-10-04 | 2006-10-02 | Analytical server integrated in a process control network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101196740A CN101196740A (zh) | 2008-06-11 |
CN101196740B true CN101196740B (zh) | 2013-06-05 |
Family
ID=38738983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101516008A Active CN101196740B (zh) | 2006-10-02 | 2007-09-28 | 集成于过程控制网络的分析服务器 |
Country Status (6)
Country | Link |
---|---|
US (2) | US7738975B2 (zh) |
JP (5) | JP5657854B2 (zh) |
CN (1) | CN101196740B (zh) |
DE (1) | DE102007046964B4 (zh) |
GB (1) | GB2442591B (zh) |
HK (1) | HK1112074A1 (zh) |
Families Citing this family (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8280533B2 (en) * | 2000-06-20 | 2012-10-02 | Fisher-Rosemount Systems, Inc. | Continuously scheduled model parameter based adaptive controller |
US7467614B2 (en) | 2004-12-29 | 2008-12-23 | Honeywell International Inc. | Pedal position and/or pedal change rate for use in control of an engine |
US7389773B2 (en) | 2005-08-18 | 2008-06-24 | Honeywell International Inc. | Emissions sensors for fuel control in engines |
US7738975B2 (en) * | 2005-10-04 | 2010-06-15 | Fisher-Rosemount Systems, Inc. | Analytical server integrated in a process control network |
US7444191B2 (en) | 2005-10-04 | 2008-10-28 | Fisher-Rosemount Systems, Inc. | Process model identification in a process control system |
US8036760B2 (en) | 2005-10-04 | 2011-10-11 | Fisher-Rosemount Systems, Inc. | Method and apparatus for intelligent control and monitoring in a process control system |
US7937321B2 (en) * | 2007-01-16 | 2011-05-03 | Verizon Patent And Licensing Inc. | Managed service for detection of anomalous transactions |
US7743192B2 (en) * | 2007-03-18 | 2010-06-22 | Moxa Inc. | Method of determining request transmission priority subject to request content and transmitting request subject to such request transmission priority in application of Fieldbus communication framework |
US8065460B2 (en) * | 2007-03-18 | 2011-11-22 | Moxa Inc. | Method of determining request transmission priority subject to request content and transmitting request subject to such request transmission priority in application of fieldbus communication framework |
US20090132954A1 (en) * | 2007-11-20 | 2009-05-21 | Honeywell International Inc. | Apparatus and method for isolating problems in content loaded into a human-machine interface application |
US8312384B2 (en) * | 2008-06-11 | 2012-11-13 | Honeywell International Inc. | Apparatus and method for fault-tolerant presentation of multiple graphical displays in a process control system |
US8060290B2 (en) | 2008-07-17 | 2011-11-15 | Honeywell International Inc. | Configurable automotive controller |
EP2172820A1 (de) | 2008-10-06 | 2010-04-07 | Basf Se | Verfahren und System zur automatisierten Analyse von Prozessdaten |
WO2010058241A1 (en) * | 2008-11-24 | 2010-05-27 | Abb Research Ltd. | A system and a method for providing control and automation services |
EP2209282A1 (en) * | 2009-01-16 | 2010-07-21 | Telefonaktiebolaget L M Ericsson (publ) | A method, device and computer program product for service balancing in an electronic communications system |
CN101561668B (zh) * | 2009-05-15 | 2011-05-04 | 江苏网商软件有限责任公司 | 无油轴套烧结生产线在线监控系统及监控方法 |
US8620461B2 (en) * | 2009-09-24 | 2013-12-31 | Honeywell International, Inc. | Method and system for updating tuning parameters of a controller |
JP5517540B2 (ja) * | 2009-09-30 | 2014-06-11 | 花王株式会社 | 生乾き臭判定用指標物質 |
US8364512B2 (en) * | 2010-02-01 | 2013-01-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods and systems for dynamic inventory control |
US8688412B2 (en) | 2010-04-07 | 2014-04-01 | Honeywell International Inc. | System and method for solving chemical engineering equations and model development using equation editor |
US8504175B2 (en) | 2010-06-02 | 2013-08-06 | Honeywell International Inc. | Using model predictive control to optimize variable trajectories and system control |
US20120035749A1 (en) * | 2010-08-04 | 2012-02-09 | Fisher-Rosemount Systems, Inc. | Seamless integration of process control devices in a process control environment |
US9335042B2 (en) | 2010-08-16 | 2016-05-10 | Emerson Process Management Power & Water Solutions, Inc. | Steam temperature control using dynamic matrix control |
US9447963B2 (en) | 2010-08-16 | 2016-09-20 | Emerson Process Management Power & Water Solutions, Inc. | Dynamic tuning of dynamic matrix control of steam temperature |
US9217565B2 (en) | 2010-08-16 | 2015-12-22 | Emerson Process Management Power & Water Solutions, Inc. | Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater |
US9280146B2 (en) * | 2011-02-14 | 2016-03-08 | The Mathworks, Inc. | Multi-model, multi-objective tuning of control systems |
US20120215326A1 (en) * | 2011-02-17 | 2012-08-23 | Invensys Systems Inc. | Distributed Proportional/Integral/Derivative Tuning |
CN102163055B (zh) * | 2011-05-17 | 2013-11-13 | 河北省电力建设调整试验所 | 工业分散式控制系统的综合智能校验方法 |
EP2525292A1 (en) * | 2011-05-20 | 2012-11-21 | ABB Technology AG | System and method for using redundancy of controller operation |
EP2541472A1 (en) * | 2011-06-30 | 2013-01-02 | British Telecommunications Public Limited Company | Data processing system |
US9677493B2 (en) | 2011-09-19 | 2017-06-13 | Honeywell Spol, S.R.O. | Coordinated engine and emissions control system |
US9163828B2 (en) | 2011-10-31 | 2015-10-20 | Emerson Process Management Power & Water Solutions, Inc. | Model-based load demand control |
US9650934B2 (en) | 2011-11-04 | 2017-05-16 | Honeywell spol.s.r.o. | Engine and aftertreatment optimization system |
US20130111905A1 (en) | 2011-11-04 | 2013-05-09 | Honeywell Spol. S.R.O. | Integrated optimization and control of an engine and aftertreatment system |
WO2013071979A1 (en) | 2011-11-18 | 2013-05-23 | Abb Technology Ag | Method and arrangement for configuring a system for monitoring the performance of a control loop of an industrial plant |
CN104205149A (zh) * | 2012-01-06 | 2014-12-10 | 通用电气智能平台有限公司 | 用于创建和呈现控制逻辑的设备及方法 |
CN102681437A (zh) * | 2012-05-22 | 2012-09-19 | 宁波德曼压缩机有限公司 | 一种多功能智能控制器 |
CN103034206A (zh) * | 2012-12-14 | 2013-04-10 | 昆明理工大学 | 一种采用后绑定通信插件的工业数据采集系统 |
US10649424B2 (en) | 2013-03-04 | 2020-05-12 | Fisher-Rosemount Systems, Inc. | Distributed industrial performance monitoring and analytics |
US10678225B2 (en) | 2013-03-04 | 2020-06-09 | Fisher-Rosemount Systems, Inc. | Data analytic services for distributed industrial performance monitoring |
US9558220B2 (en) | 2013-03-04 | 2017-01-31 | Fisher-Rosemount Systems, Inc. | Big data in process control systems |
US10223327B2 (en) | 2013-03-14 | 2019-03-05 | Fisher-Rosemount Systems, Inc. | Collecting and delivering data to a big data machine in a process control system |
US10866952B2 (en) | 2013-03-04 | 2020-12-15 | Fisher-Rosemount Systems, Inc. | Source-independent queries in distributed industrial system |
US10386827B2 (en) * | 2013-03-04 | 2019-08-20 | Fisher-Rosemount Systems, Inc. | Distributed industrial performance monitoring and analytics platform |
US10649449B2 (en) | 2013-03-04 | 2020-05-12 | Fisher-Rosemount Systems, Inc. | Distributed industrial performance monitoring and analytics |
US10909137B2 (en) | 2014-10-06 | 2021-02-02 | Fisher-Rosemount Systems, Inc. | Streaming data for analytics in process control systems |
US9665088B2 (en) | 2014-01-31 | 2017-05-30 | Fisher-Rosemount Systems, Inc. | Managing big data in process control systems |
JP5696171B2 (ja) * | 2013-03-14 | 2015-04-08 | 株式会社東芝 | 制御パラメータ調整方法、制御パラメータ調整システム及び制御パラメータ設定装置 |
US10152031B2 (en) | 2013-03-15 | 2018-12-11 | Fisher-Rosemount Systems, Inc. | Generating checklists in a process control environment |
DK177915B1 (en) * | 2013-05-28 | 2015-01-05 | Core As | Process control method |
US9002617B2 (en) * | 2013-07-10 | 2015-04-07 | General Electric Company | Gas turbine engine controller with event trigger |
US9712380B2 (en) * | 2013-08-30 | 2017-07-18 | Shimadzu Corporation | Analytical device control system |
US10348581B2 (en) * | 2013-11-08 | 2019-07-09 | Rockwell Automation Technologies, Inc. | Industrial monitoring using cloud computing |
CN103699089B (zh) * | 2013-12-23 | 2016-10-26 | 北京金自天正智能控制股份有限公司 | 一种过程控制系统及方法 |
JP6246606B2 (ja) * | 2014-01-31 | 2017-12-13 | 株式会社Screenホールディングス | 基板処理装置 |
EP3111595A4 (en) * | 2014-02-28 | 2017-10-25 | Intel Corporation | Technologies for cloud data center analytics |
CN107003644B (zh) * | 2014-06-26 | 2020-10-02 | Abb瑞士股份有限公司 | 用于使用冗余本地监督控制器来控制过程工厂的方法 |
JP6462259B2 (ja) * | 2014-07-22 | 2019-01-30 | 株式会社ジャパンディスプレイ | 画像表示装置及び画像表示方法 |
EP3051367B1 (en) | 2015-01-28 | 2020-11-25 | Honeywell spol s.r.o. | An approach and system for handling constraints for measured disturbances with uncertain preview |
EP3056706A1 (en) | 2015-02-16 | 2016-08-17 | Honeywell International Inc. | An approach for aftertreatment system modeling and model identification |
EP3091212A1 (en) | 2015-05-06 | 2016-11-09 | Honeywell International Inc. | An identification approach for internal combustion engine mean value models |
EP3101500B1 (de) * | 2015-06-02 | 2024-02-14 | Siemens Aktiengesellschaft | Steuersystem für eine verteilte prozesssteuerung einer technischen anlage und ein verfahren zur steuerung einer technischen anlage |
DE102015210208A1 (de) * | 2015-06-02 | 2016-12-08 | Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft | Verfahren zum Ermitteln einer Zustandsgröße einer Ventilmembran eines elektronisch gesteuerten und motorisch angetriebenen Membranventils, sowie Membranventilsystem |
EP3125052B1 (en) | 2015-07-31 | 2020-09-02 | Garrett Transportation I Inc. | Quadratic program solver for mpc using variable ordering |
US10272779B2 (en) | 2015-08-05 | 2019-04-30 | Garrett Transportation I Inc. | System and approach for dynamic vehicle speed optimization |
US10001764B2 (en) | 2015-09-11 | 2018-06-19 | Woodward, Inc. | Adaptive multiple input multiple output PID control system for industrial turbines |
US11436911B2 (en) | 2015-09-30 | 2022-09-06 | Johnson Controls Tyco IP Holdings LLP | Sensor based system and method for premises safety and operational profiling based on drift analysis |
US20170091867A1 (en) * | 2015-09-30 | 2017-03-30 | Sensormatic Electronics, LLC | Sensor Based System And Method For Determining Allocation Based On Physical Proximity |
US11151654B2 (en) | 2015-09-30 | 2021-10-19 | Johnson Controls Tyco IP Holdings LLP | System and method for determining risk profile, adjusting insurance premiums and automatically collecting premiums based on sensor data |
US10902524B2 (en) | 2015-09-30 | 2021-01-26 | Sensormatic Electronics, LLC | Sensor based system and method for augmenting underwriting of insurance policies |
US10415492B2 (en) | 2016-01-29 | 2019-09-17 | Garrett Transportation I Inc. | Engine system with inferential sensor |
US10503483B2 (en) | 2016-02-12 | 2019-12-10 | Fisher-Rosemount Systems, Inc. | Rule builder in a process control network |
DE102016203855B4 (de) * | 2016-03-09 | 2023-11-02 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum Steuern eines technischen Systems anhand von Steuermodellen |
US10036338B2 (en) | 2016-04-26 | 2018-07-31 | Honeywell International Inc. | Condition-based powertrain control system |
US10124750B2 (en) | 2016-04-26 | 2018-11-13 | Honeywell International Inc. | Vehicle security module system |
US10552914B2 (en) | 2016-05-05 | 2020-02-04 | Sensormatic Electronics, LLC | Method and apparatus for evaluating risk based on sensor monitoring |
US9582754B1 (en) * | 2016-05-17 | 2017-02-28 | Roger Collins | Adaptive feed forward method for temperature control |
US10810676B2 (en) | 2016-06-06 | 2020-10-20 | Sensormatic Electronics, LLC | Method and apparatus for increasing the density of data surrounding an event |
US11605037B2 (en) | 2016-07-20 | 2023-03-14 | Fisher-Rosemount Systems, Inc. | Fleet management system for portable maintenance tools |
US10481627B2 (en) * | 2016-07-25 | 2019-11-19 | Fisher-Rosemount Systems, Inc. | Connection check in field maintenance tool |
US10764083B2 (en) | 2016-07-25 | 2020-09-01 | Fisher-Rosemount Systems, Inc. | Portable field maintenance tool with resistor network for intrinsically safe operation |
CN109891855B (zh) * | 2016-08-22 | 2022-07-29 | 西安姆贝拉有限公司 | 用于服务器上的传感器和/或致动器数据处理的方法和设备 |
EP3548729B1 (en) | 2016-11-29 | 2023-02-22 | Garrett Transportation I Inc. | An inferential flow sensor |
DE102017200103A1 (de) * | 2017-01-05 | 2018-07-05 | Siemens Aktiengesellschaft | Gerät und Verfahren zur Optimierung des Verhaltens von mindestens einer Komponente einer technischen Anlage |
US10359771B2 (en) | 2017-06-08 | 2019-07-23 | Tyco Fire & Security Gmbh | Prediction of false alarms in sensor-based security systems |
EP3639099A4 (en) * | 2017-06-12 | 2021-03-03 | Honeywell International Inc. | APPARATUS AND METHOD FOR IDENTIFYING, VIEWING AND TRIGGERING WORKFLOWS FROM SUGGESTED ACTIONS AUTOMATICALLY TO RECOVER LOST BENEFITS FROM MODEL-BASED INDUSTRIAL PROCESS CONTROL DEVICES |
US10761496B2 (en) | 2017-06-12 | 2020-09-01 | Honeywell International Inc. | Apparatus and method for identifying impacts and causes of variability or control giveaway on model-based controller performance |
US10620613B2 (en) * | 2017-08-21 | 2020-04-14 | Fisher-Rosemount Systems, Inc. | High performance control server system |
US10244043B1 (en) * | 2017-09-22 | 2019-03-26 | Yokogawa Electric Corporation | Management system for a plant facility and method for managing a plant facility |
US11057213B2 (en) | 2017-10-13 | 2021-07-06 | Garrett Transportation I, Inc. | Authentication system for electronic control unit on a bus |
JP6965798B2 (ja) * | 2018-03-12 | 2021-11-10 | オムロン株式会社 | 制御システムおよび制御方法 |
US10908950B1 (en) * | 2018-04-20 | 2021-02-02 | Automation Anywhere, Inc. | Robotic process automation system with queue orchestration and task prioritization |
US11354164B1 (en) | 2018-04-20 | 2022-06-07 | Automation Anywhere, Inc. | Robotic process automation system with quality of service based automation |
US10509586B2 (en) * | 2018-04-24 | 2019-12-17 | EMC IP Holding Company LLC | System and method for capacity forecasting in backup systems |
CN113424115B (zh) * | 2019-02-14 | 2024-06-18 | 三菱电机株式会社 | 控制系统、可编程逻辑控制器、方法及记录介质 |
US11267065B2 (en) * | 2019-02-18 | 2022-03-08 | Lincoln Global, Inc. | Systems and methods providing pattern recognition and data analysis in welding and cutting |
JP7559627B2 (ja) | 2021-03-09 | 2024-10-02 | オムロン株式会社 | 情報処理装置、情報処理方法および情報処理プログラム |
US20230052163A1 (en) * | 2021-08-12 | 2023-02-16 | Siemens Industry, Inc. | System and method for managing control performance of a building automation device |
US20230051907A1 (en) * | 2021-08-12 | 2023-02-16 | Siemens Industry, Inc. | System and method for managing control performance of a building automation device |
EP4231104A1 (en) * | 2022-02-21 | 2023-08-23 | United Grinding Group AG | Interactive proposal system for determining a set of operational parameters for a machine tool, control system for a machine tool, machine tool and method for determining a set of operational parameters |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1232553A (zh) * | 1996-10-04 | 1999-10-20 | 费希尔控制国际公司 | 具有分布控制功能的过程控制网络中的本地设备和过程诊断 |
WO2000014611A1 (en) * | 1998-09-09 | 2000-03-16 | Honeywell Inc. | System and method for balancing and distributing control algorithm loads |
US20020123864A1 (en) * | 2001-03-01 | 2002-09-05 | Evren Eryurek | Remote analysis of process control plant data |
GB2409293A (en) * | 2003-12-03 | 2005-06-22 | Fisher Rosemount Systems Inc | Adaptive multivariable process controller using model switching and attribute interpolation |
Family Cites Families (207)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3671725A (en) | 1970-10-01 | 1972-06-20 | Ibm | Dead time process regulation |
US3767900A (en) | 1971-06-23 | 1973-10-23 | Cons Paper Inc | Adaptive controller having optimal filtering |
US4029122A (en) | 1976-03-11 | 1977-06-14 | Westinghouse Electric Corporation | Apparatus and method for determining friction forces in position modulated valves |
US4054780A (en) | 1976-11-01 | 1977-10-18 | Phillips Petroleum Company | Gain-adaptive process control |
DE2751743C2 (de) | 1977-11-19 | 1985-04-18 | Pierburg Luftfahrtgeräte Union GmbH, 4040 Neuss | Verfahren und Regeleinrichtung zum Zumessen strömender Medien |
US4376450A (en) | 1978-07-03 | 1983-03-15 | Scovill Manufacturing Co. - Scovill, Inc. | Valve position monitor and control system |
US4694391A (en) | 1980-11-24 | 1987-09-15 | Texas Instruments Incorporated | Compressed control decoder for microprocessor system |
US4523286A (en) | 1981-08-07 | 1985-06-11 | Hitachi, Ltd. | Apparatus for making diagnosis of valve device in turbine system |
US4555766A (en) | 1981-10-09 | 1985-11-26 | General Signal Corporation | Brake control system for vehicles |
JPS59144906A (ja) | 1983-02-07 | 1984-08-20 | Tokyo Keiki Co Ltd | デジタル弁制御装置のテ−ブル情報作成方法 |
US4858103A (en) | 1983-02-07 | 1989-08-15 | Tokyo Keiki Company, Ltd. | Fluid valve control system for controlling fluid pressure or flow |
US4660416A (en) | 1983-07-19 | 1987-04-28 | Charbonneau And Godfrey Associates | Motor operated valve analysis and testing system with monitoring of spring pack movement through side by side monitoring device |
US4693113A (en) | 1983-07-19 | 1987-09-15 | Charbonneau And Godfrey Associates | Motor operated valve analysis and testing system |
US4542649A (en) | 1983-07-19 | 1985-09-24 | Charbonneau And Godfrey Associates | Motor operated valve analysis and testing system |
US4690003A (en) | 1983-07-19 | 1987-09-01 | Charbonneau & Godfrey Associates | Motor operated valve analysis and testing system |
US4712071A (en) | 1983-07-19 | 1987-12-08 | Charbonneau & Godfrey Associates | Motor operated valve analysis and testing system |
JPS6069702A (ja) | 1983-09-26 | 1985-04-20 | Toshiba Corp | サンプル値プロセス制御装置 |
JPS60218105A (ja) * | 1984-04-13 | 1985-10-31 | Toshiba Corp | 制御装置 |
US4742713A (en) | 1984-06-01 | 1988-05-10 | Omron Tateisi Electronics Co. | Ultrasonic flaw detecting system |
US4672529A (en) | 1984-10-26 | 1987-06-09 | Autech Partners Ltd. | Self contained data acquisition apparatus and system |
US4590963A (en) | 1985-04-03 | 1986-05-27 | Combustion Engineering Co., Inc. | Method of and apparatus for determining the position of a movable member |
US4617960A (en) | 1985-05-03 | 1986-10-21 | Develco, Inc. | Verification of a surface controlled subsurface actuating device |
US4694390A (en) | 1985-06-28 | 1987-09-15 | Electric Power Research Institute, Inc. | Microprocessor-based control and diagnostic system for motor operated valves |
US4615722A (en) | 1985-09-20 | 1986-10-07 | Owens-Illinois, Inc. | Valve block test apparatus |
US5000040A (en) | 1986-04-04 | 1991-03-19 | Movats Incorporated | Method and apparatus for remote monitoring of valves and valve operators |
US4831873A (en) | 1986-04-04 | 1989-05-23 | Movats Incorporated | Method and apparatus for remote monitoring of valves and valve operators |
US4908774A (en) | 1986-05-05 | 1990-03-13 | Akademiet For De Tekniske Videnskaber | System for ultrasonic examination |
GB8620357D0 (en) | 1986-08-21 | 1986-10-01 | Apv Int Ltd | Flow control valve |
GB2196445A (en) | 1986-10-17 | 1988-04-27 | John James Sylvester Derry | Condition monitoring equipment for power output devices |
US5159835A (en) | 1986-10-29 | 1992-11-03 | Westinghouse Electric Corp. | Check valve testing system |
US5154080A (en) | 1986-10-29 | 1992-10-13 | Westinghouse Electric Corp. | Integrated check valve testing system |
US4977778A (en) | 1986-10-29 | 1990-12-18 | Movats Incorporated | Check valve testing system |
US4742284A (en) | 1986-12-09 | 1988-05-03 | The Babcock & Wilcox Company | Advanced motor controller |
JPS63163505A (ja) * | 1986-12-25 | 1988-07-07 | Idemitsu Petrochem Co Ltd | プロセスの適応制御方法 |
US4908775A (en) | 1987-02-24 | 1990-03-13 | Westinghouse Electric Corp. | Cycle monitoring method and apparatus |
JP2707075B2 (ja) * | 1987-03-27 | 1998-01-28 | 株式会社日立製作所 | プラントシミユレーシヨン装置 |
US5043863A (en) | 1987-03-30 | 1991-08-27 | The Foxboro Company | Multivariable adaptive feedforward controller |
KR890007306A (ko) | 1987-10-30 | 1989-06-19 | 제트.엘.더머 | 온라인 밸브 진단 감시 시스템 |
US4980825A (en) | 1988-05-11 | 1990-12-25 | Hydro-Craft, Inc. | Servo valve analyzing system and method |
US4916628A (en) | 1988-07-08 | 1990-04-10 | Commonwealth Edison Company | Microprocessor-based control/status monitoring arrangement |
US4976144A (en) | 1988-08-25 | 1990-12-11 | Fisher Controls International, Inc. | Diagnostic apparatus and method for fluid control valves |
US5197328A (en) | 1988-08-25 | 1993-03-30 | Fisher Controls International, Inc. | Diagnostic apparatus and method for fluid control valves |
US5109692A (en) | 1988-08-25 | 1992-05-05 | Fisher Controls International Inc. | Diagnostic apparatus and method for fluid control valves |
US4949288A (en) | 1988-09-02 | 1990-08-14 | Movats Incorporated | Testing system for safety relief valves |
JPH0277801A (ja) * | 1988-09-14 | 1990-03-16 | Yokogawa Electric Corp | セルフチューニングコントローラ |
JP2553675B2 (ja) | 1988-11-18 | 1996-11-13 | 日本電気硝子株式会社 | プロセスの制御方法 |
IT1239482B (it) | 1989-03-20 | 1993-11-03 | Hitachi Ltd | Apparecchiatura e procedimento per il controllo di processi per la regolazione di parametri operativi di un'unita' di controllo dell'apparecchiatura di controllo di processi |
US4926903A (en) | 1989-05-05 | 1990-05-22 | Tomoe Technical Research Company | Butterfly valve having a function for measuring a flow rate and method of measuring a flow rate with a butterfly valve |
DE3928456A1 (de) | 1989-08-29 | 1991-03-07 | Nord Micro Elektronik Feinmech | Verfahren und schaltungsanordnung zum bilden eines auswertungssignals aus einer mehrzahl redundanter messsignale |
JP2551166B2 (ja) * | 1989-09-13 | 1996-11-06 | 横河電機株式会社 | プロセス制御装置 |
US5198973A (en) | 1989-09-14 | 1993-03-30 | Steutermann Edward M | Select-a-range control device |
US5018215A (en) | 1990-03-23 | 1991-05-21 | Honeywell Inc. | Knowledge and model based adaptive signal processor |
US5140263A (en) | 1990-04-20 | 1992-08-18 | Liberty Technology Center, Inc. | System for determining position of an internal, movable conductive element |
US5086273A (en) | 1990-04-20 | 1992-02-04 | Liberty Technology Center, Inc. | A.C. electromagnetic system for determining position of an encased movable electrically conductive element |
US5414648A (en) | 1990-05-31 | 1995-05-09 | Integrated Diagnostic Measurement Corporation | Nondestructively determining the dimensional changes of an object as a function of temperature |
US5251148A (en) | 1990-06-01 | 1993-10-05 | Valtek, Inc. | Integrated process control valve |
US5394322A (en) | 1990-07-16 | 1995-02-28 | The Foxboro Company | Self-tuning controller that extracts process model characteristics |
US5180896A (en) | 1990-10-11 | 1993-01-19 | University Of Florida | System and method for in-line heating of medical fluid |
US5159547A (en) | 1990-10-16 | 1992-10-27 | Rockwell International Corporation | Self-monitoring tuner for feedback controller |
US5170341A (en) | 1990-10-24 | 1992-12-08 | Honeywell Inc. | Adaptive controller in a process control system and a method therefor |
US5272647A (en) | 1991-01-30 | 1993-12-21 | Combustion Engineering, Inc. | Valve diagnostic apparatus and method |
US5253185A (en) | 1991-01-30 | 1993-10-12 | Combustion Engineering, Inc. | Valve diagnostic system including auxiliary transducer box |
US5347446A (en) | 1991-02-08 | 1994-09-13 | Kabushiki Kaisha Toshiba | Model predictive control apparatus |
US5228342A (en) | 1991-07-26 | 1993-07-20 | Westinghouse Electric Corp. | Ultrasonic position sensor and method |
US5335164A (en) | 1991-07-31 | 1994-08-02 | Universal Dynamics Limited | Method and apparatus for adaptive control |
JPH0553893A (ja) * | 1991-08-22 | 1993-03-05 | Nec Corp | 耐障害フアイル装置 |
US5337262A (en) | 1991-12-03 | 1994-08-09 | Hr Textron Inc. | Apparatus for and method of testing hydraulic/pneumatic apparatus using computer controlled test equipment |
JPH07502354A (ja) | 1991-12-18 | 1995-03-09 | ハネウエル・インコーポレーテッド | 閉ループ神経ネットワーク自動同調器 |
DE69206770T2 (de) * | 1991-12-19 | 1996-07-11 | Motorola Inc | Dreiachsiger Beschleunigungsmesser |
JPH05211792A (ja) * | 1992-01-30 | 1993-08-20 | Shibaura Eng Works Co Ltd | Acサーボモータの制御方法および装置 |
JPH05313705A (ja) | 1992-05-12 | 1993-11-26 | Hitachi Ltd | プロセス制御方法および装置 |
US5341288A (en) | 1992-05-27 | 1994-08-23 | The Foxboro Company | Method and apparatus for analyzing process characteristics |
US5319539A (en) | 1992-05-27 | 1994-06-07 | The Foxboro Company | Method and apparatus for generating an optimal gain of process control equipment |
DE4218320A1 (de) | 1992-06-03 | 1993-12-09 | Siemens Ag | Verfahren und Einrichtung zur Prüfung einer durch ein Medium angetriebenen Armatur |
US5402333A (en) | 1992-06-15 | 1995-03-28 | E. I. Du Pont De Nemours & Co., Inc. | System and method for improving model product property estimates |
US5396416A (en) | 1992-08-19 | 1995-03-07 | Continental Controls, Inc. | Multivariable process control method and apparatus |
US5488561A (en) | 1992-08-19 | 1996-01-30 | Continental Controls, Inc. | Multivariable process control method and apparatus |
DE4232826C1 (de) | 1992-09-30 | 1993-10-28 | Siemens Ag | Verfahren und Vorrichtung zur Messung der Totzeit einer Regelgröße und ihre Verwendung |
MX9306152A (es) | 1992-10-05 | 1994-05-31 | Fisher Controls Int | Sistema de comunicacion y metodo. |
US5740033A (en) | 1992-10-13 | 1998-04-14 | The Dow Chemical Company | Model predictive controller |
US5487302A (en) | 1993-03-01 | 1996-01-30 | Lockheed Martin Energy Systems, Inc. | Method and system for measuring gate valve clearances and seating force |
JP3202396B2 (ja) | 1993-03-26 | 2001-08-27 | 株式会社日立ビルシステム | エレベータの異常解析データ収集装置 |
JP3094191B2 (ja) * | 1993-03-30 | 2000-10-03 | 株式会社日立製作所 | プラントの自己学習診断、予測方法及び装置 |
US5320123A (en) | 1993-05-24 | 1994-06-14 | Honeywell Inc. | Valve with dynamic function checking capability |
US5420785A (en) | 1993-05-26 | 1995-05-30 | The Foxboro Company | Self-tuning deadtime process controller |
US5329956A (en) | 1993-05-28 | 1994-07-19 | Combustion Engineering, Inc. | Pneumatic operated valve stroke timing |
US5453925A (en) | 1993-05-28 | 1995-09-26 | Fisher Controls International, Inc. | System and method for automatically tuning a process controller |
US5396167A (en) | 1993-06-03 | 1995-03-07 | Liberty Technologies, Inc. | Method for remotely determining operability of motor operated valves |
JPH0713611A (ja) * | 1993-06-24 | 1995-01-17 | Hitachi Ltd | プロセスモデル評価装置およびプロセスモデル評価方法 |
JP2767363B2 (ja) | 1993-07-08 | 1998-06-18 | 株式会社小松製作所 | 駆動機械のデータ収集装置 |
US5402367A (en) * | 1993-07-19 | 1995-03-28 | Texas Instruments, Incorporated | Apparatus and method for model based process control |
EP0636824A1 (en) | 1993-07-27 | 1995-02-01 | BTR plc | Valve assembly |
DE4326343A1 (de) | 1993-08-05 | 1995-02-09 | Honeywell Ag | Diganose-System für Regel- und Absperrarmaturen |
US6330484B1 (en) | 1993-08-11 | 2001-12-11 | Fisher-Rosemount Systems, Inc. | Method and apparatus for fuzzy logic control with automatic tuning |
US5433245A (en) | 1993-08-16 | 1995-07-18 | Westinghouse Electric Corporation | Online valve diagnostic monitoring system having diagnostic couplings |
US6041320A (en) | 1993-08-23 | 2000-03-21 | Fisher Controls International, Inc. | Multi-region fuzzy logic control system with auxiliary variables |
AU7634494A (en) | 1993-09-15 | 1995-04-03 | Combustion Engineering Inc. | Diagnostic data acquisitioner for a valve |
US5461559A (en) | 1993-10-04 | 1995-10-24 | The United States Of America As Represented By The Secretary Of The Air Force | Hierarchical control system for molecular beam epitaxy |
US5408406A (en) | 1993-10-07 | 1995-04-18 | Honeywell Inc. | Neural net based disturbance predictor for model predictive control |
IT1265319B1 (it) | 1993-12-22 | 1996-10-31 | Nuovo Pignone Spa | Sistema perfezionato di comando dell'attuatore di una valvola pneumatica |
US5477149A (en) | 1993-12-29 | 1995-12-19 | Spencer; George M. | Method and apparatus for non-invasive monitoring of solenoid valves |
US5587899A (en) | 1994-06-10 | 1996-12-24 | Fisher-Rosemount Systems, Inc. | Method and apparatus for determining the ultimate gain and ultimate period of a controlled process |
JPH08137508A (ja) * | 1994-09-14 | 1996-05-31 | Toshiba Corp | モデリング装置および制御装置 |
US6334219B1 (en) | 1994-09-26 | 2001-12-25 | Adc Telecommunications Inc. | Channel selection for a hybrid fiber coax network |
DE69515096T2 (de) | 1994-10-18 | 2000-07-20 | Neles Controls Oy, Helsinki | Verfahren und Vorrichtung zur Ermittlung eines Fehlers einer Steuerventilanordnung in einem Regelkreis |
US5586305A (en) | 1994-10-21 | 1996-12-17 | Hewlett-Packard Company | Smart distributed measurement and control system with a flexible architecture |
US5519605A (en) | 1994-10-24 | 1996-05-21 | Olin Corporation | Model predictive control apparatus and method |
US5568378A (en) | 1994-10-24 | 1996-10-22 | Fisher-Rosemount Systems, Inc. | Variable horizon predictor for controlling dead time dominant processes, multivariable interactive processes, and processes with time variant dynamics |
US5748467A (en) | 1995-02-21 | 1998-05-05 | Fisher-Rosemont Systems, Inc. | Method of adapting and applying control parameters in non-linear process controllers |
BE1009406A3 (fr) | 1995-06-09 | 1997-03-04 | Solvay | Methode de regulation de procedes de synthese de produits chimiques. |
WO1997012300A1 (en) | 1995-09-26 | 1997-04-03 | Boiquaye William J N O | Adaptive control process and system |
US5687098A (en) | 1995-10-30 | 1997-11-11 | Fisher Controls International, Inc. | Device data acquisition |
US5966679A (en) | 1995-10-30 | 1999-10-12 | Fisher Controls International, Inc. | Method of and apparatus for nonobtrusively obtaining on-line measurements of a process control device parameter |
US6003037A (en) | 1995-11-14 | 1999-12-14 | Progress Software Corporation | Smart objects for development of object oriented software |
ES2140223T3 (es) | 1996-02-09 | 2000-02-16 | Siemens Ag | Procedimiento para la generacion de parametros de regulacion a partir de una señal de respuesta de un tramo de regulacion por medio de un ordenador. |
JP3412384B2 (ja) | 1996-03-13 | 2003-06-03 | 株式会社日立製作所 | 制御モデル構築支援装置 |
US5909368A (en) | 1996-04-12 | 1999-06-01 | Fisher-Rosemount Systems, Inc. | Process control system using a process control strategy distributed among multiple control elements |
GB9608953D0 (en) | 1996-04-29 | 1996-07-03 | Pulp Paper Res Inst | Automatic control loop monitoring and diagnostics |
US7418301B2 (en) | 1996-05-06 | 2008-08-26 | Pavilion Technologies, Inc. | Method and apparatus for approximating gains in dynamic and steady-state processes for prediction, control, and optimization |
US6493596B1 (en) | 1996-05-06 | 2002-12-10 | Pavilion Technologies, Inc. | Method and apparatus for controlling a non-linear mill |
US5933345A (en) | 1996-05-06 | 1999-08-03 | Pavilion Technologies, Inc. | Method and apparatus for dynamic and steady state modeling over a desired path between two end points |
US7058617B1 (en) | 1996-05-06 | 2006-06-06 | Pavilion Technologies, Inc. | Method and apparatus for training a system model with gain constraints |
US7610108B2 (en) | 1996-05-06 | 2009-10-27 | Rockwell Automation Technologies, Inc. | Method and apparatus for attenuating error in dynamic and steady-state processes for prediction, control, and optimization |
US7149590B2 (en) | 1996-05-06 | 2006-12-12 | Pavilion Technologies, Inc. | Kiln control and upset recovery using a model predictive control in series with forward chaining |
US6381504B1 (en) | 1996-05-06 | 2002-04-30 | Pavilion Technologies, Inc. | Method for optimizing a plant with multiple inputs |
US6438430B1 (en) | 1996-05-06 | 2002-08-20 | Pavilion Technologies, Inc. | Kiln thermal and combustion control |
US6839599B2 (en) | 1996-05-06 | 2005-01-04 | Pavilion Technologies, Inc. | Kiln/cooler control and upset recovery using a combination of model predictive control and expert systems |
US6278899B1 (en) | 1996-05-06 | 2001-08-21 | Pavilion Technologies, Inc. | Method for on-line optimization of a plant |
US6047221A (en) | 1997-10-03 | 2000-04-04 | Pavilion Technologies, Inc. | Method for steady-state identification based upon identified dynamics |
JPH1074188A (ja) * | 1996-05-23 | 1998-03-17 | Hitachi Ltd | データ学習装置およびプラント制御装置 |
US6047222A (en) * | 1996-10-04 | 2000-04-04 | Fisher Controls International, Inc. | Process control network with redundant field devices and buses |
US6601005B1 (en) | 1996-11-07 | 2003-07-29 | Rosemount Inc. | Process device diagnostics using process variable sensor signal |
WO1998021651A1 (en) | 1996-11-14 | 1998-05-22 | Alcatel Usa Sourcing, L.P. | Generic software state machine and method of constructing dynamic objects for an application program |
FI109379B (fi) | 1997-07-14 | 2002-07-15 | Metso Paper Automation Oy | Menetelmä ja laitteisto paperikoneen lajinvaihdon toteuttamiseksi |
JP3592519B2 (ja) | 1997-09-16 | 2004-11-24 | 本田技研工業株式会社 | 内燃機関の排気系の空燃比制御装置及びプラントの制御装置 |
US6192321B1 (en) | 1997-09-29 | 2001-02-20 | Fisher Controls International, Inc. | Method of and apparatus for deterministically obtaining measurements |
US6128541A (en) | 1997-10-15 | 2000-10-03 | Fisher Controls International, Inc. | Optimal auto-tuner for use in a process control network |
US5950006A (en) | 1997-11-05 | 1999-09-07 | Control Technology Corporation | Object-oriented programmable controller |
US6088630A (en) | 1997-11-19 | 2000-07-11 | Olin Corporation | Automatic control system for unit operation |
US5909370A (en) | 1997-12-22 | 1999-06-01 | Honeywell Inc. | Method of predicting overshoot in a control system response |
JPH11259105A (ja) * | 1998-03-13 | 1999-09-24 | Yaskawa Electric Corp | 外部同期可能なプログラマブルコントローラ装置 |
US6201996B1 (en) | 1998-05-29 | 2001-03-13 | Control Technology Corporationa | Object-oriented programmable industrial controller with distributed interface architecture |
JP3219245B2 (ja) | 1998-08-13 | 2001-10-15 | 株式会社日立国際電気 | 温度制御シミュレーション方法及び温度制御シミュレーション装置 |
JP3773684B2 (ja) | 1999-02-09 | 2006-05-10 | 本田技研工業株式会社 | 内燃機関の空燃比制御装置 |
US6385496B1 (en) | 1999-03-12 | 2002-05-07 | Fisher-Rosemount Systems, Inc. | Indirect referencing in process control routines |
US6445962B1 (en) | 1999-03-15 | 2002-09-03 | Fisher Rosemount Systems, Inc. | Auto-tuning in a distributed process control environment |
WO2000070531A2 (en) | 1999-05-17 | 2000-11-23 | The Foxboro Company | Methods and apparatus for control configuration |
US6445963B1 (en) | 1999-10-04 | 2002-09-03 | Fisher Rosemount Systems, Inc. | Integrated advanced control blocks in process control systems |
US6654649B2 (en) | 1999-12-22 | 2003-11-25 | Aspen Technology, Inc. | Computer method and apparatus for optimized controller in a non-linear process |
US7113834B2 (en) | 2000-06-20 | 2006-09-26 | Fisher-Rosemount Systems, Inc. | State based adaptive feedback feedforward PID controller |
US6577908B1 (en) | 2000-06-20 | 2003-06-10 | Fisher Rosemount Systems, Inc | Adaptive feedback/feedforward PID controller |
US8280533B2 (en) | 2000-06-20 | 2012-10-02 | Fisher-Rosemount Systems, Inc. | Continuously scheduled model parameter based adaptive controller |
JP2004503000A (ja) | 2000-06-30 | 2004-01-29 | ザ ダウ ケミカル カンパニー | 多変量マトリクスプロセス制御 |
US20020019722A1 (en) | 2000-07-19 | 2002-02-14 | Wim Hupkes | On-line calibration process |
US6647315B1 (en) * | 2000-09-29 | 2003-11-11 | Fisher-Rosemount Systems, Inc. | Use of remote soft phases in a process control system |
GB2371884A (en) | 2000-10-12 | 2002-08-07 | Abb Ab | Queries in an object-oriented computer system |
US6697767B2 (en) | 2000-10-18 | 2004-02-24 | The National University Of Singapore | Robust process identification and auto-tuning control |
MY138476A (en) | 2001-02-01 | 2009-06-30 | Honda Motor Co Ltd | Apparatus for and method of controlling plant |
US6712669B1 (en) | 2001-02-15 | 2004-03-30 | Tawain Semiconductor Manufacturing Company | BPSG chemical mechanical planarization process control for production control and cost savings |
US6938843B2 (en) | 2001-03-06 | 2005-09-06 | J & L Fiber Services, Inc. | Refiner control method and system |
US6643600B2 (en) * | 2001-04-26 | 2003-11-04 | General Electric Company | Method and system for assessing adjustment factors in testing or monitoring process |
JP2003015935A (ja) * | 2001-06-27 | 2003-01-17 | Matsushita Electric Ind Co Ltd | 検査・検査装置データ処理装置及びその制御方法 |
US6819960B1 (en) | 2001-08-13 | 2004-11-16 | Rockwell Software Inc. | Industrial controller automation interface |
US6772036B2 (en) | 2001-08-30 | 2004-08-03 | Fisher-Rosemount Systems, Inc. | Control system using process model |
US6757579B1 (en) | 2001-09-13 | 2004-06-29 | Advanced Micro Devices, Inc. | Kalman filter state estimation for a manufacturing system |
JP4222816B2 (ja) | 2001-12-06 | 2009-02-12 | 本田技研工業株式会社 | 周波数整形応答指定型制御を用いたプラント制御装置 |
JP4030372B2 (ja) | 2002-01-31 | 2008-01-09 | 株式会社東芝 | 河川の水位予測装置 |
US6901300B2 (en) | 2002-02-07 | 2005-05-31 | Fisher-Rosemount Systems, Inc.. | Adaptation of advanced process control blocks in response to variable process delay |
DE10341762B4 (de) * | 2002-09-11 | 2014-05-15 | Fisher-Rosemount Systems, Inc. | Handhabung der Realisierbarkeit von Beschränkungen und Grenzen in einem Optimierer für Prozesssteuerungssysteme |
US7050863B2 (en) | 2002-09-11 | 2006-05-23 | Fisher-Rosemount Systems, Inc. | Integrated model predictive control and optimization within a process control system |
US7376472B2 (en) | 2002-09-11 | 2008-05-20 | Fisher-Rosemount Systems, Inc. | Integrated model predictive control and optimization within a process control system |
US6819999B2 (en) * | 2002-09-13 | 2004-11-16 | Elliott Energy Systems, Inc. | Multiple control loop acceleration of turboalternator previous to self-sustaining speed |
US6834226B2 (en) * | 2002-09-13 | 2004-12-21 | Elliott Energy Systems, Inc. | Multiple control loop acceleration of turboalternator after reaching self-sustaining speed previous to reaching synchronous speed |
DE10348563B4 (de) | 2002-10-22 | 2014-01-09 | Fisher-Rosemount Systems, Inc. | Integration von Grafikdisplayelementen, Prozeßmodulen und Steuermodulen in Prozeßanlagen |
US9983559B2 (en) | 2002-10-22 | 2018-05-29 | Fisher-Rosemount Systems, Inc. | Updating and utilizing dynamic process simulation in an operating process environment |
US7146231B2 (en) | 2002-10-22 | 2006-12-05 | Fisher-Rosemount Systems, Inc.. | Smart process modules and objects in process plants |
US7194318B2 (en) | 2003-01-31 | 2007-03-20 | Fakhruddin T Attarwala | Integrated optimization and control using modular model predictive controller |
JP2004327933A (ja) * | 2003-04-28 | 2004-11-18 | Mitsubishi Electric Corp | プロセスデータ収集装置 |
WO2004099890A1 (en) | 2003-05-01 | 2004-11-18 | Aspen Technology, Inc. | Methods, systems, and articles for controlling a fluid blending system |
US7340336B2 (en) | 2003-06-13 | 2008-03-04 | Honda Motor Co., Ltd. | Plant control system |
US7054706B2 (en) | 2003-06-30 | 2006-05-30 | Intel Corporation | Managing supply chains with model predictive control |
JP4324960B2 (ja) * | 2003-09-18 | 2009-09-02 | 横河電機株式会社 | 多変数予測制御システム |
US20050088320A1 (en) | 2003-10-08 | 2005-04-28 | Aram Kovach | System for registering and tracking vehicles |
US7187989B2 (en) | 2003-12-22 | 2007-03-06 | Fakhruddin T Attarwala | Use of core process models in model predictive controller |
JP4281602B2 (ja) * | 2004-03-30 | 2009-06-17 | 富士電機システムズ株式会社 | 2重化コントローラシステム、そのコントローラ、プログラム |
US7515977B2 (en) | 2004-03-30 | 2009-04-07 | Fisher-Rosemount Systems, Inc. | Integrated configuration system for use in a process plant |
JP2007536634A (ja) | 2004-05-04 | 2007-12-13 | フィッシャー−ローズマウント・システムズ・インコーポレーテッド | プロセス制御システムのためのサービス指向型アーキテクチャ |
US7203555B2 (en) | 2004-05-14 | 2007-04-10 | University Of Delaware | Predictive regulatory controller |
TWI255397B (en) | 2004-05-19 | 2006-05-21 | Cheng-Ching Yu | Method and apparatus for PID controllers with adjustable dead time compensation |
US6885907B1 (en) | 2004-05-27 | 2005-04-26 | Dofasco Inc. | Real-time system and method of monitoring transient operations in continuous casting process for breakout prevention |
