JP4215169B2 - 無線機 - Google Patents

無線機 Download PDF

Info

Publication number
JP4215169B2
JP4215169B2 JP2007010655A JP2007010655A JP4215169B2 JP 4215169 B2 JP4215169 B2 JP 4215169B2 JP 2007010655 A JP2007010655 A JP 2007010655A JP 2007010655 A JP2007010655 A JP 2007010655A JP 4215169 B2 JP4215169 B2 JP 4215169B2
Authority
JP
Japan
Prior art keywords
unit
correlation peak
frequency
carrier
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007010655A
Other languages
English (en)
Other versions
JP2008177946A (ja
Inventor
薫 小林
滋 竹岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2007010655A priority Critical patent/JP4215169B2/ja
Priority to PCT/JP2007/074140 priority patent/WO2008087820A1/ja
Priority to EP20070850644 priority patent/EP2124349B1/en
Publication of JP2008177946A publication Critical patent/JP2008177946A/ja
Application granted granted Critical
Publication of JP4215169B2 publication Critical patent/JP4215169B2/ja
Priority to US12/458,678 priority patent/US20090279646A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70751Synchronisation aspects with code phase acquisition using partial detection
    • H04B1/70752Partial correlation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Transceivers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

本発明は、双方向無線システムで用いられる無線機に係り、特に、受信部における相関ピーク検出を適正にかつ効率的に行うことができる無線機に関する。
[双方向無線システム:図12]
従来の双方向無線システムで用いられる無線機は、スペクトラム拡散(SS:Spread Spectrum)方式を採用した微弱電波で動作する無線機である。
従来の双方向無線システムについて図12を参照しながら説明する。図12は、従来の双方向無線システムの概略図である。
従来の双方向無線システムは、送信部1aと受信部1bを有する親機1の無線機と、送信部2aと受信部2bを有する子機2の無線機とを備え、子機2の入力装置を動作させて、子機2から親機1に動作命令を送信し、親機1ではその命令に従って動作するようになっている。
また、親機1は、命令の伝達状況の応答や親機1の状態情報を子機2に送信するものである。
つまり、従来の双方向無線システムは、SSを採用した双方向通信(半2重)可能な微弱無線システムとなっている。
上記双方向無線システムでは、子機2主導で動作するものであり、親機1は、子機2の送信を間欠受信することにより、子機2からの命令を受信し、子機2は、動作させたいときだけ、動作状態にするため、消費電力を大幅に低減できるものとなっている。
[従来の信号処理部の構成:図13]
上記無線機における信号処理部について図13を参照しながら説明する。図13は、従来の信号処理部の構成ブロック図である。
従来の信号処理部は、ADC(Analog Digital Converter)制御部11と、AGC(Auto Gain Control)部12と、APC/AFC(Auto Power Control/Auto Frequency Control)制御部13と、DAC(Digital Analog Converter)制御部14と、キャリア復調部15と、キャリアデータ生成部16と、キャリア変調部17と、受信データ復号部18′と、拡散符号生成部20′と、拡散変調部21′と、相関ピーク検出部22′と、粗周波数ズレ検出部23′と、微周波数ズレ検出部24′とから構成されている。
従来の信号処理部の各部について具体的に説明する。
ADC制御部11は、A/Dコンバータ(A/D)への制御信号の生成と、A/Dコンバータから受信IF(Intermediate Frequency)信号を入力する制御を行う。
AGC部12は、ADC制御部11から出力される受信IF信号に対して常に設定した振幅になるよう、無線部内のAGCアンプへ出力されるゲインコントロール信号を制御する。
APC/AFC制御部13は、サーミスタを使用し、無線部の温度モニタの制御信号をA/Dコンバータから入力し、そのモニタ値に対するAFC補正値をキャリアデータ生成部16に、APC補正値をキャリア変調部17に出力する。
DAC制御部14は、キャリア変調部17でキャリア変調処理を行ったデータをD/Aコンバータへ送出する。
キャリア復調部15は、ADC制御部11から出力された受信IF信号に対して、IFキャリア成分の除去を行い、更に、ダウンサンプル処理を行い、受信データ復号部18′、相関ピーク検出部22′と粗周波数ズレ検出部23′に出力する。
キャリアデータ生成部16は、粗周波数ズレ検出部23′及び微周波数ズレ検出部24′からの周波数ズレ値等に応じて周波数補正処理を行い、キャリア復調部15及びキャリア変調部17に供給するIFキャリアデータを生成する。
キャリア変調部17は、キャリアデータ生成部16から供給されるIFキャリアデータに対して、APC/AFC制御部13からのAPC補正要求に応じてAPC補正処理を行うと共に、拡散変調部21′から入力される拡散変調処理データに対して、IFキャリアデータによるキャリア変調を行う。
受信データ復号部18′は、同期確立後のIFキャリア周波数の微周波数補正後に、同期ワードの検出し、ユーザデータの復号処理を行う。
拡散符号生成部20′は、拡散変調、逆拡散処理に用いる拡散符号を生成する。使用する拡散符号は、同期ワード/REF(Reference)データ用とユーザデータ用の2種類必要である。
拡散変調部21′は、同期ワード/REFデータの差動符号化処理を行い、送信ユーザデータ及び差動符号化した同期ワード/REFデータの拡散変調処理を行う。
相関ピーク検出部22′は、キャリア復調部15から出力されるキャリア復調データに対して、相関検出処理を行い、相関ピーク検出を行う。
粗周波数ズレ検出部23′は、キャリア復調部15から出力されたキャリア復調データに対して、子機−親機間のIFキャリア周波数ズレ量に応じた残留周波数成分を検出し、周波数ズレ量をキャリアデータ生成部16に出力する。
微周波数ズレ検出部24′は、ピークが検出された相関データに対して、周波数ズレ量を更に少なくするために、高い精度の周波数検出を行い、微周波数ズレ量をキャリアデータ生成部16に出力する。
尚、関連する先行技術として、特開平08−228172号公報(特許文献1)、特開2001−094462号公報(特許文献2)がある。
特許文献1には、通信システムにおいて、データが受信できない間、擬似ピークを入力することで、信号が受信していない期間に周波数ズレが生じないようにすることが示されている。
特許文献2には、通信システムにおいて、受信信号に追従させた受信周波数を過去の受信周波数データとして記憶し、送信周波数設定の際には記憶した受信周波数データと発信周波数の値とを平均化し、平均化した周波数を送信周波数に設定することが示されている。
特開平08−228172号公報 特開2001−094462号公報
しかしながら、上記従来の無線機において、相関ピークを検出するために種々の工夫が為されているが、相関ピーク検出を適正にかつ効率的に行うことが難しいという問題点があった。
本発明は上記実情に鑑みて為されたもので、受信部における間欠受信において相関ピーク検出を適正かつ効率的に行うことができる無線機を提供することを目的とする。
上記従来例の問題点を解決するための本発明は、無線信号を間欠的に受信し、受信信号から相関ピークを検出する無線機であって、周波数ズレに応じてIFキャリアデータを生成するキャリアデータ生成部と、生成されたIFキャリアデータに基づいてキャリア復調を行うキャリア復調部と、復調されたキャリア復調データの相関ピークを検出する相関ピーク検出部と、復調されたキャリア復調データから粗周波数ズレを検出する粗周波数ズレ検出部と、検出された相関ピークから微周波数ズレを検出する微周波数ズレ検出部と、無線部における受信動作を制御する制御部とを有する信号処理部を備え、制御部が、デフォルトの周波数で相関ピークを検出する第1の区間で相関ピークが検出された場合に、第1の区間における微周波数ズレ検出部の検出区間で第3の周波数が検出されると、第1の区間に続く第2の区間で相関ピーク検出部においてデフォルトの周波数に第3の周波数を加えた周波数で相関ピークの検出を行わせることを特徴とする。
本発明は、上記無線機において、制御部が、相関ピーク検出して同期確立が為された後に、定期的に相関ピーク検出部においてデフォルトの周波数と第3の周波数で相関ピークの検出及びクロック位相エラーの検出を行わせることを特徴とする。
本発明は、無線信号を間欠的に受信し、受信信号から相関ピークを検出する無線機であって、周波数ズレに応じてIFキャリアデータを生成するキャリアデータ生成部と、生成されたIFキャリアデータに基づいてキャリア復調を行うキャリア復調部と、復調されたキャリア復調データの相関ピークを検出する相関ピーク検出部と、復調されたキャリア復調データから粗周波数ズレを検出する粗周波数ズレ検出部と、検出された相関ピークから微周波数ズレを検出する微周波数ズレ検出部と、無線部における受信動作を制御する制御部とを有する信号処理部を備え、制御部が、デフォルトの周波数で相関ピークを検出する第1の区間で相関ピークが検出されない場合に、第1の区間における粗周波数ズレ検出部の検出区間で第1の周波数が検出されると、第1の区間に続く第2の区間で相関ピーク検出部において第1の周波数で相関ピークの検出を行わせ、相関ピーク検出部で相関ピークが検出された場合に、微周波数ズレ検出部の検出区間で第2の周波数が検出されると、第2の区間に続く第3の区間で相関ピーク検出部において第1の周波数に第2の周波数を加えた周波数で相関ピークの検出を行わせることを特徴とする。
本発明は、上記無線機において、制御部が、相関ピーク検出して同期確立が為された後に、定期的に相関ピーク検出部において第1の周波数と第2の周波数で相関ピークの検出及びクロック位相エラーの検出を行わせることを特徴とする。
本発明は、無線信号を間欠的に受信し、受信信号から相関ピークを検出する無線機であって、周波数ズレに応じてIFキャリアデータを生成するキャリアデータ生成部と、生成されたIFキャリアデータに基づいてキャリア復調を行うキャリア復調部と、復調されたキャリア復調データの相関ピークを検出する相関ピーク検出部と、復調されたキャリア復調データから粗周波数ズレを検出する粗周波数ズレ検出部と、検出された相関ピークから微周波数ズレを検出する微周波数ズレ検出部と、無線部における受信動作を制御する制御部とを有する信号処理部を備え、制御部が、デフォルトの周波数で相関ピークを検出する第1の区間で相関ピークが検出されない場合に、第1の区間における粗周波数ズレ検出部の検出区間で第1の周波数が検出されないと、第1の区間の終了後に間欠受信制御を終了させることを特徴とする。
本発明によれば、無線信号を間欠的に受信し、受信信号から相関ピークを検出する無線機であって、キャリアデータ生成部が周波数ズレに応じてIFキャリアデータを生成し、キャリア復調部が生成されたIFキャリアデータに基づいてキャリア復調を行い、相関ピーク検出部が復調されたキャリア復調データの相関ピークを検出し、粗周波数ズレ検出部が復調されたキャリア復調データから粗周波数ズレを検出し、微周波数ズレ検出部が検出された相関ピークから微周波数ズレを検出し、制御部が無線部における受信動作を制御する信号処理部を備え、制御部が、デフォルトの周波数で相関ピークを検出する第1の区間で相関ピークが検出された場合に、第1の区間における微周波数ズレ検出部の検出区間で第3の周波数が検出されると、第1の区間に続く第2の区間で相関ピーク検出部においてデフォルトの周波数に第3の周波数を加えた周波数で相関ピークの検出を行わせる無線機としているので、間欠受信において相関ピーク検出の周波数を適正に補正しながら相関ピークを適正にかつ効率的に検出できる効果がある。
本発明によれば、無線信号を間欠的に受信し、受信信号から相関ピークを検出する無線機であって、キャリアデータ生成部が周波数ズレに応じてIFキャリアデータを生成し、キャリア復調部が生成されたIFキャリアデータに基づいてキャリア復調を行い、相関ピーク検出部が復調されたキャリア復調データの相関ピークを検出し、粗周波数ズレ検出部が復調されたキャリア復調データから粗周波数ズレを検出し、微周波数ズレ検出部が検出された相関ピークから微周波数ズレを検出し、制御部が無線部における受信動作を制御する信号処理部を備え、制御部が、デフォルトの周波数で相関ピークを検出する第1の区間で相関ピークが検出されない場合に、第1の区間における粗周波数ズレ検出部の検出区間で第1の周波数が検出されると、第1の区間に続く第2の区間で相関ピーク検出部において第1の周波数で相関ピークの検出を行わせ、相関ピーク検出部で相関ピークが検出された場合に、微周波数ズレ検出部の検出区間で第2の周波数が検出されると、第2の区間に続く第3の区間で相関ピーク検出部において第1の周波数に第2の周波数を加えた周波数で相関ピークの検出を行わせる無線機としているので、間欠受信において相関ピーク検出の周波数を適正にかつ効率的に補正しながら相関ピークを検出できる効果がある。
本発明によれば、無線信号を間欠的に受信し、受信信号から相関ピークを検出する無線機であって、キャリアデータ生成部が周波数ズレに応じてIFキャリアデータを生成し、キャリア復調部が生成されたIFキャリアデータに基づいてキャリア復調を行い、相関ピーク検出部が復調されたキャリア復調データの相関ピークを検出し、粗周波数ズレ検出部が復調されたキャリア復調データから粗周波数ズレを検出し、微周波数ズレ検出部が検出された相関ピークから微周波数ズレを検出し、制御部が無線部における受信動作を制御する信号処理部を備え、制御部が、デフォルトの周波数で相関ピークを検出する第1の区間で相関ピークが検出されない場合に、第1の区間における粗周波数ズレ検出部の検出区間で第1の周波数が検出されないと、第1の区間の終了後に間欠受信制御を終了させる無線機としているので、間欠受信における消費電力を低減できる効果がある。
本発明の実施の形態について図面を参照しながら説明する。
[実施の形態の概要]
本発明は、無線信号を間欠的に受信し、受信信号から相関ピークを検出する無線機であって、周波数ズレに応じてIFキャリアデータを生成するキャリアデータ生成部と、生成されたIFキャリアデータに基づいてキャリア復調を行うキャリア復調部と、復調されたキャリア復調データの相関ピークを検出する相関ピーク検出部と、復調されたキャリア復調データから粗周波数ズレを検出する粗周波数ズレ検出部と、検出された相関ピークから微周波数ズレを検出する微周波数ズレ検出部と、無線部における受信動作を制御する制御部とを有する信号処理部を備え、制御部が、デフォルトの周波数で相関ピークを検出する第1の区間で相関ピークが検出された場合に、第1の区間における微周波数ズレ検出部の検出区間で第3の周波数が検出されると、第1の区間に続く第2の区間で相関ピーク検出部においてデフォルトの周波数に第3の周波数を加えた周波数で相関ピークの検出を行わせるものであり、間欠受信において相関ピーク検出の周波数を適正にかつ効率的に補正しながら相関ピークを検出できるものである。
また、本発明は、無線信号を間欠的に受信し、受信信号から相関ピークを検出する無線機であって、周波数ズレに応じてIFキャリアデータを生成するキャリアデータ生成部と、生成されたIFキャリアデータに基づいてキャリア復調を行うキャリア復調部と、復調されたキャリア復調データの相関ピークを検出する相関ピーク検出部と、復調されたキャリア復調データから粗周波数ズレを検出する粗周波数ズレ検出部と、検出された相関ピークから微周波数ズレを検出する微周波数ズレ検出部と、無線部における受信動作を制御する制御部とを有する信号処理部を備え、制御部が、デフォルトの周波数で相関ピークを検出する第1の区間で相関ピークが検出されない場合に、第1の区間における粗周波数ズレ検出部の検出区間で第1の周波数が検出されると、第1の区間に続く第2の区間で相関ピーク検出部において第1の周波数で相関ピークの検出を行わせ、相関ピーク検出部で相関ピークが検出された場合に、微周波数ズレ検出部の検出区間で第2の周波数が検出されると、第2の区間に続く第3の区間で相関ピーク検出部において第1の周波数に第2の周波数を加えた周波数で相関ピークの検出を行わせるものであり、間欠受信において相関ピーク検出の周波数を適正にかつ効率的に補正しながら相関ピークを検出できるものである。
[信号処理部の全体構成:図1]
本発明の実施の形態に係る無線機は、以下の説明する信号処理部を備え、更に、受信部、送信部、その他の回路を備えている。
本発明の実施の形態に係る信号処理部部について図1を参照しながら説明する。図1は、本発明の実施の形態に係る信号処理部の構成ブロック図である。
本発明の実施の形態に係る信号処理部(本信号処理部)は、図1に示すように、ADC(Analog Digital Converter)制御部11と、AGC(Auto Gain Control)部12と、APC/AFC(Auto Power Control/Auto Frequency Control)制御部13と、DAC(Digital Analog Converter)制御部14と、キャリア復調部15と、キャリアデータ生成部16と、キャリア変調部17と、受信データ復号部18と、マッチドフィルタ部19と、拡散符号生成部20と、拡散変調部21と、相関ピーク検出部22と、粗周波数ズレ検出部23と、微周波数ズレ検出部24と、制御部25とから構成されている。
[各部]
次に、本信号処理部の各部について図面を参照しながら説明する。
[ADC制御部11]
ADC制御部11は、A/DコンバータIC(Integrated Circuit)から受信IF(Intermediate Frequency)信号を読み出し、受信信号をキャリア復調部15に出力する制御を行う。
また、ADC制御部11は、A/DコンバータICへの制御信号を生成して出力する。
[AGC部12]
AGC部12は、ADC制御部11から出力された受信信号に対して、常に設定した振幅になるよう、AGCアンプへゲインコントロールを行うための制御信号を出力する制御を行う。
[APC/AFC制御部13]
APC/AFC制御部13は、サーミスタを使用し、無線部(RF[Radio Frequency]部)の温度モニタを行うためのA/DコンバータICへの制御信号を生成して出力する。
また、APC/AFC制御部13は、A/DコンバータICからのモニタ値に応じて、AFC補正値をキャリアデータ生成部16へ、APC補正値をキャリア変調部17へ供給する。
ここで、APCは自動送信パワー制御、AFCは自動周波数制御を意味している。
[DAC制御部14]
DAC制御部14は、キャリア変調部17でキャリア変調処理を行ったデータをD/AコンバータICへ送出する制御を行う。
また、DAC制御部14は、D/AコンバータICへの制御信号を生成して出力する。
[キャリア復調部15:図2]
キャリア復調部15について図2を参照しながら説明する。図2は、キャリア復調部の構成ブロック図である。
キャリア復調部15は、受信IF信号に対して、キャリアデータ生成部16から入力されるIFキャリアデータに基づいてIFキャリア成分の除去処理を行い、更に512kHzサンプリング(厳密には524,288Hz)から256kHzサンプリング(厳密には262,144Hz)にダウンサンプル処理を行う。
キャリア復調部15は、図2に示すように、受信データ(RXデータ)を入力し、同相成分(I成分)についてIFキャリア変調処理を行うIFキャリア変調部151aと、直交成分(Q成分)についてIFキャリア変調処理を行うIFキャリア変調部151bと、IFキャリア変調されたI成分についてFIR(Finite Impulse Response)フィルタを用いて高周波成分を除去する高周波成分除去部152aと、IFキャリア変調されたQ成分についてFIRフィルタを用いて高周波成分を除去する高周波成分除去部152bと、高周波成分が除去されたI成分についてダウンサンプリングしてI成分のキャリア変調データを出力するダウンサンプル部153aと、高周波成分が除去されたQ成分についてダウンサンプリングしてQ成分のキャリア変調データを出力するダウンサンプル部153bとを備えている。
[キャリアデータ生成部16:図3]
キャリアデータ生成部16について図3を参照しながら説明する。図3は、キャリアデータ生成部の構成ブロック図である。
キャリアデータ生成部16は、キャリア変調部17及びキャリア復調部15へ供給するIFキャリアデータを生成する。
IFキャリアデータは、送受とも90°位相の違う2種類ずつを生成する。
また、キャリアデータ生成部16は、粗周波数ズレ検出部23及び微周波数ズレ検出部24からの周波数ズレ検出データ、APC/AFC制御部13からのAFC補正データに応じて、周波数補正処理を行う。
具体的には、キャリアデータ生成部16は、図3に示すように、入力される親機/子機フラグ及び基準周波数パラメータに基づいて粗周波数ズレ検出部23から入力されるAFC補正値(粗調整)と微周波数ズレ検出部24から入力されるAFC補正値(微調整)についてAFC調整を行うAFC調整部161aと、入力される親機/子機フラグ及び基準周波数パラメータに基づいてAPC/AFC制御部13から入力されるAFC補正値(温度)についてAFC調整を行うAFC調整部161bと、AFC調整部161aから入力されるデータについて受信用としてインデックスのカウントを行うインデックスカウンタ(Rx)162aと、AFC調整部161bから入力されるデータについて送信用としてインデックスのカウントを行うインデックスカウンタ(Tx)162bと、正弦波テーブル164に基づいてインデックスカウンタ162aのカウンタ値によりアドレスをデコードしてI成分のRx用IFキャリアデータとQ成分のRx用IFキャリアデータを出力するアドレスデコーダ163aと、正弦波テーブル164に基づいてインデックスカウンタ162bのカウンタ値によりアドレスをデコードしてI成分のTx用IFキャリアデータとQ成分のTx用IFキャリアデータを出力するアドレスデコーダ163bとを備えている。
[キャリア変調部17]
キャリア変調部17は、キャリアデータ生成部16から供給されるIFキャリアデータに対して、APC/AFC制御部13からのAPC補正要求に応じてAPC補正処理を行う。
更に、キャリア変調部17は、拡散変調部21から入力される拡散変調処理データ(ユーザデータ、同期ワード/REFデータ)に対して、IFキャリアデータによるキャリア変調を行う。
IFキャリアデータは、ユーザデータと同期ワード/REFデータで90°位相を変えたものを使用する。
また、キャリア変調部17は、各々キャリア変調処理を行ったものを加算する加算処理を行う。
[受信データ復号部18:図4,図5]
次に、受信データ復号部18について図4,5を参照しながら説明する。図4は、受信データ復号部前段の構成ブロック図であり、図5は、受信データ復号部後段の構成ブロック図である。尚、図4の(a)〜(d)と図5の(a)〜(d)とは各々接続するものとなっている。
受信データ復号部18は、同期確立してからIFキャリア周波数の微補正処理の後に、同期ワードの検出及びユーザデータの復号処理を行う。
キャリア復調データは、8倍オーバーサンプルデータ(チップレート32,768Hzに対して、キャリア復調データは262,144Hzサンプルデータ)であるため、デシメーションフィルタリング(8タップの移動平均フィルタ)の後、32,768Hzサンプルデータにダウンサンプルする。
ダウンサンプル後にHPF(High Pass Filter =FIRフィルタ)にて低周波成分の除去を行う。
具体的には、受信データ復号部18は、図4,5に示すように、I成分のキャリア復調データを8タップ移動平均のフィルタリングするデシメーションフィルタ181aと、その出力をダウンサンプルするダウンサンプル部182aと、その出力についてFIRフィルタを用いて低周波成分を除去する低周波成分除去部183aと、Q成分のキャリア復調データを8タップ移動平均のフィルタリングするデシメーションフィルタ181bと、その出力をダウンサンプルするダウンサンプル部182bと、その出力についてFIRフィルタを用いて低周波成分を除去する低周波成分除去部183bと、低周波成分除去部183aからの出力をRX用拡散符号(シリアル正転符号)で逆拡散する逆拡散処理部184aと、低周波成分除去部183aからの出力をRX用拡散符号(シリアル反転符号)で逆拡散する逆拡散処理部184bと、低周波成分除去部183bからの出力をRX用拡散符号(シリアル正転符号)で逆拡散する逆拡散処理部184cと、低周波成分除去部183bからの出力をRX用拡散符号(シリアル反転符号)で逆拡散する逆拡散処理部184dと、各逆拡散処理部184a〜dからの出力を分割累積処理する分割累積処理部185a〜dと、分割累積処理部185a〜dからの出力を加算して部分相関を算出する部分相関算出処理部186と、その出力を累積する累積処理部187と、その出力から符号bitを取り出し、受信データを出力する符号bit取り出し部189aと、分割累積処理部185a,cの出力を入力し、遅延検波を行う遅延検波処理部188と、その出力から符号bitを取り出し、同期ワードを出力する符号bit取り出し部189bとを備える。
受信データ復号部18が、低周波成分除去部183a,183bによるHPF処理を行う目的は、信号帯域内にCW(Continuous Wave:連続波)干渉波が入ってきた場合、その干渉波成分の除去を行うためである。
信号帯域内のため、同時に信号成分も除去されてしまうが、HPFのカットオフ周波数を信号帯域幅の影響の出ない一部分に留めることで、感度劣化につながらないようにしている。
本信号処理部では、チップレート32,768Hz(≒信号帯域幅)に対して、HPFのカットオフ周波数を約2.6kHzに設定している。
受信データ復号部18におけるフィルタリング処理後、スライディング相関処理により、逆拡散処理及び累積処理を行う。
微周波数ズレ検出と補正により、±32Hz精度までIFキャリア周波数ズレ量を低減したが、チップレートが32,768Hz、512チップ/bitの場合、ビットレートは64bpsであり、キャリア復調後の残留周波数成分の許容値は±16Hzとなるため、精度の追い込みがまだ不十分である。
そのため、上記相関処理(スライディング相関処理)では分割相関処理を実施する。理論上2分割で足りるが、本信号処理部ではマージンを見て、4分割の相関処理としている。
拡散変調部21で詳細に説明するが、ユーザデータの復号は、同期ワード/REFデータとの相対位置関係により判断する。
また、同時に同期ワード/REFデータ成分から同期ワードの検出を行う。検出は遅延検波処理にて行う。但し、分割相関処理を行っているため、通常の遅延検波処理ではなく、2段遅延検波処理となる。
[マッチドフィルタ部19:図6]
次に、マッチドフィルタ部19について図6を参照しながら説明する。図6は、マッチドフィルタ部の構成ブロック図である。
マッチドフィルタ部19は、キャリア復調データに対して、相関検出処理としてマッチドフィルタリングにて逆拡散処理、更に全加算処理を行う。
具体的には、マッチドフィルタ部19は、図6に示すように、RAM(Random Access Memory)読み出しアドレス生成部191から出力されるアドレスに従い、I成分のキャリア復調データを格納するDual-Port RAM のキャリア復調データ格納部192aと、RAM読み出しアドレス生成部191から出力されるアドレスに従い、Q成分のキャリア復調データを格納するDual-Port RAM のキャリア復調データ格納部192bと、拡散符号を分割して出力する拡散符号分割部193と、キャリア復調データ格納部192aから出力されたキャリア復調データを分割された拡散符号で逆拡散する逆拡散処理部194aと、キャリア復調データ格納部192bから出力されたキャリア復調データを分割された拡散符号で逆拡散する逆拡散処理部194bと、逆拡散処理部194aからの出力を累積演算する累積処理部195aと、逆拡散処理部194bからの出力を累積演算する累積処理部195bと、累積処理部195a,bからの出力を部分相関算出する部分相関算出処理部196と、部分相関算出処理部196からの出力を全加算する全加算処理部197と、部分相関算出処理部196からの出力を一時的に記憶し、シンボル同期信号により部分相関検出値として出力するシフトレジスタ198とを備えている。
マッチドフィルタ部19は、マッチドフィルタリング処理は、実際にはゲート規模低減のためキャリア復調データ格納部192a,192bではデュアルポートRAMを使用し、高速クロック処理にてパイプライン処理を行う。
相関検出処理を行った相関検出データ(相関検出値)は、相関ピーク検出部22へ供給する。
相関ピーク検出部22にてピークが検出された場合、その検出信号(シンボル同期信号)をトリガとして、シフトレジスタ198にて当該相関検出データをラッチし、微周波数ズレ検出部23へ供給する。
[拡散符号生成部20:図7]
次に、拡散符号生成部20について図7を参照しながら説明する。図7は、拡散符号生成部の構成ブロック図である。
拡散符号生成部20は、拡散変調、逆拡散処理用の拡散符号を生成する。
具体的には、拡散符号生成部20は、図7に示すように、拡散符号長指定信号、ステート指定信号、親機/子機フラグを入力して制御信号を出力する制御部201と、制御部201からの制御信号と符号生成用パラメータテーブル202からのパラメータによって拡散符号を生成し、RX用拡散符号(パラレル正転符号)を出力する符号生成部203と、制御部201からの制御信号によって符号生成部203からの拡散符号を入力して記憶し、更に記憶する拡散符号を出力するDual-Port RAM の符号格納部204と、制御部201からの制御信号により符号格納部204からの符号をTX用拡散符号(シリアル正転符号)又はRX用拡散符号(シリアル正転符号)を選択して出力する切替器(SEL)205aと、制御部201からの制御信号により符号格納部204からの符号をTX用拡散符号(シリアル反転符号)又はRX用拡散符号(シリアル反転符号)を選択して出力する切替器(SEL)205bとを備えている。
拡散符号生成部20は、システム起動時に512チップ長の拡散符号を生成し、符号格納部204へ格納する。
使用する拡散符号は、同期ワード/REFデータ用とユーザデータ用に2種類必要である。この2種類を別々のパラメータから生成することも可能だが、本信号処理部では1種類のパラメータにて生成した符号を正配列及び逆配列として使用することで全く違った符合として使用している。
つまり、SEL205aは、符号格納部204からTX用拡散符号(シリアル正転符号)又はRX用拡散符号(シリアル正転符号)の入力を受け、SEL205bは、符号格納部204から同じデータを反転したTX用拡散符号(シリアル反転符号)又はRX用拡散符号(シリアル反転符号)の入力を受け、制御部201からの制御信号でいずれかを選択出力している。
具体的には、RAMに格納した符号の読み出しアドレスを0から511の順に読み出す場合と、511から0の順に読み出す場合で別々の符号として活用している。こうすることで、格納するRAMの容量を1/2に低減できる。
[拡散変調部21:図8]
次に、拡散変調部21について図8を参照しながら説明する。図8は、拡散変調部の構成ブロック図である。
拡散変調部21は、同期ワード/REFデータの差動符号化処理を行い、その差動符号化処理した同期ワード/REFデータ及び送信ユーザデータの拡散変調処理を行う。
具体的には、拡散変調部21は、図8に示すように、同期ワード/REFデータを入力し、差動符号化処理を行う差動符号化処理部211と、送信データと拡散符号(反転符号)とを入力して拡散変調処理を行う拡散変調部212と、差動符号化処理部211からの差動符号化されたデータと拡散符号(正転符号)を入力して拡散変調処理を行い、同期ワード/REFデータ拡散変調信号を出力する拡散変調部213と、拡散変調処理部212からの拡散変調された信号と差動符号化処理部211からの差動符号化されたデータを入力し、拡散変調処理を行い、送信データ拡散変調信号を出力する拡散変調処理部214とを備えている。
[相関ピーク検出部22:図9]
次に、相関ピーク検出部22について図9を参照しながら説明する。図9は、相関ピーク検出部の構成ブロック図である。
相関ピーク検出部22は、図9に示すように、マッチドフィルタ部19からの相関検出値を入力し、1bit区間内の最大ピーク位置をカウンタ値で検出する1bit区間最大ピーク位置検出部221と、検出された最大ピーク位置のカウンタ値と以前の最大ピーク位置のカウンタ値を比較し、比較結果を出力する最大ピーク位置比較部222と、入力される比較結果から相関ピークが検出されたならシンボル同期信号(相関ピーク検出信号:同期検出信号)を外部及び制御部25に出力し、シンボル位相ズレについてのシンボル位相ズレ検出信号を微周波数ズレ検出部24に出力するシンボル同期信号生成部223と、フリーランのカウンタ値を出力するフリーランカウンタ224とを備えている。
相関ピーク検出部22は、マッチドフィルタ部19からの相関検出値に対して、以下の処理手順で相関ピーク検出を行う。
第1に、検出処理開始からフリーランカウンタ224を起動する。
フリーランカウンタ224は、256kHz/1bit長分=512チップ/bitでは4,096=12bitカウンタである。
第2に、1bit区間最大ピーク位置検出部221は、検出処理開始から1bit区間毎の最大相関値を検出し、最大値が更新される毎にカウンタ値をメモリに格納する処理を行う。
第3に、検出処理開始から2bit区間分の最大値の検出が完了してから、最大ピーク位置比較部222は、区間毎に2bitの区間における相関最大値のカウンタ値比較を行い、比較結果をシンボル同期信号生成部223に出力する。
シンボル同期信号生成部223は、比較結果が所定範囲内(±3〜4カウント程度)のズレであれば、信憑性の高い相関ピークと判断し、シンボル同期信号(相関ピーク検出信号)を送出する。
また、シンボル同期信号生成部223は、本来の信号が来ていない(ノイズのみの受信)場合においても、例えばカウンタ値が±4カウント以内でピーク検出としたとき、確率の上では(8/4,096)^2=1/262,144となり、262,144回の受信に1回は誤検出してしまう。特に、チップ長が短ければ短いほど、誤検出の確率は高くなる。
従って、本信号処理部では2bit連続ではなく、3bit連続でカウンタ値が所定範囲内であった時ピーク検出としている。誤検出確率は、(8/4,096)^3=1/134,217,728となる。
[粗周波数ズレ検出部23:図10]
次に、粗周波数ズレ検出部23について図10を参照しながら説明する。図10は、粗周波数ズレ検出部の構成ブロック図である。
粗周波数ズレ検出部23は、キャリア復調データに対して、LPF(Low Pass Filter)でノイズ除去を行い、ダウンサンプリング処理して、FFT演算を行って累積処理し、最大ピーク位置の検出を行い、粗周波数ズレ検出データを出力する。
粗周波数ズレ検出部23は、図10に示すように、I成分のキャリア復調データを入力し、LPFとなるFIRフィルタを用いてノイズ除去を行うノイズ除去部231aと、Q成分のキャリア復調データを入力し、LPFとなるFIRフィルタを用いてノイズ除去を行うノイズ除去部231bと、ノイズ除去したI成分をダウンサンプリング処理するダウンサンプル部232aと、ノイズ除去したQ成分をダウンサンプリング処理するダウンサンプル部232bと、ダウンサンプリング処理したI成分とQ成分についてFFT演算処理を行うFFT演算処理部233と、FFT演算結果を累積処理する演算結果累積処理部234と、累積処理結果から最大ピーク位置を検出する最大ピーク位置検出部235とを備えている。
ダウンサンプル部232a,232bにおいて、ノイズ除去後のデータに対しては、32,768Hzのダウンサンプリング処理を行う。
ダウンサンプル後のデータに対して、子機−親機間のIFキャリア周波数ズレ量に応じた残留周波数成分の検出を行う。
残留周波数成分の検出は、32ポイントのFFT演算で行う。従って、検出周波数精度は、1,024Hzとなる。
本信号処理部では、検出精度を上げるため、複数回の検出結果の累計を取った上でピークの検出を行う。
1回の演算周期は、32/32,768≒1msecであり、最大32回までの累計を可能としている。
32回の累計演算を行った場合の検出感度は、理論上では約15dBアップする。
そして、検出した粗周波数ズレ量をキャリアデータ生成部16に供給する。
[微周波数ズレ検出部24:図11]
次に、微周波数ズレ検出部24について図11を参照しながら説明する。図11は、微周波数ズレ検出部の構成ブロック図である。
微周波数ズレ検出部24は、受信データ復号部18でのデータ復号処理を前に、分割相関処理による分割損(分割による感度劣化)の低減を目的に、周波数ズレ量をさらに少なくするため、高い精度の周波数検出を行う。
微周波数ズレ検出部24は、図11に示すように、部分相関検出値を入力し、FFT演算を行うFFT演算処理部241と、FFT演算結果から最大ピーク位置を検出して微周波数ズレ検出データを出力する最大ピーク位置検出部242とを備えている。
FFT演算処理部241は、粗周波数検出部23のFFT演算処理部233と同じ32ポイントのFFT演算処理を行うが、ここでは相関ピークが検出されたときの32分割相関処理データを入力して演算処理を行う。
粗周波数ズレの補正後もキャリア復調データには最大±512Hzの残留ズレ成分が残っており、ピークが検出されたときの32分割相関検出データにその残留ズレ成分が現れる。
そのため、ピークが検出されたときの当該相関データ(32分割分*I,Q成分=64ポイント)に対してFFT演算を行うことで、その残留ズレ分の周波数検出を行うことができる。
その際の検出精度は、64Hzとなる。何故なら、1分割分のサンプリング周期が16/32,768≒0.5msec、Δf=1/0.5msec*32=64Hzだからである。
ここで得られた微周波数ズレ値をキャリアデータ生成部16へ供給する。
尚、微周波数ズレ検出部24は、粗周波数ズレ検出部23と同じ32ポイントFFT演算回路のため、共用化が可能である。
[制御部25]
制御部25は、相関ピーク検出部22から同期検出信号を入力し、シンボル同期処理を行い、外部からの入力により相関ピーク検出部22及び粗周波数ズレ検出部23の動作タイミングを制御する。
また、制御部25は、間欠受信を行うため、受信系の各部に対して制御を行い、後述する処理を実行する。
[受信処理の流れ]
以下、受信処理の流れの概略を簡単に説明する。
第1に、受信処理開始にてADC制御部11を介してキャリア復調部15にてキャリア復調処理実施する。
第2に、キャリア復調処理データを粗周波数ズレ検出部23及びマッチドフィルタ部19へ供給し、粗周波数ズレ検出部23で粗周波数ズレ量検出を行い、同時にマッチドフィルタ部19で相関検出処理を、相関ピーク検出部22で相関ピーク検出処理を行う。
第3に、粗周波数ズレを検出した場合、キャリアデータ生成部16及びキャリア復調部15においてそのズレ量を補正し、再度相関ピーク検出処理を行う。
第4に、相関ピーク検出部22で相関ピークが検出された場合、そのピーク値に該当する分割相関の各検出値(32分割分、I,Q成分の計64ポイント)を微周波数ズレ検出部24に供給し、微周波数ズレ量の検出を行う。
第5に、微周波数ズレ量の検出結果から、再度、キャリアデータ生成部16及びキャリア復調部15においてIFキャリア周波数の補正を行った後、受信データ復号部18にて同期ワードの検出を行い、更に受信データ復号処理を行う。
以上が、本信号処理部における受信処理の概要である。
[相関ピーク検出処理:図14−18]
上記受信処理の流れにおける第2の処理において、相関ピーク検出処理で、消費電力を低減するために、間欠受信処理を実現している。
具体的には、図14(a)に示すように、無線信号がオンすると、IFキャリア周波数のデフォルト周波数F0 で一定期間、相関ピークの検出を行い、その期間に相関ピークが検出されないと、現在のキャリア周波数F1 で一定期間、相関ピークの検出を行う。周波数F0 ,F1 で相関ピークが検出されないと、そこで、受信処理を終了し、次の無線信号オンのときに、周波数F0 ,F1 で相関ピークの検出を行う。
図14は、間欠受信仕様とデータフォーマットの概要を示す図である。
尚、図14(b)には、送信データフォーマットと送信データ内訳を示している。
送信データは、プリアンブルデータ、同期ワード、ユーザデータからなり、プリアンブルデータ長は、間欠受信の1回の受信に掛かるように設定されている。
また、送信データにおける同期ワード/REFデータは、全て0又は1のベタデータ、同期ワード、ベタデータで構成され、ユーザデータは、ベタデータとユーザデータで構成されている。
尚、同期ワード/REFデータはASK(Amplitude Shift Keying)変調処理され、ユーザデータはBPSK(Bi-Phase Shift Keying)変調処理されている。
[F0 /F1 受信タイミングチャート]
次に、F0 /F1 受信タイミングについて図15〜18を参照しながら説明する。図15は、基本タイミングを示すタイミングチャートであり、図16は、F0 にて相関ピークが検出された場合のタイミングチャートであり、図17は、F1 にて相関ピークが検出された場合のタイミングチャートであり、図18は、F0 にて相関ピークが検出されず、F1 の検出がなかった場合のタイミングチャートである。
[基本タイミング]
基本タイミングは、図15に示すように、受信処理有効区間が16bitクロックで、その区間の第1クロック及び第9クロックがマッチドフィルタ部19にキャリア復調データを入力する区間であり、第2クロックから第8クロックまで、第9クロックから第16クロックまでが相関ピーク検出有効区間となっている。
そして、第1〜2クロックが粗周波数ズレ検出区間で、第1〜8クロック(F0 区間)で周波数F0 を、第9〜16クロック(F1 区間)で周波数F1 をIFキャリア周波数設定値とするものである。
但し、周波数F1 をIFキャリア周波数として設定する場合は、現在の周波数F1 を検出し、しかも、F0 区間でピーク検出がない場合に、F0 区間終了後にIFキャリア周波数をF1 にセットし、再度相関ピーク検出を実施する。
[F0 区間で相関ピークが検出された場合]
次に、F0 区間で相関ピークが検出された場合について図16を参照しながら説明する。
F0 区間で相関ピークが検出されると、それを受けて相関ピーク検出有効区間を終了し、IFキャリア周波数は、F0に、相関ピーク検出後の微周波数ズレ検出区間で検出された微周波数F2 を加えた周波数(F0+F2)を設定する。
そして、同期確立後に、定期的に相関ピーク検出有効区間をオンにして相関ピーク検出及びクロック位相エラーの検出を行う。
これにより、間欠受信を効果的にし、適正なIFキャリア周波数設定値で相関ピークを効率的に行うことができる。
[F1 区間で相関ピークが検出された場合]
次に、F1 区間で相関ピークが検出された場合について図17を参照しながら説明する。F0 区間で相関ピークが検出されず、F1 区間で相関ピークが検出された場合とは、F0 区間における粗周波数ズレ検出区間で、現在の周波数F1 を検出し、F0 区間でのピーク検出がなかった場合に、F0 区間終了後にIFキャリア周波数をF1 にセットし、再度相関ピーク検出を実施し、F1 区間で相関ピークが検出された場合である。
この場合、同期確立後に、周波数F1F1 区間における微周波数ズレ検出区間で検出した周波数F2を加えた周波数(F1+F2 )がIFキャリア周波数としてセットされ、定期的に相関ピーク検出有効区間をオンにして相関ピーク検出及びクロック位相エラーの検出を行う。
これにより、間欠受信を効果的にし、適正なIFキャリア周波数設定値で相関ピークを効率的に行うことができる。
[F0 区間で相関ピークが検出されず、F1 の検出がなかった場合]
次に、F0 区間で相関ピークが検出されず、F1 の検出がなかった場合について図18を参照しながら説明する。
F0 区間で相関ピークが検出されず、F0 区間における粗周波数ズレ検出区間で現在の周波数F1 の検出がなかった場合は、F0 区間の受信が終了後に、間欠受信を終了する。間欠受信を終了すると、次のF0 受信開始まで受信処理を行わないものである。
[相関ピーク検出処理の制御フロー:図19]
相関ピーク検出処理について図19を参照しながら説明する。図19は、相関ピーク検出処理のフローチャートである。
間欠受信が開始されると、周波数F0 受信開始か否かを判定し(S1)、開始でなければ(Noの場合)、当該判定処理S1を繰り返す。
F0 受信開始であれば(Yesの場合)、IFキャリア周波数をデフォルト(F0 )に設定し(S2)、処理S3と処理S7に移行する。
処理S3系統は、粗周波数ズレ値検出処理を実施し(S3)、次に受信終了を判定する(S4)。受信終了するまで判定処理を繰り返す。
受信終了したならば(Yesの場合)、周波数F1 を検出したか否かを判定し(S5)、F1 を検出しなければ(Noの場合)、処理S1に戻る。F1 を検出したならば(Yesの場合)、F1 検出フラグを発生させる(S6)。
また、処理S7系統は、F0 設定後に、相関ピーク検出処理を開始し(S7)、相関ピークの有無を判定する(S8)。
ピークがあれば(Yesの場合)、F1 検出フラグが発生しているか否かを判定する(S9)。F1 フラグが発生していなければ(Noの場合)、F0 におけるシンボル同期信号を発生させる(S10)。
判定処理S8でピークがなければ(Noの場合)、また、判定処理S9で、F1 フラグが発生していれば(Yesの場合)、8bit受信終了の判定処理を行い(S11)、8bit受信終了していなければ(Noの場合)、判定処理S8に戻る。
8bit受信が終了したならば(Yesの場合)、F1 検出フラグが発生しているか否かを判定する(S12)。F1 フラグが発生していなければ(Noの場合)、間欠受信動作を終了し(S18)、判定処理S1に戻る。
判定処理S12でF1 フラグが発生していれば(Yesの場合)、IFキャリア周波数をF1 に設定し(S13)、相関ピーク検出処理を開始し(S14)、相関ピークの有無を判定する(S15)。
相関ピークを検出すると(Yesの場合)、F1 におけるシンボル同期信号を発生させる(S16)。
相関ピークを検出しなければ(Noの場合)、8bit受信終了の判定処理を行い(S17)、8bit受信終了していなければ(Noの場合)、判定処理S15に戻る。
8bit受信が終了したならば(Yesの場合)、間欠受信動作を終了し(S18)、判定処理S1に戻る。
以上のようにして、間欠受信動作による相関ピーク検出処理が為される。
本信号処理部及びそれを備えた無線機によれば、相関ピークの検出においてIFキャリア周波数に設定する周波数を補正しながら相関ピークの検出を行うようにしているので、相関ピークの検出を適正にかつ効率的に行うことができる効果がある。
本発明は、受信部における間欠受信において相関ピーク検出を適正かつ効率的に行うことができる無線機に好適である。
本発明の実施の形態に係る信号処理部の構成ブロック図である。 キャリア復調部の構成ブロック図である。 キャリアデータ生成部の構成ブロック図である。 受信データ復号部前段の構成ブロック図である。 受信データ復号部後段の構成ブロック図である。 マッチドフィルタ部の構成ブロック図である。 拡散符号生成部の構成ブロック図である。 拡散変調部の構成ブロック図である。 相関ピーク検出部の構成ブロック図である。 粗周波数ズレ検出部の構成ブロック図である。 微周波数ズレ検出部の構成ブロック図である。 従来の双方向無線システムの概略図である。 従来の信号処理部の構成ブロック図である。 間欠受信仕様とデータフォーマットの概要を示す図である。 基本タイミングを示すタイミングチャートである。 F0 にて相関ピークが検出された場合のタイミングチャートである。 F1 にて相関ピークが検出された場合のタイミングチャートである。 F0 にて相関ピークが検出されず、F1 の検出がなかった場合のタイミングチャートである。 相関ピーク検出処理のフローチャートである。
符号の説明
1…無線機(親)、 2…無線機(子)、 11…ADC制御部、 12…AGC部、 13…APC/AFC制御部、 14…DAC制御部、 15…キャリア復調部、 16…キャリアデータ生成部、 17…キャリア変調部、 18,18′…受信データ復号部、 19…マッチドフィルタ部、 20,20′…拡散符号生成部、 21,21′…拡散変調部、 22,22′…相関ピーク検出部、 23,23′…粗周波数ズレ検出部、 24,24′…微周波数ズレ検出部、 25…制御部、 151…IFキャリア変調処理部、 152…高周波成分除去部、 153…ダウンサンプル部、 161…AFC調整部、 162…インデックスカウンタ、 163…アドレスデコーダ、164…正弦波テーブル、 181…デジメーションフィルタ、 182…ダウンサンプル部、 183…低周波成分除去部、 184…逆拡散処理部、 185…分割累積処理部、 186…部分相関算出処理部、 187…累積処理部、 188…遅延検波処理部、 189…符号bit取り出し部、 191…RAM読み出しアドレス生成部、 192…キャリア復調データ格納部、 193…拡散符号分割部、 194…逆拡散処理部、 195…累積処理部、 196…部分相関算出処理部、 197…全加算処理部、 198…シフトレジスタ、 201…制御部、 202…符号生成用パラメータテーブル、 203…符号生成部、 204…符号格納部、 205…SEL、 211…差動符号化処理部、 212,213,214…拡散変調処理部、 221…1bit区間最大ピーク位置検出部、 222…最大ピーク位置比較部、 223…シンボル同期信号生成部、 224…フリーランカウンタ、 231…ノイズ除去部、 232…ダウンサンプル部、 233…FFT演算処理部、 234…演算結果累積処理部、 235…最大ピーク位置検出部、 241…FFT演算処理部、 242…最大ピーク位置検出部

Claims (5)

  1. 無線信号を間欠的に受信し、受信信号から相関ピークを検出する無線機であって、
    周波数ズレに応じてIFキャリアデータを生成するキャリアデータ生成部と、
    生成されたIFキャリアデータに基づいてキャリア復調を行うキャリア復調部と、
    復調されたキャリア復調データの相関ピークを検出する相関ピーク検出部と、
    復調されたキャリア復調データから粗周波数ズレを検出する粗周波数ズレ検出部と、
    検出された相関ピークから微周波数ズレを検出する微周波数ズレ検出部と、
    無線部における受信動作を制御する制御部とを有する信号処理部を備え、
    前記制御部が、デフォルトの周波数で相関ピークを検出する第1の区間で相関ピークが検出された場合に、前記第1の区間における前記微周波数ズレ検出部の検出区間で第3の周波数が検出されると、前記第1の区間に続く第2の区間で前記相関ピーク検出部において前記デフォルトの周波数に前記第3の周波数を加えた周波数で相関ピークの検出を行わせることを特徴とする無線機
  2. 制御部は、相関ピーク検出して同期確立が為された後に、定期的に相関ピーク検出部においてデフォルトの周波数と第3の周波数で相関ピークの検出及びクロック位相エラーの検出を行わせることを特徴とする請求項1記載の無線機。
  3. 無線信号を間欠的に受信し、受信信号から相関ピークを検出する無線機であって、
    周波数ズレに応じてIFキャリアデータを生成するキャリアデータ生成部と、
    生成されたIFキャリアデータに基づいてキャリア復調を行うキャリア復調部と、
    復調されたキャリア復調データの相関ピークを検出する相関ピーク検出部と、
    復調されたキャリア復調データから粗周波数ズレを検出する粗周波数ズレ検出部と、
    検出された相関ピークから微周波数ズレを検出する微周波数ズレ検出部と、
    無線部における受信動作を制御する制御部とを有する信号処理部を備え、
    前記制御部が、デフォルトの周波数で相関ピークを検出する第1の区間で相関ピークが検出されない場合に、前記第1の区間における前記粗周波数ズレ検出部の検出区間で第1の周波数が検出されると、前記第1の区間に続く第2の区間で前記相関ピーク検出部において前記第1の周波数で相関ピークの検出を行わせ、前記相関ピーク検出部で相関ピークが検出された場合に、前記微周波数ズレ検出部の検出区間で第2の周波数が検出されると、前記第2の区間に続く第3の区間で前記相関ピーク検出部において前記第1の周波数に前記第2の周波数を加えた周波数で相関ピークの検出を行わせることを特徴とする無線機。
  4. 制御部は、相関ピーク検出して同期確立が為された後に、定期的に相関ピーク検出部において第1の周波数と第2の周波数で相関ピークの検出及びクロック位相エラーの検出を行わせることを特徴とする請求項3記載の無線機。
  5. 無線信号を間欠的に受信し、受信信号から相関ピークを検出する無線機であって、
    周波数ズレに応じてIFキャリアデータを生成するキャリアデータ生成部と、
    生成されたIFキャリアデータに基づいてキャリア復調を行うキャリア復調部と、
    復調されたキャリア復調データの相関ピークを検出する相関ピーク検出部と、
    復調されたキャリア復調データから粗周波数ズレを検出する粗周波数ズレ検出部と、
    検出された相関ピークから微周波数ズレを検出する微周波数ズレ検出部と、
    無線部における受信動作を制御する制御部とを有する信号処理部を備え、
    前記制御部が、デフォルトの周波数で相関ピークを検出する第1の区間で相関ピークが検出されない場合に、前記第1の区間における前記粗周波数ズレ検出部の検出区間で第1の周波数が検出されないと、前記第1の区間の終了後に間欠受信制御を終了させることを特徴とする無線機
JP2007010655A 2007-01-19 2007-01-19 無線機 Expired - Fee Related JP4215169B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007010655A JP4215169B2 (ja) 2007-01-19 2007-01-19 無線機
PCT/JP2007/074140 WO2008087820A1 (ja) 2007-01-19 2007-12-14 無線機
EP20070850644 EP2124349B1 (en) 2007-01-19 2007-12-14 Wireless communication device
US12/458,678 US20090279646A1 (en) 2007-01-19 2009-07-20 Wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010655A JP4215169B2 (ja) 2007-01-19 2007-01-19 無線機

Publications (2)

Publication Number Publication Date
JP2008177946A JP2008177946A (ja) 2008-07-31
JP4215169B2 true JP4215169B2 (ja) 2009-01-28

Family

ID=39635825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010655A Expired - Fee Related JP4215169B2 (ja) 2007-01-19 2007-01-19 無線機

Country Status (4)

Country Link
US (1) US20090279646A1 (ja)
EP (1) EP2124349B1 (ja)
JP (1) JP4215169B2 (ja)
WO (1) WO2008087820A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224105B2 (ja) * 2007-01-19 2009-02-12 日本電波工業株式会社 信号処理部及び無線機
JP5459638B2 (ja) 2008-07-08 2014-04-02 シャープ株式会社 通信システム、受信装置及び通信方法
US8531980B2 (en) * 2010-06-29 2013-09-10 Intel Corporation Multi-channel communication station for communicating a multi-channel PPDU and methods of reducing collisions on secondary channels in multi-channel wireless networks
US9131512B2 (en) * 2012-10-26 2015-09-08 Intel Corporation Methods and arrangements to mitigate collisions in wireless networks by enabling coexistence of disparate bandwidths

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336342A (ja) * 1994-06-13 1995-12-22 Fujitsu Ltd クロック再生回路
JPH11331133A (ja) * 1998-01-28 1999-11-30 Hitachi Denshi Ltd 双方向ディジタル伝送方法及びその装置
US6393068B1 (en) * 1998-09-22 2002-05-21 Agere Systems Guardian Corp. Communication channel and frequency offset estimator
US7804772B2 (en) * 2001-06-08 2010-09-28 Broadcom Corporation Receiver having integrated spectral analysis capability
JP4031003B2 (ja) * 2005-03-03 2008-01-09 日本電波工業株式会社 微弱電力によるスペクトル拡散通信方法及びシステム、高周波無線機
JP2006261985A (ja) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp スペクトル拡散通信用受信機

Also Published As

Publication number Publication date
JP2008177946A (ja) 2008-07-31
WO2008087820A1 (ja) 2008-07-24
EP2124349B1 (en) 2013-01-23
EP2124349A4 (en) 2011-06-15
EP2124349A1 (en) 2009-11-25
US20090279646A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP4224105B2 (ja) 信号処理部及び無線機
JP4120237B2 (ja) 復調装置及び受信装置
JP4031003B2 (ja) 微弱電力によるスペクトル拡散通信方法及びシステム、高周波無線機
JP4215169B2 (ja) 無線機
JP4916962B2 (ja) 信号処理部及び無線機
JP5354293B2 (ja) 位相同期装置および位相同期方法
JP5385355B2 (ja) データ処理装置及びデータ処理装置を含む信号受信機
JP3601713B2 (ja) 通信システムおよびそれに用いる受信機
US7154974B2 (en) Data recovery system and applications thereof in radio receivers
US20140062588A1 (en) System and method to demodulate a load modulated signal
JP4215168B2 (ja) 信号処理部及び無線機
JP4716032B2 (ja) ディジタル無線受信装置
JP3602503B2 (ja) 信号のオフセット補償を行う回路構成および方法
KR20010003618A (ko) 주파수 옵셋 및 위상 에러를 동시에 줄이는 반송파 주파수 복구 방법 및 장치
AU2002318930A1 (en) Null-pilot symbol assisted fast automatic frequency control
EP1413109A1 (en) Null-pilot symbol assisted fast automatic frequency control
JP2009010463A (ja) 信号処理部及び無線機
JP3683550B2 (ja) 二値化回路、無線通信装置および二値化方法
JPH10126310A (ja) スペクトラム拡散通信用受信装置
JP4053957B2 (ja) 無線通信受信機
EP1246421B1 (fr) Récepteur de signaux modulés en fréquence avec démodulateur numérique
JP2008160678A (ja) 相関ピーク検出方法及び無線受信機
JP5531688B2 (ja) 電波受信装置及び電波時計
JP2008131225A (ja) 無線受信機
JP2007228203A (ja) 位相変調信号の復調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080728

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees