CN101164247B - 利用极低功率的扩频通信方法和系统以及高频无线电设备 - Google Patents

利用极低功率的扩频通信方法和系统以及高频无线电设备 Download PDF

Info

Publication number
CN101164247B
CN101164247B CN200680013834XA CN200680013834A CN101164247B CN 101164247 B CN101164247 B CN 101164247B CN 200680013834X A CN200680013834X A CN 200680013834XA CN 200680013834 A CN200680013834 A CN 200680013834A CN 101164247 B CN101164247 B CN 101164247B
Authority
CN
China
Prior art keywords
data
slave unit
master unit
carrier
extended code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200680013834XA
Other languages
English (en)
Other versions
CN101164247A (zh
Inventor
小林薰
塚本信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Publication of CN101164247A publication Critical patent/CN101164247A/zh
Application granted granted Critical
Publication of CN101164247B publication Critical patent/CN101164247B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7087Carrier synchronisation aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种当利用极低功率进行扩频通信时,能够按照接收载波的频率校正自身设备的载频的高频无线电设备。载波解调部分(202)通过利用默认载波数据解调从通信对方无线电设备接收的扩展码,并将解调的扩展码发送给同步定时检测部分(205)。当同步定时检测部分(205)从载波解调数据中检测到扩展码时,载频偏移检测部分(204)执行扩展码的频率分析,以检测载频的偏移量。载波数据产生部分(206)根据检测的偏移量产生校正的载波数据。DBPSK调制部分(211)利用校正的载波数据执行对通信对方无线电设备的数据传输。

Description

利用极低功率的扩频通信方法和系统以及高频无线电设备
技术领域
本发明涉及利用极低的功率进行数据的传输/接收的扩频通信方法和系统,以及高频无线电设备。
背景技术
高频无线电设备中载波的频率常常随着环境温度、组件的个体偏差、长期变化等而改变。作为检测这种情况下接收载波的频率偏离固有载波的频率的程度的方法,一种常规已知的方法是通过利用高速时钟,计数来自包括天线在内的无线电部分的接收IF(IF代表中间频率信号,这同样适用于下面的描述)的频率分量,检测相位变化点。另外,另一种已知方法是通过对接收的载波进行延迟检测,并对延迟检测之后的复合基带信号进行几何处理,计算频率偏移量。
就前一方法来说,为了检测接收IF的相位变化点,需要速度极高的计数时钟。于是,整个通信系统的电流消耗必然增大。
就后一方法来说,频率偏移量的检测范围极窄,这导致需要频率精度极高的本地振荡器。换句话说,即使利用必定能够检测较宽范围的频率偏移量的BPSK调制/解调方法,从复合基带信号的几何处理获得的频率偏移量也局限于符号率的绝对值的1/2。于是,当像在QPSK或QAM的场合下,调制/解调方法处理的值的数目增大时,检测范围明显变窄,就低传输速率系统来说,需要更高的本地振荡频率精度。从而,当执行利用极低功率的扩频通信时,不可能采用常规的技术。
另一种方法是通过在频率合成器中设置校正数据,调整本地振荡频率。但是,这种方法需要使用昂贵的频率合成器,这阻碍了高频无线电设备的小型化,并且还增大了整个通信系统的成本。
本发明的目的是提供一种通信方法和适合于实现该方法的高频无线电设备,依据该通信方法,能够低成本地应付接收载波中的频率偏移(这一直是高频无线电设备中的常规问题),并且即使利用不是法律管制对象的极低功率,也能够容易地低成本实现通信质量优良的扩频通信。
发明内容
本发明提供一种利用极低功率的扩频通信方法来解决上面说明的问题。
按照本发明,提供了一种利用极低功率的扩频通信方法,其中通过利用不是法律管制对象的极低功率的扩频通信进行相互通信的一对高频无线电设备的其中一个被设置成主单元,所述高频无线电通信设备对中的另一个被设置成从属单元,所述扩频通信方法包括下述步骤:从属单元在预先确定的间歇通信定时,将分配给从属单元的扩展码传送给主单元;当接收到来自于从属单元的扩展码时,主单元通过执行包含在接收数据中的信号分量的频率分析,检测从属单元的载频与主单元的载波之间的差异,校正主单元的载频,以便降低检测到的差异,并在根据来自从属单元的扩展码的接收定时确定的间歇通信定时,将分配给主单元的扩展码传送给从属单元;当在接收来自主单元和从属单元中另一个的扩展码的时候,接收数据的相关值水平大于预先确定的阈值时,主单元和从属单元都判断存在相关性,并建立通信同步,其中仅交换扩展码,直到在所述主单元和所述从属单元之间建立通信同步。
按照该方法,即使当从属单元的载波产生精度较低,并且载频变化时,或者即使当主单元的载频和从属单元的载频彼此不同时,通过在主单元一侧校正主单元的载频而执行通信,从而能够容易地执行扩频通信,而不必使用昂贵的组件等。
频率分析最好是对通过反向扩展所述扩展码而获得的数据执行的快速傅里叶变换处理。从而,解决了涉及高速时钟的常规问题。
当继续与从属单元的通信时,只在开始时执行载频的校正就足够了。从而,扩频通信方法最好还包括在主单元和从属单元之间建立同步之前,主单元通过利用校正前的载波对接收数据执行载波解调,获得载波解调数据,对载波解调数据执行延迟检测,根据已经过延迟检测的数据和由与延迟检测对应的处理获得的预定代码,执行反向扩展处理,在建立同步之后,停止由与延迟检测对应的处理获得的代码的输入,并跳过反向扩展处理之前的延迟检测。
扩频通信方法还包括主单元和从属单元都通过仅仅借助对应于一个周期的分段传送分配给自己的扩展码,使通信对方建立通信同步。此外,扩频通信方法还包括在建立了通信同步之后,主单元和从属单元都通过保持用于在对应于扩展码的一个周期的分段中执行传输的传输分段,和保持用于在对应于“扩展码的两个周期+α”的分段中执行接收的接收分段,确定从通信对方发送的接收数据是只供同步保持之用的数据还是在同步保持之后发送的应用数据。这里“α”是所述确定所需的时间。
主单元和从属单元都检测扩展码的每个周期相对于来自通信对方的接收数据的相关值,当检测的相关值高于预定值时,根据接收数据是应用数据的判断,每次将接收分段延长扩展码的一个周期,并在其中与前一周期的相关性变得低于预定值的接收分段中停止接收。借助这种结构,不必预先为应用数据确保较长的分段,从而能够实现高效通信。
本发明还提供一种适合于实现上面说明的扩频通信方法的高频无线电设备。所述高频无线电设备包括接收装置,用于接收来自于通信对方无线电设备的具有不是法律管理对象的极低功率的信号,偏差检测装置,用于检测它自己的载频相对于接收装置接收的信号的载频的偏差,载频校正装置,用于根据偏差检测装置检测的偏差,校正它自己的载频,以致载频接近接收信号的载频,和传送装置,用于以其频率已被载频校正装置校正的载波作为媒体,将预定传输数据传送给通信对方无线电设备。
在所述高频无线电设备中,偏差检测装置被构造成:例如包括同步定时检测部件,用于检测包括在通过利用默认载波数据解调接收信号而获得的载波解调数据中的同步信号;和通过分析同步定时检测部分检测的同步信号的频率分量,检测所述偏差。在所述高频无线电设备中,同步信号是通信对方无线电设备独有的扩展码,仅仅借助用于同步建立和同步保持的一个周期,传送所述扩展码。
如上所述,在建立了同步之后,载频的校正不是必需的。于是,同步定时检测部分被构造成有选择地形成第一电路,用于延迟检测载波解调数据,并且利用通过预先为反向扩展处理分配的扩展码的延迟检测处理而获得的差分码,反向扩展经过延迟检测的数据,直到与通信对方无线电设备建立了同步为止,以及第二电路,用于在与通信对方无线电设备建立了同步之后,在跳过延迟检测的同时,反向扩展载波解调数据。
具体地说,在高频无线电设备中,其中偏差检测装置还包括:FIFO型存储器,用于保存与同步建立操作期间的预定长度对应的一部分的载波解调数据;控制电路,用于当同步定时检测部分检测到从通信对方无线电设备发出的接收数据时,将一部分的接收数据保存在存储器中;反向扩展处理电路,用于对保存的接收数据执行反向扩展处理;和检测电路,用于在使已经过反向扩展处理电路的反向扩展处理的数据经历快速傅里叶变换处理之后,导出该数据的峰值,并且根据所述导出的峰值检测数据方面的偏差。
此外,在所述高频无线电设备中,传送装置包括:差分编码电路,用于执行传输数据的差分编码;扩展调制部分,用于利用已由差分编码电路执行差分编码的传送数据,扩展调制分配给自己的扩展码;数字调制电路,用于数字调制由扩展调制部分扩展调制的数据;和D/A转换电路,用于将数字调制的数据转换成模拟数据。如上所述构成的传送装置的优点是在利用逻辑门电路构成所述这些电路时的电路结构被显著简化。
此外,本发明提供一种利用极低功率的扩频通信系统,所述扩频通信系统包括通过利用不是法律管制对象的极低功率的扩频通信,相互通信的一对高频无线电设备,所述一对高频无线电设备的其中一个被设置成主单元,所述对中的另一个被设置成从属单元。
在该扩频通信系统中,从属单元包括用于在预先确定的间歇通信定时,将分配给从属单元的扩展码B传送给主单元,并等待来自于主单元的扩展码A的通信装置;主单元包括:检测装置,用于当接收到来自于从属单元的扩展码B时,通过执行包括在接收数据中的信号分量的频率分析,检测从属单元的载频和主单元的载频之间的偏差;载频校正装置,用于校正主单元的载频,以致检测装置检测到的偏差被减小;和传送装置,用于以其频率已被载频校正装置校正的载波作为媒体,在根据来自于从属单元的扩展码B的接收定时确定的间歇通信定时,将分配给主单元的扩展码A传送给从属单元;主单元和从属单元都包括同步建立装置,用于当在接收来自主单元和从属单元中的另一个的扩展码的时候,接收数据的相关值水平大于预先确定的阈值时,判断存在相关性,并建立通信同步。
附图说明
图1是按照本发明的一个实施例的通信系统中的高频无线电设备(主单元或从属单元)的状态转换图;
图2(a)-(d)是在异步状态、同步保持状态和传输/接收状态下,主单元和从属单元的操作定时的示意图;
图3是起主单元和从属单元作用的高频无线电设备的信号处理部分的整体结构图;
图4是初始接收阶段中,主单元的信号处理部分的结构图;
图5是在同步保持状态下,主单元的信号处理部分的结构图;
图6是当高频无线电设备起从属单元的作用时,信号处理部分的结构图;
图7是信号处理部分中的主要部件的详细结构图;
图8A是在建立同步之前,同步定时检测部分的结构图,图8B是在保持同步之后的结构图;
图9是具体图解说明载频偏移检测部分的操作的示意图;
图10是载波数据产生电路和载频校正电路的结构图;
图11是相关值检测电路中的相关值检测处理的概述图;
图12是当高频无线电设备起从属单元的作用时激活的载波解调部分的操作的示意图。
具体实施方式
下面参考附图说明本发明的一个实施例。在该实施例中,将说明通信系统的一个实例,其中以具有不是法律管制对象的极低功率的载波作为媒体,在安装于汽车上的高频无线电设备(主单元)和用户携带的高频无线电设备(从属单元)之间执行利用不是法律管制对象的极低功率的扩频通信。
(扩频通信的概述)
首先,参考图1和2说明在主单元和从属单元之间执行的按照本实施例的扩频通信的概述。图1是从属单元(或者主单元)的通信状态转换图,图2A-2D是在各个状态下,主单元和从属单元的传输/接收定时图。
在图2A-2D中,“IDLE”指示未被用于传输/接收的分段,“TRANSMISSION”指示传输分段,“RECEPTION”指示接收分段。从图中可看出,在本实施例中的通信系统中,在每个预定的间歇通信定时,在主单元和从属单元之间执行双向通信。这种情况下,主单元使用的扩展码和从属单元使用的扩展码需要彼此不同。在本实施例中,为了便于说明,主单元的扩展码被赋予参考符号“A”,从属单元的扩展码被赋予参考符号“B”。
如图1中所示,存在三种通信状态:异步状态ST1、同步保持状态ST2和传输/接收状态。下面描述这些状态的概述。
(异步状态ST1)
异步状态ST1是所谓的“异步”状态,其中主单元或者从属单元刚刚在通信区内被通电,或者存在于通信区之外。在这种状态下,在主单元和从属单元之间还未建立通信的同步。在这种异步状态ST1下,如图2A中所示,从属单元在预先确定的间歇通信定时传送分配给它自己的扩展码B,并检查在固定的时间间隔之后,分配给主单元的扩展码A是否被发送。换句话说,从属单元进入间歇传输/接收状态。传输分段具有一个数据的长度,换句话说,对应于扩展码的一个周期的长度。传输分段和接收分段之间的时间以及接收分段和下一传输分段之间的时间均被称为“保护时间”。可以随意设置该保护时间的长度。
在连续接收状态下,主单元等待来自从属单元的扩展码B。当从从属单元接收到扩展码B时,主单元将分配给它的扩展码A传给从属单元。需要注意的是,对于主单元,在传输分段和接收分段之间也设置任意的保护时间。
主单元还通过从从属单元接收扩展码B,确定间歇通信定时,还执行根据扩展码B的接收信号分量,检测从属单元的载频偏离它自己的载频的程度的载频偏移检测处理,并按照检测的偏移量校正它自己的载频。因此,为了提高频率精度和温度特性,对于从属单元来说,可以使用廉价的本地振荡器,而不是使用诸如频率合成器和TCXO之类的组件。
主单元和从属单元还都执行相关值确认(检测),以便判断是否接收到主单元和从属单元中的另一个的扩展码。当主单元处于连续接收状态时,由主单元执行相关值确认。另一方面,在间歇接收的时候,由从属单元执行相关值确认。当表示扩展码的接收数据的相关值级别大于预先确定的阈值时,主单元和从属单元都判断存在相关性,换句话说,接收数据(扩展码)被接收,并转换成同步保持状态。
通过在按照这种方式于主单元和从属单元之间建立了通信同步之前,只传送扩展码A和B,实现了电流消耗的降低。
(同步保持状态ST2)
同步保持状态ST2是主单元和从属单元都完成通信对方的扩展码的识别的状态。换句话说,主单元识别从属单元的扩展码B,而从属单元识别主单元的扩展码A。在这种状态下,在主单元和从属单元之间建立通信同步。通过将该同步(间歇通信定时)保存在预定存储器中,主单元和从属单元能够维持传输/接收的间歇通信定时。需要注意的是,也可取决于对应的规范,任意改变间歇通信定时。
从属单元在上面说明的间歇通信定时,不断传送分配给它自己的扩展码B,随后接收来自于主单元的扩展码A,从而保持同步。
主单元也在前一状态下检测到的间歇通信定时,不断等待来自于从属单元的扩展码B,随后传送扩展码A。这种情况下,作为用于载波调制/解调的载频,使用通过校正在前一状态下计算的相对于从属单元的载频的偏移而获得的载频。另外在同步保持状态,当从从属单元接收扩展码B时,主单元继续检测载频偏移量和间歇通信定时偏移量,并独自顺序地校正所述偏移量。于是,在所有状态下,从属单元不必执行诸如载频校正和定时校正之类的复杂处理,这使得能够简化从属单元的结构。
在同步保持状态下,和异步状态的情况一样,在传输的时候,主单元和从属单元都只传送与一个数据(对应于扩展码的一个周期)对应的分段。但是,在接收的时候,和异步状态的情况不同,主单元和从属单元都接收与“两个数据+α(对应于扩展码的两个周期+α)”对应的分段。这是因为要求确定该数据是只供同步保持之用的数据(只是扩展码),还是在同步保持之后发送的应用数据。另一方面,在接收的时候,对于每个数据段检测该数据的相关值。
可遵循下面说明的进程执行上面所述的确定。即,就仅供同步保持之用的数据来说,在第一数据段中获得相关峰值,但是在第二数据段中不获得任何相关峰值。当在第二数据段中不存在任何相关峰值时,判断仅供同步保持之用的数据被接收,此时结束接收。当在第二数据段中也获得相关峰值时,判断接收到应用数据,之后接收段被延长一个数据长度(状态转变成“传输/接收状态”)。上述说明中的符号“+α”对应于确认接收数据的相关值所需的处理时间。通过利用这样的进程,不必将接收段延长应用数据的数据长度来等待应用数据,这使得能够实现电流消耗的降低。
(传输/接收状态ST3)
传输/接收状态ST3是在当前状态是“同步保持状态”的条件下,主单元或者从属单元启动数据的传输/接收的状态。当在“同步保持状态”下,出现由主单元或从属单元执行数据传输/接收的需要时,状态转变成传输/接收状态,按照保持的同步(间歇通信定时)执行数据传输/接收。主单元和从属单元都确认每个数据的相关值,并且当如上所述获得峰值(值等于或大于阈值)时,将接收段延长下一数据的长度(+α)。传输段的上限可按照应用来确定,或者对于传输段可不设置任何限制。另外,可周期性地执行接收来自于接收方的ACK(接收确认信号)的握手处理。
当主单元和从属单元之一的传输结束时,传输/接收状态返回“同步保持状态”,从下一个间歇通信定时重新开始供同步保持之用的扩展码的传输/接收。
(高频无线电设备的结构的实例)
下面,说明起能够实现上述通信的主单元或从属单元作用的高频无线电设备的结构的实例。起主单元作用的高频无线电设备和起从属单元作用的高频无线电设备可以使用相同的结构,不过在主单元和从属单元之间,在操作时激活的功能块稍有不同。另外,在同步建立之前启动的主单元的功能块和在同步保持之后激活的主单元的功能块彼此不同。
除了包括天线的无线电部分之外,主单元和从属单元都包括一个信号处理部分,所述信号处理部分组合地具有传送部分的功能和接收部分的功能。为了便于说明,将通过将高频无线电设备或者信号处理部分称为主单元或从属单元来执行下面的说明。
图3是信号处理部分的总体结构图,图4是在同步建立之前的信号处理部分的结构图,该信号处理部分起主单元的作用,图5是在同步保持之后的信号处理部分的结构图,该信号处理部分起主单元的作用。图6是起从属单元作用的信号处理部分的结构图。另外,图7表示图3-6中的主要部件的详细结构图。
(传送部分)
首先,说明主单元和从属单元共有的传送部分的结构。
传送部分主要包括位于图3-6的下部的功能块作为构成部件。换句话说,传送部分包括DBPSK调制部分211、扩展调制部分212和D/A转换部分213。
DBPSK调制部分211数字执行传输数据的BPSK调制,包括示于从图7顶部开始的第二层的右手侧的功能块:差分编码电路2111、BPSK调制电路2112、波形整形电路2113和载波调制/解调电路(载波MOD)2114。
差分编码电路2111执行从包含在高频无线电设备中的控制部分(未示出)发送的传输数据的差分编码,并将其输出发送给扩展电路212。扩展电路212对差分编码的传输数据执行扩展调制。注意其中差分编码电路2111和扩展电路212被设置在单个电路板上的结构也是可能的。
BPSK调制电路2112执行从扩展电路212输出的扩展调制信号的电平转换(level conversion)。换句话说,输入的扩展调制信号只具有“0”和“1”电平,从而BPSK调制电路2112分别将这些电平转换成“1”和“-1”。当通信系统中的主要调制/解调是BPSK调制/解调时,数据“1”和“0”(“-1”和“1”)的载波相位为180°,从而往往会发生乱真传输(transmission spurious)。波形整形电路2113相对于在前一级中电平转换成“-1”和“1”的传输数据除去这样的乱真传输,从而执行波形整形。载波MOD2114通过以载波乘以经过波形整形的传输数据而执行调制。这里被乘的载波数据是来自后面说明的载波数据产生部分206的数据。当高频无线电设备起主单元的作用时,该数据是经过载频偏移校正的数据。另一方面,当高频无线电设备起从属单元的作用时,该数据是默认载波数据。细节将在后面说明。
DBPSK调制部分212具有和这种类型的BPSK调制部分的结构不同的特殊结构。有关扩频通信的一般文献描述了常规已知的BPSK调制部分或BPSK调制电路按照(1)差分编码,(2)电平转换,(3)BPSK(DBPSK)调制(载波MOD),和(4)扩展调制的规定顺序执行传输数据处理,意味着在扩展调制的时候,传输数据已经过电平转换。但是,就这样的结构来说,如果在IC芯片上实现电路组件,那么不可能减少门级(gate scale)。为了改进这一点和尽可能地减少门级,在扩展调制的时候,本实施例中的DBPSK调制部分212不是利用乘法器,而是通过异或操作执行处理,并按照规定的顺序实现功能块布置(block arrangement),以致尽可能地在后面的级中执行到多位形式的转换。
D/A转换部分213对从DBPSK调制部分211输出的数据执行D/A转换,并将转换结果输出给后一级的无线电部分(未示出)。
在主单元和从属单元中,都按照上面所述的方式构成传送部分,但是在主单元和从属单元之间,传送部分的操作稍有不同。
换句话说,就主单元来说,当在后面说明的接收部分检测到来自从属单元的同步信号时,在下一间歇通信定时,传送部分向从属单元发出指示同步被建立的同步建立通知信号。作为同步建立通知信号,只有扩展码A被发出。换句话说,传送的信号表现为“1”。作为待使用的载波,使用通过校正在后面说明的接收部分检测的从属单元的载频的偏移量而获得的载波。就这种结构来说,当接收的数据在从属单元一侧被载波调制时,通过利用从属单元自己的载波数据执行解调,能够获得不包括任何偏移分量的解调数据。主单元的传送定时被设置成在从属单元和主单元之间预先确定的定时。
在自发出同步信号以来一段固定时间之后,从属单元等待来自主单元的扩展码A,主单元按照从属单元的接收定时发出扩展码A。
(同步建立之前的主单元的结构)
下面,参考图4和7,说明当高频无线电设备起到同步建立之前的主单元的作用时,具有图3中所示结构的信号处理部分中的结构,尤其是接收部分的结构。
接收部分主要对应于图3的上部中的功能块。换句话说,来自无线电部分(未示出)的接收IF被输入A/D转换部分(A/D)201。例如接收IF是通过将接收信号的频率转换成48(kHz)的频率而获得的模拟间歇频率信号。A/D转换部分201将接收IF数字转换成5位接收数据等,随后有选择地将数据发给载波解调部分202。
这里应注意A/D转换部分201为主单元和从属单元所共有,不过在主单元和从属单元之间,其操作频率不同。
从A/D转换部分201到载波解调部分202的输出的切换由控制部分(未示出)执行。载波解调部分202是从接收数据中除去载波分量,并解调数据分量的部分。这里,在同步建立之前的初始接收阶段中,主单元和从属单元的载频分量之间的偏移量未被掌握。于是,载波解调部分202根据预先确定的默认载波数据执行解调。
利用默认载波数据执行载波解调的接收数据被导向同步定时检测部分205,在同步定时检测部分205执行同步检测。
在同步检测之后,在载频偏移检测部分204检测载频偏移量,检测结果被输出给载波数据产生部分206。载波数据产生部分206产生上面所述的校正后的载波数据,并将该数据而不是默认载波数据发给载波解调部分202。
这里应注意载频偏差检测部分204、同步定时检测部分205和载波数据产生部分206的结构和操作将在后面详细说明。
载波解调部分202接收校正后的载波数据,并通过在载波MOD部分2021将来自从属单元的后续接收数据乘以该校正后的载波数据,执行载波解调。被乘的载波数据包括其相位彼此相差90°的两种数据,换句话说,同相分量(I分量)和正交分量(Q分量)的复数数据。按照这种方式执行载波解调的接收数据由谐波去除滤波器2022执行谐波分量的切除,随后被输入下采样部分2023。下采样部分2023按照后面的功能块的处理频率执行下采样处理。注意取决于应用或者使用的系统,该处理可被消除。
如上所述,在初始接收阶段中,即使在主单元的载频和从属单元的载频之间存在偏移,也不可能在主单元校正该偏移,从而即使接收到从属单元的扩展码,与载频偏移对应的频率分量也会残留在载波解调之后的数据中。于是,在主单元,在初始接收阶段中,A/D转换部分201的输出被引到载波解调部分202,并被进一步引到同步定时检测部分205,根据在同步定时检测部分205检测的同步检测信号,在载频偏移检测部分204执行频率偏移检测处理。
实际上,在检测到来自从属单元的扩展码之后,并在下一接收时间之前,通过离线处理在同步定时检测部分205执行在载频偏移检测部分204的偏移检测处理。如图7的右上侧区域中所示,载频偏移检测部分204在其初始级配有缓冲器(Buff)2041。缓冲器2041由多个移位寄存器构成,并且在同步定时检测部分205等待从属单元的扩展码的时候,不断地连续使经过载波解调的数据移位。
缓冲器2041具有“(扩展码长度×过采样数)+α”的移位寄存器长度。随后,以在检测从属单元的扩展码的时候,从同步定时检测部分205输出的同步检测信号为触发信号,停止对缓冲器2041的移位寄存器的数据移位处理,从而保存此时的载波解调数据。因此,上面描述的移位寄存器长度中的“α”对应于检测相关值的峰值和输出同步检测信号所必需的时间,来自保存之后的最后一级的对应于“(扩展码长度×过采样数)”的数据变成接收数据。此时的接收数据仍未经过载频偏移校正,从而通信对方(从属单元)的载频偏移(偏差)仍然留在传送的扩展处理数据中。
反向扩展电路2042对保存的接收数据执行反向扩展处理,从而从从属单元的载频中提取表示所述偏移的正弦波分量。注意反向扩展处理中使用的扩展码是普通的扩展码。FFT电路2043执行快速傅里叶变换(FFT)处理,从而计算上面说明的正弦波的频率分量。FFT电路2043的输入数据也是复数数据,从而FFT电路2043分别对I分量和Q分量执行FFT。I分量的数据的相位和Q分量的数据的相位被改变90°,从而FFT中频率偏移的正/负沿着相移的方向改变。频率偏移估计部分2044分析通过FFT获得的频率分量,并以数值数据的形式输出相对于默认载波的偏移量。
这里应注意当计算点N被设置成1024,并且计算处理频率(1/Δt)被设置成64(kHz)时,FFT的检测频率间隔Δf变成由下面的表达式表示的数值。
Δf=1/(Δt×N)=62.5(Hz)
即使当应用FFT算法时,就理论值来说,执行1024次计算所需的乘法器的数目和加法器的数目也分别为“5120”和“10240”。于是,为了减少门电路的数目,最好采取下面的措施。
(1)只对在根据所使用设备的规范(一般温度偏移或者温度偏移),工作环境等假定的频率偏移量的范围内的数据执行FFT。
(2)从有效数据长度开始,到下一次数据接收为止,存在几秒的时间间隔,从而通过反复利用乘法器/加法器,减少门电路的数目。按照接收时间间隔确定所减少的门电路的数目。
图9具体表示上面所述的载频偏移检测部分204的操作。在每一层的图形(除最底下的一层之外)中,垂直轴表示数据电平,水平轴表示时间(t)。在图9中,图解说明了其中从属单元和主单元之间的载波比为“8(从属单元)∶9(主单元)”的实例。在最上层的从属单元方的传送扩展码中,正电平为“1”,负电平为“-1”。当从属单元方的载波数据是示于从图9顶部开始的第二层上的载波数据时,在数据电平变化的时候,在D/A转换之后位于从属单元一侧的传送IF信号的相位被反转,如从图9顶部开始的第三层上所示的。
载波解调部分202的默认载波数据的频率稍不同于从属单元的载波数据的频率,如从图9顶部开始的第四层上所示的(在图解说明的实例中,从属单元的载波数据的频率稍高于在载波解调部分的默认载波数据的频率)。在载波解调数据中,从属单元和主单元之间的载频偏移分量保持,如从图9顶部开始的第五层上所示的。注意至于在从图9顶部开始的第六层上的由垂直轴表示的数据电平,正数据电平被设置成“1”,负数据电平被设置成“-1”。
主单元中反向扩展之后的数据变成与接收IF和载波数据之间的差异对应的频率数据,如从图9顶部开始的第七层上所示。通过对该频率数据执行FFT(快速傅里叶变换),获得具有如在图9的最下层所示波形的离散数据行。图9的最下层的水平轴表示频率(f)。通过计算处理得出该离散数据行的峰值相对于默认载波频率的偏移量,以数值数据的形式将该偏移量输出给载波数据产生部分206。
如从图7顶部开始的第三层的左侧所示,载波数据产生部分206包括载波数据产生电路2061、频率偏移校正电路2062和正弦波数据表(载波数据表)2063。在正弦波数据表2063中,保存正弦波数据,所述正弦波数据是用于产生载波数据的基本数据。正弦波数据的值可被预先保存在正弦波数据表2063中,或者可在初始操作等的时候产生,并累积在正弦波数据表2063中。
载波数据产生电路2061和载频校正电路2062如图10中所示那样构成。在图10中,当正弦波数据表2063中的载波数据的表格数用“T”表示,频率偏移校正灵敏度用“Acc”表示,偏移校正频率用“fdet”表示,默认载频用“f1F”表示,操作处理频率用“fs”表示时,首先,载频校正电路2062按照下面给出的关系表达式,得出载波产生计数系数a1,系数积分后的除法系数D(division coefficient),以及积分电路的位上限值u(bit upper limit value)。
a1=(f1F+fdet)/Acc
D=fs/(T*Acc)
u=log2(fs)-log2(Acc)
在上面的关系表达式中,当T被设置成“128”,Acc被设置成“2(Hz)”(最小校正频率单位被设置成“2(Hz)”),fdet被设置成“1(kHz)”,f1F被设置成“49.152(kHz)”,并且fs被设置成“262.144(kHz)”时,载波产生计数系数a1、除法系数D和位上限值u变成如下所示。
a1=25074
D=1024
u=17
在位上限值为u的情况下,载波数据产生电路2061以处理频率(fs)为步长,对载频校正电路2062获得的系数a1执行积分处理。该积分处理中的过载被忽略。之后,除以为其获得积分电路输出的除法系数D。
通过执行从D获得的位移位处理,能够容易地执行该除法处理中的计算(在本例中,D为“1”,并且24为“1010”,从而执行10位移位处理)。
位移位处理之后的值变成正弦波数据的索引值,从而按照该索引值,从正弦波数据表2063提取所述正弦波数据作为载波数据。
载频校正电路2062获得的计数系数a1是用于计算索引值的系数,所述索引值用于提取转换成表形式的正弦波数据,通过偏移校正量的增加/减少而提取的索引值也变化。例如,在上面说明的实例中,当fdet为“0”时,a1变成“24576”。
当利用该系数执行计数处理时,和fdet为“1(kHz)”的情况相比,提取的索引值的提升变慢。因此,提取的载波数据的频率也变低。载波数据的范围变成与D/A(数/模)和A/D(模/数)位数对应的范围,但是就在传输的时候使用的载波数据来说,从实际的观点来看,整个范围内的使用是不可能的,从而在可实现的范围内执行准备。
载波数据产生电路2061产生的载波数据被发给上面说明的DBPSK调制部分212和载波解调部分202。
这里应注意校正后的载波数据还包括其相位彼此相差90°的两种数据,即,同相分量(I分量)和正交分量(Q分量)的复数数据。因此,在实际的电路结构中,需要通过独立地提供其相位彼此相差90°的正弦波的载波数据表,或者利用索引解码器电路新产生其相位与某一索引值的相位相差90°的索引值,产生与同相分量和正交分量对应的两条载波数据。另外,在实际电路中,载波偏移分别由载频偏移检测部分204和后面说明的接收数据解码部分207检测,从而以设置成上面所述的fdet的每个检测值的相加结果执行校正处理。
在检测频率偏移量之后,载波解调部分202通过在载波MOD部分2021将从上面说明的载波产生部分206发送的频率偏移校正后的载波数据乘以接收数据,执行载波解调。
下面将详细说明同步定时检测部分205。
同步定时检测部分205是只用于主单元的功能块。在图7的最下层表示了同步定时检测部分205的详细结构的实例。在同步定时检测部分205,在其中未建立同步的初始接收阶段和建立同步的状态之间,同步定时检测部分205的操作的内容被改变。换句话说,在初始接收阶段,如图8A中所示,从载波解调部分202输出的载波解调后的接收数据通过延迟检测电路2051被输入反向扩展电路2052,但是在保持同步的状态下,如图8B中所示,载波解调后的接收数据跳过延迟检测电路2051被输入反向扩展电路2052。这种输入切换由接收同步检测信号的控制部分(未示出)执行。
首先,示意图8A的情况下的操作。在待机状态下,主单元在连续接收状态下检测来自从属单元的扩展码。注意即使当接收到来自从属单元的扩展码,如上所述,当存在载波偏移时,与偏差对应的频率分量保留在载波解调后的接收数据中,从而不可能原样执行反向扩展处理。于是,在反向扩展电路2052执行反向扩展之前,延迟检测电路2051执行延迟检测,从而避免偏移频率分量的影响。考虑到后来执行的反向扩展处理,延迟检测时的延迟量被设置成扩展码速率(一个码片)。
更具体地说,输入同步定时检测部分205的数据在载波解调部分202被转换成复数数据。于是,在反向扩展之前,需要在延迟检测电路2051对这些复数数据执行延迟检测。当此时的输入数据被称为“I”和“Q”,在该输入数据之前一个码片的输入数据被称为“Id”和“Qd”时,延迟检测电路2051通过由下面给出的表达式表述的计算处理,执行延迟检测。
(I+jQ)*(Id-jQd)=(I*Id+Q*Qd)+j(Q*Id-I*Qd)
按照上面的表达式计算的I分量数据(I*Id+Q*Qd)和Q分量数据(Q*Id-I*Qd)都由反向扩展电路2052反向扩展。注意这里使用的扩展码在前一级经过延迟检测,从而不可能使用在从属单元使用的扩展码。于是,和接收的情况一样,通过对扩展码执行与延迟检测对应的处理而获得的代码被用于反向扩展。
关于扩展码的延迟检测处理包括按照来自控制部分(未示出)的扩展码数据指定,将延迟检测处理电路2056相对于从扩展数据产生部分209和扩展码表208(参见图3和4)输入的代码产生的延迟检测码记录在反向扩展数据表2055中,并将该代码作为反向扩展码输入反向扩展电路2052。对接收数据执行延迟检测,以致与第一码片对应的代码采用不定值。于是,在反向扩展的时候,与第一码片对应的扩展码不被包括。因此,当扩展码长度为128个码片时,与差分处理后的从第2到第128个码片的127个码片相对应的扩展码被用于反向扩展。
至于延迟检测处理电路2056的具体处理方法,通过对输入的扩展码(“1”或“0”)与将输入的代码移动一个码片而获得的代码执行异或操作,获得延迟检测码。注意在该阶段中,代码仍然为“1”或“0”,从而在记录到反向扩展数据表2055中之前,对于反向扩展处理来说,需要执行到“1”或“-1”的电平转换。
反向扩展电路2052反向扩展的数据被输入相关值检测电路2053。为了检测每个码片中数据的相关值,相关值检测电路2053计算反向扩展后的每个数据的一部分(它对应于扩展码的一个周期)的总和,并获得I分量数据的相加值和Q分量数据的相加值的矢量和(=√(I2+Q2))。利用在数据具有相关性的情况下矢量和增大的性质。
这里应注意作为在未建立同步的时候,确认数据的相关值的方法,也可采用匹配滤波方法。因此可以检测在任意定时从通信对方输入的接收数据的相关性峰值。
图12是作为实例,在扩展码长度为128个码片,并且对一个码片执行8次过采样处理的情况下,在相关值检测电路2053的相关值检测处理的概述。在图12中,表示了I分量的相关值输出的实例。图12中的虚线表示其中通过对一个码片执行8次采样获得相关值的情况。附图标记“a1′”到“a128′”表示通过对固定分配的扩展码a1到a128执行延迟检测处理和电平转换而获得的用于反向扩展的代码。
按照相同的方式还获得Q分量的相关值输出值。通过获得这些相关值输出值的矢量和,检测相关性峰值,并根据相关性峰值的位置计算接收数据行(......d1到d128)的头部(参见图11的下部)。
当根据相关值检测电路2053的检测结果,检测到等于或大于预先确定的阈值的峰值时,同步定时检测电路2054判断来自通信对方的扩展码已被确认,并输出同步检测信号。同步检测信号是用于识别在载频偏移检测部分204的数据范围,以及识别后续的间歇传输/接收定时的信号。来自通信对方的扩展码的头部在相关值的峰值点(位置)之前一个扩展码周期的位置,检测精度变成±1码片。
通过执行以快于码片率的频率处理该确认块的处理频率的过采样处理,能够提高相对于噪声的接收灵敏度,并将上面说明的头部检测精度提高到±1过采样间隔。
当建立与从属单元的同步时,在预先确定的间歇通信定时重复传输/接收操作。注意间歇通信定时由信号处理部分的时钟产生,从而当32.768(kHz)的石英振荡器被用于基本振动时,例如,一般分量的精度变成约±10-20(ppm)。于是,出现几秒到几十秒的相当大的时间偏移。从而,在同步定时检测部分2054,即使在同步保持之后仍然检测来自从属单元的接收信号的相关值,当时间偏移变大时,执行顺序更新同步检测信号的处理。
下面将说明当改变成图8B中所示的状态时,同步定时检测部分205的操作。
在同步被保持的状态下,载波偏移已被校正,从而不需要对载波解调数据执行延迟检测。从而,在同步保持的情况下,如图8B中所示,延迟检测电路2051被跳过。从而,在反向扩展电路2052,未经过延迟检测处理的普通扩展码被用作扩展码。
再次参见图3和4,AGC部分(AGC)214执行将输入信号处理部分的接收IF的增益(幅度)保持在固定值的控制。预先根据来自载波解调部分202的复数数据,估计接收IF的幅度值,并提供用于将所述幅度保持在固定值的阈值。注意就该阈值来说,在主单元和从属单元之间载波解调方法是不同的。输入到AGC部分214的复数数据的I分量和Q分量的绝对值被获得,并且彼此相加。之后,通过执行乘积-和运算,给出随机响应特性,随后执行PWM调制。
(同步保持之后的主单元的结构)
在同步保持之后,主单元的结构变成如图5中所示。这种情况下,同步定时检测部分205的详细结构变成如图8B中所示。
在同步保持之后,接收数据解码部分207被启动。
接收数据解码部分207的详细结构示于从图7的顶部开始的第三层的右侧。在该结构中,只有频率偏移检测部分2071是主单元独有的功能,其它功能是为主单元和从属单元所共有的处理。
就主单元来说,只有在上面说明的同步保持状态ST2和传输/接收状态ST3的时候,接收数据解码部分207才被激活。在上面所述的状态的时候,在主单元一侧已掌握载频偏移量和间歇通信定时,从而在载波被校正之后,接收来自从属单元的数据。
更具体地说,在反向扩展电路2071,对通过在载波解调部分202分离载波而获得的接收数据(复数数据)执行反向扩展处理。普通的扩展码被用作在此时使用的扩展码。随后,在延迟检测电路2074对反向扩展处理后的接收数据(复数数据)执行延迟检测处理。此时的延迟量被设置成对应于预先确定的传输/接收数据的数据速率。由于载频偏移被校正,因此延迟检测之后的数据只具有同相分量(I分量)的值。因此,通过在BPSK解调电路2073仅仅确认延迟检测后的数据的同相分量,就能够从接收数据获得解码数据。
相关值检测电路2075获得反向扩展处理后的数据和来自相关性峰值阈值表210的数据之间的相关值,并输出其结果。
这里应注意取决于周围环境,也存在再次出现载频偏移的可能性。于是,当高频无线电设备起主单元的作用时,不断或定期监视延迟检测后的接收数据,从由I分量和Q分量指示的值得出其角度,并在频率偏移检测电路2072检测频率偏移。频率偏移分量变成数据速率的±1/4。
如上所述,在传输的时候执行差分编码处理,从而通过在接收数据解码部分207对接收数据执行延迟检测处理,来解码初始数据。如在同步保持状态ST1下的操作的概述中所述,在同步保持状态ST2和传输/接收状态ST3下,在接收方接收至少两位的数据,并对每一位执行反向扩展后的相关值的确认。在每一位的相关值大于预先确定的阈值的时候,接收段被延长。
在接收数据解码部分207的反向扩展和相关值确认采用滑动相关方法。通过采用这种方法,能够减少门级和电流消耗。
这里应注意,在高频无线电设备起主单元作用的情况下的相关值确认处理不仅在接收数据解码部分207被执行,而且在同步定时检测部件205被执行。但是,在同步定时检测部分205和接收数据解码部分207之间,判断中使用的阈值是不同的。这是因为在同步定时检测部分205,在反向扩展处理之前执行延迟检测处理,从而就同步定时检测部分205来说,在相关值确认时候的接收数据不同于就接收数据解码部分207来说,在相关值确认时候的接收数据。从而,需要预先准备分别对应于同步定时检测部分205和接收数据解码部分207的阈值。
(在高频无线电设备起从属单元作用的情况下的结构实例)
下面,将参考图6和7说明在高频无线电设备起从属单元作用的情况下的信号处理部分的结构的实例,尤其是将说明接收部分的操作。
如上所述,当在从属单元的载频和主单元的载频之间存在偏移时,该偏移在主单元侧被校正,利用校正后的载波数据执行传输,并且同步建立和保持之间的切换,换句话说,间歇通信定时调整也在主单元侧执行,这允许从属单元仅仅通过执行简单的接收处理执行扩频通信,而不管同步是否还未被建立或者已被保持。
在自从在为从属单元设置的间歇通信定时执行传输以来的固定时间之后,从属单元执行接收处理。在图6中,由A/D转换器201执行A/D转换后的载波数据(A/D输出信号)被输入载波解调部分203。载波解调部分203如从图7的顶部开始的第二层的左侧所示那样构成。载波解调部分203如图12中所示那样工作。
当在A/D转换器201执行A/D转换的时候的采样频率和在载波解调部分的处理频率被称为“fs”,接收IF信号的载频被称为“fIF”时,fs被设置成以致建立表达式“fs=4*fIF/3”。
在这种情况下,载频被欠采样,并且在A/D转换之后,如从图12的顶部开始的第二层上所示,获得具有其载频为fs/4的波形的信号。通过在载波MOD2032反复将该A/D输出信号乘以记录在MOD数据表2031中的四个值“1,1,-1,-1”(MOD数据:从图11的顶部开始的第三层),获得在从图11的顶部开始的第四层上所示的数据。
在I/Q分量选择器2033,如在从图11的顶部开始的第五层和第六层所示,数据被交替地分离成同相分量(I分量)和正交分量(Q分量)。这些分量之一被延迟一个处理频率,以致按照延迟量调节所述分离的定时(图11中的最低层)。
通过实现这样的载波解调方法,不必在主单元执行复杂的处理,比如用于谐波消除的载波数据的倍增,以及用于数字滤波处理的高速处理,并且能够实现低电流消耗操作。
除了上面说明的频率偏移检测电路2072之外,在高频无线电设备起从属单元作用的情况下,接收数据解码部件207的操作内容与在高频无线电设备起主单元作用的情况下,接收数据解码部分207的操作内容相同。从而,当高频无线电设备被用作从属单元时,也能够减少门级和电流消耗。
这里应注意在从属单元的相关值判断中使用的阈值最好应被设置成不同于在主单元的相关值判断中使用的阈值。
(本发明的效果)
在按照本实施例的通信系统中,即使在主单元和从属单元的载频之间存在偏移,通过在主单元一侧控制主单元的载频,以便适应于从属单元的载频,也能够执行通信,从而能够简化从属单元一侧的结构。另外,主单元能够在较宽的范围中执行载频偏移检测和校正,从而起从属单元作用的高频无线电设备不必像常规类型的高频无线电设备那样,使用诸如TCXO和PLL之类的昂贵组件来获得高精度本地振荡频率。从而,能够利用廉价的本地振荡器实现扩频通信。
此外,在按照本实施例的通信系统中,载频偏移检测由FFT执行,从而仅仅借助低速时钟即可执行高精度检测处理。此外,由于能够在较宽的频率范围内检测频率偏移,因此能够降低整个通信系统的电流消耗和成本。

Claims (13)

1.一种利用极低功率的扩频通信方法,其中通过利用不是法律管制对象的极低功率的扩频通信进行相互通信的一对高频无线电设备之一被设置成主单元,所述高频无线电设备对中的另一个被设置成从属单元,所述扩频通信方法包括下述步骤:
所述从属单元在预先确定的间歇通信定时,将分配给所述从属单元的扩展码传送给所述主单元;
当接收到来自于所述从属单元的扩展码时,所述主单元通过执行包括在接收数据中的信号分量的频率分析,检测所述从属单元的载频与所述主单元的载频之间的差异,校正所述主单元的载频,以便降低所检测到的差异,并在根据来自所述从属单元的扩展码的接收定时确定的间歇通信定时,将分配给所述主单元的扩展码传送给所述从属单元;
当在接收来自所述主单元和所述从属单元中另一个的扩展码的时候、接收数据的相关值水平大于预先确定的阈值时,所述主单元和所述从属单元中的每一个都判断是存在相关性的,并建立通信同步,
其中仅交换扩展码,直到在所述主单元和所述从属单元之间建立通信同步。
2.按照权利要求1所述的扩频通信方法,其中所述频率分析包含对通过反向扩展所述扩展码而获得的数据执行的快速傅里叶变换处理。
3.按照权利要求1所述的扩频通信方法,还包括在所述主单元和所述从属单元之间建立同步之前,所述主单元通过利用校正前的载波对接收数据执行载波解调,获得载波解调数据,对于载波解调数据执行延迟检测,根据已经过延迟检测的数据和预定的差分码执行反向扩展处理,在建立同步之后,停止差分码的输入,并跳过反向扩展处理之前的延迟检测。
4.按照权利要求1、2或3所述的扩频通信方法,还包括:
所述主单元和所述从属单元中的每一个都通过借助仅仅对应于一个周期的分段传送分配给自己的扩展码,使通信对方建立通信同步。
5.按照权利要求4所述的扩频通信方法,还包括:
在建立通信同步之后,所述主单元和所述从属单元中的每一个都通过保持用于在对应于扩展码的一个周期的分段中执行传输的传输分段,以及保持用于在对应于“扩展码的两个周期+α”的分段中执行接收的接收分段,确定从通信对方发送的接收数据是只供同步保持之用的数据还是在同步保持之后发送的应用数据,其中“α”是所述确定所需的时间。
6.按照权利要求5所述的扩频通信方法,还包括:
所述主单元和所述从属单元中的每一个都检测扩展码的每个周期相对于从通信对方发送的接收数据的相关值,当所检测的相关值高于预定值时,根据所述接收数据是应用数据的判断,每次将接收分段延长扩展码的一个周期,并停止其中与前一周期的相关性变得低于所述预定值的接收分段中的接收。
7.一种高频无线电设备,包括:
接收装置,用于接收来自通信对方无线电设备的、具有不是法律管制对象的极低功率的信号;
偏差检测装置,用于检测自身设备的载频相对于所述接收装置接收的信号的载频的偏差;
载频校正装置,用于根据所述偏差检测装置检测的偏差,校正自身设备的载频,以致所述载频接近所接收的信号的载频;和
传送装置,用于以频率已被所述载频校正装置校正的载波作为媒体,将预定传输数据传送给所述通信对方无线电设备,
其中所述偏差检测装置包括同步定时检测部件,用于检测包含在通过利用默认载波数据来解调接收信号而获得的载波解调数据中的同步信号,并通过分析所述同步定时检测部件检测的同步信号的频率分量,检测所述偏差。
8.按照权利要求7所述的高频无线电设备,其中所述同步信号包含所述通信对方无线电设备唯一的扩展码,其中仅仅借助用于同步建立和同步保持的一个周期,传送所述扩展码。
9.按照权利要求8所述的高频无线电设备,其中所述同步定时检测部件有选择地形成:
第一电路,用于延迟检测所述载波解调数据,并且利用通过预先为反向扩展处理分配的扩展码的延迟检测处理而获得的差分码,反向扩展经过延迟检测的数据,直到在所述高频无线电设备和所述通信对方无线电设备之间建立同步为止,以及
第二电路,用于在所述高频无线电设备和所述通信对方无线电设备之间建立同步之后,在跳过所述延迟检测的同时,反向扩展所述载波解调数据。
10.按照权利要求9所述的高频无线电设备,其中所述偏差检测装置还包括:
FIFO型存储器,用于保存与同步建立操作期间的预定长度相对应的一部分的载波解调数据;
控制电路,用于当所述同步定时检测部件检测到从所述通信对方无线电设备发送的接收数据时,将一部分的接收数据保存在所述存储器中;
反向扩展处理电路,用于对保存的接收数据执行反向扩展处理;和
检测电路,用于在使已经过反向扩展处理电路的反向扩展处理的数据经历快速傅里叶变换处理之后,导出经历快速傅里叶变换处理之后的数据的峰值,并且根据导出的峰值检测数据中的偏差。
11.按照权利要求7所述的高频无线电设备,其中所述传送装置包括:
差分编码电路,用于执行传输数据的差分编码;
扩展调制部分,用于利用已由所述差分编码电路执行差分编码的传输数据,扩展调制分配给自己的扩展码;
数字调制电路,用于数字调制由所述扩展调制部分扩展调制的数据;和
D/A转换电路,用于将所述数字调制的数据转换成模拟数据。
12.按照权利要求11所述的高频无线电设备,其中所述数字调制电路执行BPSK调制。
13.一种利用极低功率的扩频通信系统,所述扩频通信系统包括通过利用不是法律管制对象的极低功率的扩频通信进行相互通信的一对高频无线电设备,所述高频无线电设备对中的一个被设置成主单元,另一个被设置成从属单元,其中:
所述从属单元包括用于在预先确定的间歇通信定时,将分配给所述从属单元的扩展码B传送给所述主单元,并等待来自所述主单元的扩展码A的通信装置;
所述主单元包括:
检测装置,用于当接收到来自所述从属单元的扩展码B时,通过执行包含在接收数据中的信号分量的频率分析,检测所述从属单元的载频和所述主单元的载频之间的偏差;
载频校正装置,用于校正所述主单元的载频,以致所述检测装置检测到的偏差被减小;和
传送装置,用于以频率已被所述载频校正装置校正的载波作为媒体,在根据来自所述从属单元的扩展码B的接收定时确定的间歇通信定时,将分配给所述主单元的扩展码A传送给所述从属单元;
所述主单元和所述从属单元中的每一个都包括同步建立装置,用于当在接收来自所述主单元和所述从属单元中的所述另一个的扩展码的时候、接收数据的相关值水平大于预先确定的阈值时,判断是存在相关性的,并建立通信同步。
CN200680013834XA 2005-03-03 2006-03-02 利用极低功率的扩频通信方法和系统以及高频无线电设备 Expired - Fee Related CN101164247B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP059348/2005 2005-03-03
JP2005059348A JP4031003B2 (ja) 2005-03-03 2005-03-03 微弱電力によるスペクトル拡散通信方法及びシステム、高周波無線機
PCT/JP2006/304523 WO2006093332A1 (ja) 2005-03-03 2006-03-02 微弱電力によるスペクトル拡散通信方法及びシステム、高周波無線機

Publications (2)

Publication Number Publication Date
CN101164247A CN101164247A (zh) 2008-04-16
CN101164247B true CN101164247B (zh) 2011-07-20

Family

ID=36941357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680013834XA Expired - Fee Related CN101164247B (zh) 2005-03-03 2006-03-02 利用极低功率的扩频通信方法和系统以及高频无线电设备

Country Status (6)

Country Link
US (1) US8090004B2 (zh)
EP (1) EP1858170A4 (zh)
JP (1) JP4031003B2 (zh)
KR (1) KR20070106798A (zh)
CN (1) CN101164247B (zh)
WO (1) WO2006093332A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720658B2 (ja) * 2005-07-19 2011-07-13 パナソニック株式会社 同期検出回路およびマルチモード無線通信装置
JP4861428B2 (ja) * 2005-11-18 2012-01-25 ノキア コーポレイション 信号のサンプル・シーケンスの処理
JP2008085418A (ja) * 2006-09-26 2008-04-10 Nec Electronics Corp 送信装置及び送信方法、受信装置及び受信方法、並びに通信装置及び通信方法
JP2008154121A (ja) 2006-12-20 2008-07-03 Sony Corp 無線通信装置
JP4215169B2 (ja) * 2007-01-19 2009-01-28 日本電波工業株式会社 無線機
JP4224105B2 (ja) * 2007-01-19 2009-02-12 日本電波工業株式会社 信号処理部及び無線機
JP4215168B2 (ja) 2007-01-19 2009-01-28 日本電波工業株式会社 信号処理部及び無線機
JP4424378B2 (ja) * 2007-06-13 2010-03-03 ソニー株式会社 フレーム同期装置及びその制御方法
US8218698B2 (en) * 2007-12-07 2012-07-10 Mediatek Inc. Method for frequency offset estimation and automatic frequency control for filtered signal with destroyed phase information and signal transceiver
JP5090886B2 (ja) * 2007-12-10 2012-12-05 日本電波工業株式会社 受信回路及び無線機
KR101151169B1 (ko) * 2008-12-16 2012-06-01 한국전자통신연구원 위상천이기를 이용한 bpsk 복조 장치 및 방법
US8144820B2 (en) * 2008-12-31 2012-03-27 Hunt Technologies, Llc System and method for relative phase shift keying
US9077493B2 (en) * 2009-04-17 2015-07-07 Intel Mobile Communications GmbH System and method for establishing a localized single frequency network
US9077442B2 (en) 2012-07-16 2015-07-07 Texas Instruments Incorporated DSSS inverted spreading for smart utility networks
CN104320365A (zh) * 2014-11-09 2015-01-28 中国电子科技集团公司第二十六研究所 一种Ku波段BPSK调制电路及BPSK调制驱动电路
CN113132027B (zh) * 2019-12-30 2023-02-10 江西联智集成电路有限公司 无线电发射器的工作频率校正方法及其装置
CN112511242A (zh) * 2020-11-13 2021-03-16 广西电网有限责任公司南宁供电局 一种基于无源隔离的载波检测方法及系统
CN113691256A (zh) * 2021-09-01 2021-11-23 敦泰电子(深圳)有限公司 振荡器校准方法、模块、芯片及电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228650A (zh) * 1998-03-05 1999-09-15 富士通株式会社 Cdma通信系统的匹配滤波器和无线接收装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326826A (ja) * 1991-04-26 1992-11-16 Kokusai Electric Co Ltd 時分割多重無線通信のキャリア周波数およびシンボルタイミングの同期方式
JPH1056401A (ja) 1996-08-08 1998-02-24 Oki Electric Ind Co Ltd 送受信同期回路
JP3666623B2 (ja) 1997-06-25 2005-06-29 新日本無線株式会社 相関器
US6307840B1 (en) * 1997-09-19 2001-10-23 Qualcomm Incorporated Mobile station assisted timing synchronization in CDMA communication system
JP2001021637A (ja) 1999-07-07 2001-01-26 Mitsubishi Electric Corp 位置測定装置および位置測定方法
JP2003169369A (ja) 2001-11-30 2003-06-13 Yozan Inc セルサーチ方法及びセルサーチ装置、並びに移動体端末装置
JP2004135247A (ja) 2002-10-15 2004-04-30 Oki Electric Ind Co Ltd 同期位置検出回路
US20060233225A1 (en) * 2003-03-31 2006-10-19 Yukihiro Omoto Frequency synchronization apparatus and frequency synchronization method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228650A (zh) * 1998-03-05 1999-09-15 富士通株式会社 Cdma通信系统的匹配滤波器和无线接收装置

Also Published As

Publication number Publication date
JP2006246059A (ja) 2006-09-14
CN101164247A (zh) 2008-04-16
KR20070106798A (ko) 2007-11-05
EP1858170A4 (en) 2013-04-24
JP4031003B2 (ja) 2008-01-09
WO2006093332A1 (ja) 2006-09-08
US8090004B2 (en) 2012-01-03
EP1858170A1 (en) 2007-11-21
US20090207889A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
CN101164247B (zh) 利用极低功率的扩频通信方法和系统以及高频无线电设备
CN1881823B (zh) 校正通信系统中数据流的数据包的采样频率偏移的方法
CN100574303C (zh) 信号时序同步的方法以及同步电路
CN1684456B (zh) 同步检测装置和同步检测方法
CN1618192B (zh) Ofdm解调电路以及使用该电路的ofdm接收设备
EP0381636A1 (en) A method of rapidly controlling the frequency of a coherent radio receiver and apparatus for carrying out the method
EP1928139A2 (en) Demand-assigned multiple access (DAMA) communication device and associated acquisition methods
US5093848A (en) Method of controlling the frequency of a coherent radio receiver and apparatus for carrying out the method
CN100389552C (zh) 直接序列扩频通信系统中的定时估计装置及方法
CN106998586A (zh) 一种高动态环境中无线通信系统的同步捕获方法
CN114205200B (zh) 一种实现vdes系统帧头捕获和载波同步的方法
GB2279854A (en) Digital Demodulator
CN101414873A (zh) 通信接收机及其频偏补偿方法和装置
KR20070049832A (ko) 이동통신 시스템에서의 주파수 옵셋 추정 방법 및 그 장치
CN101902425A (zh) 一种短程无线网络中时间和载波频率同步的方法
CN101552624A (zh) 用于处理通信信号的方法及设备
CN104168239A (zh) Oqpsk-dsss信号的解调方法及解调器
US6603819B1 (en) Radio symbol synchronization and doppler estimation techniques
KR100534592B1 (ko) 디지털 통신 시스템의 수신 장치 및 그 방법
CN101355413A (zh) 终端装置、基站和通信方法
JPH0271639A (ja) ユニークワード検出方式及び装置
KR20020096755A (ko) 직교 주파수 분할 다중 전송 시스템에서의 훈련 심볼 결정방법과 주파수 옵셋 추정 방법 및 장치
JPH09214574A (ja) データ同期装置の位相検出器およびその動作方法
CN106953824A (zh) 一种基于时域和频域协同的ofdm符号同步调制方法
CN101478518A (zh) 一种粗同步方法及接收机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110720

Termination date: 20140302