US20060111858A1 (en) | 2004-11-22 | 2006-05-25 | Yucai Zhu | Computer method and apparatus for online process identification |
US7526463B2 (en) | 2005-05-13 | 2009-04-28 | Rockwell Automation Technologies, Inc. | Neural network using spatially dependent data for controlling a web-based process |
US7451004B2 (en) | 2005-09-30 | 2008-11-11 | Fisher-Rosemount Systems, Inc. | On-line adaptive model predictive control in a process control system |
US8036760B2 (en) | 2005-10-04 | 2011-10-11 | Fisher-Rosemount Systems, Inc. | Method and apparatus for intelligent control and monitoring in a process control system |
US7444191B2 (en) | 2005-10-04 | 2008-10-28 | Fisher-Rosemount Systems, Inc. | Process model identification in a process control system |
US7738975B2 (en) | 2005-10-04 | 2010-06-15 | Fisher-Rosemount Systems, Inc. | Analytical server integrated in a process control network |
US7650195B2 (en) | 2005-10-27 | 2010-01-19 | Honeywell Asca Inc. | Automated tuning of large-scale multivariable model predictive controllers for spatially-distributed processes |
US7840287B2 (en) | 2006-04-13 | 2010-11-23 | Fisher-Rosemount Systems, Inc. | Robust process model identification in model based control techniques |
US7930044B2 (en) | 2006-09-07 | 2011-04-19 | Fakhruddin T Attarwala | Use of dynamic variance correction in optimization |
US7826909B2 (en) | 2006-12-11 | 2010-11-02 | Fakhruddin T Attarwala | Dynamic model predictive control |
US20080243289A1 (en) | 2007-03-28 | 2008-10-02 | Honeywell International, Inc. | Model maintenance architecture for advanced process control |
US7590511B2 (en) * | 2007-09-25 | 2009-09-15 | Rosemount Inc. | Field device for digital process control loop diagnostics |
US8065251B2 (en) | 2007-09-28 | 2011-11-22 | Fisher-Rosemount Systems, Inc. | Dynamic management of a process model repository for a process control system |
GB2490267B (en) | 2008-01-31 | 2013-01-16 | Fisher Rosemount Systems Inc | Robust adaptive model predictive controller with tuning to compensate for model mismatch |
WO2009120362A2 (en) | 2008-03-26 | 2009-10-01 | Fakhruddin T Attarwala | Universal model predictive controller |
US8126575B2 (en) | 2008-03-26 | 2012-02-28 | Fakhruddin T Attarwala | Universal model predictive controller |
US8112163B2 (en) | 2009-03-23 | 2012-02-07 | Fakhruddin T Attarwala | Embedded dynamic alarm control system |
-
2006
- 2006-10-02 US US11/537,826 patent/US7738975B2/en active Active
-
2007
- 2007-09-28 CN CN2007101516008A patent/CN101196740B/zh active Active
- 2007-10-01 DE DE102007046964.2A patent/DE102007046964B4/de not_active Expired - Fee Related
- 2007-10-02 GB GB0719216A patent/GB2442591B/en not_active Expired - Fee Related
- 2007-10-02 JP JP2007258846A patent/JP5657854B2/ja not_active Expired - Fee Related
-
2008
- 2008-06-18 HK HK08106744.8A patent/HK1112074A1/xx not_active IP Right Cessation
-
2010
- 2010-05-19 US US12/782,946 patent/US8046096B2/en active Active
-
2013
- 2013-07-05 JP JP2013141266A patent/JP5730952B2/ja active Active
-
2014
- 2014-10-23 JP JP2014216165A patent/JP5965961B2/ja active Active
- 2014-12-12 JP JP2014251960A patent/JP6460767B2/ja active Active
-
2017
- 2017-01-04 JP JP2017000088A patent/JP6751674B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1232553A (zh) * | 1996-10-04 | 1999-10-20 | 费希尔控制国际公司 | 具有分布控制功能的过程控制网络中的本地设备和过程诊断 |
WO2000014611A1 (en) * | 1998-09-09 | 2000-03-16 | Honeywell Inc. | System and method for balancing and distributing control algorithm loads |
US20020123864A1 (en) * | 2001-03-01 | 2002-09-05 | Evren Eryurek | Remote analysis of process control plant data |
US6795798B2 (en) * | 2001-03-01 | 2004-09-21 | Fisher-Rosemount Systems, Inc. | Remote analysis of process control plant data |
GB2409293A (en) * | 2003-12-03 | 2005-06-22 | Fisher Rosemount Systems Inc | Adaptive multivariable process controller using model switching and attribute interpolation |
Non-Patent Citations (1)
Title |
---|
JP昭62-89908A 1987.04.24 |
Also Published As
Publication number | Publication date |
---|---|
US20100228363A1 (en) | 2010-09-09 |
DE102007046964A1 (de) | 2008-05-21 |
US7738975B2 (en) | 2010-06-15 |
GB2442591B (en) | 2011-09-28 |
US20070142936A1 (en) | 2007-06-21 |
HK1112074A1 (en) | 2008-08-22 |
JP5730952B2 (ja) | 2015-06-10 |
JP2017079084A (ja) | 2017-04-27 |
JP6751674B2 (ja) | 2020-09-09 |
JP2015046180A (ja) | 2015-03-12 |
GB2442591A (en) | 2008-04-09 |
DE102007046964B4 (de) | 2016-10-06 |
JP2013225333A (ja) | 2013-10-31 |
JP5657854B2 (ja) | 2015-01-21 |
JP6460767B2 (ja) | 2019-01-30 |
GB0719216D0 (en) | 2007-11-14 |
JP2015072714A (ja) | 2015-04-16 |
JP5965961B2 (ja) | 2016-08-10 |
JP2008090845A (ja) | 2008-04-17 |
US8046096B2 (en) | 2011-10-25 |
CN101196740A (zh) | 2008-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101196740B (zh) | 集成于过程控制网络的分析服务器 | |
CN101004589B (zh) | 过程控制系统中的过程模型识别 | |
CN101533261B (zh) | 用于过程控制系统中的智能控制和监控的方法和设备 | |
CN101533273B (zh) | 过程控制系统的过程模型库的动态管理 | |
CN104345726B (zh) | 过程控制系统中的非侵入式数据分析 | |
CN101807048B (zh) | 过程控制系统中的在线自适应模型预测控制 | |
US11644803B2 (en) | Control system database systems and methods | |
CN112213994B (zh) | 在过程工厂的控制系统内使用指导的预测仿真的实时控制 | |
CN100555136C (zh) | 加工厂中的异常状况预防方法和系统 | |
CN101796505B (zh) | 用于过程控制的方法和系统 | |
CN104834294A (zh) | 利用并行过程仿真的多目标预测过程优化 | |
JP2004152265A (ja) | プロセス制御システムにおける統合型モデル予測制御および最適化 | |
US20190361428A1 (en) | Competency gap identification of an operators response to various process control and maintenance conditions | |
US11449044B2 (en) | Successive maximum error reduction | |
US11334061B2 (en) | Method to detect skill gap of operators making frequent inadvertent changes to the process variables |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |