JP3666623B2 - 相関器 - Google Patents

相関器 Download PDF

Info

Publication number
JP3666623B2
JP3666623B2 JP18322397A JP18322397A JP3666623B2 JP 3666623 B2 JP3666623 B2 JP 3666623B2 JP 18322397 A JP18322397 A JP 18322397A JP 18322397 A JP18322397 A JP 18322397A JP 3666623 B2 JP3666623 B2 JP 3666623B2
Authority
JP
Japan
Prior art keywords
unit
output
addition
signal
correlator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18322397A
Other languages
English (en)
Other versions
JPH1117651A (ja
Inventor
英二 西守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP18322397A priority Critical patent/JP3666623B2/ja
Publication of JPH1117651A publication Critical patent/JPH1117651A/ja
Application granted granted Critical
Publication of JP3666623B2 publication Critical patent/JP3666623B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、スペクトル拡散通信における拡散符号との相関をとるための相関器に係り、特にフェージング下でもそうでない場合でもビット誤り率の低減を図ることができるようにした相関器に関するものである。
【0002】
【従来の技術】
図9に従来の相関器100の概略構成を示す。この相関器100は、入力信号を転送クロックに同期して転送する複数のセルからなる信号転送部101、あらかじめ拡散符号に対応した係数がセットされた複数の乗算器からなる乗算部102、その乗算部102の各乗算器の出力をすべて加算する加算部103を具備している。
【0003】
この相関器100では、信号転送部101に転送されてきた各セルの受信拡散符号と乗算部102の各乗算器にセットされている係数とが乗算され、両者が一致すれば相関ピーク値が出力するので、これによりもとの送信データを取り出すことができる。
【0004】
図10はこの相関器100を組み込んだスペクトル拡散通信装置の復調器200の概略構成を示す図である。この復調器200は、入力信号と局部発振信号を乗算するミキサ201A,201B、キャリアを除去するローパスフィルタ202A,202B、入力アナログ信号を3ビット〜4ビットで量子化するA/D変換器203A,203B、図9に示した相関器100A,100B、その相関器100A,100Bから出力される信号で局部発振信号の位相を制御するPLL周波数シンセサイザを構成する局部発振回路204、π/2移相器205、A/D変換器203A,203Bと相関器100A,100Bの動作クロックCLKを発生させる同期追尾部206、相関ピークの周期にあった信号を生成するビット同期部207を具備する。
【0005】
上記した局部発振回路204は、ミキサ211、サンプルアンドホールド回路212、ループフィルタ213、電圧制御発振器214を具備する。また、同期追尾部206は、1ビット分の遅延回路221、加算器222、サンプルアンドホールド回路223、ループフィルタ224、電圧制御発振器225、分周器226を具備する。また、ビット同期部207は、2乗器231、232、加算器233、巡回積分器234、最大値検出器235を具備する。
【0006】
ここでは、入力信号を同相成分(I)と直交成分(Q)に分離するために、局部発信回路204から出力される信号(入力信号のキャリア周波数と同じ周波数)とその信号を移相器205でπ/2だけ移相した信号を、ミキサ201A,201Bでそれぞれ乗算し、その乗算信号のキャリア周波数成分をローパスフィルタ202A,202Bで除去してから、A/D変換器203A,203Bに入力してデジタル化し、相関器100A,100Bに入力させる。
【0007】
この相関器100A,100Bで得られた相関ピークの情報は、局部発振回路204に取り込まれて、その発振出力信号の位相が入力信号の位相と一致するように制御される。
【0008】
ビット同期部207においては、相関器100Aからの「相関ピーク*cosθ」を2乗器231で2乗したものと相関器100Bからの「相関ピーク*sinθ」を2乗器232で2乗したものを加算器233で加算することにより、データとキャリアの位相差θを除去して、相関ピーク信号の出力される周期にあった信号を生成し、同期追尾部206の分周器226の制御信号f1、相関ピーク信号を2値のデータに変換するためのタイミング信号f2、復調されたデータに同期して出力するクロック信号f3等に使用される。
【0009】
同期追尾部206は、本来的に、入力アナログ信号をデジタル信号に変換するA/D変換器のサンプリング周波数と入力信号のビットレートとが完全には一致していないために、相関ピーク信号を用いてその補正を行うものためのものであり、A/D変換器203A,203B、相関器100A,100Bのクロックf4、局部発振回路204のサンプルホールド回路212の制御信号f5を発生する。
【0010】
【発明が解決しようとする課題】
ところで、上記のようにクロックを必要とする相関器100を使用した復調器200では、局部発振信号と入力信号との位相差を無くすために、PLL周波数シンセサイザを用いた局部発振回路を使用して、キャリア同期検波を行う必要がある。
【0011】
しかし、このキャリア同期検波では、PLLの振る舞いに従うことになるが、一般的にフェージングによる急激な位相変動には追従することができず、軽減困難な誤りと呼ばれるものがバースト的に発生する問題がある。
【0012】
また、この同期検波方式では、ビット同期部において復調されたデータに同期したクロック等を発生させるが、そのためには、相関ピークの情報が不可欠である。この相関ピークの振幅は、キャリアとの位相差θに依存しており、通常その位相差の影響をなくすために、同相成分と直交成分に分離した信号を2乗器231、232で各々2乗してから加算器233で足しあわせるという操作を行うために回路規模が大きくなるといった問題もある。
【0013】
一方、クロックを必要としないSAWコリレータ等で使用される遅延検波と呼ばれる検波方式では、キャリアとの位相を合わせる必要が無く、同期検波に比較してフェージングに強いとされているが、フェージング下でない状態においては、同期検波に比べてビット誤り率が大きいという問題がある。
【0014】
本発明は以上のような点に鑑みてなされたものであり、その目的は、同期検波方式と遅延検波方式を選択可能にして、上記した問題を解決することである。
【0015】
【課題を解決するための手段】
上記目的を達成するための第1の発明は、転送クロックにより入力信号を順次転送する複数のセルからなる第1信号転送部、該第1信号転送部の各セルの出力値に所定の係数を乗算する複数の乗算器からなる第1乗算部、該第1乗算部の各乗算器の出力値をすべて加算する第1加算部を有する第1相関部と、前記転送クロックにより前記第1信号転送部の最終転送出力を入力して順次転送する複数のセルからなる第2信号転送部、該第2信号転送部の各セルの出力値に所定の係数を乗算する複数の乗算器からなる第2乗算部、該第2乗算部の各乗算器の出力値をすべて加算する第2加算部を有する第2相関部と、前記第1加算部の加算出力と前記第2加算部の加算出力を加算する第3加算部と、前記第1加算部の加算出力と前記第2加算部の加算出力を乗算する第3乗算部と、を具備し、前記第1信号転送部のセル数と前記第2信号転送部のセル数を同一に設定した。
第2の発明は、第1の発明において、前記第1加算部の加算出力と前記第2加算部の加算出力を、上記第3加算部又は上記第3乗算部に送るための第1切替え手段を設けた。
第3の発明は、第1の発明において、前記第3加算部の加算出力、又は前記第3乗算部の乗算出力を選択するための第2切替え手段を設けた。
第4の発明は、第2又は第3の発明において、前記第1又は第2切替え手段を、入力信号のフェージングの程度に応じて制御するよう構成した。
第5の発明は、第1乃至第4の発明において、前記転送クロックと同一又は異なった周波数の転送クロックにより入力信号を順次転送する複数のセルからなる第3信号転送部、該第3信号転送部の各セルの出力値に所定の係数を乗算する複数の乗算器からなる第4乗算部、該第4乗算部の各乗算器の出力値をすべて加算する第4加算部を有する第3相関部と、前記第3信号転送部の最終転送出力を前記第1信号転送部の入力に送るとともに前記第4加算部の加算出力を前記第1加算部に送る第1経路と、前記第4加算手段の加算出力を前記第1信号転送部の入力に送る第2経路を選択する第3切替え手段と、を設けた。
【0016】
【発明の実施の形態】
[第1の実施の形態]
図1は本発明の第1の実施の形態の相関器10の構成を示す図である。11は入力信号が転送クロックCLKにより順次転送される複数のセルからなる第1信号転送部、12は第1信号転送部11の各セルの出力値を所定の係数がセットされた個々の乗算器で乗算する第1乗算部、13は第1乗算部12の各乗算結果をすべて加算する第1加算部である。以上により、第1相関部10Aが構成されている。
【0017】
14は第1信号転送部11の最終セルからの信号が入力して転送クロックにより順次転送される複数のセルからなる第2信号転送部、15は第1乗算部12と同様な第2乗算部、16は第1加算部13と同様な第2加算部である。以上により、第2相関部10Bが構成されている。
【0018】
17,18は第1加算部13、第2加算部16の加算結果を第3加算部19に送るか、第3乗算部20に送るかを選択するスイッチである。前記第1信号転送部13と第2信号転送部16は、セルの個数が同一であり、CCDの他に、サンプルアンドホールド回路、シフトレジスタ等でも構成できる。
【0019】
まず、これを同期検波方式で動作させるには、スイッチ17,18を第3加算部19の側に切り替えて、第1加算部13の加算結果、および第2加算部16の加算結果を加算器19に送る。そして、第1乗算部12、第2乗算部14の各乗算器の係数を受信すべき拡散符号に応じた値に設定し、第1信号転送部11にキャリア周波数成分を取り除いた信号(図10で説明したミキサ201A,201B等で除去した信号)を入力する。この信号が転送クロックCLK(通常このクロックには、チップレートの周波数と同じか或いはその2倍の周波数が使用される。)と同期して順次後段のセルへ、さらに第2信号転送部14に転送されていき、各セルに現在ある信号が拡散符号と一致したタイミングのとき、第3加算部19から相関値がピークとして出力する。
【0020】
一例として、拡散符号を16チップの直交Gold符号(具体的には、「0100101110001110」)、転送クロックCLKをチップレートと同じ周波数(10MHz)とすると、第1信号転送部11、第2信号転送部14のセル個数はいずれも8個必要(図1において、i=8、n=16)であり、第1乗算部12、第2乗算部15の各乗算器の係数を、
Figure 0003666623
のように設定しておけば、入力信号(キャリア周波数成分が取り除かれている)が拡散部号(上記係数)と一致したときに、図2に示すように、相関ピークがビットレート(1.6μs)ごとに検出される。
【0021】
次に、遅延検波方式で動作させるためには、スイッチ17,18を第3乗算部20の側に切り替えて、第1加算部13の加算結果、および第2加算部16の加算結果を第3乗算部20に送る。第1信号転送部11には、キャリア周波数成分が乗ったままの(又は、キャリア周波数成分を落とした)信号を入力する。また、第1乗算部12,第2乗算部15には、同じ係数を設定する。
【0022】
入力された信号が転送クロックCLKに同期して第1、第2信号転送部11,14に転送されていき、拡散符号とその入力信号が一致したとき第1加算部13,第2加算部16から相関ピークがでる。ここで、第2加算部16からは、第1加算部13に比べて1ビット分前の相関ピークが出力される。これらを乗算器20で掛け算することにより、遅延検波を実現できる。
【0023】
この遅延検波には、一次変調に差動符号化を用いる必要がある。一例として、拡散符号を11チップのバーカー符号(具体的には、「11100010010」)を用いて、図3、図4に沿って説明する。
【0024】
例えば、キャリア周波数を22MHzとし、チップレートを11Mcpsとすると、1チップ内に2サイクルの波が存在する。その波を1波8サンプリングすると、サンプリング周波数(転送クロックCLK)は、176MHzになる。また、このときは、1チップに16個のセルを必要とするため、第1、第2の信号転送部11,14には各々176個のセル(合計で352個)が必要となる。
【0025】
以上から、22MHzのキャリア周波数成分を持った入力信号は、176MHzの転送クロックCLKでサンプリングされ、そのサンプリング値が176MHzのクロックと同期して、第1、第2の信号転送部11,14の各セルに転送される。ここで、第1、第2の乗算部12,15の係数を予め次のように決めておく。
w2 = w10 = w178 = w186 = -1, w6 = w14 = w182 = w190 = 1
w18 = w26 = w194 = w202 = 1, w22 = w30 = w198 = w206 = -1
w34 = w42 = w210 = w218 = -1, w38 = w46 = w214 = w222 = 1
w50 = w58 = w226 = w234 = -1, w54 = w62 = w230 = w23 = 1
w66 = w74 = w242 = w250 = 1, w70 = w78 = w246 = w254 = -1
w82 = w90 = w258 = w266 = -1, w86 = w94 = w262 = w270 = 1
w98 = w106 = w274 = w282 = -1, w102 = w110 = w278 = w286 = 1
w114 = w122 = w290 = w298 = -1, w118 = w126 = w294 = w302 = 1
w130 = w138 = w306 = w314 = 1, w134 = w142 = w310 = w318 = -1
w146 = w154 = w322 = w330 = 1, w150 = w158 = w326 = w334 = -1
w162 = w170 = w338 = w346 = 1, w166 = w174 = w342 = w350 = -1
他はすべて0
【0026】
サンプリングされた信号が各セルに順次転送されて行き、それらの信号が拡散符号に対応したタイミングの時に第1、第2加算部13,16から相関ピークがでる。例えば、送信するベースバンドデータを「1010」とすると、図4に示すように、まずベースバンドデータを差動符号化して、「11001」にした後、これに8ビットのバーカーコードを乗算し、これに1ビット当たり2サイクルのキャリアを乗算して、送信信号を得る。
【0027】
したがって、相関器10では、上記したような設定を行うことによって、図5に示すように、第1相関部10Aには、まず「1」に相当する信号が、さらにまた「1」に相当する信号が入ってきて、これらの信号が拡散符号と一致するタイミングt1になったときに、第2相関部10Bの加算部16からは正(負)のピークが出力され、第1相関部10Aの加算部13からも正(負)のピークが出力され、このとき第3乗算部20からは、正のピークが出力される。
【0028】
次に「0」に相当する信号が入ってきて、拡散符号と一致するタイミングt2になったときに、加算部16からは前の「1」に相当する信号が入ってくるために正(負)のピークが、また加算部13からは今新たに入ってきた「0」に相当する信号により負(正)のピークが出力される。このためこのとき第3乗算部20からは負のピークが出力される。
【0029】
更に次に「0」に相当する信号が入ってきて拡散符号と一致するタイミングt3になったときは、加算部16からは前の「0」に相当する信号が入ってくるため負(正)のピークが、また加算部13からは今度新たに入ってきた「0」に相当する信号により負(正)のピークが出力される。このため、このとき第3乗算部20からは正のピークが出力される。
【0030】
同様にして、次に「1」が入ってきた場合には、加算部16からは負(正)のピークが、加算部13からは正(負)のピークが出力され、第3乗算部20により負のピークが出力される。
【0031】
ここで、第3乗算部20の出力の正のピークを「1」に、負のピークを「0」に対応させると、復調データとしては「1010」となり、送信データと一致することになる。
【0032】
以上の説明において、( )内はキャリアの位相が反転している場合である。この遅延検波方式行う場合には、キャリアとの位相の同期をとる必要はない、また、遅延検波により位相が揃っていない熱雑音等のランダムノイズは更に小さくなるので、S/Nの改善が期待できる。
【0033】
以上から、本実施の形態では、最初にキャリアとの同期を必要としない遅延検波方式により相関ピークを得ておいて、その情報からビット同期部において相関ピークに同期したクロックの再生を行い、次に同期検波方式に切り替えてデータを復調し、それに同期したクロックは最初に得たクロックを基にして再生することができる。このようにすれば、復調器を構成する上で入力信号を同相成分(I)と直交成分(Q)に分ける必要がなくなるので、ビット同期部に図10に示したような2乗器231,232や加算器233を必要としなくなるため、回路規模を小さくする構成が可能となる。
【0034】
上記のようにして一旦ビット同期を取った後は、フェージング下においては、遅延検波方式を選択することによりビット誤り率を低減することができ、フェージング下でない場合には、同期検波方式を選択することにより、ビット誤り率を遅延検波方式に比べて低減することができる。これは、フェージングを検出してこれに応じて例えば自動的に切り替えることにより行う。なお、上記説明では、同期検波のときの各種条件と遅延検波のときの各種条件を異ならせたが、これは説明のためであり、同一の拡散符号で拡散されたデータを受信するときは、例えば遅延検波の説明に使用した条件を使用して、同期検波のときには乗算部12,14の中の不要な乗算器の係数を0に設定すればよい。
【0035】
また、上記の説明では、第3加算部19、第3乗算部20の入力側においてスイッチ17、18により同期検波方式と遅延検波方式を選択するようにしたが、これに限らず、第1加算部13の出力と第2加算部16の出力を常時第3加算部19、第3乗算部20に入力させておき、その第3加算部19、第3乗算部20の出力をスイッチ等により選択するようにしてもよい。
【0036】
[第2の実施の形態]
図6は第2の実施の形態の相関器10’の構成を示す図である。この例では、図1に示した構成に加えて、入力信号の入力部分に、第3信号転送部21、第4乗算部22、第4加算部23を設け、更にスイッチ24、25を設けた。これらは、第3相関部10Cを構成する。ここでは、キャリア周波数成分が入ったままの入力信号を相関器10’に入力する。
【0037】
まず、同期検波を行う場合は、スイッチ17,18を加算器19の側に接続し、スイッチ24はオフにし、スイッチ25は第4加算部23を第1信号入力部11に接続するよう切り換える。この同期検波では、信号転送部21、乗算部22、加算部23は信号抽出部として動作する。すなわち、1チップ内に存在する多くのキャリア情報を1つにまとめ、加算部23から出力する。
【0038】
例えば、キャリア周波数を100MHz、チップレートを10Mcpsとすると、1チップ内に波が10サイクル分入る。また信号転送部21のサンプリング周波数(転送クロックCLK’)を200MHzにして、その信号転送部21のセルの個数を20個用意する(図6において、m=20)。そして、乗算部22の係数を次のように設定する。
w1 = w3 = w5 = w7 = w9 = w11 = w13 = w15 = w17 = w19 = 1
w2 = w4 = w6 = w8 = w10 = w12 = w14 = w16 = w18 = w20 = -1
【0039】
キャリア周波数成分を含んだままの入力信号が入った場合、図7に示すように、1チップ内のキャリアの情報を1つにまとめてキャリア周波数成分を取り除き、その信号を第1信号転送部11に転送する。このときの加算部23からの出力例を図8に示す。キャリア周波数成分が取り除かれ、拡散符号に応じた値の信号が出力されていることが分かる。
【0040】
第1信号転送部11、第2信号転送部14では、転送クロックCLKをチップレートと同じ10MHz又はその2倍の20MHzで動作させる。これによって、拡散部号と一致したタイミングのときに加算部19から相関ピークが得られる

【0041】
なお、第1の信号転送部11のセルの個数は、転送クロックCLKがチップレートと同じ場合はチップ長の半分の個数、転送クロックCLKがチップレート2倍の場合はチップ長と同じ個数必要であり、これは第2の信号転送部14のセルの個数についても同様である。
【0042】
一方、遅延検波方式で相関をとる場合は、スイッチ17、18を第3乗算部20の側に接続し、スイッチ24はオンにし、スイッチ25は第3信号転送部21と第1信号転送部11とを接続するよう設定する。そして、信号転送部21のセルの個数と信号転送部11のセルの個数の合計が、信号転送転送部14のセルの個数と同じになるように設定する。
【0043】
動作的には、第1の実施の形態で説明した遅延検波の動作と同じであるが、すべでの信号転送部11、14、21の転送クロックCLK,CLK’を同じに設定する必要がある。なお、この遅延検波方式では、サンプリング点を多く必要とするため、セルの個数を固定した場合に、同期検波方式よりもチップ長は短くなる。
【0044】
以上のように、この第2の実施の形態では、同期検波方式を選択したときに、第3の信号転送部21、乗算部22、加算部23を信号抽出部として働かせて、そこで入力信号のキャリア周波数成分を除去することができる。
【0045】
【発明の効果】
以上から本発明によれば、1つの相関器で同期検波と遅延検波を実現でき、それらを切り替えることにより、回路規模を大きくすること無しに、フェージング下においても、またフェージング下でない場合でも、ビット誤り率を小さくすることができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態の相関器のブロック図である。
【図2】 同実施の形態の相関器を同期検波方式として動作させたときの相関ピーク波形を示す図である。
【図3】 同実施の形態の相関器を遅延検波方式として動作させるときの説明図である。
【図4】 同実施の形態の相関器を遅延検波方式として動作させるときの送信信号の説明図である。
【図5】 同実施の形態の相関器を遅延検波方式として動作させるときの乗算器20の部分の動作説明図である。
【図6】 本発明の第2の実施の形態の相関器のブロック図である。
【図7】 同実施の形態の相関器を同期検波方式として動作させるときの説明図である。
【図8】 同実施の形態の相関器を同期検波方式として動作させたときの加算部23の出力波形を示す図である。
【図9】 従来の相関器のブロック図である。
【図10】 従来の復調器のブロック図である。
【符号の説明】
10,10’:相関器、10A:第1相関部、10B:第2相関部、10C:第3相関部、
11:第1信号転送部、12:第1乗算部、13:第1加算部、14:第2信号転送部、15:第2乗算部、16:第2加算部、17,18:スイッチ、19:第3加算部、20:第3乗算部、21:第3信号転送部、22:第4乗算部、23:第4加算部、24,25:スイッチ。

Claims (5)

  1. 転送クロックにより入力信号を順次転送する複数のセルからなる第1信号転送部、該第1信号転送部の各セルの出力値に所定の係数を乗算する複数の乗算器からなる第1乗算部、該第1乗算部の各乗算器の出力値をすべて加算する第1加算部を有する第1相関部と、
    前記転送クロックにより前記第1信号転送部の最終転送出力を入力して順次転送する複数のセルからなる第2信号転送部、該第2信号転送部の各セルの出力値に所定の係数を乗算する複数の乗算器からなる第2乗算部、該第2乗算部の各乗算器の出力値をすべて加算する第2加算部を有する第2相関部と、
    前記第1加算部の加算出力と前記第2加算部の加算出力を加算する第3加算部と、
    前記第1加算部の加算出力と前記第2加算部の加算出力を乗算する第3乗算部と、
    を具備し、
    前記第1信号転送部のセル数と前記第2信号転送部のセル数を同一に設定したことを特徴とする相関器。
  2. 前記第1加算部の加算出力と前記第2加算部の加算出力を、上記第3加算部又は上記第3乗算部に送るための第1切替え手段を設けたことを特徴とする請求項1に記載の相関器。
  3. 前記第3加算部の加算出力、又は前記第3乗算部の乗算出力を選択するための第2切替え手段を設けたことを特徴とする請求項1に記載の相関器。
  4. 前記第1又は第2切替え手段を、入力信号のフェージングの程度に応じて制御することを特徴とする請求項2又は3に記載の相関器。
  5. 前記転送クロックと同一又は異なった周波数の転送クロックにより入力信号を順次転送する複数のセルからなる第3信号転送部、該第3信号転送部の各セルの出力値に所定の係数を乗算する複数の乗算器からなる第4乗算部、該第4乗算部の各乗算器の出力値をすべて加算する第4加算部を有する第3相関部と、
    前記第3信号転送部の最終転送出力を前記第1信号転送部の入力に送るとともに前記第4加算部の加算出力を前記第1加算部に送る第1経路と、前記第4加算手段の加算出力を前記第1信号転送部の入力に送る第2経路を選択する第3切替え手段と、
    を設けたことを特徴とする請求項1乃至4に記載の相関器。
JP18322397A 1997-06-25 1997-06-25 相関器 Expired - Fee Related JP3666623B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18322397A JP3666623B2 (ja) 1997-06-25 1997-06-25 相関器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18322397A JP3666623B2 (ja) 1997-06-25 1997-06-25 相関器

Publications (2)

Publication Number Publication Date
JPH1117651A JPH1117651A (ja) 1999-01-22
JP3666623B2 true JP3666623B2 (ja) 2005-06-29

Family

ID=16131953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18322397A Expired - Fee Related JP3666623B2 (ja) 1997-06-25 1997-06-25 相関器

Country Status (1)

Country Link
JP (1) JP3666623B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3522631B2 (ja) * 2000-03-09 2004-04-26 松下電器産業株式会社 プリアンブル受信装置及びプリアンブル受信方法
JP4031003B2 (ja) 2005-03-03 2008-01-09 日本電波工業株式会社 微弱電力によるスペクトル拡散通信方法及びシステム、高周波無線機
JP5146101B2 (ja) * 2008-05-16 2013-02-20 コニカミノルタエムジー株式会社 超音波診断装置

Also Published As

Publication number Publication date
JPH1117651A (ja) 1999-01-22

Similar Documents

Publication Publication Date Title
EP0708534B1 (en) Spread spectrum receiving apparatus
US5583884A (en) Spread spectrum modulation and demodulation systems which accelerate data rate without increasing multilevel indexing of primary modulation
EP0682427B1 (en) Correlation detector and communication apparatus
EP1175019B1 (en) RAKE receiver for a CDMA system, in particular incorporated in a cellular mobile phone
JPH0799487A (ja) スペクトラム拡散通信装置および無線通信装置
US9015220B2 (en) Correlation device
US5848096A (en) Communication method and system using different spreading codes
JP2004515105A (ja) レイク受信機
JPH09223983A (ja) スペクトラム拡散通信用送信機及び受信機
JP3666623B2 (ja) 相関器
JP2002064407A (ja) 同期追跡回路
JP3869674B2 (ja) スペクトラム拡散通信用スライディングコリレータ
EP0698971A2 (en) Synchronization for DSSS transmission system using jittered pilot code
EP1207660A2 (en) Time-sharing of a digital filter
JPH0832547A (ja) 同期捕捉方法
JP2003008475A (ja) Rach受信装置
JP2000269855A (ja) マッチドフィルタ
EP1170894B1 (en) Transmitter for spread-spectrum communication
JP3223900B2 (ja) バーストスペクトラム拡散通信受信機
JP3748563B2 (ja) 検波器およびアレイアンテナ装置
JP3763263B2 (ja) スペクトル拡散通信における受信装置
JP2000196500A (ja) 伝送遅延を判定する装置およびその方法
JP2001136105A (ja) マッチトフィルタ及び受信装置
JPH0918446A (ja) 同期追従回路
JP2724949B2 (ja) スペクトル拡散通信方式

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees