CN101186551B - 石蜡烷基化 - Google Patents

石蜡烷基化 Download PDF

Info

Publication number
CN101186551B
CN101186551B CN2007101612880A CN200710161288A CN101186551B CN 101186551 B CN101186551 B CN 101186551B CN 2007101612880 A CN2007101612880 A CN 2007101612880A CN 200710161288 A CN200710161288 A CN 200710161288A CN 101186551 B CN101186551 B CN 101186551B
Authority
CN
China
Prior art keywords
liquid
alkene
hydrocarbon
acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2007101612880A
Other languages
English (en)
Other versions
CN101186551A (zh
Inventor
小劳伦斯·A·史密斯
米切尔·E·勒舍尔
约翰·R·亚当斯
亚伯拉罕·P·格尔拜因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Catalytic Distillation Technologies
Original Assignee
Catalytic Distillation Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalytic Distillation Technologies filed Critical Catalytic Distillation Technologies
Publication of CN101186551A publication Critical patent/CN101186551A/zh
Application granted granted Critical
Publication of CN101186551B publication Critical patent/CN101186551B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/56Addition to acyclic hydrocarbons
    • C07C2/58Catalytic processes
    • C07C2/62Catalytic processes with acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/56Addition to acyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof
    • C07C2527/053Sulfates or other compounds comprising the anion (SnO3n+1)2-
    • C07C2527/054Sulfuric acid or other acids with the formula H2Sn03n+1
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了用于烷烃与烯烃或烯烃前体,诸如叔烯烃的寡聚体,进行烷基化的方法,所述方法包括将含有酸催化剂(56),异石蜡(14,52)和烯烃(12)的液体系统顺流向下在反应区(10)与分配筛(4)在使所述异石蜡和所述烯烃发应的温度和压力条件下接触以生成烷基化产物。预料之外的是,烯烃寡聚体在反应中已发现起到烯烃前体而非烯烃的作用。

Description

石蜡烷基化
本申请是2003年6月12日提交的申请号为03813381.4、题目为“石蜡烷基化”的专利申请的分案申请。
发明背景
发明领域
本发明涉及石蜡烃原料的烷基化。本发明提供了操作条件的改进以及用于酸石蜡烷基化的原料。
相关知识
大多数烷基化方法的常用目的是使异烷烃(或芳烃)和轻质烯烃与酸催化剂紧密接触从而生成烷基化产物。在石油精炼工业中,脂肪族烃与烯烃的酸催化的烷基化是众所周知的方法。烷基化是石蜡,通常是异石蜡,与烯烃在强酸存在下的反应,生成例如辛烷值比原料更高的石蜡,并且在汽油范围内沸腾。在石油精炼中,反应一般为C3-C5烯烃与异丁烷的反应。
在精炼烷基化中,低温条件下最广泛使用的是氢氟酸或硫酸催化剂。由于副作用最小,低温或冷酸方法是有利的。在传统方法中,反应在烃反应物被分散到连续酸相的反应器中进行。
尽管该方法一直是环境不友好的,并且对操作者有害,但是没有其他方法如此有效,因此现在仍然是全世界用于提高辛烷的烷基化的主要方法。冷酸方法将继续是选择方法,鉴于上述事实,已提出多种建议来改进和提高反应,并且在一定程度上缓和了不需要的效果。
U.S.专利No.5,220,095公开了使用颗粒状极性接触材料和氟化硫酸进行烷基化。U.S.专利Nos.5,420,093和5,444,175通过用硫酸浸渍无机或有机支持颗粒而寻求将颗粒接触材料与催化剂相结合。
已提出多种不同的静态系统用于接触液体/液体反应物,例如,U.S.专利Nos.3,496,996;3,839,487;2,091,917;和2,472,578。但是,混合催化剂和反应物时最广泛使用的方法是对剧烈搅拌和掺混组分在一起的刀片,桨和叶轮等进行多种排列,例如,参见U.S.专利Nos.3,759,318;4,075,258;和5,785,933。
本申请通过提供烷基化的有效方法,新型烯烃进料以及在液体催化剂和液体反应物之间获得高度的接触而无需机械搅拌的装置,由此消除轴密封,减少成本和改善酸产物分离,从而在涉及烷基化,尤其是石油精炼石蜡烷基化的技术方面呈现出显著的进展。
发明概述
本发明涉及两个方面。第一方面是用于石蜡,优选异石蜡,与烯烃或烯烃前体烷基化的方法,所述方法包括将含有酸催化剂,烷烃和烯烃的流体系统以顺流的方式,优选顺流向下,在反应区中与内填料(packing),诸如分散器(如下文所述),在使所述异石蜡和所述烯烃反应的温度和压力条件下接触以生成烷基化产物。流体系统优选包括液体并且在反应区中维持在其沸点附近。
本发明的第二方面涉及烷基化中的烯烃,其特征为烯烃前体。烯烃前体是一种或多种叔烯烃的寡聚体,诸如异丁烯的二聚体,三聚体等,或对应于所述寡聚体的材料。在具体的实施方案中,本发明烷基化采用叔烯烃作为烷基化的烯烃组分与异烷烃的寡聚体。
令人惊奇的发现,对应于烯烃寡聚体(例如,通过聚合短链烯烃制备的烯烃长链寡聚体)的烯烃反应物,当在酸烷基化中与异烷烃反应时,其以摩尔为基础与寡聚体的烯烃组分反应,而非通过寡聚体本身,以生成烯烃组分与异烷烃的烷基化产物,并不是如预料之中的寡聚体本身的烷基化物。反应可在包括垂直反应器的装置中进行,该反应器在反应区中含有分散器或其他合适的填料,所述反应区可包括整个塔或其部分。
附图简述
附图为本发明装置第一方面的示意图,本发明烷基化方法可在此装置中进行。
发明详述
叔烯烃的寡聚体与异烷烃反应的摩尔基础是寡聚体的叔烯烃组分而非寡聚体。烷基化产物对应于叔烯烃与异烷烃的反应。
为说明而非限制本发明方法之目的,据认为,代替寡聚体与异烷烃之间预料之中的反应,寡聚体裂化成其烯烃组分,以摩尔为基础与异烷烃进行下列反应:
1)二异丁烯+2异丁烷-2异辛烷(2,2,4-三甲基戊烷)
2)三异丁烯+3异丁烷-3异辛烷(2,2,4-三甲基戊烷)
传统观点一直认为,1)的产物会是C12烷烃,以及2)的产物会是C16烷烃,然而,反应1)和2)的产物相同,并且与下列反应的传统冷酸烷基化产物不可区分:
3)2丁烯-2+2异丁烷-2异辛烷
4)3丁烯-2+3异丁烷-3异辛烷
本发明的巨大优点在于,尽管酸烷基化是极端放热的反应,因此为了防止副反应需要大量冷却以维持反应温度在最适范围内,但是本发明的寡聚体与异烷烃的反应以同样的收率生产烷基化物则需要较少冷却,这使得本发明方法对同样收率的有用产物,制备成本较为低廉。
生产寡聚体的一个具体方法是在催化蒸馏中进行,例如,以前用来生产MTBE的单元可容易地被转成生产寡聚体,由于同样的催化剂用作两个反应,因此仅需要将进料改投到该反应器即可。
寡聚体优选包括对应于从C3-C5烯烃中制备的寡聚体的C8-C16烯烃。在优选的实施方案中,寡聚体为6-16个碳原子,并且对应于从C4-C5烯烃中制备的寡聚体。
最广泛使用的石蜡烷基化是用于制备C8汽油组分。向该方法中的进料通常为用硫酸或HF进行“冷酸”反应中所含的正丁烯和叔丁烷。正丁烯(例如,丁烯-2)为轻质石脑油的组分连同正丁烷,异丁烷和叔丁烯。正丁烯与异丁烯的分离通过馏分难以实现,这是因为其沸点相近。分离C5类似物的这些或那些烯烃异构体的优选途径是使更活性的叔烯烃反应生成重质产物,其通过馏分可容易地与正烯烃加以分离。
迄今为止,叔烯烃与低级醇,诸如甲醇或乙醇反应形成醚,诸如甲基叔丁基醚(MTBE),乙基叔丁基醚(ETBE),叔戊基甲基醚(TAME),这些醚已用作汽油辛烷改进剂,但由于担心健康原因正逐渐被淘汰。
叔烯烃的寡聚化当在是石脑油流上进行时也是优选反应,同时正烯烃从重质(高沸点)寡聚体(主要为二聚体和三聚体)中分离通过馏分容易实现。寡聚体可用作汽油组分,但是对汽油中所期望或允许的烯烃材料的量有限制,并且必须经常使汽油中所用的寡聚体氢化。汽油掺混中最期望的组分是C8,例如异辛烷(2,2,4三甲基戊烷)。
寡聚体可裂化回原始叔烯烃并且用于冷酸反应中。然而,本发明已发现没有必要裂化寡聚体,其可构成烯烃进料与烷烃进行冷酸反应,或可与单烯烃共进料。如上所述,结果与单独采用单烯烃时生成同样的产物,但额外的优势是总反应放热较少,所需的冷却就较少,由此烷基化的能量成本降低。
寡聚化方法产生的反应热不需要除去大量的热,如在冷酸方法中一样。实际上,当寡聚化在催化蒸馏型反应中进行时,随着沸滚反应热被去掉,在这种类型的反应中,这是从寡聚体中正分离的低沸点单烯烃和烷烃。尽管在寡聚化中有热生成,但由于汽油用于馏分中,以及通过使用寡聚体代替部分或全部常规的短链烯烃,烷基化单元的操作成本得以降低,所以才对其生产成本无足轻重。
在本发明烷基化方法的优选实施方案中,将包含正烯烃和叔烯烃的轻质石脑油流与酸树脂催化剂在寡聚化条件下接触以优先使部分叔烯烃自身与自身反应形成寡聚体,并且在酸烷基化催化剂存在下将所述寡聚体与异烷烃-起进料到烷基化区,从而生成含有所述叔烯烃和所述异烷烃的烷基化物的烷基化产物。
寡聚化可在部分液相中在酸性阳离子型树脂催化剂存在下以直孔型反应或者以催化蒸馏反应的形式进行,其中既有汽相和液相也有顺流反应/分馏。进料优选C4-C5,C4或C5轻质石脑油馏分。叔烯烃可包括异丁烯以及异戊烯,并且比正烯烃异构体更具有活性,因此优先被寡聚化。主要寡聚体为二聚体和三聚体。异烷烃优选包括异丁烷,异戊烷或其混合物。
当采用诸如公开在U.S.专利Nos.4,313,016;4,540,839;5,003,124;和6,335,473中的直孔型反应器时,可将包含寡聚体,正烯烃和异烷烃的全部流出物进料到酸烷基化反应中。在本发明烷基化条件下,正烷烃是惰性的。在烷基化条件下,异烷烃与正烯烃反应形成烷基化产物,以及与寡聚体的单个烯烃组分反应形成烷基化产物。本发明方法的结果暗示,寡聚体是解离的,或者以某种方式使其烯烃组分可用于同异烷烃的反应。因此,反应会产生:
1)异丁烯寡聚体+异丁烷-异辛烷;
2)异丁烯寡聚体+异戊烷-支链C9烷烃;
3)异戊烯寡聚体+异丁烷-支链C9烷烃;
4)异戊烯寡聚体+异戊烷-支链C10烷烃;
然而,已经预计到的是反应1)会至少或主要生成C12烷烃,反应2)会至少或主要生成C13烷烃,反应3)会至少或主要生成C14烷烃,以及反应4)会至少或主要生成C15烷烃。
当采用诸如公开在U.S.专利Nos.4,242,530或4,375,576中的催化蒸馏反应用于寡聚化时,通过顺流分馏使寡聚体从反应产物中与低沸点正烯烃和烷烃分离。液流,正烯烃和烷烃(塔顶溜出物)和寡聚体(塔底流出物(bottoms))可一起或单独进料到烷基化中,或起码可单独与被进料到烷基化中的寡聚体一起使用。
本发明提供了利用硫酸作为催化剂,用于生产和分离烷基化产物的改进的接触装置和方法。这种相同或相似的装置也可与其他酸或酸混合物一起使用。
本发明方法优选采用向下流反应器,其中填充有接触内部构件或填充料(可以是惰性的或催化性的),从此在系统的沸点处通过硫酸,烃溶剂和反应物的顺流多相混合物。所述系统包括烃相和酸/烃乳状液相。本发明的方法中所述混合的液相/气相包括烃。显著量的硫酸拦截在填料上。据认为,反应在下降烃相和分散于填料上的硫酸之间发生。烯烃连续溶解于酸相中,而烷基产物连续被抽提到烃相中。调节压力和烃组成控制沸点温度。反应器优先以连续蒸汽操作,但是也可以连续液体操作。反应器的顶部压力优先高于底部压力。
调节流速和汽化度控制压力在反应器上的下降。优选多注射烯烃。由于酸相拦截,填料的类型也影响压力下降。分馏前的产物混合物是优选的循环溶剂。酸乳状液快速从烃液中分离,并且被正常再循环,在底部相分离器中只有几分钟滞留时间。由于产物本质上从酸相(乳状液)中快速抽提,可加入传统硫酸烷基化方法中所用的反应和/或乳状液促进剂,而无需一向对乳状液裂解的担心。方法可描述成连续烃,与连续酸相对立。
分散器优选包括一种可操作用于聚结汽化液体的传统液-液聚结器。这些聚结器通常称为“雾消除器”或“去雾器”,然而,在本发明中,所述元件的功能为分散反应器中的流体材料用于更好的接触。合适的分散器包括筛,诸如共编织金属丝和玻璃纤维筛。例如,已发现可有效利用诸如由Texas州Alvin的Amistco Separation Products,Inc.生产的90针金属丝和多丝玻璃纤维的管状共编织筛,然而,人们将会理解,其他各种材料,诸如共编织金属丝和多丝特氟纶(Dupont TM),钢丝绒,聚丙烯,PVDF,聚酯或其他各种共编织材料也可有效用于所述装置中。可采用多种金属丝网筛型填料,其中的网筛是机织的而非编织的。其他可接受的分散器包括穿孔金属片和金属网,与玻璃纤维或其他材料共机织的开放流动交叉通道结构,诸如与金属丝网的金属丝或穿孔金属片共编织的聚合物。此外,多丝组件可以是催化性的。多丝催化材料可以是聚合物,诸如磺化的乙烯基树脂(例如,Amberlyst)和催化金属,诸如Ni,Pt,Co,Mo,Ag。
分散器包括至少50体积%开放空间,直至高达约97体积%开放空间。分散器位于反应器中的反应区内。因此,例如,多丝组件和结构元件,例如,编织丝,应包括约3体积%到约50体积%的总分散器,剩余部分为开放空间。
合适的分散器包括结构化的催化蒸馏填料,其旨在固定颗粒催化剂,或包括由催化活性材料组成的结构化的蒸馏填料,诸如公开在U.S.专利No.5,730,843(在此以其全文引作参考)中的填料,并且该专利还公开具有刚性框架的结构,所述框架由两个基本上垂直的重复格栅组成,所述格栅由多个基本上水平的刚性构件和多个基本上水平的金属丝网管间隔开和严格固定,所述金属丝网管安装到格栅上,在所述管之中形成多个流体通路,所述管是空的,或者含有催化或非催化的材料;以及包括催化上是惰性的结构化的填料,其通常由诸如公开在U.S.专利No.6,000,685(在此以其全文引作参考)中的下列材料所构成:弯曲成多种角度的波纹金属,卷曲的金属丝网,或者相互水平堆积的格栅,以及该专利公开了接触结构,其包括多个片的金属丝网,形成V字形沟纹,在V字之间具有平坦部分,所述多个片属于基本上均匀的大小,峰的取向在同一方向并且基本上对齐,所述片被多个正常取向朝所述V字并且搁置在所述V字上的刚性构件分开。
其他合适的分散器包括:(A)随意或倾卸的蒸馏填料,其为:催化上惰性的倾卸填料含有较高的空隙组分,并且维持相对大的表面积,诸如Berl Saddles(陶瓷),Raschig Rings(陶瓷),Raschig Rings(钢),Pallrings(金属),Pall rings(塑料,例如聚丙烯)等,以及催化活性的随意填料,其含有至少一种催化活性的成分,诸如Ag,Rh,Pd,Ni,Cr,Cu,Zn,Pt,Tu,Ru,Co,Ti,Au,Mo,V,和Fe以及浸渍的组分,诸如金属螯合复合物,酸,诸如磷酸,或具有催化活性的键合的无机粉末状材料;以及(B)整料,其是催化惰性或活性的,其结构含有多重独立的垂直通道,并且可由多种材料构成,这些材料诸如塑料,陶瓷或金属,其中通道通常为方形;然而,其他几何形状也可使用,其照此使用时包被有催化材料。
由本发明方法进行烷基化的烃原料以连续烃相提供给反应区,所述烃相含有有效量的烯烃和异石蜡原料,这些原料足以形成烷基化产物。在总反应器进料中的烯烃∶异石蜡摩尔比范围应为约1∶1.5到约1∶30,并且优选从约1∶5到约1∶15。也可采用较低的烯烃∶异石蜡比。
烯烃组分应优选含有2-16个碳原子,而异石蜡组分应优选含有4-12个碳原子。合适的异石蜡的代表性例子包括异丁烷,异戊烷,3-甲基己烷,2-甲基己烷,2,3-二甲基丁烷,和2,4-二甲基己烷。合适的烯烃的代表性例子包括丁烯-2,异丁烯,丁烯-1,丙烯,戊烯,乙烯,己烯,辛烯,和庚烯等,并且如上所述可以是这些烯烃的寡聚体。
其中进一步优选所述异烷烃包括4-8个碳原子,而所述烯烃包括3-16个碳原子。
在流体方法中,本发明系统在相对低温条件下采用氢氟酸或硫酸催化剂。例如,硫酸烷基化反应对温度尤其敏感,为了使烯烃聚合的副反应最小化,低温是有利的。石油精炼技术利于烷基化胜过聚合,这是因为每个可用的轻链烯烃可生产数量更多的高级辛烷产物。在这些液体酸催化的烷基化方法中,通过连续加入新酸和连续回收废酸,酸强度优选维持在88-94重量%。将催化剂支持在填充材料之内或之上,可采用诸如固体磷酸的其他酸。
本发明的方法优选应以体积比范围从约0.01∶1到约2∶1,更优选从约0.05∶1到约0.5∶1,掺入相对量的酸和烃,进料到反应器的顶部。在本发明最优选的实施方案中,酸与烃的体积比应从约0.1∶1到约0.3∶1。
此外,酸分散到反应区中应同时维持反应容器的温度范围从约0到约200
Figure 2007101612880_3
,以及更优选从约35
Figure 2007101612880_4
到约130。同样,反应容器的压力水平应维持在约0.5ATM到约50ATM,以及更优选从约0.5ATM到约20ATM。最优选的是,反应器温度应维持在约40
Figure 2007101612880_6
到约110
Figure 2007101612880_7
,以及反应器压力应维持在约0.5ATM到约5ATM。
一般而言,本发明方法中所用的具体操作条件将在某种程度上取决于实施下的特定烷基化反应。方法条件,诸如温度,压力和空间速度以及反应物的摩尔比会影响所得烷基化产物的特性,并且可根据本领域技术人员众所周知的参数加以调节。
在本发明反应系统的沸点处进行操作的优点在于,有些蒸发可帮助散发反应热,并且使引入材料的温度更接近于离开反应器的材料的温度,如在等温反应中一样。
一旦烷基化反应完成,反应混合物将转移至合适的分离容器中,含有烷基化产物和任何未反应的反应物的烃相在这里与酸分离。由于烃相的密度范围通常从约0.6g/cc到约0.8g/cc,以及酸密度范围一般落在约0.9g/cc到约2.0g/cc,因此通过常规的重力沉淀器,这两相很容易分离。合适的重力分离器包括沉降器。由密度差分离的水力旋流器也是适用的。
一个烷基化实施方案示于附图中,这是本发明装置的简化示意图和本发明方法的流程图。图中省略了阀,再沸器,泵等诸项。
所示反应器10含有分散筛40。本发明分散器在反应器中实现径向分散流体或流化材料。反应器进料包括经线12进料的烯烃,诸如正丁烯,和经线14-线52进料的异石蜡(例如,异丁烷)。烯烃部分优选经线16a,16b,和16c顺着反应器进料。液体酸催化剂,诸如H2SO4经线56进料,而补偿酸通过线38供给。烃反应物经线58进料到一般优选为圆柱形塔的反应器中,并且通过恰当的分散装置(未示出)进料到分散筛40,例如共编织金属丝和玻璃纤维筛。
随着烷基化进行,烃反应物和非反应烃(例如,正丁烷)与酸催化剂密切接触。反应是放热的。当系统组分以混合的汽/液相向下穿过反应器流出,并从线18进入沉降器30时,调节压力以及反应物的数量使系统组分处于沸点下,但部分仍在液相中。在沉降器中,系统组分分离成含有催化剂的酸相46,含有烷基化物,未反应的烯烃和未反应的异石蜡和非反应烃的烃相42,以及汽相44,所述汽相可能含有各个组分中的一些以及任何轻质烃组分,所述轻质烃组分从系统中经线50被去除,如果合适用于进一步处理。
大多数酸相经线24和56再循环到反应器中。补偿酸可经线38加入,而累积的废酸经线48移出。
烃液相经线22移出,有部分经线28再循环到反应器的顶部。剩余烃相经线26进料到蒸馏塔20中,在这里被分馏。正丁烷,如果存在于进料中,可经线36移出,而烷基化产物经线34移出。塔顶溜出物32主要为未反应的异烷烃,其经线52再循环到反应器10的顶部。
用于异石蜡+烯烃的烷基化的实验设置
对于下列实施例而言,实验室反应器为15英尺高×1.5英寸直径。其中装有不同量和种类的填充材料。H2SO4存量约1升,这取决于所用填料的拦截。涌流风缸约3升,其将所有酸加上液烃传送出底部以便用单泵循环两相混合物。将进料导入反应器的顶部,与再循环混合物一起向下流动。汽由反应热加上周围环境热增益所生成,有助于迫使液体向下通过填料,从而引起巨大湍流并且混合。大多数汽在反应器出口处凝结。未凝结的汽和液烃产物穿过酸去夹带剂,然后通过反压调节器抵达去异丁烷器(de-isobutanizer)。质量流量计用于进料流,而多普勒计测量循环速率。对来自去异丁烷器的液体产物进行称重。然而,出口流速被评估成向内的质量流量计测量的进料和向外的称重的液体产物之差。GC分析所有烃产物,包括出口产物。滴定用于废酸分析。
操作
在下列实施例中,实验单元使烃和酸循环向下流动至存在的烃的沸点处。压力和温度读数通过电子输入。反应器出口温度和压力通过IC4/烷基化物闪烁计算(flash calculation)用于计算IC4在再循环烃中的量。
反压调节器既使液体产物也使汽产物传送至去异丁烷器塔,以维持压力。少量的N2可主要用于防止酸倒退到进料线中。然而,通过把活性异石蜡稀释在汽相中,太多的N2会导致产物质量的下降。
实验设置中的循环泵既循环酸乳状液层也循环液体烃层。此外,这两个相可分开泵送。
采用三通阀,通过测量管将整个再循环进行短暂转移,从而维持酸存量。捕获的材料几秒中内沉淀形成两层。然后,体积百分比的酸层和烃层与多普勒仪读数一起使用,以评价两相的体积循环比率。
通过操控循环比率和单元周围的热平衡,使DP(压力在反应器顶部或进口处较高)维持在0-3psi。不同填料通常需要不同汽和液体流速以负载至同一DP。大多数的时间,周围环境热增益和反应热提供了足够的汽(主要为IC4)载量。
由于冷却限制,约1-31bs/hr的额外液体IC4可与进料一起被导入,以提供均匀的冷却。由于循环烃比率通常在100-200磅/小时的量级,这种过量的IC4是相对小的,并不显著影响IC4/烯烃比率。正是循环烃流速率和组成控制IC4比率胜过其他任何因素。
C4烷基化在实施例中的典型操作条件
进料烯烃             C4
烯烃入-1bs/hr        0.25-0.50
烷基化物出-1bs/hr    0.50-1.2
Rxn温度出-F          50-60
Rxn Psig出           6-16
DP-Psi               0.5-3.0
再循环速率:
酸相-L/min             0.3-1
烃相-L/min             1-3
Wt%IC4在烃再循环中    75-45
Wt%H2SO4在废酸中              83-89
Wt%H2O在废酸中                2-4
新加酸-1bs/加仑烷基化物        0.3-0.5
填料类型                       1或2-参见下文
填料高度英尺                   10-15
填料密度1bs/ft3                5-14
备注:
1.填料类型1为直径0.011英寸、每隔一针与400但尼尔多丝玻璃纤维线共编织的304ss金属丝。
2.填料类型2为直径0.011英寸、每隔一针与800但尼尔多丝聚丙烯纱共编织的合金20金属丝。
实施例1
精炼C4烯烃用作
给料
至实验室单元:                           iB占总烯
                 低iB                    烃的38%
甲烷             0.02                    0.00
乙烷             0.00                    0.00
乙烯             0.00                    0.00
丙烷             0.77                    0.41
丙烯             0.14                    0.16
丙炔             0.02                    0.00
丙二烯           0.01                    0.02
异丁烷           23.91                   47.50
异丁烯           0.90                    15.90
1-丁烯           20.02                   10.49
1,3-丁二烯      0.02                    0.19
正丁烷           22.63                   10.79
叔-2-丁烯           18.05            7.93
2,2-dm丙烷         0.09             0.00
1-丁炔              0.00             0.01
m-环丙烷            0.03             0.03
c-2-丁烯            12.09            5.43
1,2-丁二烯         0.00             0.01
3M-1-丁烯           0.26             0.04
异戊烷              0.98             0.02
1-戊烯              0.06             0.82
2M-1-丁烯           0.01             0.01
正戊烷              0.01             0.03
叔-2-戊烯           0.00             0.08
c-2-戊烯            0.00             0.00
叔-3-戊二烯         0.00             0.08
c-1,3-戊二烯       0.00             0.00
未知物              0.01             0.08
                    100.00           100.00
采用相似的低iB C4进料,将精炼厂生产的烷基化物与实验室单元结果进行比较
               工厂A     工厂B     实验室1   实验室
                         2
IC5            6.27      2.70      2.51      2.78
2,3-dmb       4.05      2.84      2.80      3.02
C6             1.63      1.19      1.00      1.15
2,2,3-tmb    0.20      0.17      0.18      0.19
C7             7.17      5.55      4.35      4.35
TM C8          53.88     61.76     66.84     66.93
DM C8          12.27     12.47     12.69     12.44
TM C9          5.04      4.22      2.89      2.74
DM C9              0.57     1.01     0.29     0.18
TM C10             1.14     0.91     0.70     0.64
UNK C10            0.51     0.54     0.29     0.29
TM C11             0.99     0.77     0.69     0.71
UNK C11            1.09     0.02     0.00     0.00
C12                4.37     1.71     4.72     4.60
C13                0.00     1.58     0.00     0.00
C14                0.03     1.57     0.05     0.00
C15                0.00     0.13     0.00     0.00
HV′S              0.05     0.04     0.00     0.00
未知物(UNK)        0.74     0.83     0.00     0.00
总和               100.00   100.00   100.00   100.00
平均MW             113.4    116.0    114.9    114.6
溴no.              <1      <1      <1      <1
总硫ppm            <10     <10     <10     <10
总%TM             61.05    67.66    71.12    71.01
TM C8/DM C8(比率)  4.39     4.95     5.27     5.38
TM C9/DM C9(比率)  8.85     4.19     10.08    15.57
典型出口
分析:
          wt%
氢        0.000
氧        0.124
氮        3.877
甲烷      0.019
一氧化碳  0.000
二氧化碳  0.000
乙烷      0.000
乙烯      0.000
乙炔          0.000
丙烷          1.066
丙烯          0.000
丙二烯        0.000
异丁烷        81.233
异丁烯        0.021
1-丁烯        0.000
1,3-丁二烯   0.031
正丁烷        3.398
叔-2-丁烯     0.000
m-环丙烷      0.000
c-2-丁烯      0.000
异戊烷        0.968
1-戊烯        0.000
正戊烷        0.000
C5+           0.391
实施例2
异丁烯(iB)对烷基化物(Alky)质量的影响
                                  实验室1
            100%iB   38%iB      低iB
iC5         3.66      3.97        2.78
2,3-dmb    3.60      3.56        3.02
C6          1.42      0.52        1.15
2,2,3-tmb 0.40      0.23        0.19
C7          5.27      5.08        4.35
TM C8       50.79     56.95       66.93
DM C8       11.77     12.64       12.44
TM C9       6.07      4.22        2.74
DM C9       0.58      0.45        0.18
TM C10      2.06     1.33    0.64
UNK C10     1.14     0.67    0.29
TM C11      2.54     1.28    0.71
UNK C11     1.00     0.00    0.00
C12         8.30     8.99    4.60
C13         0.07     0.00    0.00
C14         0.28     0.14    0.00
C15         0.12     0.00    0.00
HV′S       0.38     0.00    0.00
未知物(UNK) 0.54     0.00    0.00
总和        100.00   100.00  100.00
平均MW      11 9.1   117.3   114.9
溴no.       ~1      <1     <1
总硫ppm     <10     <10    <10
总%TM      61.46    63.77   71.12
TM C8/DM C8 4.31     4.51    5.27
TM C9/DM C9 10.51    9.34    10.08
实施例3
丙烯+iC4烷基化
样品点        产物
丙烷          0.01
异丁烷        9.25
正丁烷        0.32
异戊烷        0.97
正戊烷        0.00
2,3-dm丁烷   2.07
2M-戊烷       0.30
3M-戊烷       0.14
正己烷        0.00
2,4-dm戊烷           15.59
2,2,3-tm丁烷        0.04
3,3-dm戊烷           0.01
环己烷                0.00
2M-己烷               0.34
2,3-dm戊烷           48.97
1,1-dm环戊烷         0.00
3M-己烷               0.35
2,2,4-tm戊烷        3.42
正庚烷                0.00
2,5-dm己烷           0.37
2,4-dm己烷           0.56
2,3,4-tm戊烷        1.52
2,3,3-tm戊烷        1.21
2,3-dm己烷           0.64
2,2,5-tm己烷        0.68
2,3,4-tm己烷        0.13
2,2-dm庚烷           0.01
2,4-dm庚烷           0.03
2,6-dm庚烷           0.03
2,2,4-tm-庚烷       1.83
3,3,5-tm-庚烷       1.70
2,3,6-tm-庚烷       1.16
2,3,5-tm-庚烷       0.16
tm-庚烷               1.00
2,2,6-三甲基辛烷    2.32
C8s                   0.20
C9s                   0.20
C10s                  0.98
C11s                  1.62
C12s             1.73
C13s             0.09
C14s             0.05
C15s             0.01
未知物           0.01
重物(heavies)    0.00
                 100.00
实施例4
异丁烷+戊烯1
烷基化产物
               Wt%
C5             5.03
2,3-d mb      0.74
C6             0.35
DM C7          1.14
C7             0.17
TM C8          22.26
DM C8          3.70
TM C9          52.40
DM C9          6.72
TM C10         1.51
UNK C10        0.56
TM C11         0.16
UNK C11        0.38
C12            3.68
C13            0.33
C14            0.11
C15            0.08
HV′S          0.03
未知物         0.63
               100.00
平均MW         123.2
预计MW         128
进料烯烃#/hr   0.25
烷基化产物#/hr 0.47
实施例5
来自iB占总烯烃38%的C4给料的寡聚产物。
(该产物又用作烯烃进料至实验室烷基化单元)
异丁烷             48.8
异丁烯+1-丁烯      1.6
正丁烷             11.2
叔-2-丁烯          14.3
c-2-丁烯           6.5
异戊烷             1.0
叔-2-戊烯          0.1
未知物             1.5
2,4,4-tm-1-戊烯  4.7
2,4,4-tm-2-戊烯  1.3
其他C8             3.4
分类C12            4.4
分类C16            1.2
                   100.0
采用iB占烯烃38%的C4进料对烷基化产物的寡聚影响
           前      后
iC5        3.97    2.39
2,3-dmb   3.56    2.87
C6         0.52    1.17
2,2,3-tmb        0.23     0.20
C7                 5.08     4.95
TM C8              56.95    58.34
DM C8              12.64    12.80
TM C9              4.22     4.15
DM C9              0.45     0.35
TM C10             1.33     1.29
UNK C10            0.67     0.57
TM C11             1.28     1.41
UNK C11            0.00     0.00
C12                8.99     9.41
C13                0.00     0.00
C14                0.14     0.11
C15                0.00     0.00
HV′S              0.00     0.00
未知物             0.00     0.00
总和               100.00   100.00
平均MW             117.3    118.3
溴no.              <1      <1
总硫ppm            <10     <10
总%TM             63.77    65.19
TM C8/DM C8        4.51     4.56
TM C9/DM C9        9.34     11.75
操作条件:
烯烃入-1bs/hr      .25      .25
烷基化物出-1bs/hr  .53      .53
Rxn温度出-F        52.0     52.2
Rxn Psig出         12.2     11.8
DP-Psi             ~1      ~1
再循环速率:
酸相-L/min             1.0    1.0
烃相-L/min             2.6    2.6
iC4在烃再循环中的%    69     67
填料类型               2      2
填料高度英尺           15     15
填料密度1bs/ft3        7      7
实施例6
来自异丁烯+异丁烷或iB+iC4的寡聚体的烷基化物质量
               iB      DIB     TIB+
IC5            3.66    3.97    3.41
2,3-dmb       3.60    3.70    3.18
C6             1.42    1.36    1.53
2,2,3-tmb    0.40    0.38    0.27
C7             5.27    4.96    6.39
TM C8          50.79   47.93   38.35
DM C8          11.77   8.92    12.91
TM C9          6.07    6.60    10.31
DM C9          0.58    0.81    1.10
TM C10         2.06    3.09    3.29
UNK C10        1.14    1.18    1.35
TM C11         2.54    2.53    2.72
UNK C11        1.00    1.79    0.00
C12            8.30    10.51   14.97
C13            0.07    0.31    0.07
C14            0.28    1.47    0.14
C15            0.12    0.29    0.00
HV′S          0.38    0.19    0.00
未知物         0.54    0.01    0.00
总和           100.00  100.00  100.00
平均MW          119.1  122.1    122.9
溴no.           ~1    ~1      ~1
总硫ppm         <10   <10     <10
总%TM          61.46  60.15    54.67
TM C8/DM C8     4.31   5.37     2.97
TM C9/DM C9     10.51  8.15     9.37
操作条件:
进料烯烃        IB     DIB      TIB+
烯烃入-1bs/hr   0.25   0.40     0.25
烷基出-1bs/hr   0.49   0.78     0.48
Rxn温度出-F     52     51.6     51.7
Rxn psig出      13     13.5     5.7
DP-psi          2.5    1.1      ~1
再循环速率:
酸相-L/mmin     0.8    0.5      1.0
烃相-L/min      1.8    1.4
3.0
iC4在烃再循环中的%  73    76    45
填料类型             1     1     2
填料高度英尺         10    10    15
填料密度1bs/ft3      6     6     7
实施例7
IC4消耗多种不同烯烃预计与实际的烷基化产物MW和摩尔
(例如,理论上1mol的C6烯烃应与1mol的IC4反应形成C10烷基化物MW=142)
结果表明去聚合作用生成与其他IC4组合的更多和较低MW烯烃。
每mol进料烯烃消耗的IC4 mol    平均产物MW
烯烃         预计    实际    预计    实际
己烯-1       1.0     1.2     142     129
辛烯-1       1.0     1.4     170     135
二异丁烯     1.0     1.8     170     122
三异丁烯+    1.0     2.6     226     123
实施例8
异丁烷+戊烯1
烷基化产物
wt%
IC5         5.03
2,3-dmb    0.74
C6          0.35
DM C7       1.14
C7          0.17
TM C8       22.26
DM C8       3.70
TM C9       52.40
DM C9       6.72
TM C10      1.51
UNK C10     0.56
TM C11      0.16
UNK C11     0.38
C12         3.68
C13         0.33
C14         0.11
C15         0.08
HV′S       0.03
未知物      0.63
                  100.00
平均MW            123.2
预计MW            128
进料烯烃#/hr      0.25
烷基化产物#/hr    0.47

Claims (15)

1.一种链烷烃烷基化方法,包括在酸催化剂存在下,将包括烷烃和烯烃的流体材料以顺流方式与分散器接触由此实现流体材料的径向分散接触,所述分散器包括至少一个分散筛和液-液聚结器,在使所述烷烃和所述烯烃反应的温度和压力条件下,生成烷基化产物。
2.权利要求1的方法,其中所述烷烃包括异烷烃。
3.权利要求1的方法,其中所述酸催化剂包括液体。
4.权利要求3的方法,其中所述条件是维持所述液体在其沸点上。
5.权利要求4的方法,其中所述的方法是烃连续的。
6.权利要求2的方法,其中所述异烷烃包括4-8个碳原子,而所述烯烃包括3-16个碳原子。
7.权利要求6的方法,其中所述顺流方式是向下流动。
8.权利要求7的方法,其中所述温度为-17.7778℃至93.3333℃。
9.权利要求3的方法,其中所述分散器包括共编织金属丝和聚合物的网筛。
10.一种异链烷烃烷基化的方法,包括将含有酸、异烷烃和烯烃的体系以顺流向下方式,在使所述体系维持在其沸点上的温度和压力条件下,通过填充有包括液-液聚结器的分散器接触内部构件的反应区进行接触。
11.权利要求10的方法,其中所述的方法是烃连续的。
12.权利要求11的方法,其中所述异烷烃包括4-8个碳原子,而所述烯烃包括3-16个碳原子。
13.权利要求11的方法,其中所述体系包括混合的液相/气相。
14.权利要求13的方法,其中所述混合的液相/气相包括烃。
15.权利要求13的方法,其中所述混合的液相/气相包括酸/烃乳状液。
CN2007101612880A 2002-08-15 2003-06-12 石蜡烷基化 Expired - Lifetime CN101186551B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/219,877 2002-08-15
US10/219,877 US6858770B2 (en) 2001-08-21 2002-08-15 Paraffin alkylation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB038133814A Division CN100379710C (zh) 2002-08-15 2003-06-12 石蜡烷基化

Publications (2)

Publication Number Publication Date
CN101186551A CN101186551A (zh) 2008-05-28
CN101186551B true CN101186551B (zh) 2012-05-30

Family

ID=31886603

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2007101612880A Expired - Lifetime CN101186551B (zh) 2002-08-15 2003-06-12 石蜡烷基化
CNB038133814A Expired - Lifetime CN100379710C (zh) 2002-08-15 2003-06-12 石蜡烷基化

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB038133814A Expired - Lifetime CN100379710C (zh) 2002-08-15 2003-06-12 石蜡烷基化

Country Status (17)

Country Link
US (4) US6858770B2 (zh)
EP (2) EP2258673A1 (zh)
JP (3) JP4542427B2 (zh)
KR (1) KR100970799B1 (zh)
CN (2) CN101186551B (zh)
AR (1) AR040547A1 (zh)
AU (1) AU2003238019B2 (zh)
BR (2) BR122013007356B1 (zh)
CA (2) CA2493862C (zh)
EG (1) EG23453A (zh)
IN (1) IN2012DN00643A (zh)
MX (1) MXPA05001556A (zh)
RO (4) RO125602B1 (zh)
RU (1) RU2303024C2 (zh)
TW (2) TWI327993B (zh)
WO (1) WO2004016573A1 (zh)
ZA (1) ZA200410027B (zh)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838708B2 (en) 2001-06-20 2010-11-23 Grt, Inc. Hydrocarbon conversion process improvements
US6774275B2 (en) * 2001-08-21 2004-08-10 Catalytic Distillation Technologies Pulse flow reaction
US20040052703A1 (en) * 2001-08-21 2004-03-18 Catalytic Distillation Technologies Contact structures
RU2366642C2 (ru) 2003-07-15 2009-09-10 Джи Ар Ти, Инк. Синтез углеводородов
US20050171393A1 (en) 2003-07-15 2005-08-04 Lorkovic Ivan M. Hydrocarbon synthesis
US20080275284A1 (en) 2004-04-16 2008-11-06 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US7244867B2 (en) 2004-04-16 2007-07-17 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US8642822B2 (en) 2004-04-16 2014-02-04 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US20060100469A1 (en) 2004-04-16 2006-05-11 Waycuilis John J Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US7674941B2 (en) 2004-04-16 2010-03-09 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US7550643B2 (en) * 2004-04-28 2009-06-23 Precision Combustion, Inc. Isobutane alkylation
US7550644B2 (en) * 2004-05-10 2009-06-23 Precision Combustion, Inc. Isobutane alkylation
US7119244B2 (en) * 2005-01-13 2006-10-10 Catalytic Distillation Technologies Method of removing organic sulfur compounds from alkylate
US7446238B2 (en) * 2005-01-31 2008-11-04 Uop Llc Alkylation process with recontacting in settler
US7408090B2 (en) * 2005-04-07 2008-08-05 Catalytic Distillation Technologies Method of operating downflow boiling point reactors in the selective hydrogenation of acetylenes and dienes
EA020442B1 (ru) 2006-02-03 2014-11-28 ДжиАрТи, ИНК. Способ превращения углеводородного сырья (варианты) и система для его осуществления
CN101395088B (zh) 2006-02-03 2012-04-04 Grt公司 轻气体与卤素的分离方法
US7449612B2 (en) * 2006-04-11 2008-11-11 Catalytic Distillation Technologies Paraffin alkylation process
US7906700B2 (en) * 2006-06-01 2011-03-15 Uop Llc Alkylation of isobutene feeds
US20070299292A1 (en) * 2006-06-23 2007-12-27 Catalytic Distillation Technologies Paraffin alkylation
US7601879B2 (en) * 2006-08-16 2009-10-13 Catalytic Distillation Technologies Paraffin alkylation
US7781634B2 (en) * 2007-01-08 2010-08-24 Catalytic Distillation Technologies Treatment of olefin feed to paraffin alkylation
JP2010528054A (ja) 2007-05-24 2010-08-19 ジーアールティー インコーポレイテッド 可逆的なハロゲン化水素の捕捉及び放出を組み込んだ領域反応器
US7491856B2 (en) 2007-06-27 2009-02-17 H R D Corporation Method of making alkylene glycols
US8304584B2 (en) 2007-06-27 2012-11-06 H R D Corporation Method of making alkylene glycols
US8278494B2 (en) * 2007-06-27 2012-10-02 H R D Corporation Method of making linear alkylbenzenes
US7977525B2 (en) * 2008-01-31 2011-07-12 Catalytic Distillation Technologies H2SO4 alkylation by conversion of olefin feed to oligomers and sulfate esters
US20090200205A1 (en) * 2008-02-11 2009-08-13 Catalytic Distillation Technologies Sulfur extraction from straight run gasoline
US20090275791A1 (en) * 2008-05-05 2009-11-05 Saudi Arabian Oil Company Ceramic foam catalyst support for gasoline alkylation
US8153854B2 (en) * 2008-06-06 2012-04-10 Catalytic Distillation Technologies Gasoline alkylate RVP control
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
US8415517B2 (en) 2008-07-18 2013-04-09 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
US8119848B2 (en) 2008-10-01 2012-02-21 Catalytic Distillation Technologies Preparation of alkylation feed
US8492603B2 (en) * 2009-01-12 2013-07-23 Catalytic Distillation Technologies Selectivated isoolefin dimerization using metalized resins
US20100204964A1 (en) * 2009-02-09 2010-08-12 Utah State University Lidar-assisted multi-image matching for 3-d model and sensor pose refinement
US7785921B1 (en) * 2009-04-13 2010-08-31 Miasole Barrier for doped molybdenum targets
US8258362B2 (en) * 2009-05-04 2012-09-04 Isp Investments Inc. Method for the production of α, ω-olefins by using the copper catalyzed coupling reaction of a Grignard reagent with an allylic substrate
US20100331599A1 (en) * 2009-06-09 2010-12-30 Bala Subramaniam Alkylation catalyzed by binary mixtures of acid and ionic liquid
US8502006B2 (en) * 2009-09-11 2013-08-06 Catalytic Distillation Technologies Dimerization process
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
WO2011143215A2 (en) 2010-05-10 2011-11-17 Catalytic Distillation Technologies Production of jet and other heavy fuels from isobutanol
RU2445164C1 (ru) * 2010-09-09 2012-03-20 Учреждение Российской Академии Наук Ордена Трудового Красного Знамени Институт Нефтехимического Синтеза Им. А.В. Топчиева Ран (Инхс Ран) Катализатор, способ его получения (варианты) и способ жидкофазного алкилирования изобутана олефинами c2-c4 в его присутствии
US8815050B2 (en) 2011-03-22 2014-08-26 Marathon Gtf Technology, Ltd. Processes and systems for drying liquid bromine
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8829256B2 (en) 2011-06-30 2014-09-09 Gtc Technology Us, Llc Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems
CN103865570B (zh) * 2012-12-11 2016-05-11 中国石油化工集团公司 一种烷基化反应器及方法
CN104587926B (zh) * 2013-10-31 2017-08-22 中国石油化工股份有限公司 一种微丝接触反应器和一种烷基化反应方法
US9522859B2 (en) 2014-12-11 2016-12-20 Uop Llc Methods for recovering ionic liquid fines from a process stream
CN106032472B (zh) * 2015-03-20 2019-04-16 中国石油化工股份有限公司 一种液体酸催化的异构烷烃与烯烃的烷基化反应方法和装置
CN106032349A (zh) * 2015-03-20 2016-10-19 中国石油化工股份有限公司 一种液体酸催化的异构烷烃与烯烃的烷基化反应方法
CN107683322B (zh) 2015-07-23 2021-10-01 环球油品公司 用于离子液体烷基化的改良hf烷基化反应区
CN105032329B (zh) * 2015-08-04 2017-12-29 惠州宇新化工有限责任公司 一种烷基化反应方法及脉冲流反应器
RU2622294C2 (ru) * 2015-09-01 2017-06-14 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" (СПбГТИ(ТУ)) Устройство для алкилирования изобутана олефинами на твердом катализаторе
CN107974280B (zh) * 2016-10-25 2020-05-19 中国石油化工股份有限公司 一种液体酸烷基化反应方法
WO2020242961A1 (en) * 2019-05-24 2020-12-03 Lummus Technology Llc Flexible production of gasoline and jet fuel in alkylation reactor
TWI801918B (zh) 2020-06-29 2023-05-11 美商魯瑪斯科技有限責任公司 用於丁烯之經控制寡聚化的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155742A (en) * 1961-09-11 1964-11-03 Shell Oil Co Alkylation process
US4301315A (en) * 1977-09-22 1981-11-17 Phillips Petroleum Company Method of producing high octane alkylate gasoline

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US315574A (en) * 1885-04-14 Stove
US2091917A (en) * 1933-09-06 1937-08-31 Pennsylvania Petroleum Res Cor Apparatus for treating mineral oils
US2472578A (en) * 1946-03-21 1949-06-07 Atlantic Refining Co Method of contacting fluids
US3435092A (en) * 1966-08-24 1969-03-25 Phillips Petroleum Co Alkylation utilizing fine dispersion of reactants in a constant catalyst mass
IL28565A (en) * 1967-08-25 1971-12-29 Hydro Chem & Mineral Corp Apparatus and process for providing direct contact between a liquid and one or more other fluids
US3725499A (en) * 1968-06-27 1973-04-03 Texaco Inc Alkylation of secondary olefins derived from hydrocarbon compositions containing tertiary olefins
US3839487A (en) * 1971-07-09 1974-10-01 Merichem Co Alkylation utilizing fibers in a conduit reactor
US3759318A (en) * 1972-03-15 1973-09-18 Stratford Eng Corp Contactor improvements
US3999889A (en) * 1975-10-23 1976-12-28 Exxon Research And Engineering Company Mixing head
US4100220A (en) * 1977-06-27 1978-07-11 Petro-Tex Chemical Corporation Dimerization of isobutene
US4139573A (en) * 1978-04-24 1979-02-13 Uop Inc. Isoparaffin-olefin alkylation utilizing vaporization of normal paraffin to control the reaction temperature
US4242530A (en) 1978-07-27 1980-12-30 Chemical Research & Licensing Company Process for separating isobutene from C4 streams
JPS577259A (en) * 1980-06-18 1982-01-14 Japan Organo Co Ltd Catalyst used in organic reaction
US4313016A (en) 1980-10-23 1982-01-26 Petro-Tex Chemical Corporation Isobutene removal from C4 streams
US4375576A (en) 1981-07-27 1983-03-01 Chemical Research & Licensing Co. Enhanced diisobutene production in the presence of methyl tertiary butyl ether
US5003124A (en) 1982-11-17 1991-03-26 Chemical Research & Licensing Company Oligomerization process
US4540839A (en) 1984-03-26 1985-09-10 Petro-Tex Chemical Corporation Process for the production of polymer gasoline
JPS61291017A (ja) * 1985-06-19 1986-12-20 Hitachi Ltd 充填塔
US4891466A (en) * 1987-11-23 1990-01-02 Uop HF alkylation process
US4783567A (en) * 1987-11-23 1988-11-08 Uop Inc. HF alkylation process
DK168520B1 (da) 1989-12-18 1994-04-11 Topsoe Haldor As Fremgangsmåde til væskefase-alkylering af et carbonhydrid med et olefinalkyleringsmiddel
US5420093A (en) 1991-10-25 1995-05-30 Institut Francais Du Petrole Catalyst based on silica and sulfuric acid and its use for the alkylation of paraffins
US5196626A (en) * 1991-11-04 1993-03-23 Mobil Oil Corporation Film type alkylation process
ES2090914T3 (es) 1992-08-20 1996-10-16 Inst Francais Du Petrole Procedimiento de alquilacion de parafinas.
US5345027A (en) * 1992-08-21 1994-09-06 Mobile Oil Corp. Alkylation process using co-current downflow reactor with a continuous hydrocarbon phase
US5792428A (en) 1994-07-18 1998-08-11 Chemical Research & Licensing Company Apparatus for conducting exothermic reactions
US5659096A (en) 1995-06-05 1997-08-19 Phillips Petroleum Company Combination of olefin oligomerization and paraffin alkylation
US5730843A (en) 1995-12-29 1998-03-24 Chemical Research & Licensing Company Catalytic distillation structure
US5785933A (en) * 1997-01-21 1998-07-28 Mobil Oil Corporation Sulfuric acid alkylation reactor system with static mixers
US6000685A (en) 1998-06-29 1999-12-14 Catalytic Distillation Technologies Gas/liquid contact structure
EP0987237B1 (en) * 1998-09-14 2003-11-26 Haldor Topsoe A/S Process for the catalytic alkylation of a hydrocarbon feed
US20040052703A1 (en) * 2001-08-21 2004-03-18 Catalytic Distillation Technologies Contact structures
US20040100220A1 (en) * 2002-11-25 2004-05-27 Zhenxing Fu Weighted higher-order proportional-integral current regulator for synchronous machines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155742A (en) * 1961-09-11 1964-11-03 Shell Oil Co Alkylation process
US4301315A (en) * 1977-09-22 1981-11-17 Phillips Petroleum Company Method of producing high octane alkylate gasoline

Also Published As

Publication number Publication date
AR040547A1 (es) 2005-04-13
BR122013007356B1 (pt) 2015-07-21
TWI327993B (en) 2010-08-01
CA2493862A1 (en) 2004-02-26
US20040171901A1 (en) 2004-09-02
RO125602B1 (ro) 2013-10-30
CN100379710C (zh) 2008-04-09
US7319180B2 (en) 2008-01-15
CN1659118A (zh) 2005-08-24
RO125601A2 (ro) 2010-07-30
EP2258673A1 (en) 2010-12-08
JP2010209348A (ja) 2010-09-24
KR20050051636A (ko) 2005-06-01
US20050113624A1 (en) 2005-05-26
BR0312605B1 (pt) 2013-07-23
US6995296B2 (en) 2006-02-07
US7250542B2 (en) 2007-07-31
RO125602A2 (ro) 2010-07-30
IN2012DN00643A (zh) 2015-08-21
RO125600A2 (ro) 2010-07-30
RU2005106995A (ru) 2005-08-10
US6858770B2 (en) 2005-02-22
JP2010100859A (ja) 2010-05-06
RO125600B1 (ro) 2012-11-29
TWI327994B (en) 2010-08-01
CA2688868A1 (en) 2004-02-26
WO2004016573A1 (en) 2004-02-26
EP1546068A1 (en) 2005-06-29
US20030176755A1 (en) 2003-09-18
TW201004897A (en) 2010-02-01
AU2003238019A1 (en) 2004-03-03
ZA200410027B (en) 2006-07-26
RO123094B1 (ro) 2010-10-29
JP4542427B2 (ja) 2010-09-15
EP1546068A4 (en) 2009-11-25
TW200406368A (en) 2004-05-01
AU2003238019B2 (en) 2009-07-16
CA2493862C (en) 2010-08-24
CN101186551A (zh) 2008-05-28
KR100970799B1 (ko) 2010-07-16
RU2303024C2 (ru) 2007-07-20
CA2688868C (en) 2011-11-01
JP2005539106A (ja) 2005-12-22
EG23453A (en) 2005-09-21
US20040260136A1 (en) 2004-12-23
BR0312605A (pt) 2005-04-19
RO125601B1 (ro) 2012-11-29
MXPA05001556A (es) 2005-04-19

Similar Documents

Publication Publication Date Title
CN101186551B (zh) 石蜡烷基化
AU2009200574B2 (en) Pulse flow reaction
US7850929B2 (en) Contact structures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20120530

CX01 Expiry of patent term