CN101137760A - 检测染色体非整倍性的方法 - Google Patents

检测染色体非整倍性的方法 Download PDF

Info

Publication number
CN101137760A
CN101137760A CN200680007354.2A CN200680007354A CN101137760A CN 101137760 A CN101137760 A CN 101137760A CN 200680007354 A CN200680007354 A CN 200680007354A CN 101137760 A CN101137760 A CN 101137760A
Authority
CN
China
Prior art keywords
rna
karyomit
snp
ratio
allelotrope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200680007354.2A
Other languages
English (en)
Other versions
CN101137760B (zh
Inventor
卢煜明
赵慧君
徐宝贤
丁春明
查尔斯·坎特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese University of Hong Kong CUHK
Boston University
Original Assignee
Chinese University of Hong Kong CUHK
Boston University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese University of Hong Kong CUHK, Boston University filed Critical Chinese University of Hong Kong CUHK
Publication of CN101137760A publication Critical patent/CN101137760A/zh
Application granted granted Critical
Publication of CN101137760B publication Critical patent/CN101137760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Abstract

本发明公开了胎儿染色体非整倍性的非侵入性检测方法。为了测定所述等位基因的比例,对含有胎儿RNA的生物样本(如母体血液)中的胎儿RNA-SNP等位基因进行了检测和定量。再将所述比例与含有整倍体胎儿的标准对照进行比较。所述等位基因比例的偏离说明存在染色体的非整倍性。

Description

检测染色体非整倍性的方法
相关申请的相互参考
本申请要求在2005年3月18日提交的美国临时申请第60/663,173号的优先权。
发明背景
染色体非整倍性是导致胎儿出生前和出生后畸型的重要原因。染色体非整倍性的评定通常都与胎儿生存能力的研究和出生前的诊断有关。检测和描述染色体非整倍性的方法包括有丝分裂中期染色体核型分析,荧光原位杂交(FISH)(Homer,J.et al.,Prenat Diagn23:566-571(2003)),定量荧光聚合酶链式反应(PCR)(Mann,K.Methods Mol Med92:141-156(2004)),基因剂量PCR(Zimmermann,B.et al.,Clin Chem48:362-363(2002)和基于阵列的比较基因组杂交(CGH)(Hu,D.G.et al.,Mol HumReprod(2004))。
胎儿染色体非整倍性是已知的造成胎儿死亡的重要原因并且导致了50%的妊娠头三个月的自发性流产(Chitty,LBrMed Bull54:839-856(1998))。胎儿是否存活尤其与某些类型的染色体非整倍性有关。21号染色体三体或唐氏综合症是最常见的常染色体非整倍性,800个成活出生婴儿中就有一个唐氏综合症(Hook,E.B.Lancet2:169-172(1981))。21号染色体三体综合征是夫妇选择做产前检查的最主要原因。目前,对胎儿21号染色体三体和其它染色体非整倍性的确切检查主要是通过侵入性方法如羊膜穿刺术和绒毛膜绒毛取样(CVS)得到胎儿遗传材料进来进行遗传分析。由于所述方法具有侵入性,所以该方法具有一定的自发性流产的风险。而其它非侵入性方法则根据怀有21号染色体三体的胎儿的风险对妊娠进行分级。只有在孕期胎儿具有的实质性危险比侵入性诊断方法带来的流产风险更大时才推荐侵入性检查。目前使用的风险分类策略包括母体年龄分析,母体血清生物化学标记和胎儿超声波特征分析(Nicolaides,K.H.et al.,Prenat Diagn22:308-315(2002))。
为了获得更佳的灵敏度和特异性,对各种标记和方法的组合进行了评估(Wald,N.J.et al.,Prenat Diagn17:821-829(1997)),包括三项检验、四项检验(Wald,N.J.et al.,Lancet361:835-836(2003)),综合检测(Wald,N.J.et al.,NEngl J Med341:461-467(1999))和孕期头三个月筛查(Wapner,R.et al.,NEnglJMed349:1405-1413(2003))。目前使用的血清生物化学标记包括α-胎蛋白,非轭合的雌三醇,总的或游离的β-人绒膜促性腺激素,抑制素-A,妊娠相关血浆蛋白-A(PAPP-A)。对通过这些检测特征说明的高流产风险的妊娠最终建议采用羊水诊断或者CVS。
近来,母体血浆中的循环细胞外游离胎儿核酸的发现为非侵入性检查所需的胎儿遗传材料样品提供了一个替代来源(Lo,Y.M.D.et al.,Lancet350:485-487(1997);Poon,L L.M.et al.,ClinChem46:1832-1834(2000))。此外,已证明怀有21号染色体三体胎儿的妇女血浆中循环胎儿DNA的浓度明显高于怀有整倍体胎儿妇女血浆中循环胎儿DNA的浓度(Lo,Y.M.D.et al.,Clin Chem45:1747-1751(1999);Zhong,X.Y.et al.,Prenat Diagn20:795-798(2000))。最近,循环胎儿RNA已被证明是在母体血浆中一类有应用前景且不依赖性别的胎儿核酸标记(Ng,E.K.O.etal.,ClinChem49:727-731(2003);Ng,E.K.O.et al.,Proc NatlAcad Sci USA100:4748-4753(2003))。因此,对妊娠风险分级而言,循环胎儿核酸的定量可作为另一种有效的出生前检测标记。
已经证明能在母体血浆中检测到胎盘表达的mRNA转录物,例如那些编码人胎盘催乳激素(hPL),人绒膜促性腺激素β亚基(βhCG)(Ng,E.K.O.et al.,ClinChem49:727-731(2003)),促肾上腺皮质激素释放激素(CRH)(Ng,E.K.O.et al.,Proc Natl Acad Sci U SA100:4748-4753(2003b)),组织因子途径抑制子(TFPI2),KiSS-1转移抑制子(KISS1)和胎盘特异1(PLAC1)(Tsui,N.B.Y.et al.,JMed Genet41:461-7(2004))的转录物。现已获知这些来源于胎盘的mRNA类型是妊娠特异性的(Ng,E.K.O.et al.,Proc NatlAcad Sci USA100:4748-4753(2003);Tsui,N.B.Y.et al.,JMed Genet41:461-7(2004))。尤其是已有关于在先兆子痫妊娠中母体血浆中CRH mRNA浓度异常增高的报道(Ng,E.K.O.et al.,Clin Chem49:727-731(2003))。由于这些胎盘表达标记是妊娠特异性但却是性别和多态非依赖性的,所以它们在所有妊娠的非侵入性产前检查中都是有用的。
染色体非整倍性改变了位于所述非整倍染色体上基因的剂量。这种改变了的基因剂量可以通过所述基因的异常等位基因比例来表示。而所述的异常等位基因比例又由位于所述非整倍染色体上遗传位点RNA转录物中出现的等位基因多态的异常比例表现出来。这种多态的一个实例就是单核苷酸多态性(SNP),其中当出现所涉及的染色体非整倍体时,SNP等位基因的比例就会发生异常。因此,可以建立正常妊娠的RNA-SNP比例的参考范围,当观察到与所述参考范围有偏离时,可以测定所述胎儿具有21号染色体三体。与常规的细胞遗传学分析方法相比,本发明提出的技术不需要对胎儿细胞进行前期培养,因此缩短了分析时间。除此之外,可以通过非侵入性的方法得到母体血液样本,因此降低了可能对胎儿和母体造成的潜在伤害。
发明概述
在一个实施方案中,本发明提供了一种改进方法,该方法利用孕妇体内胎儿的RNA转录物的等位基因比例与怀有染色体正常胎儿的孕妇的对应比例进行比较,来检测孕妇体内胎儿的染色体异常。在该方法中,所述比例的使用极大地提高了检测胎儿染色体异常的灵敏度,尤其是在与仅对某个特定等位基因或全部RNA转录物的总浓度进行比较时。
该方法的第一步涉及确定孕妇体内胎儿的所述RNA转录物的等位基因比例。这是通过从该孕妇体内获取含有RNA的生物样本完成的,其中所述含有RNA的生物样本中含有胎儿RNA。然后从至少一个所关注的染色体上的至少一个遗传座位转录出的RNA中对所述等位基因进行辨别,然后测定所述RNA转录物的等位基因比例。第二步涉及将从所述孕妇得到的所述等位基因比例与标准对照的等位基因比例进行比较,所述标准对照是指从来自怀有染色体正常胎儿的的孕妇获得的对应生物样本中的平均等位基因比例,其中,与标准对照相比,所述等位基因比例的增减都说明胎儿染色体异常的风险升高。
在一些实施方案中,本发明提供了一种方法,该方法可用于21号、18号和13号染色体三体的其中之一。在另一实施方案中,所述染色体异常是21号染色体三体。在另一实施方案中,所述染色体异常是13号染色体三体。在另一实施方案中,所述染色体异常是18号染色体三体。在另一实施方案中,所述染色体异常涉及X染色体和Y染色体。
在另一实施方案中,本发明提供了一种方法,其中从获取含有RNA生物样本的步骤获得的生物样本包括母体血液,母体血浆或血清,羊水,绒毛膜绒毛样品,来源于胚胎植入前的活组织材料,从母体血液分离到的胎儿有核细胞或胎儿细胞残片,母体尿液,母体唾液,妇女生殖道清洗物和腹腔穿刺的样本。在另一实施方案中,所述生物样本是母体血液。在另一实施方案中,所述生物样本是绒毛膜绒毛样品。在另一实施方案中,所述生物样本含有母体血液中的细胞成分细胞残片。
在另一实施方案中,本发明提供了一种方法,其中从获取含有RNA生物样本的步骤获得的胎儿RNA来源于胎盘。
在另一实施方案中,本发明提供了一种方法,其中鉴别所述RNA等位基因的步骤中涉及反转录聚合酶链式反应(RT-PCR)。
在另一实施方案中,本发明提供了一种方法,其中鉴别所述RNA等位基因和/或判断不同等位基因比例的步骤是通过使用以下方法完成的,例如引物延伸反应,质谱,使用至少一个探针的杂交,使用至少一个荧光标记探针的杂交,直接测序,克隆和测序以及电泳。
在一些实施方案中,本发明提供了一种方法,其中所述等位基因的步骤涉及鉴别RNA等位基因,测定不同等位基因的比例以及通过序列变异对上一步骤的所述比例与标准对照进行比较。在另一实施方案中,所述序列变异是指单核苷酸多态性(SNP)。在另一实施方案中,所述序列变异是指插入/缺失多态。在另一实施方案中,序列的变异是指简单串联重复多态。
在另一实施方案中,本发明提供了一种方法,其中所述RNA是从选自21号染色体,18号染色体,13号染色体,X染色体和Y染色体的染色体转录的。在另一实施方案中,所述RNA是从18号染色体转录的。在另一实施方案中,所述RNA是从13号染色体转录的。
在另一实施方案中,本发明提供了一种方法,其中所述RNA在胎盘中的表达水平比在母体血液中的表达水平高两倍或更多。在另一实施方案中,所述RNA在胎盘中的表达水平比在母体血液中的表达水平高5倍或更多。在另一实施方案中,所述RNA在胎盘中的表达水平比在母体血液中的表达水平高10倍或更多。
在另一实施方案中,本发明提供了一种方法,其中所述RNA是mRNA。在另一实施方案中,本发明提供了一种方法,其中所述RNA是从选自胶原VIα1(COL6A1),超氧化物歧化酶1(SOD1),胶原VIα2(COL6A2),线粒体ATP合成酶O亚基(ATP5O),BTG家族成员3(BTG3),含有血小板反应蛋白1型基序的解聚素样和金属蛋白酶1(reprolysin型)(ADAMTS1),β位APP-剪切酶2(BACE2),间素(intersectin)1(ITSN1),淀粉样蛋白β(A4)前体蛋白(APP),ATP合成酶,H+转运,线粒体F0复合体,亚基F6(ATP5J),唐氏综合症判别区域基因5(DSCR5),胎盘特异4(PLAC4),推测蛋白BC005107(LOC90625),核糖体蛋白L17(RPL17),丝氨酸蛋白酶抑制剂分枝B(卵清蛋白)组分2(SERPINB2),胶原IVα2(COL4A2)中的至少一个遗传座位转录而来的。在另一实施方案中,所述RNA转录自含有一个单核苷酸多态的遗传座位。在另一实施方案中,所述RNA转录自胶原VIα1(COL6A1)和胶原VIα2(COL6A2)中的至少一个遗传座位。在另一实施方案中,所述RNA转录自SNP是Arg850His或Ser932Ser的COL6A1遗传座位。在另一实施方案中,所述RNA转录自SNP是Val728Val的COL6A2遗传座位。
在另一实施方案中,本发明提供了一种方法,其中所述RNA转录自胎盘特异4(PLAC4)遗传座位。在另一实施方案中,所述RNA是转录自PLAC4基因的任何不同转录物,如AF269287,AK027868,AK092431,BC093685,BC101615,BC101617,L13197,NM_182832和LOC191585。在另一实施方案中,所述RNA转录自含有单核苷酸多态或插入-缺失多态的PLAC4基因。这些多态可选自rs3804026,rs4818219,rs9977003,rs7844,rs9015,rs13643,rs9305729,rs9305730,rs5019195,rs5019194,rs5844069,rs1049904,rs16998089,rs12482116,rs11909439,rs7278659,rs12106409,rs12106395,rs12106401,rs12106434,rs2183584,rs3949725,rs8130833,rs10222145和rs9981478,或其它位于PLAC4遗传座位内的其它多态,如PLAC4-41471145和PLAC4-41476236。
在一些实施方案中,本发明提供了一种方法,其中所述妇女处于妊娠头三个月。在另一实施方案中,所述妇女处于妊娠中三个月或末三个月。
在另一实施方案中,本发明提供了一种方法,其中如果孕妇胎儿RNA转录物的等位基因比例高于或低于标准对照的1个标准偏差,那么所述比较步骤说明所述胎儿染色体异常的风险增加。在另一实施方案中,如果孕妇胎儿RNA转录物的等位基因比例高于或低于标准对照的2个标准偏差,那么所述比较步骤说明所述胎儿染色体异常的风险增加。在一些实施方案中,如果孕妇胎儿RNA转录物的等位基因比例高于或低于标准对照的3个标准偏差,那么所述比较步骤说明所述胎儿染色体异常的风险增加。
在另一实施方案中,本发明提供了检测孕妇胎儿染色体异常的试剂盒。所述试剂盒的一个成分是用于扩增目的区域的引物。所述试剂盒的另一个成分是代表从怀有染色体正常胎儿的孕妇获得的对应生物样本中的等位基因平均比例的标准对照。在另一实施方案中,所述试剂盒的第三个成分是对每个RNA类型的不同等位基因进行鉴别的杂交探针。
附图的简要描述
图1所示为通过对位于染色体21上的胎盘表达转录物等位基因的相对定量来对母体血液、血清或血浆进行分析,采用某个实施例的策略对胎儿21号染色体三体进行非侵入性鉴定的示意图。(A)拥有在21号染色体上转录的杂合体SNP遗传座位的正常和21号染色体三体胎儿。21号染色体三体胎儿在该基因上多出一个拷贝。“A”和“G”分别表示所述转录SNP的等位基因。(B)所述基因在胎盘组织中表达,通过表现所编码的SNPs说明所得转录物是等位的。由于所述基因额外拷贝的表达,21号染色体三体胎盘中两个RNA等位基因的比例应该与对照的所述比例有偏差。(C)所述RNA转录物被释放到母体血液中,它们的相对丰度可以反映所述胎盘基因的表达谱。因此,21号染色体三体的妊娠母体血液、血清、血浆中两个RNA等位基因的比例应该与正常妊娠的所述比例有偏差。
图2所示为非孕妇、妊娠头三个月妇女和妊娠末三个月妇女的母体血浆中胎盘来源mRNA转录物的浓度的盒图。(A)COL6A1mRNA。(B)SOD1mRNA。(C)COL6A2mRNA以及(D)ATP5O mRNA。对照,非孕妇;1st三个月,妊娠头三个月妇女;3rd三个月,妊娠末三个月妇女。所述盒内的线表示中位数。所述盒表示25th和75th百分点之间的区间。误差棒表示10th和90th百分点之间的区间。实心圆点表示10th和90th百分区间之外的数据点。
图3所示为分娩后对母体血浆中胎盘来源mRNA转录物的清除情况。(A)、(B)、(C)和(D)分别为分娩前和分娩后24小时母体血浆中COL6A1、SOD1、COL6A2和ATP5O mRNA的浓度。每条线代表从一个受试者获得的成对血浆样本。
图4所示为胎盘组织中两个COL6A1基因的SNP rs1053312转录物等位基因的比例。通过等位基因特异的实时定量RT-PCR来测定所述RNA等位基因间的相对量。分析了来自正常CVS(CVS),正常足孕的胎盘(PLN)和21号染色体三体胎盘(T21)的RNA。通过阈循环数(ΔCt)的差异计算所述比例。
图5所示为通过等位基因特异的实时定量RT-PCR测定的胎盘组织中两个COL6A2基因SNP rs2839114转录物等位基因的比例。分析了来自正常CVS(CVS),正常足孕的胎盘(PLN)和21号染色体三体胎盘(T21)的RNA。通过(A)阈循环数(ΔCt)差异或(B)在最后一次PCR循环中得到的荧光强度的差异(ΔΔRn)计算所述比例。
图6所示为通过引物延伸和随后的质谱分析测定的在杂合体正常胎儿和21号染色体三体胎儿的胎盘组织中SNP rs1053320(COL6A1)的等位基因频率。(A)胎盘DNA。(B)胎盘RNA。
图7所示为通过引物延伸和随后的质谱分析测定的在杂合体正常胎儿和21号染色体三体胎儿的胎盘组织中SNP rs2839114(COL6A2)的等位基因频率。(A)胎盘DNA。(B)胎盘RNA。
图8所示为在怀有正常胎儿和21号染色体三体胎儿的孕妇胎盘中PLAC4转录物等位基因的比例。所述等位基因比例是采用SNP rs8130833通过引物延伸和随后的质谱分析测定的。
图9所示为在怀有正常胎儿和21号染色体三体胎儿的孕妇的血浆样本中PLAC4转录物的等位基因比例。
图10所示为胎盘和母体血浆样本中PLAC4转录物的等位基因比例相关性。
图11所示为21号染色体三体妊娠和对照妊娠的母体血浆中PLAC4mRNA浓度的比较。所述盒表示25th和75th百分点之间的区间。误差棒表示10th和90th百分点之间的区间。实心圆点表示10th和90th百分区间之外的数据点。
图12所示为在怀有正常胎儿和18号染色体三体胎儿的孕妇胎盘中SERPINB2转录物的等位基因比例。所述等位基因比例是采用SNP rs6098通过引物延伸和随后的质谱分析测定的。
图13所示为在怀有正常胎儿和13号染色体三体胎儿的孕妇胎盘中COL4A2转录物的等位基因比例。所述等位基因比例是采用rs7990383通过引物延伸和随后的质谱分析测定的。
发明的详细说明
I.定义
本说明书中,术语“染色体异常”通常指染色体异常的一种状态,其中染色体数不是正常单倍体数的整数倍:通常情况是或者具有一条额外的染色体或者一条染色体丢失。“染色体异常”有时也可是一条或多条染色体部分不是正常单倍体数的整数倍,产生的原因比如是染色体易位。常见的染色体异常是染色体非整倍性。染色体非整倍性的常见形式是三体,其中具有一条额外的染色体。例如,18号染色体三体是一种染色体异常,即在细胞中发现有第3条18号染色体,而在细胞中发现有第3条21号染色体的病人则患有21号染色体三体。染色体易位(比如21号和14号染色体易位,结果使得部分14号染色体被额外的21号染色体取代)可致使部分21号染色体三体综合征。
本说明书中,术语“含有RNA的生物样本”指含有核糖核酸(RNA)的生物样本(例如以下所描述的)。RNA是指具有与所述人类基因组预先选定位点的至少一部分序列相对应的多聚核苷酸。本说明书中RNA包括mRNA,核糖体mRNA和小RNA。RNA可以是诸如mRNA的蛋白编码序列,或者是诸如核糖体RNA的非编码序列,小RNA或其他没有详细定义功能的其他转录序列。mRNA是从基因的DNA转录而来的,通过核糖体的作用可从其翻译出蛋白质。核糖体RNA(rRNA)是不能翻译成蛋白质的非编码RNA。小RNA(miRNA)是“小分子RNAs”的一种亚型,通过其来源而非其功能来进行区别。小RNA长度小于30个核苷酸,从DNA转录而来但并不翻译成蛋白质。本领域所属技术人员应理解其它类型的RNA在本发明中也是有用的。
本说明书中,术语“胎儿”,“胎盘来源的”和“胎盘表达的”是指可在来源于孕妇的生物样本,例如血液中检测到的某种RNA类型的来源。例如,胎儿RNA类型是从胎儿DNA序列转录而来的。胎盘来源或胎盘表达的RNA也是一类胎儿RNA。本领域所属技术人员应当理解其它类型的胎儿RNA在本发明中也是有用的。胎盘来源或胎盘表达的RNA是在胎盘中转录的胎儿RNA。
本说明书中,术语“对从所关注的至少一个染色体上的至少一个遗传位点转录出的RNA的等位基因进行鉴别”是指对从染色体上特定遗传座位转录出的特定RNA等位基因进行检测和定量。对等位基因进行检测和定量的方法有很多,包括使用杂交探针和实时定量聚合酶链式反应(QRT-PCR)。其它方法包括使用质谱(MS),电泳,焦磷酸测序(pyrosequencing),引物延伸微阵列,芯片和测序。
本说明书中,术语“等位基因比例”指生物样本中一个等位基因群体与另一个等位基因群体的比例。在一些情况下,有可能在染色体三体胎儿的某个特定位点出现三个等位基因。在这种情况下,“等位基因比例”指任何一个等位基因群体与另一个等位基因群体的比例,或任何一个等位基因群体与其他两个等位基因群体的比例。
本说明书中,术语“标准对照”指适于本发明方法使用的,为了对从某个特异遗传座位,如COL6A1,SOD1,COL6A2,ATP5O,BTG3,ADAMTS1,BACE2,ITSN1,APP,ATP5J,DSCR5,PLAC4,LOC90625,RPL17,SERPINB2或COL4A2转录而来的RNA-SNP的等位基因比例进行测定的样本。这样的样本包含从特定的遗传座位转录而来的已知RNA-SNP等位基因比例,所述比例能够准确地反应在怀有染色体正常胎儿的孕妇中这种RNA-SNP等位基因的平均比例。对本领域所属技术人员而言,所述标准对照也可代表平均比例,中值比例,或其他有用比例。后面将详细描述对于标准对照的测定。
本说明书中,术语“孕妇”是指一组怀有染色体正常胎儿的孕妇,考虑到某些特征,例如从感兴趣位点转录而来的RNA等位基因的比例,其能够代表随机选择的一组怀有染色体正常胎儿的妇女。这样选择的组应该包含有足够数量的妇女,以使得从这些妇女的感兴趣位点转录而来的RNA等位基因比例的平均水平,平均值,中值或其它数学关系,能够以合理的准确性反映出怀有正常胎儿的健康孕妇普通群体中的RNA等位基因比例。可以在妊娠头三个月,即约妊娠13周筛选出具有胎儿染色体非整倍体风险的母亲。也可以在妊娠中三个月或末三个月筛选出这样的母亲。妊娠中三个月指从妊娠14周到27周。妊娠末三个月指从妊娠28周到妊娠结束,约40周。此外,优选的妊娠龄依赖于检测中使用的RNA标记。
本说明书中,术语“染色体正常”指染色体数是正常单倍体数的整数倍,如单被染色体数的2倍,每一个染色体出现的数目都相同(性染色体除外,如男性有两个不同的性染色体,X和Y,每个只有一个拷贝)。
本说明书中,术语“标准对照比例的增加或降低”是指与标准对照比例相比的正或负的变化。增加优选为至少10%,更优选为至少50%,最优选为至少100%。类似的,降低优选为至少10%,更优选为至少50%,最优选为至少90%。此外,所述比例的增加或降低与标准对照比可以至少有一个标准偏差。所述增加或降低与标准对照比可以至少有2个标准偏差。所述增加或降低与标准对照比可以至少有3个标准偏差。
本说明书中,术语“单核苷酸多态(SNP)”是指涉及单个核苷酸变化的核酸序列变异。本发明中有用的SNPs包括从感兴趣遗传座位转录而来相应RNA转录物中出现的SNP,所述遗传座位包括胶原VIα1(COL6A1),超氧化歧化酶1(SOD1),胶原VIα2(COL6A2),线粒体ATP合成酶O亚基(ATP5O),BTG家族成员3(B0TG3),含有血小板反应蛋白1型基序的解聚素样和金属蛋白酶I(ADAMTS1),β位APP剪切酶2(BA CE2),intersectin1(ITSN1),淀粉样蛋白β(A4)前体蛋白(APP),ATP合成酶,H+转运,线粒体F0复合体,亚基F6(ATP5J),唐氏综合症判别区域基因5(DSCR5),胎盘特异4(PLAC4),推测蛋白BC005107(LOC90625),核糖体蛋白L17(RPL17),丝氨酸蛋白酶抑制剂分枝B(卵清蛋白)成员2(SERPINB2)和胶原IVα2(COL4A2)。这样的SNPs被称为RNA-SNPs,因为其涉及RNA上单核苷酸的改变。所述RNA-SNPs的等位基因从而可在本发明中用来测定孕妇生物样本中RNA-SNP等位基因的比例,并且将所述比例与从每个怀有健康胎儿的孕妇生物样本中得到的比例进行比较。本领域所属技术人员应该理解在本发明中其它标记和插入/缺失多态也是同样有用的。
本说明书中,术语“母体血液”是指来自孕妇或检测是否怀孕妇女的血液样品或制品。该术语还包括全血或任意的血液成分。“母体血液”包括血浆和血清。基本上不含细胞的母体血液样本称为“无细胞的”,一般不含血小板。
本说明书中,术语“细胞成分或细胞残片”是指生物样本中残留的部分细胞,包括血小板,凋亡小体(apoptotic bodies)和合胞体滋养层微粒(syncytiotrophoblast microparticles)。
II.本发明的方法
本发明利用胎儿表达转录物的妊娠特异性发展了对胎儿染色体非整倍性进行遗传测定的方法,并由此建立了一种非侵入性的诊断方法。在一个实施例中,胎儿表达转录物是在胎盘中表达的。特别地,本发明可以对由非整倍体染色体上的基因编码的具有组织特异表达方式的RNA转录物进行单核苷酸多态(SNPs)的检测。也可通过本发明的方法检测其它多态,如插入/缺失多态和简单串联重复多态。所述位点的状态是通过对转录自感兴趣遗传座位RNA的提供信息的SNPs之间比例进行分析来确定的。简而言之,本发明对非整倍性胎儿和整倍性胎儿的位点特异性和组织特异RNA转录物上的多态位点之间的等位基因比例进行了比较。
因此可将本发明应用于21号染色体三体的产前诊断,其涉及对转录自21号染色体座位的具有胎盘组织表达的RNA转录物进行提供信息的SNPs分析。然后通过比较母体血液中所述胎盘表达RNA转录物的信息SNPs比例确定胎儿21号染色体三体。母体血液中所述标记的胎儿特异性是通过胎盘组织表达表现的,而所述非整倍性状态则是通过所述RNA转录物中信息SNPs间的异常比例确定的。
基于对21号染色体上的遗传位点编码的胎盘表达RNA-SNPs进行分析,可将本发明的方法用来对胎儿21号染色体三体及其产前诊断进行遗传测定。可以通过例如,实时定量聚合酶链式反应(QRT-PCR)分析来鉴别所述RNA-SNP等位基因,并且测定说明所述座位的基因剂量之间的比例。在其它实施例中,可以通过引物延伸和其后的质谱(MS)来鉴定所述RNA-SNP等位基因。
A.使用本发明方法可检测的染色体异常
本发明提供测定诸如21号染色体三体的染色体非整倍性的方法。该方法还可以检测其它胎儿非整倍性,例如在18号、13号、X和Y染色体上出现或涉及这些染色体的非整倍性。当对母体血液进行分析时,本方法可以非侵入性地检测胎儿染色体非整倍性。所述RNA-SNP检测的使用超出了检测染色体异常的范围并延伸到检测胎儿其它遗传变异,如父系遗传多态和突变。
B.本发明中用于检测胎儿染色体异常的有用生物样本
实施本发明的第一步就是从适合接受本发明方法检测的妊娠龄孕妇,或检测是否妊娠的妇女中获取生物样本。如上所述,根据所检测的病症不同和有时所使用的RNA标记不同,适合的妊娠龄也会有所变化。
所述生物样本可以是母体血液,包括母体血浆或血清。在一些情况下,所述生物样本是非细胞性的。在其它环境下,所述生物样本在母体血浆中含有细胞成分或细胞残片。其它生物样本包括羊水,绒毛膜绒毛样品,来源于胚胎植入前的活体组织,母体尿液,母体唾液,胎体腔穿刺样本,婴儿成核细胞或婴儿细胞残片,或来源于孕妇生殖道清洗物的样本。
当所述生物样本是母体血液时,根据一般医院或诊所使用的标准步骤对妇女进行采血。采集适量的外周血液,例如3-20ml,并且在进行后续处理之前按照标准程序进行保存。
本发明有用的生物样本含有胎儿RNA。所述胎儿RNA转录自21号,18号,13号,X和Y染色体。此外,胎盘中表达的RNA可以是母体血液或不同的部分血液成分表达量的2倍,5倍,10倍甚至更高。
胎儿RNA通常来自胎儿根源的任意组织,包括但不限于胎盘,也可以是mRNA。可以用各种方法从生物样本中提取RNA。从生物样本中提取RNA有多种方法。可以采用普通的RNA制备方法(例如Sambrookand Russell,Molecular Cloning:ALaboratory Manual3d ed.,《分子克隆:实验手册》第3版,2001);多种可商业获得的试剂或试剂盒,如Trizol试剂(Invitrogen,Carlsbad,加利福尼亚),Oligotex Direct mRNA Kits试剂盒(Qiagen,Valencia,加利福尼亚),RNeasy Mini Kits试剂盒(Qiagen,Hilden,德国)以及PolyATtractSeries9600TM(Promega,Madison,威斯康星)来从妇女的血液样品中获取RNA。也可以将这些方法组合来提取RNA。应该在扩增和定量步骤中小心操作样本,从头至尾用DNA酶处理并且设定适当的阴性对照来消除RNA制备中的DNA。
C.鉴别RNA转录等位基因的方法
可以通过一系列方法对RNA转录物等位基因进行鉴定,包括PCR,质谱(MS),凝胶电泳,焦磷酸测序,引物延伸分析,芯片,测序和使用一或多种荧光探针进行杂交。
1.基于PCR技术鉴别RNA-SNP等位基因的方法
一旦从生物样本中提取出RNA,就可以对感兴趣RNA,如COL6A1,SOD1,COL6A2,ATP5O,BTG3,ADAMTS1,BACE2,ITSN1,APP,ATP5J,DSCR5,PLAC4,LOC90625,RPL17,SERPINB2或COL4A2的每种特定的SNP等位基因的量进行分析。
本发明中所选基因的变异体仍然有用。例如,PLAC4基因的有用变异体包括GenBank登录号为AF269287,AK027868,AK092431,BC093685,BC101615,BC101617,L13197,NM_182832和LOC191585的变异体。转录自PLAC4基因遗传坐位的RNA包含一个或多个单核苷酸多态或插入-缺失多态。转录自PLAC4基因的多态包括由以下SNPs数据库((dbSNP)www.ncbi.nlm.nih.gov/SNP/))登录号(具有基于UCSC基因组浏览器(genome.ucsc.edu/)的人类基因组2004五月(hg17)汇编的PLAC4同等物)鉴定的多态:rs3804026(PLAC4-41469163),rs4818219(PLAC4-41469764),rs9977003(PLAC4-41470591),rs7844(PLAC4-41470699),rs9015(PLAC4-41470877),rs13643(PLAC4-41471296),rs9305729(PLAC4-41472272),rs9305730(PLAC4-41472277),rs5019195(PLAC4-41473295),rs5019194(PLAC4-41473302),rs5844069(PLAC4-41473306),rs1049904(PLAC4-41473392),rs16998089(PLAC4-41473496),rs12482116(PLAC4-41475590),rs11909439(PLAC4-41475912),rs7278659(PLAC4-41476875),rs12106409(PLAC4-41477273),rs12106395(PLAC4-41477340),rs12106401(PLAC4-41477425),rs12106434(PLAC4-41477486),rs2183584(PLAC4-41477956),rs3949725(PLAC4-41478283),rs8130833(PLAC4-41478755),rs10222145(PLAC4-41480512)和rs9981478(PLAC4-41480564),或位于如PLAC4-41471145和PLAC4-41476236的PLAC4遗传座位内的其它多态,基于UCSC基因组浏览器(genome.ucsc.edu/)的人类基因组2004五月(hg17)汇编,其分别位于21号染色体的41471145和41476236核苷酸同等物上。本领域所属技术人员也应该理解PLAC4中的其它多态性在本发明中一样有用。
dbSNP登录号仅是指存在所述SNP基因组序列的SNP位置。所述SNP序列的范围可以从转录基因组序列上游或下游的部分选择。
本发明中使用的其它RNA-SNP包括基于UCSC基因组浏览器(genome.ucsc.edu/)的人类基因组2004五月(hg17)汇编的21号染色体上COL6A1(COL6A1-46247817)的Arg850His,COL6A1(COL6A1-46248064)的Ser932Ser和COL6A2(COL6A2-46370341)的Val728Val
在大多数情况下,采用多种本领域公知的(上文已列出,下文有详细描述)核酸扩增方法扩增靶序列时所希望的。特别地,核酸扩增是指用酶合成含有一条与被扩增核苷酸序列互补的序列的核苷酸复制子。当靶序列在样本中的含量很低时核酸扩增法特别有效。通过扩增所述靶序列并检测复制子的合成,可很大程度地改善分析的灵敏性,因为分析开始时较低含量的靶序列可以保证检测样品中的靶序列是来源于感兴趣的有机体或病毒。
多核苷酸扩增使用的方法如聚合酶链式反应(PCR),连接扩增反应(或连接酶链式反应(LCR)),及扩增方法是基于Q-β复制酶的应用。其他有用的方法还有链取代扩增(SDA),嗜热SDA,基于核苷酸序列的扩增(3SR或NASBA)和转录相关扩增(TAA)。这些方法在本领域内是公知的且应用广泛。进行PCR的试剂和仪器可以购买。
在扩增步骤之前,通常需要从所述目的RNA转录物合成DNA拷贝(cDNA)。该步骤可以通过反转录完成,可以通过单独步骤或在修改的扩增RNA的聚合酶链式反应的同源反转录聚合酶链式反应(RT-PCR)中完成。适于核酸PCR扩增的方法可参见Romero和Rotbart《诊断分子生物学:原理和应用》(Diagnostic Molecular Biology:Principlesand Applications)pp.401-406;Persing et al.,eds.,Mayo Foundation,Rochester,MN,1993;Egger et al.,J.Clin.Microbiol.33:1442-1447,1995;
以及和美国专利第5,075,212号。
PCR方法在本领域内是公知的,因此无需在此进行描述。关于PCR方法的综述,实验方法和引物设计原理可参考例如Innis等人的《PCR实验方法:方法和应用指南》(PCR Protocols:AGuide to Methods andApplications),Academic Press,Inc.N.Y.,1990。也可从零售商,如RocheMolecular Systems获得PCR试剂和操作方法。
通常情况下,都采用热稳定酶以自动化的过程实施PCR。在该过程中,反应混合物的温度通常是在变性区,引物退火区,和延伸反应区之间自动循环。适合这一目的的机器是商业可获得的。
用来扩增所述RNA转录物的引物优选与靶位点侧翼的序列互补或特异性杂交。通过扩增得到的多核苷酸序列可以直接测序。或者,可测序前将所述扩增产物克隆。另一种可能性,在进行等位基因特异PCR的操作时,可将引物设计成与所述SNP位点重叠。等位基因特异PCR可以鉴别RNA-SNP等位基因,因为只有正确的杂交引物才能被扩增。所述PCR引物指在聚合酶链式反应(PCR)中对转录自感兴趣位点转录,如COL6A1,SOD1,COL6A2,ATP5O,BTG3,ADAMTS1,BACE2,ITSN1,APP,ATP5J,DSCR5,PLAC4,LOC90625,RPL17,SERPINB2或COL4A2的RNA核算序列进行扩增的寡核苷酸。
尽管在本发明中通常进行所述靶RNA-SNP等位基因的PCR扩增,但本领域所属技术应该理解可以采用任何已知方法扩增血液样本中的RNA,例如连接酶链式反应(LCR),转录介导的扩增,自我保持序列复制或基于核苷酸序列的扩增(NASBA),每种方法都能提供足够的扩增。近期发展的分枝-DNA技术也可用来扩增血液中RNA标记的信号。用来直接定量临床样本的核酸序列所使用的分枝-DNA(b-DNA)信号扩增可参见Nolte,Adv.Clin.Chem.33:201-235,1998。
2.其它鉴别RNA-SNP等位基因的方法
也可以使用本领域所属技术人员公知的其它标准技术测定所感兴趣的RNA类型。尽管扩增步骤通常先于所述测定步骤,但在本发明的所述方法中扩增可不需要。例如,无论是在扩增步骤之前或之后进行,都可以通过大小分离(如凝胶电泳)鉴定所感兴趣的RNA类型。在经过公知的琼脂糖或聚丙烯酰胺凝胶电泳,并进行溴化乙锭标记之后(参见,例如上述的Sambrook and Russell,《分子克隆:实验手册》第3版,Molecular Cloning:A Laboratory Manual3d ed.,2001),与标准对照相同的条带的存在可以说明靶RNA的存在,可根据所述条带的强度,对所述条带的量与所述标准进行比较。可选择地,基于所述探针所产生信号的强度,可以采用与从如COL6A1,SOD1,COL6A2,ATP5O,BTG3,ADAMTS1,BACE2,ITSN1,APP,ATP5J,DSCR5,PLAC4,LOC90625,RPL17,SERPINB2或COL4A2的遗传座位转录而来的RNA特异的寡核苷酸探针来检测这些RNA类型的存在,并且与所述标准比较说明了所述RNA的量。
序列特异性的探针杂交是在含有其它核酸类型的条件下检测特异性核酸的公知方法。在足够严苛的杂交条件下,所述探针特异性地仅与基本上互补的序列杂交。可将所述杂交条件的严苛程度放宽从而允许不同量的序列错配。
在本领域中有多种杂交方式,包括液相,固相或混合相杂交分析方法。下述文章提供了对多种杂交分析方式的综述:Singer etal.,Biotechniques(生物技术)4:230,1986;Haaseetal.,MethodsinVirology(病毒学方法),pp.189-226,1984;Wilkinson,Insitu Hybridization(原位杂交),Wilkinson ed.,IRL Press,Oxford University Press,Oxford;以及Hames和Higgins eds.,Nucleic Acid Hybridization:APractical Approach(核酸杂交:操作方法),IRL Press,1987。
根据公知的方法可对杂交复合物进行测定,所述测定并不是本发明的重点。可以采用任意常用于测定杂交核酸存在的方法标记能特异性与靶核酸,即所感兴趣的RNA类型或所述扩增的DNA杂交的核酸探针。常见的测定方法是采用由3H,125I,35S,14C或32P等等标记的探针进行放射自显影。根据所选择同位素的合成容易程度、稳定性和半衰期,对放射性同位素的选择具有研究偏好。其它标记包括化合物(例如生物素和地高辛)标记,所述化合物能与荧光基团、化学发光剂和酶标记的抗配体(antiligands)或抗体相结合。可选择地,探针可以与诸如荧光基团、化学发光剂或酶的标记直接轭合。所述标记的选择依赖于所需要的敏感性、与所述探针轭合的难易程度、稳定性要求以及可利用的设备。
可以使用公知的技术合成和标记实施本发明所必需的探针和引物。可以根据首先由Beaucage和Caruthers,Tetrahedron Letts.,22:1859-1862,1981所述的固相亚磷酰胺三酯法,如Needham-VanDevanter etal.,Nucleic Acids Res.12:6159-6168,1984所述,使用自动合成仪,对用作探针和引物的寡核苷酸进行化学合成。如Pearson and Regnier,J.Chrom.,255:137-149,1983所述,可采用天然丙烯酰胺凝胶电泳或阴离子交换高效液相色谱(HPLC)对寡核苷酸进行纯化。
其它鉴别RNA转录等位基因的有用方法包括直接测序,如焦磷酸测序。焦磷酸测序的过程涉及引物模板复合体,其中每次加入四种脱氧核苷三磷酸的一种。当所述脱氧核苷三磷酸与所述DNA聚合酶结合,就会发射出光信号。所产生的光信号的强度与加入碱基的数目成比例。由此推断出下游序列。
引物延伸反应在本发明中同样有用。引物延伸反应用来鉴别SNP等位基因的方法如下,该方法通过脱氧核苷酸和/或双脱氧核苷酸与引物延伸引物接合来完成,所述引物又与SNP位点相邻的部位杂交。所述引物是通过聚合酶延伸的。引物延伸的SNP可以通过质谱物理地进行测定或通过如生物素的标记部分进行识别。由于所述SNP位点只能通过由特异标记结合或产生具有特定分子量大小的产物的互补脱氧核苷酸和/或双脱氧核苷酸进行延伸,所以可以对所述SNP等位基因进行鉴别。
质谱法可以对多核苷酸,如PCR复制子或引物延伸产物进行检测。通过比较所述检测到的信号的分子量与目标多核苷酸的期望分子量可以验证所出现的多核苷酸序列。特定多核苷酸序列的相对信号的强度表明特异等位基因相对数量,因此可以从所得数据中直接计算出等位基因比例。质谱分析基因型的方法可参见Pusch et al.,Pharmacogenomics3:537-548,2002。
D.确定RNA-SNP等位基因的比例
一般来说,确定RNA-SNP等位基因比例涉及计算样品中每个RNA-SNP等位基因的相对数量,并将所测定的一个RNA-SNP等位基因的值除以其他RNA-SNP等位基因的值。采用基于PCR的检测系统可根据与所述PCR相关的标记强度、引物延伸或杂交反应产物将一个等位基因与其它等位基因相除。检测RNA-SNP等位基因比例的其它方法包括比较所述测序产物的丰度和每个等位基因的克隆序列数量。所述RNA-SNP比例也可通过质谱分析比较所述等位基因的质谱信号强度来确定。
作为选择,RNA-SNP比例也可以通过反应中每个等位基因积累的荧光强度(ΔRn)差异,或者每个等位基因的PCR反应积累到阈荧光强度所要求的PCR循环数(Ct)进行确定。ΔCt和ΔΔRn反应了所述RNA-SNP等位基因比例,因为这些值与所述RNA等位基因数值的对数成比例。结果,每个等位基因的起始循环值的差异(ΔCt)或积累荧光强度(ΔΔRn)反应了RNA转录物的SNP比例。例如,等位基因A可以用FAM(6-羧基荧光素)标记标签进行检测,而等位基因B则可以用荧光探针如VIC(AppliedBiosystems)进行检测。计算等位基因A和B的Ct和ΔRn值。这两个Ct值差异可以用阈循环值进行确定,并产生ΔCt值。这两个ΔRn值差异可以用积累的荧光强度进行确定,并产生ΔΔRn值。由于Ct和ΔRn与PCR产物的丰度成对数相关,所以计算出每个RNA-SNP的Ct和ΔRn值,而且这些差异(ΔCt和ΔΔRn值)则反应了两个RNA等位基因之间的RNA-SNP比例。
E.将所述RNA-SNP比例与标准对照进行比较
一旦确定了所述受试者的等位基因比例,就将所述比例与标准对照进行比较以检测胎儿非整倍性的存在。当与对照样品所确定的已知值相比时,无论RNA-SNP比率高于或低于所述对照,都表明胎儿非整倍性的存在。例如,当与对照样品所确定的已知值相比时,无论所述SNP等位基因之间的ΔCt值,ΔΔRn值,标签或者质谱强度比例高于或低于所述标准对照,都表明胎儿非整倍性的存在。
为了建立标准对照,首先要选取一组怀有健康胎儿的健康孕妇。这些妇女应具有类似的妊娠龄,所述妊娠龄应该处于使用本发明方法对诸如胎儿染色体非整倍性的病症进行检测的适当的怀孕阶段之内。类似地,可使用来自健康未怀孕妇女组别的样品建立标准对照。通过例行采用的方法,包括细胞遗传学分析或上述方法对所获取生物样本进行胎儿遗传分析,来对所选择的孕妇和胎儿的健康状况进行证实。对标准对照进行测定可以在检测胎儿非整倍性之前。
此外,怀有健康胎儿的健康怀孕妇女的选择组必须具有合理性的规模,从而使得从所述组计算出来的编码COL6A1,SOD1,COL6A2,ATP5O,BTG3,ADAMTS1,BA CE2,ITSN1,APP,A TP5J,DSCR5,PLA C4,LOC90625,RPL17,SERPINB2或COL4A2的RNA-SNP等位基因的平均值、平均数或中值比例能够合理地代表从怀有健康胎儿的健康妇女总群体的正常值,平均值、平均数或中值。在某些例子中,该组含有至少10妇女。
一旦从基于所选择组中的每个妇女个体数值的RNA-SNP等位基因比例中建立了平均值,就可将该值作为所述RNA类型的标准。任何含有相同类型RNA类似比例的血液样品可被用作标准对照。也可以人工制备具有相同类型RNA已建立平均比例,含有编码COL6A1,SOD1,COL6A2,ATP5O,BTG3,ADAMTS1,BA CE2,ITSN1,APP,ATP5J,DSCR5,PLA C4,LOC90625,RPL17,SERPINB2或者COL4A2的RNA溶液,并将其用作标准对照。
至少高于对照样品平均值10%的RNA-SNP比例的增加表明怀有染色体异常胎儿的可能性增大。在某些情况下,RNA-SNP比例的增加至少达到50%。在其它情况下,RNA-SNP比例的增加至少达到100%。在另一些情况下,至少低于对照样品平均值10%的RNA-SNP比例表明怀有染色体异常胎儿的可能性增大。在某些情况下,所述减少至少为50%或90%。
至少高于或低于对照样品平均值一个标准偏差的RNA-SNP比例表明怀有染色体异常胎儿的可能性增大。至少高于或低于对照样品平均值两个标准偏差的RNA-SNP比例也表明怀有染色体异常胎儿的可能性增大。至少高于或低于对照样品平均值三个标准偏差的RNA-SNP比例表明怀有染色体异常胎儿的可能性增大。在一些案例中,高于或低于对照样品平均值一个标准偏差之内的RNA-SNP比例也表明怀有染色体异常胎儿的可能性增大。
F.检测怀孕妇女所怀胎儿的染色体异常的试剂盒
本发明还提供了检测怀孕妇女所怀胎儿的染色体异常的试剂盒。本发明所述的试剂盒包括扩增目的区域的引物。本发明所述试剂盒所使用的用以区分等位基因的引物已经在前文进行了描述。所述引物可以是标记特异性的或者以非特异方式起作用。
本发明所述试剂盒的其它成分为一个代表怀有染色体正常胎儿的怀孕妇女RNA等位基因比例平均值的标准对照。该标准对照是采用如前所述检测怀孕妇女所怀胎儿染色体异常的相同方法进行确定的。
本发明所述试剂盒也含有鉴别每种RNA的不同等位基因的杂交探针。每种RNA的不同等位基因可以是单核苷酸多态、插入/缺失多态或简单串联重复多态。本发明所述试剂盒所用的杂交探针是如前所述检测怀孕妇女所怀胎儿染色体异常的方法中使用的相同杂交探针。该杂交探针可以是放射性的、荧光标记的、化学发光的或酶学的。用作探针的寡核苷酸可根据已知技术(Beaucage and Caruthers,Tetrahedron Letts.,22:1859-1862,1981,使用自动合成仪,根据Needham-VanDevanter et al.,Nucleic Acids Res.12:6159-6168,1984)进行制备。本发明的探针可以是特异性的或非特异性的。本领域所属技术人员应该理解还有其它方法可用于本发明所述的试剂盒中来区别每种RNA的等位基因,例如前文所述的方法。
本发明所述试剂盒还可以含有本领域所属技术人员所理解的可用于本发明所述试剂盒的其他成分。
仅以说明目的而非限制性目的提供以下实施例。本领域所属技术人员应该很容易理解,对多种非关键性参数进行改变和修改也能得到基本类似的结果。
III.实施例
本发明所述方法是用于检测在某一特定遗传座位上为杂合子的个体的染色体异常,即检测该个体是否在该特定座位出现不正常的染色体数目,例如2个染色体为正常,3个染色体则为异常。在妊娠的情况下,当所述生物样本是直接采集于孕妇时,检测染色体非整倍性的个体是该孕妇所怀的胎儿。在一个应用该方法进行出生前诊断的实施方案中,在胎盘组织该基因的额外拷贝是与其对应的正常基因对一同表达的。作为该基因额外拷贝的结果,胎盘中所述RNA等位基因的比例偏离于正常胎盘的等位基因比例。然后所述RNA转录物被释放到母体血液中,它们的相对丰度反映了胎盘基因表达情况。据此,从怀有染色体异常胎儿的孕妇血液或其组成成分(如血浆)检测到的所述RNA等位基因比例,与怀有染色体整倍体胎儿的孕妇的所述比例有所偏差。
利用RNA转录物检测染色体异常需要对在母体血液中具有可检测的表达水平的胎儿特异性标记物进行鉴定,对具有胎盘高表达的标记的转录区域进行鉴定,在母体血液中测定所述转录物的能力,确定所述转录物是妊娠特异性的,确定所述转录物的等位基因比例,从而确定染色体异常的存在与否。
以下实施例给出了鉴定有用标记物和转录物的例子,检测所述转录物并确证所述转录物是妊娠特异性的方法,以及定量所述转录物和测定所述RNA等位基因比例来检测染色体异常的方法。本领域所属技术人员应理解还有其它方法和技术也可适用于本发明。
实施例1:鉴定SNP用于检测胎儿的21号染色体三体
鉴定SNP用于检测胎儿的21号染色体三体需要鉴定出在胎儿细胞中表达得RNA类型并且并所起在所分析的生物样本中具有可检测的浓度。
鉴别具有胎盘高表达水平的胎儿特异转录物
通过对各个组织样品进行微阵列分析获得了五例头三个月绒毛膜绒毛样品(CVS)的基因表达谱。在从母体血浆循环RNA分子中鉴别出胎盘表达的转录物时,获得了母体全血(特别是母体造血细胞)的基因表达谱,并与胎盘组织相应的基因表达谱进行比较。通过在所有五个比较中与对应的全血样品进行比较,筛选在CVS样品中表达水平增加的转录物,从而鉴别出妊娠早期的胎盘表达转录物。
样品处理与RNA提取。在治疗性终止妊娠前从孕妇CVS中收集五例头三个月胎盘组织样品。在所有样品中胎儿核型被证明为正常。胎盘组织样品收集后立即保存于RNAlaterTM(Ambion,Austin,TX)并置于-80℃以待RNA提取。在采集组织样品同时收集6毫升母体外周血液并保存于PAXgeneTM血液RNA试管(PreAnalytiX,Hombrechtikon,Switzerland)。胎盘组织总RNA用Trizol试剂盒(Invitrogen,Carlsbad,加利福尼亚)提取,并用RNeasy小型试剂盒(Qiagen,Hilden,德国)加以纯化,操作按使用说明。外周血液总RNA根据使用说明用PAXgeneTM血液RNA试剂盒(PreAnalytiX,Hombrechtikon,Switzerland)提取,其中还包括DNA酶处理(无RNA酶的DNA酶组合,Qiagen,Hilden,德国)。
用高密度寡核苷酸阵列分析基因表达。对每个样品,根据使用说明标记10微克提取的RNA并用GeneChip人类基因组U133A与U133BArrays(Affymetrix,Santa Clara,加利福尼亚)与之杂交。杂交后,洗涤每个阵列,并在GeneChipFluidics Station400(Affymetrix)中进行染色。芯片用GeneArray扫描仪(Affymetrix)进行扫描,并用GeneChipMicroarray Suite5.0(Affymetrix)进行分析。对来源于21号染色体的主要表达于胎盘组织而非母体外周血的转录物进行挑选。在表达于CVS样品中的7226个基因转录物中,1245个转录物在CVS表达水平要高于母体外周血样品。在这些转录物中,有13个胎盘表达基因位于21号染色体上(表1)。
表1.对位于21号染色体上的胎盘表达基因进行的微阵列测定。转录物是根据对于微阵列信号的中值进行降序排列分类。
探针组序号 序列来源 转录物 缩写 位置 信号(中值)
213428_s_at200642_at209156_s_at200818_at213134_x_at214953_s_at202325_s_at214750_at222162_s_at217867_x_at221689_s_at209298_s_at#232191_at AA292373NM_000454.1AY029208.1NM_001697.1A1765445X06989.1NM_001685.1L13197AK023795.1NM_012105.1AB035745.1AF114488.1BC005107.1 胶原VI型α1超氧化歧化酶1,可溶性(肌萎缩性(脊髓)侧索硬化1(成人))胶原VI型α2线粒体ATP合成酶O亚基(ATP5O)(寡霉素敏感交换蛋白)BTG家族成员3淀粉体β(A4)前体蛋白(蛋白酶连接蛋白II,阿尔茨海默氏病)ATP合成酶,氢离子转运,线粒体F0复合体亚基F6胎盘特异4含有血栓收缩蛋白I型基序的非整合蛋白样和金属蛋白Iβ位点-APP剪切酶2唐氏先天愚症临界区域基因5交叉蛋白1(SH3结构域蛋白)假定蛋白BC005107 COL6A1SOD1COL6A2ATP5OBTG3APPATP5JPLAC4ADAMTS1BACE2DSCR5TSN1LOC90625 21q22.321q22.1121q22.321q22.1121q21.121q21.321q21.121q22.321q21.221q22.321q22.221q22.1-q22.221q22.3 8419.27084.77076.93247.82564.92376.12303.12209.91780.81093.4900.7199.96910.2
五例头三月胎盘组织的微阵列信号中值#转录物用人基因组U133B Arrays(Affymet rix)进行检测.未注明转录物由人基因U133A Arrays(Affymet rix)进行检测
鉴定可用的SNP和计算等位基因比例
从公共数据库中鉴定出了一些单核苷酸多态(SNP),这些SNP位于21号染色体上具有高胎盘组织表达的遗传座位转录区域。每个SNP的等位基因比例是通过中国人和高加索人群体进行计算的。杂合度高的SNP为目标SNP。
在主要表达于胎盘的位于21号染色体上的这13个基因(表1)中,4个基因具有最高胎盘表达水平,分别为胶原VIα1(COL6A1),超氧化歧化酶1(SOD1),胶原VIα2(COL6A2),线粒体ATP合成酶O亚基(ATP5O),把这些基因挑选出来做进一步分析。选择位于这些基因外显子内的SNP来研究mRNA的多态性。利用相应SNP侧翼的PCR引物(表2)对10个中国人和10个高加索人白血球DNA进行直接测序,以测定这些编码多态的每个等位基因比例。测序用BigDye Terminator CycleSequencing v1.1(Applied Biosystems,Foster City,加利福尼亚)和一个3100DNA分析仪(Applied Biosystems)完成。
表2.对四个位于21号染色体上的基因进行直接测序的PCR引物
转录物 序列(5’到3’)
正向引物 反向引物
COL6A1 GGCTGACATCACCATCCTGTTGGAAAGCCAGGACACAAC AGAGCAGCAGCCTCTTCTTGTGAGGATTGGTGGGAAAAC
SOD1 TTTTCCACTCCCAAGTCTGGTTGCAACACCAAGAAAAAGC CGACAGAGCAAGACCCTTTCTCTGGCAAAATACAGGTCATTG
COL6A2 TCATCAACGTGGTCAACAGGGTGGACATCGTCTTCCTGCTAACGACAGTCTGCACGAGTC TCACTCTCGTGCTTCTCGTGGTGGATGGCAGTGAGGTTGTCAGGTAGGTCAGGAGCCTTG
ATP5O GGCCTGAGATTCTTCACTGC AAAATTAGCGGGACATGGTG
所述转录SNP的等位基因比例如表3所示。在两个群体中一个群体中杂合度达到至少30%的SNP被视为有信息量,其可被选作靶标进行进一步分析开发。
表3在10个中国人和10个高加索人不相关个体中的对COL6A1,SOD1,COL6A2和ATP5O编码SNP的基因型分析
COL6A1 dbSNP等位基因 1053312A/G 1053315A/G 13879T/C 1053320T/C 1053331A/G 9254A/G
中国人高加索人 f(少数等位基因)杂合度f(少数等位基因)杂合度 0.200.320.40048 0.200.320400.48 000.050.10 0.200.3200.400.48 000.150.26 0.100.180.150.26
SOD1 dbSNP等位基因 1804450T/C 1804449T/C 4804447T/C 15012G/A 1804448G/T
中国人高加索人 f(少数等位基因)杂合度f(少数等位基因)杂合度 0000 0000 0000 0.200.320.250.38 0000
COL6A2 dbSNP等位基因 1042917A/G 2839114A/G 3182348T/C 1042930A/G 6652T/C 1043801A/G
中国人高加索人 f(少数等位基因)杂合度f(少数等位基因)杂合度 0.500.500.450.50 0.500.500.500.50 0000 0000 000.150.26 000.150.26
dbSNP等位基因 3087667C/T 1043962G/A 1043985T/C
中国人高加索人 f(少数等位基因)杂合度f(少数等位基因)杂合度 0000 0000 0000
ATP5O dbSNP等位基因 4842A/G 4591C/T
中国人高加索人 f(少数等位基因)杂合度f(少数等位基因)杂合度 0.150.260.400.48 0000
列出了每个SNP位点的dbSNP序列号。对于每个SNP,少数等位基因列在前面,
“f(少数等位基因)”代表少数等位基因比例。
鉴定所述选定转录物的可检测性及妊娠特异性
利用实时定量RT-PCR可以在母体血浆中检测到这四个位于21号染色体具有胎盘表达的转录物,该RT-PCR是通过扩增这些转录物的非多态性区域进行的。与非孕妇相比,这些存在于孕妇血浆中的转录物浓度特别高。另外,存在于孕妇血浆中的这些转录物浓度随着小孩出生急剧下降。所以,胎盘是母体血浆中这些mRNA转录物的主要来源。
样品收集和处理。从6个非孕妇和10个头三个月妊娠孕妇收集全血样品。外周血样品是在婴儿出生前和出生后24小时从五个末三个月孕妇体内进行收集的。将12毫升血液样品收集于EDTA试管中并在4℃,以1600x g离心10分钟,然后将血浆小心转移到空的聚丙烯试管。再将所述血浆样品在4℃,以16000x g离心10分钟,将上清液收集到新的聚丙烯试管中。从母体血浆中提取RNA的反应如下:将4ml的Trizol LSreagent(Invitrogen,Carlsbad,加利福尼亚)和0.8ml氯仿(Ng,E.K.O.et al.,Clin Chem48:1212-1217(2002))与3.2ml血浆混合,混合液在4℃,以12000x g转速离心15分钟,将水相层转移到新试管中,并加入等体积的70%乙醇。然后根据制造商指南用RNeasy小型柱(Qiagen,Hilden,德国)对所述该混合液进行处理。总RNA用60μl无RNA酶的水进行洗脱并保存于-80℃。用DNA酶处理用来清除任何污染DNA(RNase-Free DNase Set,Qiagen,Hilden,德国)。
实时QRT-PCR的开发。对QRT-PCR进行开发从而对胶原VIα1(COL6A1),过氧化歧化酶1(SOD1),胶原VIα2(COL6A2),线粒体ATP合成酶O亚基(ATP5O)的mRNA进行测定。所述引物序列和TaqMan小沟结合(MGB)荧光探针(Applied Biosystems,Foster City,加利福尼亚,美国)如表4所示。校准曲线是用与相应扩增子特异性的高效液相层析纯化的单链合成DNA寡核苷酸的连续稀释液制成的,其浓度范围从1X106拷贝到10拷贝。根据COL6A1,SOD1,COL6A2和ATP5O合成的DNA寡核苷酸序列如表4。所有转录物的绝对浓度用拷贝数与血浆毫升数的比值表示。
表4对21号染色体上编码所述胎盘表达转录物进行实时QRT-PCR测定的引物和探针的序列
转录物 序列(5’到3’)1
COL6A1正向引物反向引物探针标准曲线 GACAAAGTCAAGTCCTTCACCAAGCGTTCCACACCAGGTTT(FAM)CGCTTCATCGACAACC(MGBNFQ)TGGACAAAGTCAAGTCCTTCACCAAGCGCTTCATCGACAACCTGAGGGACAGGTACTACCGCTGTGACCGAAACCTGGTGTGGAACGCAG
SOD1  正向引物反向引物探针标准曲线 CAGGGCATCATCAATTTCGTGCTTCCCCACACCTTCA(FAM)CAGAAGGAAAGTAATGGACCA(MGBNFQ)TGCAGGGCATCATCAATTTCGAGCAGAAGGAAAGTAATGGACCAGTGAAGGTGTGGGGAAGCATT
COL6A2  正向引物反向引物探针标准曲线 GATCAACCAGGACACCATCAACCGTAGGCTTCGTGTTTCA(FAM)CGCATCATCAAGGTC(MGBNFQ)GAGATCAACCAGGACACCATCAACCGCATCATCAAGGTCATGAAACACGAAGCCTACGGAG
ATP5O  正向引物反向引物探针标准曲线 CCCTCACTACCAACCTGATCACCTTGGGTATTGCTTAATCGA(FAM)TGCTTGCTGAAAATG(MGBNFQ)TCCCCTCACTACCAACCTGATCAATTTGCTTGCTGAAAATGGTCGATTAAGCAATACCCAAGGAG
1FAM:荧光标记;MGBNFQ:小沟结合非荧光猝灭剂。
根据制造商指南(EZ rTthRNA PCR试剂盒Applied Biosystems)在25μl体系中进行QRT-PCR反应。所述QRT-PCR反应在组合的热循环仪和荧光检测仪(ABI Prism7700,Applied Biosystems)上完成。对所有四个转录物,PCR引物(Proligo)和荧光探针(Applied Biosystems)的浓度分别为300nM和100nM。将5μl提取的血浆RNA用于扩增。在每个分析中都包含多个阴性水空白对照。
用于对COL6A1,SOD1,COL6A2和ATP5O进行分析的温度设置如下:反应在50℃保持2分钟以使其内含的尿嘧啶N-糖苷酶起作用,接着在60℃进行30分钟的反转录。95℃变性5分钟后,进行92℃变性15秒、57℃(COL6A1和ATP5O)或56℃(COL6A2)或59℃(SOD1)退火/延伸1分钟的40个循环。
胎盘表达21号染色体转录物能在母体血浆检测到并具有妊娠特异性。非孕妇、头三个月和末三个月孕妇的COL6A1的血浆mRNA浓度中值分别为0拷贝/ml,0拷贝/ml和72.6拷贝/ml(图2A);对于SOD1则分别为25.3拷贝/ml,53.0拷贝/ml和155.6拷贝/ml(图2B);对于COL6A2的则分别为0.8拷贝/ml,2.1拷贝/ml和8.8拷贝/ml(图2C);对于ATP5O的则分别为6.2拷贝/ml,88.2拷贝/ml和126.4拷贝/ml(图2D)。对所有四个转录物,它们的在末三个月期孕妇的血浆浓度要明显高于非妊娠组(Mann-Whitney Rank Sum检测,对COL6A1,SOD1,COL6A2和ATP5OmRNAP<0.05)。另外,在分娩前血浆样品中,COL6A1,SOD1,COL6A2和ATP5O mRNA浓度中值分别为72.6拷贝/ml,155.6拷贝/ml,8.8拷贝/ml以及126.4拷贝/ml(图3A对应COL6A1mRNA,图3B对应SOD1mRNA,图3C对应COL6A2mRNA以及图3D对应ATP5O mRNA)。而对于分娩后的血浆样品,COL6A1,SOD1,COL6A2和ATP5O mRNA浓度中值分别为0拷贝/ml,56.2拷贝/ml,0.8拷贝/ml和56.2拷贝/ml。实施例2:通过实时定量RT-PCR测定孕妇所怀胎儿的21号染色体三体
将两个具有最高多态比例的SNP作为等位基因特异QRT-PCR的靶SNP。设计有判别力的杂交探针用以鉴别每个SNP的不同等位基因。实时PCR和直接测序获得相同基因型的结果证实了所述探针的等位基因特异性。然后将这些探针与QRT-PCR反应结合,首先测出在胎盘组织中每个SNP的不同等位基因的相应表达水平。从正常CVS、正常到期胎盘以及21号染色体三体孕妇胎盘中提取RNA,并用等位基因特异的QRT-PCR进行测定。由于在有和无21号染色体三体的妊娠每个SNP的等位基因比例基本是不同的,因此可用母体血浆测定胎儿的21号染色体三体。
样品收集和处理。分别在治疗性终止妊娠前或剖腹产后立即从13个头三个月和20个末三个月妊娠孕妇中以绒毛膜绒毛采样(CVS)形式采集胎盘组织样品。同时采集7个21号染色体三体的妊娠的胎盘组织样品。所有组织处理如前所述。
等位基因特异QRT-PCR的开发。选择具有最高多态比例的两个有分别功能的编码SNP,这两个SNP分别为COL6A1和COL6A2基因的rs1053312(dbSNP序列号)和rs2839114。建立等位基因特异QRT-PCR反应来测定每个SNP两个等位基因的相对浓度。为了检测等位基因,在每个QRT-PCR反应中都包含有分别特异于一个等位基因的两个荧光MGB探针。这两个探针用FAM(6-羧基荧光素)和VIC荧光染料进行标记。等位基因特异QRT-PCR的引物和探针序列如表5所示。实时PCR和直接测序获得相同基因型的结果证实了所述探针的等位基因特异性。
表5.对靶RNA-SNP进行等位基因特异QRT-PCR测定的引物和探针序列
转录物 dbSNP 序列(5’到3’)1
COL6A1 1053312正向引物反向引物探针(等位基因G)探针(等位基因A) GGCAGCCACAACTTTGACACCTCGGCCAGGCGCTT(VIC)ACCAAGCGCTTCGC(MGBNFQ)(FAM)ACCAAGCACTTCGC(MGBNFQ)
COL6A2 2839114正向引物反向引物探针(等位基因G)探针(等位基因A) GGCGCCAGAAGACACGTGTCGTGGCGCCCGT(VIC)TGATGACCACCGCAAA(MGBNFQ)(FAM)TGATGACTACCGCAAA(MGBNFQ)
1VIC和FAM:荧光标记。MGBNFQ:小沟结合非荧光猝灭剂
根据前面的操作步骤建立用于等位基因检测和相应定量的QRT-PCR反应,反应所用PCR引物(Proligo)和荧光探针(Applied Biosystems)的浓度分别采用450nM和100nM,扩增模板为17ng的胎盘RNA样品。每个QRT-PCR反应在Applied Biosystems7700Sequence Detector进行。热循环条件如前所述,所述退火/延伸温度为59℃。只对杂合的样品进行分析。
统计分析。统计分析采用Sigma Stat 2.03 software(SPSS)进行。
对编码RNA-SNP的21号染色体的相对定量。这两个等位基因的相对数值是用其阈循环数的差异(ΔCt)或者积累荧光强度的差异(ΔΔRn)进行计算的,计算公式如下:
ΔCt=CtFAM-CtVIC
ΔΔRn=ΔRnFAM-ΔRnVIC
其中CtFAM和CtVIC为等位基因A(用FAM标记探针检测)和等位基因B(用VIC标记探针检测)的阈循环数。ΔRnFAM和ΔRnVIC为等位基因A和等位基因B的积累荧光强度值,以上数值是用SDS v1.9软件(AppliedBiosystems)计算出的。Ct值和ΔRn值与PCR产物丰度呈对数相关,因此每个RNA-SNP的Ct值和ΔRn值的差异反映了这两个等位基因的RNA-SNP比例。
对SNP rs1053312(COL6A1)而言,经过等位基因特异QRT-PCR检测,其在1个CVS,6个正常妊娠胎盘和3个21号染色体三体胎盘样品中都表现杂合性。如图4所示,3个21号染色体三体胎盘样品的ΔCt值偏离于从正常妊娠的CVS和到期胎盘的ΔCt值。
对SNP rs2839114(COL6A2)而言,经过等位基因特异QRT-PCR检测,在8个CVS,13个正常妊娠的到期胎盘和3个21号染色体三体胎盘样品中都表现杂合性。如图5A所示,3个21号染色体三体胎盘样品的ΔCt值偏离于正常妊娠的到期胎盘的ΔCt值,其中2个21号染色体三体胎盘样品表现出较高的ΔCt值,而另一个则具有较低的ΔCt值。21号染色体三体ΔC值偏离可以降到高于或低于正常妊娠范围,这取决于该等位基因过量存在。用ΔΔRn值也得到类似结果(图5B)。
实施例3:应用引物延伸和质谱检测法测定孕妇所怀胎儿的21号染色体三体
将两个具有最高多态率的SNP(COL6A1的rs1053320和COL6A2的rs2839114)被选作进一步分析之用。引物延伸反应能测定胎盘组织样品的SNP基因型。样品用质谱进行处理以区别不同的RNA-SNP等位基因,并检测RNA-SNP等位基因的相对表达水平从而计算所述等位基因比例。由于从有和无21号染色体三体的妊娠检测到每个SNP等位基因比例的差异足够高,所以可以利用母体血浆测定胎儿的21号染色体三体。
胎盘组织收集和处理。在治疗性终止妊娠前从带有21号染色体三体胎儿的孕妇体内采集中三个月期胎盘组织样品。在染色体正常胎儿出生后立即收集末三个月期胎盘组织样品。这些胎盘组织样品分成两份,其中一个在收集后立即置于RNAlaterTM(Ambion,Austin,德克萨斯)中,并保存于-80℃直到进行RNA提取,而另一份则立即保存于-80℃直到进行DNA提取。根据制造商的指南,采用QIAamp小型试剂盒,从胎盘组织中提取DNA。从胎盘组织中进行的总RNA提取则是根据制造商的指南,用Trizol Reagent(Invitrogen,Carlsbad,加利福尼亚)进行提取和RNeasy小型试剂盒(Qiagen,Hilden,德国)进行纯化的。
胎盘DNA和RNA扩增。对RNA扩增,根据制造商指南用随机六聚体(TheromScript,Invitrogen)对450ng胎盘RNA进行反转录。在每个PCR反应(AmpliTaq Gold,Applied Biosystems)中采用对应于50ng总RNA的cDNA或25ng DNA。扩增COL6A1和COL6A2上每个SNP位点的引物序列如表6。在25μl PCR体系中引物的终浓度为200nM。PCR反应条件为:95℃变性10分钟,然后进行94℃变性20秒,56℃退火30秒,72℃延伸1分钟的45循环,最后在72℃保温3分钟。
表6扩增COL6A1和COL6A2上SNP位点的引物序列
转录物 SNP 序列(5’到3’)
COL6A1 rs1053320正向引物反向引物 ACGTTGGATGCTATGTGACCCGCTTCTACCACGTTGGATGGAGTTGCCATCTGAGAAGAG
COL6A2 rs2839114正向引物反向引物 ACGTTGGATGACCGCCTCATCAAGGAGAGCACGTTGGATGAAGTTGAGGTCATCGTCCCG
通过引物延伸反应测定SNP。设计引物延伸反应用来测定胎盘组织样品的SNP基因型。将所述胎盘RNA-SNP基因型与从胎盘DNA所获得基因型进行比较。胎盘DNA和RNA PCR产物在37℃用虾碱性磷酸酶(Sequenom,圣地牙哥,美国)处理40分钟,接着在85℃处理5分钟去除多余dNTP。将引物延伸引物和2’,3’-双脱氧核苷三磷酸(ddNTP)和dNTP的混合液加入到处理过的PCR产物中。所设计的检测COL6A1和COL6A2上选中SNP位点的引物延伸的引物序列如表7所示。根据Sequenom标准MassARRAYTM Homogeneous MassEXTENDTM(hME)方案进行碱基延伸反应。碱基延伸条件如下:94℃变性2分钟,然后进行94℃变性5秒,52℃退火5秒,72℃延伸5秒的75循环。每个SNP等位基因的引物延伸产物序列如表7所示。延伸终产物用SpectroCLEAN树脂(Sequenom)在反应缓冲液中处理脱盐。用SpectroPoint(Sequenom)微小分配器将约10nL反应液分配到384-format SpectroCHIP(Sequenom)上。用台式MALDI-TOF质谱分析仪获取数据。在分析前计算出所有有关峰的期望分子量(表7)并用质谱进行鉴定。通过对对应于特定SNP等位基因的质谱信号的有无评分来确定所述SNP基因型。
表7COL6A1的rs1053320和COL6A2的rs2839114的不同SNP等位基因的延伸产物的引物延伸引物序列、延伸产物期望序列及分子量
转录物 SNP 延伸序列1 分子量(Da)
COL6A1 rs1053320未延伸等位基因T等位基因C CTCTTCTTGGCAGCGCCCTCTTCTTGGCAGCGCCACTCTTCTTGGCAGCGCCGGA 5113.35410.56068.9
COL6A2 rs2839114未延伸等位基因A等位基因G AAGACACGTGTGTTTGCGGTAAGACACGTGTGTTTGCGGTAAAGACACGTGTGTTTGCGGTGGT 6188.06485.27134.6
1粗体表示延伸的dNTP和ddNTP
SNP比例的测定。将质谱分析数据自动输入SpectroTYPER(Sequenom)数据库进行自动分析。测定了所述SNP在胎儿杂合子的两个SNP等位基因中的所述质量信号的峰频率比例。对染色体正常和21号染色体三体胎儿的SNP比例进行了比较。21号染色体三体胎盘DNA的SNP比例与正常胎儿的COL6A1(图6A)和COL6A2(图7A)的SNP比例有偏离。与正常胎儿相比,21号染色体三体胎儿的SNP比例是减少还是降低取决于21号染色体三体的SNP基因型。所述SNP的胎盘组织SNP比例在21号染色体三体胎儿的COL6A1(图6B)和COL6A2(图7B)RNA转录物上也表现出与正常胎儿的偏离。
实施例4:通过引物延伸和质谱分析利用母体血浆中的循环胎儿RNA对21号染色体三体胎儿进行非侵入性产前检测
为了说明其他的SNP也可用于检测孕妇所怀胎儿的染色体异常,我们对胎盘特异4(PLAC4)(表19)进行了研究。引物延伸反应分析可测定所述胎盘组织和母体血浆样品的RNA-SNP基因型。利用质谱分析引物延伸产物从而对RNA-SNP等位基因比例进行定量。由于有和无21号染色体三体的胎儿PLAC4SNP的等位基因比例的差异足够高,因此可以利用母体血浆检测胎儿的21号染色体三体。
胎盘特异4(PLAC4)基因中可用编码SNP的鉴定和等位基因比例的测定
SNP的鉴定。胎盘特异4(PLAC4)基因在胎盘高效表达,但是在白血球细胞表达水平较低。PLAC4基因位于21染色体的唐氏综合症的关键区域。PLAC4基因序列如表19所列,跨度为染色体21上的41469028-41480585核苷酸,该序列基于在UCSC基因组浏览器(genome.ucsc.edu/)上的人类基因组2004年5月(hg17)的汇编。表19所列的PLAC4基因序列含有所有已知的和预测的PLAC4RNA剪切变异体,它们的GenBank序列号为:AF269287,AK027868,AK092431,BC093685,BC101615,BC101617,L13197,NM_182832和LOC191585。对PLAC4基因的外显子/转录区域进行测序以鉴定多态SNP。从10个不相关中国孕妇提取的胎盘DNA样品用于直接测序。DNA首先用PCR对20ng的基因组DNA进行扩增。用BigDye Terminator Cycle Sequencing v1.1(AppliedBiosystems,Foster City,加利福尼亚)和Model3100DNA分析仪(AppliedBiosystems)进行测序。
等位基因频率的确定。PLAC4基因转录区域的四个编码SNP被检测出在中国人群中具有多态性(表8)。这四个SNP分别位于UCSC基因组浏览器(genome.ucsc.edu/)上人类基因组2004年5月(hg17)汇编的21号染色体41470591,41471145,41476236和41478755核苷酸位置。位于21号染色体41470591和41478755核苷酸位置的SNP的dbSNP序列号分别为rs9977003和rs8130833。根据其在UCSC基因组浏览器(genome.ucsc.edu/)上人类基因组2004年5月(hg17)汇编的21号染色体的核苷酸位置,其余两个新的SNP分别命名为PLAC4-41471145和PLAC4-41476236。它们的等位基因比例如表9所示。在这四个SNP中,rs8130833多态性最高,因而对其进行深入分析。
表8.位于PLAC4基因的编码区域的四个多态SNP
SNP 序列
PLAC4-414787551(rs8130833)2 5′-TTTTACAAAATAAGCCTAATCGTAAAATATCACTATAGTATATAGAACCATGTTTAGGCCAGATATATTCGTC[A/G]TCTAACTTGTATTTAACCCAAATGGTGTTGCAATACAAAATGAGTTTCTTTTTCTTTAAGCCAAATTTGAATTTGCTCCAATAGCTTAAAAGACACCCTAGCGGCG-3′
PLAC4-414711451 5′-CTCACATCTCTAAAGGCCACTCAGGTGGGACACCATCAAGACATTGAAAATCGACAGAAGGAAGGCAGGAAGGGGAGAGGATC[A/G]AACCTGTCAAAATAGATATTCAGAAAATCTGTGCTCTAAAATAAGGCAGCCCTTCCCTCACAGCACACTTATTCCTAATTTCAACAGGACTCCTAG-3′
PLAC4-414705911(rs9977003)2 5′-TCATTCTGAGGCGGTGCTGCTGAAAATCTTGGTGCTGAACGTGTGTTTTTGAGATTTCCAGTCTATCAC[A/G]GGGCCACAAGGTGTAAATATCAAGAAAAATGAATTACTAGAAAGGCAAAGTGAAAAAGACATACAAAATACAAGTGTCATTCTTTTTATTCTTAGTTTGGACAGATAGTC-3′
PLAC4-414762361 5’-TAATTGATTCTTGGGGTATCCCTGTCTTTACCCTGTCTTTAAGGTTTTAGCAAGACTAAGTCTCCTGGTTGAAC[C/T]GGGGAGCTATTTTTTCCTTTGTGGGGAAGGACAGTATTTTATTTTTATATTGGAGGGCCTTTTGAACCTGTCCTAAATTCTAAAGGGGAGGGGGGAAGGTTCATA-3’
PLAC4 mRNA是与表中序列相反方向转录的。
1数字表示在基于UCSC基因组浏览器(genome.ucsc.edu/)人类基因组2004年5月(hg17)汇编的上SNP的位置
2dbSNP序列号
表9.从10个不相关中国孕妇提取的胎盘DNA样品中四个PLAC4编码SNP的等位基因比例
SNP PLAC4 PLAC4
rs8130833 -41471145 rs9977003 -41476236
等位基因f(少数等位基因)杂合度 G/A0.250.38 A/G0.100.18 A/G0.100.18 T/C0.100.18
对每个SNP而言,将少数等位基因列在前面,“f(少数等位基因)”代表少数等位基因比例。
应用SNP标记测定母体血浆中PLAC4RNA的等位基因比例
样品采集及处理。从7个21号染色体三体的孕妇中采集头三个月和中个三个月期胎盘组织样品。用绒毛膜绒毛采样(CVS)从26个怀有核型正常胎儿的孕妇进行了胎盘组织收集。胎盘组织样品收集后立即保存于RNAlaterTM(Ambion,Austin,德克萨斯)并置于-80℃直至进行RNA提取。在头三个月期妊娠期间,从43个怀有整数倍胎儿的孕妇和5个怀有一个21号染色体三体胎儿的孕妇收集外周血。血浆样品收集如实施例1所述。
根据产品说明用Trizol试剂盒(Qiagen,Hilden,德国)提取胎盘组织总RNA。RNA是从1.6到3.2ml母体血浆样品中提取的。向每毫升血浆加入3ml的Trizol LS试剂和0.8ml氯仿。该混合液在4℃12,000x g离心15分钟。离心后收集水相层。将538微升的无水乙醇加入到每1ml的液相层中。按产品说明用RNeasy小型柱(Qiagen,Hilden,德国)处理该混合液。每个柱用48μl无RNA酶水洗脱获取总RNA。将从两个柱最终洗脱的RNA合并。然后进行DNA酶处理以清除DNA污染(Invitrogen,Carlsbad,加利福尼亚,美国)。
反转录和PCR扩增。按照产品说明(ThermoScript,Invitrogen,Carlsbad,加利福尼亚,美国),采用基因特异引物(序列如表10所示)对1.25μg的胎盘RNA或48μl的血浆RNA分别在40或100μl反应体系中进行反转录。
对每个PCR扩增反应,模板为40μl胎盘cDNA或100μl母体血浆cDNA,反应体系则分别为80μl或200μl。每个反应含有0.6X HotStar TaqPCR缓冲液,0.9mM MgCl2(Qiagen),dATP,dGTP和dCTP各25μM,50μM的dUTP(Applied Biosystems),正向反向引物各200nM(IntegratedDNA Technologies),以及0.02U/μl的HotStar Taq聚合酶(Qiagen)。反应条件为:95℃变性7分钟,然后进行95℃变性40秒,56℃退火1分钟,72℃延伸1分钟的55循环,最后72℃保温3分钟。
表10反转录和PCR扩增含有SNP rs8130833序列的引物序列
引物 序列(5’到3’)
反转录的基因特异引物PCR正向引物PCR方向引物 GTATATAGAACCATGTTTAGGCCAGACGTTGGATGGTATTGCAACACCATTTGGGACGTTGGATGTAGAACCATGTTTAGGCCAG
用引物延伸反应进行SNP鉴定和等位基因比例定量。引物延伸反应同实施例3。PCR产物首先用虾碱性磷酸酶(Sequenom,圣地牙哥,美国)处理。将含有771nM的延伸引物(Integrated DNA Technologies),1.15U的Thermosequenase(Sequenom)和各64μM ddATP,ddCTP,ddTTP和dGTP(Sequenom,San Diego,USA)的4μl碱基延伸混合液与5μl水和5μlPCR产物进行混合。加热过程为:94℃,2分钟,接着进入94℃,5秒,52℃,5秒,以及72℃,5秒的100个循环。每个SNP等位基因的延伸引物和延伸产物的序列及分子量如表11所示。如实施例3所述,最终延伸产物的分子量用MALDI-TOF质谱分析仪进行确定。测定所述引物延伸产物的峰值区域面积的比例,所述产物代表具有杂合SNP胎儿的两个SNP等位基因。
表11SNP rs8130833的延伸引物和期望延伸产物的序列和分子量。
序列 分子量(Da)
未延伸引物等位基因A延伸产物等位基因A延伸产物 AGGCCAGATATATTCGTCAGGCCAGATATATTCGTCAAGGCCAGATATATTCGTCGT 5498.65795.86116.0
粗体字表示加到延伸引物上的dNTP和ddNTP残基。
实时QRT-PCR体系的开发
开发了PLAC4mRNA的QRT-PCR体系从而评估21号染色体三体和正常妊娠的母体血浆PLAC4mRNA浓度是否有数量差异。所述引物序列(Integrated DNA Technologies,Coralville,IA),TaqMan小沟结合(MGB)荧光探针序列(Applied Biosystems,Foster City,加利福尼亚,美国)以及校准对照序列(Proligo,新加坡)如表12所示。
表12.对PLAC4mRNA的进行实时QRT-PCR测定的PCR引物、探针及校准对照序列
引物 序列(5’to 3’)
正向引物反向引物探针校准对照 CCTTTCCCCCTTATCCAACTGTACTGGTTGGGCTCATTTTCT(FAM)CCCTAGCCTATACCC(MGBNFQ)CACCTTTCCCCCTTATCCAACTAGCCCTAGCCTATACCCTCTGCTGCCCAAGAAAATGAGCCCAACCAGTACAC
MGBNFQ:小沟结合非荧光猝灭剂
根据制造商指南(EZ rTthRNA PCR试剂盒Applied Biosystems)在25μl体系中进行QRT-PCR反应。所述QRT-PCR反应在ABI PRISM7900HT(Applied Biosystems,Foster City,加利福尼亚,美国)中进行。PCR引物和荧光探针分别采用400nM和100nM的浓度。将5μl提取的RNA用于扩增。热循环过程为:50℃,2分钟,接着在60℃反转录30分钟,然后95℃变性5分钟,进入95℃,15秒和60℃,1分钟的45个循环。
从怀有21号染色体三体和正常胎儿的孕妇采集的胎盘和母体血浆样品中 测定PLAC4RNA等位基因比例的差异
利用SNP rs8130833对染色体正常胎儿和21号染色体三体胎儿的胎盘的RNA转录物等位基因比例进行了比较。通过将等位基因G(质量较重的等位基因,即该等位基因的延伸产物在质谱仪上表现出较高质量)相对值除以等位基因A(质量较低的等位基因,即该等位基因的延伸产物在质谱仪上表现出较低的质量)的相对值计算等位基因比例。如图8所示,所有21号染色体三体样品表现的等位基因比例都比正常样品的比例有显著差别。可将21号染色体三体样品的等位基因比例分成两组。具有额外的G等位基因的染色体三体样品表现出高于正常范围的等位基因比例,而具有额外A等位基因的样品则表现出低于正常范围的等位基因比例。
利用SNP rs8130833也对染色体正常胎儿和21号染色体三体胎儿的母体血浆的RNA转录物等位基因的比例进行了比较。除了一个,其它所有染色体三体样品都表现出偏离于正常样品的等位基因比例(图9)。所述数据可表明利用如SNP的多态标记分析母体血浆的循环胎儿特异转录物的等位基因比例从而非侵入性地检测胎儿染色体非整倍性。
在胎盘PLAC4RNA和母体血浆中循环PLAC4RNA之间的SNPrs8130833等位基因比例被发现具有正相关(图10)(皮尔森相关性,P<0.05)。这个发现进一步证明了胎盘是释放PLAC4RNA到母体血浆的一个主要来源。
染色体整数倍和21号染色体三体妊娠中循环PLAC4mRNA的比较
对染色体正常和21号染色体三体妊娠之间的循环PLAC4mRNA浓度进行了比较。血浆样品采集于处于头三个月期和中三个月期的29个怀有整倍体胎儿的孕妇和5个怀有21号染色体三体胎儿的孕妇。如前所述,采用实时一步RT-PCR测定了血浆样品中的PLAC4mRNA浓度。如图11所示,测定了所有染色体三体血浆样品中的PLAC4mRNA。21号染色体三体和正常妊娠的中值分别为5581拷贝/ml和4836拷贝/ml。染色体正常和21号染色体三体妊娠之间的血浆PLAC4mRNA浓度没有统计学显著差异。这表明仅仅由母体血浆的PLAC4mRNA定量不能对21号染色体三体胎儿的存在进行评估。
实施例5:通过引物延伸和质谱分析应用胎盘中胎儿表达RNA测定18号染色体三体。
为了说明利用其它基因可以检测其它染色体异常,对丝氨酸蛋白酶抑制剂分枝B(卵清蛋白)成员2(SERPINB2)(GenBank序号:NM_002575)检测18号染色体三体的能力进行了研究。引物延伸反应分析能测定所述胎盘组织样品的SNP基因型。所述样品用质谱分析进行处理以区分不同的RNA-SNP等位基因,并确定RNA-SNP等位基因的相对表达水平从而计算所述等位基因比例。由于在有和无18号染色体三体妊娠之间的SERPINB2SNP等位基因比例的差异足够高,因此可以利用胎盘RNA样本测定18号染色体三体胎儿。
测定胎盘中丝氨酸蛋白酶抑制剂分枝B(卵清蛋白)成员2的等位基因比
选择丝氨酸蛋白酶抑制剂分枝B(卵清蛋白)成员2(SERPINB2)。SERPINB2基因位于18号染色体上。从公共数据库中鉴定出一个位于SERPINB2基因编码区内的多态SNP(表13),并对其进行分析。
表13.位于SERPINB2基因编码区内的一个多态SNP
SNP 序列
SERPINB2(rs6098)1 5′-GTTCTGTGTTATATATAAAGAATTCCTTCTTTCTTTTCAAGGCACAAGCTGCAGATAAAATCCATTCATCCTTCCGCTCTCTCAGCTCTGCAATCAATGCATCCACAGGG[A/G]ATTATTTACTGGAAAGTGTCAATAAGCTGTTTGGTGAGAAGTCTGCGAGCTTCCGGGAAGTAAGTGAAACCTG-3′
1dbSNP序号
样品收集及处理。从4个怀有18号染色体三体胎儿的孕妇采集头三个月期和中三个月期胎盘组织样品。也用绒毛膜绒毛采样法(CVS)对8个怀有染色体正常胎儿的孕妇胎盘组织进行了收集。样品收集后立即保存于RNAlaterTM(Ambion,Austin,TX)并置于-80℃直到进行RNA提取。根据产品说明用Trizol试剂盒(Qiagen,Hilden,德国)提取胎盘组织总RNA。然后对提取的RNA进行DNA酶处理以清除DNA污染(Invitrogen,Carlsbad,加利福尼亚,美国)。
反转录和PCR扩增.按照产品说明(ThermoScript,Invitrogen,Carlsbad,加利福尼亚,美国),采用基因特异引物(序列如表14所示)对1.25μg的胎盘RNA在20μl反应体系中进行反转录。
对每个PCR扩增反应,模板为20μl胎盘cDNA,反应体系为40μ1。每个反应含有0.6X HotStarTaq PCR缓冲液,0.9mM MgCl2(Qiagen),各25μM dATP,dGTP和dCTP,50μM的dUTP(Applied Biosystems),正向反向引物各200nM(Integrated DNA Technologies),以及0.02U/μ的HotStarTaq聚合酶(Qiagen)。PCR引物序列如表14所示。反应条件为:95℃变性7分钟,然后进行95℃变性40秒,56℃退火1分钟,72℃延伸1分钟的50循环,最后72℃保温3分钟。
表14.反转录和PCR扩增SERPINB2基因的引物序列
引物 序列(5’到3’)
正向PCR引物反向PCR引物 ACGTTGGATGTGATGCGATTTTGCAGGCACACGTTGGATGCAGACTTCTCACCAAACAGC
通过引物延伸反应测定SNP.引物延伸反应同实施例3。PCR产物首先用虾碱性磷酸酶(Sequenom,圣地牙哥,美国)处理。将含有771nM的延伸引物(Integrated DNA Technologies),1.15U的Thermosequenase(Sequenom)和各64μM ddATP,ddCTP,ddTTP和dGTP(Sequenom,SanDiego,USA)的4μl碱基延伸混合液与5μl水和5μl PCR产物进行混合。加热过程为:94℃,2分钟,接着进入94℃,5秒,52℃,5秒,以及72℃,5秒的100个循环。每个SNP等位基因的延伸引物和延伸产物的序列及分子量如表15所示。如实施例3所述,最终延伸产物的分子量用MALDI-TOF质谱分析仪进行确定。测定所述引物延伸产物的峰值区域面积的比例,所述产物代表具有杂合SNP胎儿的两个SNP等位基因。
表15.SERPINB2基因编码SNP的延伸引物和期望延伸产物的序列及分子量
引物 分子量(Da)
未延伸引物等位基因A的延伸产物等位基因G的延伸产物 TCAATGCATCCACAGGGTCAATGCATCCACAGGGATCAATGCATCCACAGGGGA 5179.45476.65805.8
粗体字表示加到延伸引物的dNTPs和ddNTPs残基
18号染色体三体胎盘中SERPINB2转录物等位基因比例对于正常胎盘所 述比例的偏离
对染色体正常和18号染色体三体妊娠胎儿的SERPINB2 mRNA的SNP比例进行了比较。通过将等位基因G(高分子量基因)相对值除以等位基因A(低分子量基因)的相对值计算所述等位基因比例。如图12所示,所有18号染色体三体样品表现的等位基因比例与正常样品差别显著。将18号染色体三体样品的等位基因比例分成两组。具有额外的G等位基因的染色体三体样品表现出高于正常范围的等位基因比例,而具有额外A等位基因的样品则表现出低于正常范围的等位基因比例。
实施例6:通过引物延伸和质谱分析应用胎盘中胎儿表达RNA测定13号染色体三体
为了说明利用其它基因可以检测其它染色体异常,对胶原VIα2(COL4A2)(GenBank序号:X05610)检测13号染色体三体的能力进行了研究。引物延伸反应分析能测定所述胎盘组织样品的SNP基因型。所述样品用质谱分析进行处理以区分不同的RNA-SNP等位基因,并确定RNA-SNP等位基因的相对表达水平从而计算所述等位基因比例。由于在有和无13号染色体三体的妊娠之间的SERPINB2SNP等位基因比例的差异足够高,因此可利用胎盘RNA样本测定13号染色体三体胎儿。
测定胎盘中胶原IVα2 mRNA的SNP比例
选择胎盘表达的胶原VIα2(COL4A2)。COL4A2基因位于13号染色体上。从公共数据库中鉴定出一个位于COL4A2基因编码区内的多态SNP(表16),并对其进行分析。
表16.位于COL4A2基因编码区内的一个多态SNP
SNP 序列
COL4A2(rs7990383)1 5′-GACGAAGCTATCAAAGGTCTTCCGGGACTGCCAGGACCCAAGGGCTTCGCAGGCATCAACGGGGAGCCGGGGAGGAAAGGGGACA[G/A]AGGAGACCCCGGCCAACACGGCCTCCCTGGGTTCCCAGGGCTCAAGGTGAGGAGCAATTTCATCATGAAGCTGGCAAGACACTCTGAGGCCTCCCCA-3′
1dbSNP序号
样品收集及处理。从3个怀有13号染色体三体胎儿的孕妇采集头三个月期和中三个月期平台组织样品。也用绒毛膜绒毛采样法(CVS)对7个怀有染色体正常胎儿的孕妇胎盘组织进行了收集。样品收集后立即保存于RNAlaterTM(Ambion,Austin,TX)并置于-80℃直到进行RNA提取。根据产品说明用Trizol试剂盒(Qiagen,Hilden,德国)提取胎盘组织总RNA。然后对提取的RNA进行DNA酶处理以清除DNA污染(Invitrogen,Carlsbad,加利福尼亚,美国)。
反转录和PCR扩增.按照产品说明(ThermoScript,Invitrogen,Carlsbad,加利福尼亚,美国),采用基因特异引物(序列如表17所示)对1.25μg的胎盘RNA在40μl反应体系中进行反转录。
对所述PCR扩增反应,模板为40μl胎盘cDNA,反应体系为80μl。每个反应含有0.6X HotStarTaq PCR缓冲液,0.9mM MgCl2(Qiagen),各25μM的dATP,dGTP和dCTP,50μM的dUTP(Applied Biosystems),正向反向引物各200nM(Integrated DNA Technologies),以及0.02U/μ1的HotStar Taq聚合酶(Qiagen)。PCR引物序列如表17所示。反应条件为:95℃变性7分钟,然后进行95℃变性40秒,56℃退火1分钟,72℃延伸1分钟的50循环,最后72℃保温3分钟。
表17.反转录和PCR扩增COL4A2基因的引物序列
引物 序列(5’到3’)
正向PCR引物反向PCR引物 ACGTTGGATGAAGGGCTTCGCAGGCATCAAACGTTGGATGACCAATGTTGCCAGGCACTC
通过引物延伸反应测定SNP并定量等位基因比例引物延伸反应同实施例3。PCR产物首先用虾碱性磷酸酶(Sequenom,San Diego,USA)处理。含有771nM的延伸引物(Integrated DNA Technologies),1.15U的Thermosequenase(Sequenom)和各64μMddATP,ddCTP,ddTTP和dGTP(Sequenom,San Diego,USA)的4μl碱基延伸混合液与5μl水和5μl PCR产物进行混合。加热过程为:94℃,2分钟,接着进入94℃,5秒,52℃,5秒,以及72℃,5秒的100个循环。每个SNP等位基因的延伸引物和延伸产物的序列及分子量如表18所示。如实施例3所述,最终延伸产物的分子量用MALDI-TOF质谱分析仪进行确定。测定所述引物延伸产物的峰值区域面积的比例,所述产物代表具有杂合SNP胎儿的两个SNP等位基因。
表18.COL4A2基因编码SNP的延伸引物和期望延伸产物的序列及分子量
序列 分子量(Da)
非延伸引物 GTTGGCCGGGGTCTCCT 5209.4
等位基因A的延伸产物 GTTGGCCGGGGTCTCCTC 5482.6
等位基因G的延伸产物 GTTGGCCGGGGTCTCCTTTG 6131.0
延伸引物对序列的反链进行退火
粗体字表示加到延伸引物的dNTPs和ddNTPs残基
13号染色体三体胎盘中SERPINB2转录物等位基因比例对于正常胎盘所 述比例的偏离
对染色体正常和13号染色体三体妊娠胎儿的COL4A2mRNA的SNP比例进行了比较。通过将等位基因G(高分子量基因)相对值除以等位基因A(低分子量基因)的相对值计算所述等位基因比例。如图13所示,所有13号染色体三体样品表现的等位基因比例与正常样品差别显著。将13号染色体三体样品的等位基因比例分成两组。具有额外的G等位基因的染色体三体样品表现出高于正常范围的等位基因比例,而具有额外A等位基因的样品则表现出低于正常范围的等位基因比例。
尽管为了明确理解本发明,上文已经通过图解和举例的方式进行了详细描述,但本领域所属技术人员仍应该理解可在本发明所附权利要求范围之内进行某些变化和修改。此外,本发明所提及的每篇参考文献都在本申请中将其全部引用作为参考,就如同将每一篇文献被单独引用作为参考那样。
表19.PLAC4遗传座位的基因组序列
基于UCSC基因组浏览器(genome.ucsc.edu/)的人类基因组2004年5月(hg17)汇编,该PLAC4遗传座位跨越了21号染色体的41469028-41480585核苷酸对应物。
21号染色体:41469028-41480585
碱基位置1
41469028    TGGGATGTTTTCAGATTTTTATTATATGGCAATCATATACCTGCACCTAGAAATATACAA
41469088    CCTCGGCGCTGCCATTGCAGGAAGACAAAGAGACTGTCTAGAGAGTAACGTGGCGATGCC
41469148    CTGGGCAGCTCCATCATTCCAGGGTACCATAAAGGGAAGTGGGAATGCACACTCCATCTG
41469208    TTTCACGCTAGGCTGAAAGTGGCAGGGGGAGAATTTACACCTGGCCTGCAAAAGGCAGCC
41469268    TTGTGTTCCCACTTCAGAGCCCCAACTTCTCCAAAGCCAGTGCTTGGGAAATGGCCTTGT
41469328    TGGCAGCAGGCAGGAGACTGGTGCAGTGTGCCAGCTGTGCAAACCCCCACCAGACTGGTG
41469388    CAGTGTGCCAGCTGTGCAAACCCCCACCAGCAGCACCCCCACCAGCAGCCAAAGAAAACA
41469448    ATTTCTAAAGCAGCCCCCAGGATTTCATGCCACGGGGGTGGTGAGGGGTAGGAGGAGGTG
41469508    GAAAGCATTGAATCAGAAAGTCTTCCAGGTACCAGCAATGCCAGGGTTAATATGGTCTGG
41469568    CTTGCTTTTCAGGTGAGCACCTGTAGCTGGCAGGAAAGTGGCTTCTTGGTGGAGGTGGGC
41469628    ATGAATTCCAGAAGCCTTGGAGAGACATCCAGAGCCCTTCCCACTACATCGTGCTGCCTC
41469688    CTGGGGAAATTCCTAAGCTTTTTTTGAATCAGAAAAGCCACTGACAAGCAGACAGAATTG
41469748    TGTGGCTTGCGCAGTGATTGGAGAGCTAGGTGCTTTGGGTACTAGTCCCAGAGCTGCTAC
41469808    TTGTCGAATGTTGGGTATTGGAGAGAAGTCATTTGAGCTGTCTGAGCCTCTGTTTCCTCA
41469868    TCTGTAAATCAGGGAATTTGAACAAGTGACCTCAGATTCCTTCTAGAAGCTCTAACAGTC
41469928    AATGATATCATCTATTTCATTTGAGAGAATCTCCATAGCTCTAATTTTTTGCCCCCAGAC
41469988    CAATCTGCTTCAGCTTTGTGTGGGTGCAACACCTGGGGTCCTGTTAAAATGCAGAATCGG
41470048    ATTCAGTGACCGAGAGCAGAGCTGAGGGTGGCTGCTGCCAGCTCACAGGTCACACTTGGA
41470108    GTCGTTGCTTCTTTCCCCAAACCAGCTGCCGATGGTTCCTGGAAAGAGCAGGAATACCTT
41470168    GCAGAAGGGCCTAGAAATAGAGATTCCCATATGCAGTCCAGACTTATTGGGTGAGCCTGT
41470228    CTGCACTAGGACCTGAGAATCTGCATTTTATTATATCCCTTGAGTCCCCTTTAAGCAGCC
41470288    ACGCTGGCCCCAGCCATTGGACTCTATTTGGAGGCCACTGCAGAGGCCAGATGCCCCTCT
41470348    GCTCGGCGGTTTCCTGTGCAGAAAGGCTGTGTTCTTTCTTCTTCCTAAATACTCTTCCTA
41470408    GGTTAAGTGTTTCCTTCTCTTTGCCCATCTAGAAAATCTCCACCTCAAGCAGGTCGTGTT
41470468    CCAAAAACTCCTCGTGTTGGGCAAGTGGAAAACACGCAGTTTTTTCTAGGGGTCTCATTC
41470528    TGAGGCGGTGCTGCTGAAAATCTTGGTGCTGAACGTGTGTTTTTGAGATTTCCAGTCTAT
41470588    CACAGGGCCACAAGGTGTAAATATCAAGAAAAATGAATTACTAGAAAGGCAAAGTGAAAA
41470648    AGACATACAAAATACAAGTGTCATTCTTTTTATTCTTAGTTTGGACAGATAGTCCATTCT
41470708    TCTACACTGGTCCCACGGTTTCTGAAGCTTCCTGTAATGATCAGTGGTTACCTTGTTGCC
41470768    CAAGTAACTGCAAATCCCTCCTCTACAAAGTGTGCTTGCTCCAAGGCAGTGCAAACTAGA
41470828    AGTTGTTACAAATGGTTCCAGTAACAAATTTGTTTGGCGGCCTTTTCCCATGAATGAGAC
41470888    AGTGGTTATTTTTGCTAAAGCAGAAAGGAAATGTGATACTATTGGGCTGTGTTTTGCCCT
41470948    CTGGAGTAATCCTGCTTGGGGAAAATGGAGGCTTGTTCCAGAATGCAGAAATCCCTGTTA
41471008    AATTAGGCAGTCTTGGGCTGGAGGACGTGTGCCTGCCTCCCCAGTGCCTCACAACTCACA
41471068    TCTCTAAAGGCCACTCAGGTGGGACACCATCAAGACATTGAAAATCGACAGAAGGAAGGC
41471128    AGGAAGGGGAGAGGATCGAACCTGTCAAAATAGATATTCAGAAAATCTGTGCTCTAAAAT
41471188    AAGGCAGCCCTTCCCTCACAGCACACTTATTCCTAATTTCAACAGGACTCCTAGTCTTGC
41471248    CCCACAGCGTCACAGCCTACAGCAAATTAGAAACTGGGGTGGGGGGCGGATATTATTCCA
41471308    CCAGTAATACCCTTGGGACGGGGCACACAAGATGTTTGCCCTCCTACCTCTCTGTCACCT
41471368    TCCCAAGAAAGGGTCAAGATGAAACAGTGTGCGTTTATGGTATTGCGAGAGTTAAGTGAG
41471428    CTGCGGTGTATTAGAACCTTAGCCTCGCGCAGCGTCAGCCGTGTGGTAAGTGTTCCATAA
41471488    ATCTTCGTTTAGAAAAAGTGGCAAATTCCAGGCTGCTAGTAAACAAAGGAGGGAAGACAG
41471548    ACAAAACGGAACAGCAACAACAGAAAACCCAAGAACTAGATGCCCAACAATCTGGGTCTG
41471608    TATCTTGAAGGAATGTGCATCCTGTCCTCTGACTGCAAACCCAGGCCTTCTGTGGCCCCA
41471668    CGATGCTGCCTCCTAGCCCTCCTAAGGTGGGAATGGAGCTTTACCCCTTGGTGGCAAACA
41471728    GACCTGGCTCCATGGATCTCAACCTGGGGTGATTGTGTCCCCACCCCAGGGGACATCTGG
41471788    CATCCTCTGGGGACATTTTGAGTTCTCACAACTTAGAGGGTGCTACTGGCGTCCTGTGGG
41471848    TGGAGACTGGAAGTGCTGCTCGGCATTCTTTGCCGTACAGGGCAGCCCCCACAACAAAGA
41471908    ACGATCTGGTCCAAAATGGCAACCATGCCAAGATTGAGAAATCCTGGTTACTCGACACAG
41471968    CAGGTCGGCTGGCCTAGGAGTTGCTGCCCAGAGAGGCAAAGGGAGAATGTCCAGTGGAAA
41472028    CAGCTGCCCTGAGCATACAGGGCACGCTGACACCTGCTGATTCCCCCATCCTTAAGGTCC
41472088    TGTATTGTTCCTAACACCACGTGGATCTTCTTGCCAGATGCATTAAAGTGTGAGAAGAGT
41472148    TAAAAATCACTTATAACTGGAGTGACTGGGGGTTAAAGAGGAGAAAAAATTTGAACCTGA
41472208    CTCAAAGGATGAGCATGTTTTTCTTTCTTTCTTCGGCACATTGGCTGGGTGTGGCGGCTC
41472268    CATGCCTATTATCCCAGCACTTTGGAAGGCCGAGGTGGGAGGATTGCTTGAGGTTAGGAG
41472328    TTCAAGATCAGCCTAGGCAACATAGCAAGTCCCTATCTATATAATTTTTTTTTTAAATTA
41472388    GCCAAGCTTGGTGGTGCATGCCTGTAGTCCCAGCTACTCAGGAGGCTGAGGCAGGAGGAT
41472448    CACTTGAGCTCAGGAGTTCAAGGCTGCAATGAATTACGATTGTGCCACTGCACTCCAGCA
41472508    TGTGCAACAGAGCAAGACCTTGCCTCAAAACATATTAAGCACCTACTGCATGTCAGGGCC
41472568    TTGGTCTAAGCCCTGGTATGCAACAGTCAACTAGACAGAGAGAGTCTTGGCTTTTACAGA
41472628    ACCTCCCCTTATAAGGAAGACAGATTGTCAAGGAAGTAAACAGACTTTTAGAGGAGTGCT
41472688    GTGAGACAGTGCCATGTGGGAAGGGGTATTGGTGAAAGAATCCTGCTTTATAAGGGCGGT
41472748    TATGGAAGACCTCTCTGAGGAGGTGCAATTTGAGATGAGATTGGCTTGAGGAGGACTGAG
41472808    CCTTCAGAAGTTAGGGAAAGCGTGTCCCAGGCTGCAGCCAGGGAGGTGAAGACTTGAGGG
41472868    TGTCAGGGTGAGGAGTGAGGGTGTCAGGGTGACTGAGGGTGCCAGGGTGAGGAGTGAGGG
41472928    TGTCAGGGTGAGGAGTGAGGGTGTCCAGGGTGAGGAGTGAGGGTGTCAGGGTGAGGAGTG
41472988    AGGGTGTCCAGGTTGAGTGAGGGTGTCCAGGATGAGGAGTGAGGGTGTCCAGGGTGAGGA
41473048    GTGAGGGAGTCCAGGGTGAGGAGTGAGGGAGTCCAGGGTGAGGATTGAGGGTGTCAGGGT
41473108    GAGTGAGAGTGTCCAGGGTGAGGAGTGAGGGTATCCAGGGTGAGTGAGGGTGTCCAGGGT
41473168    GAGGAGTGAGGGTATCCAGGGTGAGTGAGGGTGTCCAGGGTGAGTGAGGGTGTCAGGGTG
41473228    AGTGAACGTGTCCAGGGTGAGTGAGGGTGTCCAGGGTGCAGAGTGAGGTGTCCAGGGTGA
41473288    GGAGTGACGGTGTCTGGGGTGAGTGAGGGTGTCCAGGGTGAGGAGTGAGGGTGTCAGGGT
41473348    GAGTGAGGGTGTCCAGGGTGAGTGCACATGTGTGGTGAGGAGGTGTTTGCAGTGCTTCAG
41473408    GCGCAGCAACTCTTTCATCTAGTTTAAAATTGTGCTCTGAGGTTAGATTTTAGTAGAACA
41473468    AAGGCCTTACAAAGAATGTGAAAACATTGTGCTTCCCTGCTTACAGGCAATTAAAAAGGA
41473528    GAATCAAGCTGAGGGTGCCTGGTGTGGGGTGGGGTGGAGAAGACCACAGAGACTATTGTG
41473588    TGTTTTATTCAACAGTGTCCTGGGCTGCTTTCTCCAGAAATGTCCCTGACACATGGATGT
41473648    AAGTGTGGCTAGTTTACTGGGAGATGATCCCAGTGATGCAGGACAGGCGAGCCCTAAGAT
41473708    TGAAGCATAGCCCGGGAGGGTTCTTAGCTTTGCCCAGGAAGGAACTCAAGGGCAAGCCAG
41473768    TGGTGTTAGCAACTTTTATTGAAGCGGCCGGCTGTGCACAGCAGCAGCAGAGGCGCTGCT
41473828    CCTTGCAAAGCAGGGCTGCCCTACAGGCTGTGCGCCCACAGTAGCAGCTCAGAGGCAGTT
41473888    CTGCAGTGGTATTTGTATCCACTTTTAATTATATGCAAATGAAGGGGCAGTTTATGCAGA
41473948    CATTTCCAGGGTGAGGGTGGTAACTTCTGGGTGCTGCCAGAGCCATGGTGAACTGACTTG
41474008    ACACAGGTCGGTGTGTCCTATGGAAACTAGCATCTGCCCTGGACCTATTTTAGCTAGTGC
41474068    TCAGTTTGGTCTGAGTGCCTGAGCCCCACTTCCAGAGTTGAGTCCCACCTCCTACCTCAT
41474128    TCCCCCTTCAGAGATTAGATACTCCTCCTTAATCTTAAGGGGGCTGCAGAAGGGCGGAGA
41474188    TCTGTTTTCCGTAACTACTTCCTGCTGAGTTTATGGACGTAGGCCCTGCCTGGCACTGGA
41474248    GGAGTAAAAATCTCTGGATACCTGATCTAAGGAGCCCAGAGGCAGGACGATTTCATTCTC
41474308    CGTGTCAGTGGACAGGATGGGCTGGAAGCCTTGTGCCAGCATTGTCTCTGGAACTGTGGT
41474368    AATCTAGAATACACAAACTTTACTAAGAGGTTAAAGAAGCAAGGACCAAACATTTGTAAC
41474428    AAGACAGTTGTCAAAGGTCCTAGAAGAGGTGAAAAACAGGTGAGACTTGGGAAGGCACTT
41474488    TTGATGGTTGACCAGATATAGTTGGGGGCAGTGCCCTGGTTATATCTATGTAACTAGGTA
41474548    GCTTGCTCATAGATCTTTTGAATGTTAACCTCAACCTGTCCAGAGTTAATATATGTGCAG
41474608    CAGGTTTTATTAATAACTGCACAAGACCCCACCTTGTTCAGCTAGTAAATAATCCAATGC
41474668    TAGTCTGTTATCAACAACTACATTTTCCAGAGTCTGGGGAACTCTTGAATTCTCTTTAAT
41474728    GCCTGATCTCCGTTGGTGGCTAAGGATTCTAGGATTTGAGCCAAGTTCTTTAGCGTTAAC
41474788    TCATGGTAGGCAAAGCCACCCCAGGGTGCTGCTAGTCCTATTGCCACCCTGATTCCTGCC
41474848    AGAATTAGTTTTATTGCTTACTTATTTCTGATATTCTTGGGTCCTAGGCGTTATAGATTG
41474908    TGACCCCTGGAGGGGTAAGAGTGGCCAACGTTCATTCATGTCAGTTCCAAGTTTTTTAGA
41474968    TACAAGGGAAAGCTATTCCTTAAAGAAGAGGTGACTCCTTAGGGAGTTGGAGTGGTTACA
41475028    GGGTGTGACTTCTTCCCATTCATAGTCACAAACAAAAATGAACCCAACTAGGGCACCAAG
41475088    AGAAGCCCTGCGGGGTGCGATGTTTATACTTCATTGCCAGGTTGGGTCTATAGAGATATT
41475148    TTCCACCTGTTCTCATGGTGGTGGTTGAACAATCTTTGTTTTCTAGAAGAAGGTAGTACT
41475208    GTCACCTTCCCAGATCAGGCAGTTGTTTTTCCTTTGTATGTTCCCATCCGGGAGAAGGTA
41475268    CCATATATGGTCTTTTCACTCACAAATGGAATCTCATTTACCTCCCCGTGGTCTTGGAAA
41475328    CTTGGCAACTAGAGTTGGACCAGAGCATCGCAGGGAAGCTTCCACTTTTGTGTCATTAAT
41475388    GCAAGAGTGGATGCAAATGTTAGAGTTATGAGTGCACTGGAGATATAGATGCCCAACTTC
41475448    CCAGATTCCGATAATAGTGGTCAGGGCAGGGGGACAGCAGGGTCCAGGGGGGATCCACTA
41475508    AGTGGGGAAGAGTTCCACTTCACAATAGGGGTTTGGGTATTTTGGGGTGCTATGGTTAGT
41475568    TAGGAGGTCTGGGGACATGGTCCTGAGATTTTCCAGATAGGTCGGAAGATGAAACTGTCT
41475628    ATCCTGGGGGTGTTGATGACAAATCTGGCAGCCATAAAGATGATTCTATGATGCTATAAT
41475688    TTTTGAAATATTTACTGTAGAATTTTGTCCACCCTCCCTGTCCACATACACACTAGCTTA
41475748    GGTTAATTAGAAGAGCAAACAGAATTAACAGTGGCATCATGGTATCTGGTTGGGTCTTAG
41475808    AGTAGCTTCTATACCCAACAAGCCCACAGGAGATGTTTCCCAGGAGGAGGTGGCTGGTTA
41475868    AAGCCATAGAAAGGAAGTACTACAGTCAGGAAGAAGAGCAAGATCAATGCTCCTATTCCC
41475928    ATCTACAGCATTACATTACCTCTTCTGGCTGAGTGTTGATTATTTTAAATAGGTAGCAGA
41475988    GGTCTTCCAAAGCTTTACTGATATTGGTTGTGGTTGTAGTGCCCTTCCTTTGTGCCTGTG
41476048    ACTCATAAGAAACAGGTTTAGTCCTGGATCTGTGTGCCCAAGTAGGTGTTCCCTGAAGTT
41476108    TAACAGCAGTGGGGGTACTTAACAATACCTGATAAGGCCCCTTCCATTTCATTGTAATTG
41476168    ATTCTTGGGGTATCCCTGTCTTTACCCTGTCTTTAAGGTTTTAGCAAGACTAAGTCTCCT
41476228    GGTTGAACCGGGGAGCTATTTTTTCCTTTGTGGGGAAGGACAGTATTTTATTTTTATATT
41476288    GGAGGGCCTTTTGAACCTGTCCTAAATTCTAAAGGGGAGGGGGGAAGGTTCATATAGGTA
41476348    ATTACTACAAGCCAAGACCACAGCAGCTCAACACATAAAATCCATAGACAAATCAGTTTT
41476408    ACAACCCCATTTCCTGGCTTCTAGTTCTTGGCTTCCATACTGCTCAAAAGGAGTTCAAGG
41476468    GCCAATGAGTGCCCGCCCACCTCCACACTCATGCACTGTGCAGATGACTTACACAGACCA
41476528    TCTACAACATAGCTGAATTTCCTGACATGTTCTATACTACCTCTTTCTTAAAGTTATTTT
41476588    ACTCTAGGATAGGGAATTTACTATACAGGATTCCTCCACATATAAAATTACTCTTTCTTT
41476648    ATATCCTTCCTTGCAAAACAAACAAAAAATACATTTTCTATTCATAATATTCTTTACATC
41476708    TCTCTTTTCTACTCACTGGTTCACTCATGTTTTGAACCTCCCATTTAGTAACTTCCGGAT
41476768    TAGACAAAAAATTTTTTCTCAATAAAGAATACATTTCTTTAGCACATTTTATGGAAACCT
41476828    AGGAAGGAAGAAGTCATGAACTTCACACTAGACATTGTCATTCTATAACTGAGAACCATT
41476888    CTACCATTTTATGATTTTAAACCACACATTAAGCATATCCCATTTACGTGTATTTAATTA
41476948    TTTCACTTTTAACTTTATCTAGATCACCGAGAACCAAGGTACCATGCAAAGCTGGTCACC
41477008    ATTTAAAGCCATTTTAACCATTTTAAAGCCTATGAACATCAGTGACTTACCTAGGTAAAA
41477068    ATCCTAAAGTTAAATTTTAGAAGATACAAGATTCTCTTCAAACTAATAAGCTTTCAGTAG
41477128    TCTTATTTGTTGAATGTATGAGTGTTCTTTTATCTATAAGCCAGTTTGACAGCACGCTAG
41477188    ATGTAACACACATCACAATACATGTACATATACCCAAAAACATATTAAATAAAATGACCT
41477248    ATACAAGACAACTGGATTCAAGTTATTTACAGAACTGGGACCCATCTACCTGGCCAAATT
41477308    TTGTTTGCCCCGATAGGTATGGAAAACAGGAAAAGGCAGGACAGGGAATCCCATAGCATC
41477368    AACTAAAAAGGGGAGGAAGCAAACTGCATTGCTCAAAAGGAGATTCTGGAGTCCCCACGC
41477428    CACTGGAGAGCACACTCAGTGGTGGAAATACCAAAGAAAAATGTTCAGGCGGCTGCTTAT
41477488    CTGCCACTGTGGAAAGCTGTCCTCTGGGACAGTAAACTTACTTGAGCTAAGCAGCTCACT
41477548    GGGGCTAGTAGGAGAAGGTTAGCTCTAGTATTGATGGAAGCTTTTTGTTGTTATTGTTCT
41477608    CTCTCACCAGAGCAGTTAGGACATTTGCATTGCCAGGGGCCCTTTTGCGTATAGTAGGCG
41477668    CAGTGATTCTGGCCCAGGGGTCAGCAAGTCAGGCATCAAGTCTTGTCTAGGCATCCCAGA
41477728    TGCTAATTTTGTAACATTTTCTCAAGATGAGTAATCCTGAGGGGCAAGGAGGCTTAAAGT
41477788    CACTGTTAACAATTGTACTTTTTGGCTATTTCTTTTTACTCCCCTCTTTTGCCCTGTCCC
41477848    TGTTGTTGTAAACTTTAAAGGCTATGTTTAAGCGTCGTTTCATAGGACTTGAAGGTCCCA
41477908    TTGCTGCTTTTTGTAGATTCCTCCTAATGTCAGGAGAAGATTGAATGAGAAAATGTATAC
41477968    CCAGGAGAGCTTGCCCTTCTGGGGTGTCTGGGCCTGCATTAGTATATTTCCTGAGTGCTT
41478028    CAACTAAAAGACCCTGAAACAGAGCGGGATTTTCATCTTTTCCCCGAGTTACTTCTTTAA
41478088    CCTTGTCATAATTGACTGGCTTAACCACACACTTTTTCCTCTACTTTTTTTTCCCCACAG
41478148    CACAGCAAGCGGATGACAATATTTGTAAATCGTGGCAATTTGAAGAACATAGTCAACGTA
41478208    ACAAACTCTTGTATAAGCTTTTCTGGTTTATCTGAAAACTGGCCAATTCTTTCCTTTTAT
41478268    AAGGTCTAATTAGACATGGAAAGTGGCATATGTACTCTTTGAGTGTTCCCTCATTTCCAT
41478328    CAACTACTTTCCACAGTGGACACAGGCTTGACCTTAGGGGCTGATATGGAGCCCCACTCC
41478388    TGGTGTACTGGTTGGGCTCATTTTCTTGGGCAGCAGAGGGTATAGGCTAGGGCTAGTTGG
41478448    ATAAGGGGGAAAGGTGCCTGATGATATTGGGGTGGAATCTCATTAGGGAATTGGCGAGAA
41478508    CCCCCACTCAGGACTGGGGGACTGAAGAGACTCTGGGGAGGCTTATGAACTTTCTATGGG
41478568    GAGCAGCTAGGTGGGGATCCCTTATGCATGGCATTCTAATGCCTGGAAGTAACGTGATCC
41478628    AGTATAGAGCCATAAAAGCCTGTACATAAGGGATCTCTTCCCATTTTCCTTCTCTTTTAC
41478688    AAAATAAGCCTAATCGTAAAATATCACTATAGTATATAGAACCATGTTTAGGCCAGATAT
41478748    ATTCGTCATCTAACTTGTATTTAACCCAAATGGTGTTGCAATACAAAATGAGTTTCTTTT
41478808    TCTTTAAGCCAAATTTGAATTTGCTCCAATAGCTTAAAAGACACCCTAGCGGCGAGTCCC
41478868    TTGGGATACTCCTTGTTGTCCCCATGCCTATATTAAGGATCTCTCTACAGAGGGTTTTAT
41478928    TAGCCCAAGTTTAGCAAAAGCCTAGTTACTCTTCCCTCTTAAATTCCCGTGTTCTTTAAA
41478988    GGTGTAAATATAGATAGCAAGGTGTTATAAAAATGGATTATGAGCTACGAATGGGCAGTC
41479048    GAATGTGGAGCCTAAATTCCATAGAGATCTAGAGTTGGGTGGAGAGGGGGCTAAACAAAT
41479108    GGAGGAAGGGAAAGGGGTAAACAGCGTTGCCCAAGGGGAGACCTCAGAGGCTCTGACTTG
41479168    CTGAAGAACCTACCCAGTAGTGGAGATACTGAAAAAAATATTGGGCTGGCCACTTGTCTA
41479228    CCACTGTAGGTGGCTGACTGCCAGGCCAGGAGCCTGGGAGCTCCCAATTCCTTTGACCAA
41479288    GAGCAGCTTAGGCAAGGGAGTTATAAGACAGTACACAGGAAGGAGCTTGCAATTGGCTAT
41479348    TAGGAAAATAATACTCCTAACTTCAGGGTGGAAAAAGACAAGACCAATATTCGCCTAGCG
41479408    AAAGGGGTATAACCCACAATCCTAGAGGAAATGTCAGTGCTAAAAACCCCAGAGCATCTG
41479468    GAGGGTGGCCTATAATACCGATGCTGAGAACCCAAAATGCCTGCGTTTCAGCCAACAAGG
41479528    ATGCCCTCGCCAAAGCAGCTGTGCACAGCAGTGCCAAAAACCCTGGGGTACCCAGTGGGC
41479588    GGCCAACCCCGTGAACCCAAGACCAGGTTACAGAACATAGAACAACGTGACAACGTGACT
41479648    CTGGTATCCCAGAGTCAACACAACAGGGGACCTCTCACAACCAAGTGTCCTGCCTTAAAC
41479708    AATTGCCCAAATACAATTAACAGAAAGTCGAAAGCAAACATAAGACTCCAAACAAGACAT
41479768    ACATGTTAGGACTGAAAATGAAACCAAAGTGGAGCAATAAAATGGAGTCAGAGGAGAAAG
41479828    AACCAGGTGAAGGGGTGGCAAGAATGTGCTTCAAGGCACCTAAACCGTGGGGAACTGACC
41479888    GCTTAGCCAAAGGCTTTTATTTCCTAGCTTACCTGATATTACTGGGGGAGGGTGCAAAGG
41479948    GGACTCTCACCCATCCACAGAAGACAAAATGGCACCAGCCAGTCTTCCACGTGGGACCCG
41480008    GGTGCAGGTCTCTCTAGGTTCCCCAGCTTGGGGGTGCTCAGCTTCTGTGTCGGGGGCTGG
41480068    CTCGTTAGAGCAGTGGGTCCCACACGAGGCAGCTGTACTATGGACACTTGGCTGTCCACT
41480128    CAGTTTCACCACCTGCCAGGGAAAGATGATGGCTGTGAAAAGAGGCACTGGTTAGGGTTA
41480188    GAGCTCGGTAGTGTTAGCAGCTCTTTATTGGTACTTCCTCAGTGTTACAGATCTTACATC
41480248    CTCAATCACAGACTGCTTCACCGTCTCTTGCTGTCTTGCCAACTGCTGTCTCTTGTCTCT
41480308    CACCAATTGCTGCCTCTCTGTCTCTGCTGTCTTGCCTCTCTGCCAATTGCCACCATCTCC
41480368    GCTGTCCTTGTCCCTTTGCTGGTTGCCAGATGATGCAGGACAGGCAAGCCCCAAGACTGG
41480428    GGCTTAGCCTGGGAGAGTTCTTGGATTTGCCCAAAGATTCAAGGGTGAGCTGGTGGTGTT
41480488    AGGCAGCAGCTTTCATGGAAGCAGCTGTGCACAGCAGCGCCAGAGATGCCGCTCCTTGCA
41480548    GATCAGGGCTGCTCCATAGGCTGTGTGCCCTGAGTAGC
粗体:已知的或预测的所述PLAC4基因的转录区域
下划线:对应于来自NCBI数据库(NM_182832)的PLAC4mRNA的参考序列
1基于在UCSC基因组浏览器(genome.ucsc.edu/)上的人类基因组2004年5月(hg17)的汇编的21号染色体上的核苷酸对应物
序列编号列表
序列ID编号 序列
1 GGCTGACATCACCATCCTG
2 TTGGAAAGCCAGGACACAAC
3 AGAGCAGCAGCCTCTTCTTG
4 TGAGGATTGGTGGGAAAAAC
5 TTTTCCACTCCCAAGTCTGG
6 TTGCAACACCAAGAAAAAGC
7 CGACAGAGCAAGACCCTTTC
8 TCTGGCAAAATACAGGTCATTG
9 TCATCAACGTGGTCAACAGG
10 GTGGACATCGTCTTCCTGCT
11 AACGACAGTCTGCACGAGTC
12 TCACTCTCGTGCTTCTCGTG
13 GTGGATGGCAGTGAGGTTGT
14 CAGGTAGGTCAGGAGCCTTG
15 GGCCTGAGATTCTTCACTGC
16 AAAATTAGCGGGACATGGTG
17 GACAAAGTCAAGTCCTTCACCAA
18 GCGTTCCACACCAGGTTT
19 (FAM)CGCTTCATCGACAACC(MGBNFQ)
20 TGGACAAAGTCAAGTCCTTCACCAAGCGCTTCATCGACAACCTGAGGGACAGGTACTACCGCTGTGACCGAAACCTGGTGTGGAACGCAG
21 CAGGGCATCATCAATTTCG
22 TGCTTCCCCACACCTTCA
23 (FAM)CAGAAGGAAAGTAATGGACCA(MGBNFQ)
24 TGCAGGGCATCATCAATTTCGAGCAGAAGGAAAGTAATGGACCAGTGAAGGTGTGGGGAAGCATT
25 GATCAACCAGGACACCATCAA
26 CCGTAGGCTTCGTGTTTCA
27 (FAM)CGCATCATCAAGGTC(MGBNFQ)
28 GAGATCAACCAGGACACCATCAACCGCATCATCAAGGTCATGAAACACGAAGCCTACGGAG
29 CCCTCACTACCAACCTGATCA
30 CCTTGGGTATTGCTTAATCGA
31 (FAM)TGCTTGCTGAAAATG(MGBNFQ)
32 TCCCCTCACTACCAACCTGATCAATTTGCTTGCTGAAAATGGTCGATTAAGCAATACCCAAGGAG
33 GGCAGCCACAACTTTGACAC
34 CTCGGCCAGGCGCTT
35 (VIC)ACCAAGCGCTTCGC(MGBNFQ)
序列ID编号 序列
36 (FAM)ACCAAGCACTTCGC(MGBN FQ)
37 GGCGCCAGAAGACACGT
38 GTCGTGGCGCCCGT
39 (VIC)TGATGACCACCGCAAA(MGBNFQ)
40 (FAM)TGATGACTACCGCAAA(MGBNFQ)
41 ACGTTGGATGCTATGTGACCCGCTTCTACC
42 ACGTTGGATGGAGTTGCCATCTGAGAAGAG
43 ACGTTGGATGACCGCCTCATCAAGGAGAGC
44 ACGTTGGATGAAGTTGAGGTCATCGTCCCG
45 CTCTTCTTGGCAGCGCC
46 CTCTTCTTGGCAGCGCCA
47 CTCTTCTTGGCAGCGCCGGA
48 AAGACACGTGTGTTTGCGGT
49 AAGACACGTGTGTTTGCGGTA
50 AAGACACGTGTGTTTGCGGTGGT
51 TTTTACAAAATAAGCCTAATCGTAAAATATCACTATAGTATATAGAACCATGTTTAGGCCAGATATATTCGTC[A/G]TCTAACTTGTATTTAACCCAAATGGTGTTGCAATACAAAATGAGTTTCTTTTTCTTTAAGCCAAATTTGAATTTGCTCCAATAGCTTAAAAGACACCCTAGCGGCG
52 CTCACATCTCTAAAGGCCACTCAGGTGGGACACCATCAAGACATTGAAAATCGACAGAAGGAAGGCAGGAAGGGGAGAGGATC[A/G]AACCTGTCAAAATAGATATTCAGAAAATCTGTGCTCTAAAATAAGGCAGCCCTTCCCTCACAGCACACTTATTCCTAATTTCAACAGGACTCCTAG
53 TCATTCTGAGGCGGTGCTGCTGAAAATCTTGGTGCTGAACGTGTGTTTTTGAGATTTCCAGTCTATCAC[A/G]GGGCCACAAGGTGTAAATATCAAGAAAAATGAATTACTAGAAAGGCAAAGTGAAAAAGACATACAAAATACAAGTGTCATTCTTTTTATTCTTAGTTTGGACAGATAGTC
54 TAATTGATTCTTGGGGTATCCCTGTCTTTACCCTGTCTTTAAGGTTTTAGCAAGACTAAGTCTCCTGGTTGAAC[C/T]GGGGAGCTATTTTTTCCTTTGTGGGGAAGGACAGTATTTTATTTTTATATTGGAGGGCCTTTTGAACCTGTCCTAAATTCTAAAGGGGAGGGGGGAAGGTTCATA
55 GTATATAGAACCATGTTTAGGCCAG
56 ACGTTGGATGGTATTGCAACACCATTTGGG
57 ACGTTGGATGTAGAACCATGTTTAGGCCAG
58 AGGCCAGATATATTCGTC
59 AGGCCAGATATATTCGTCA
60 AGGCCAGATATATTCGTCGT
61 CCTTTCCCCCTTATCCAACT
62 GTACTGGTTGGGCTCATTTTCT
63 (FAM)CCCTAGCCTATACCC(MGBNFQ)
64 CACCTTTCCCCCTTATCCAACTAGCCCTAGCCTATACCCTCTGCTGCCCAAGAAAATGAGCCCAACCAGTACAC
65 GTTCTGTGTTATATATAAAGAATTCCTTCTTTCTTTTCAAGGCACAAGCTGCAGATAAAATCCATTCATCCTTCCGCTCTCTCAGCTCTGCAATCAATGCATCCACAGGG[A/G]ATTATTTACTGGAAAGTGTCAATAAGCTGTTTGGTGAGAAGTCTGCGAGCTTCCGGGAAGTAAGTGAAACCTG
66 ACGTTGGATGTGATGCGATTTTGCAGGCAC
序列ID编号 序列
67 ACGTTGGATGCAGACTTCTCACCAAACAGC
68 TCAATGCATCCACAGGG
69 TCAATGCATCCACAGGGA
70 TCAATGCATCCACAGGGGA
71 GACGAAGCTATCAAAGGTCTTCCGGGACTGCCAGGACCCAAGGGCTTCGCAGGCATCAACGGGGAGCCGGGGAGGAAAGGGGACA[G/A]AGGAGACCCCGGCCAACACGGCCTCCCTGGGTTCCCAGGGCTCAAGGTGAGGAGCAATTTCATCATGAAGCTGGCAAGACACTCTGAGGCCTCCCCA
72 ACGTTGGATGAAGGGCTTCGCAGGCATCAA
73 ACGTTGGATGACCAATGTTGCCAGGCACTC
74 GTTGGCCGGGGTCTCCT
75 GTTGGCCGGGGTCTCCTC
76 GTTGGCCGGGGTCTCCTTTG

Claims (32)

1.测定孕妇所怀胎儿染色体异常的方法,包括以下步骤:
(a)鉴别来源于该孕妇的含有RNA的生物样本中所关注的至少一个染色体上的至少一个遗传位点转录出的RNA的等位基因,其中所述含有RNA的生物样本含有胎儿RNA;
(b)确定所述RNA转录物的等位基因比例;以及
(c)将步骤(b)得到所述比例与代表从怀有染色体正常胎儿的孕妇获得的对应生物样本中的等位基因比例的标准对照进行比较,其中所述比例比标准对照增加或降低都表明胎儿染色体异常的风险增加。
2.如权利要求1所述的方法,其中所述染色体异常是21号染色体三体、18号染色体三体和13号染色体三体中的一种。
3.如权利要求2所述的方法,其中所述染色体异常是21号染色体三体。
4.如权利要求1所述的方法,其中所述染色体异常在X染色体或Y染色体上。
5.如权利要求1所述的方法,其中步骤(a)中的生物样本选自母体血液,血浆或血清,羊水,绒膜毛样品,来自移植前胚胎的活体材料、从母体血液分离的胎儿有核细胞或胎儿细胞残片、母体尿液、母体唾液、妇女生殖道洗涤物以及胎体腔穿刺获取的样品中的一种。
6.如权利要求1所述的方法,其中步骤(a)中的生物样本是母体血液。
7.如权利要求1所述的方法,其中步骤(a)中的生物样本含有存在于母体血液中的细胞成分或细胞残片。
8.如权利要求1所述的方法,其中步骤(a)中的所述胎儿RNA来源于胎盘。
9.如权利要求1所述的方法,其中步骤(a)是利用反转录聚合酶链式反应(RT-PCR)完成的。
10.如权利要求1所述的方法,其步骤(a)和/或步骤(b)是通过选自以下方法中的一种完成的:引物延伸反应、质谱分析、用至少一种探针杂交、用至少一种荧光标记探针杂交、直接测序、克隆和测序以及电泳。
11.如权利要求1所述的方法,其步骤(a)、(b)和(c)中的所述等位基因是通过序列差异进行区分的。
12.如权利要求11所述的方法,其中所述序列差异是单核苷酸多态(SNP)。
13.如权利要求11所述的方法,其中所述序列差异是插入/缺失多态。
14.如权利要求11所述的方法,其中所述序列差异是简单串联重复多态。
15.如权利要求1所述的方法,其中所述RNA转录自21号、18号、13号、X和Y染色体中的一个。
16.如权利要求15所述的方法,其中所述RNA转录自21号染色体。
17.如权利要求1所述的方法,其中所述RNA是mRNA。
18.如权利要求1所述的方法,其中所述RNA转录自胶原VIα1(COL6A7),超氧化歧化酶1(SOD1),胶原VIα2(COL6A2),线粒体ATP合成酶O亚基(ATP5O),BTG家族成员3(BTG3),含有血小板反应蛋白1型基序的解聚素样和金属蛋白酶I(ADAMTS1),β位APP剪切酶2(BA CE2),intersectin 1(ITSN1),淀粉样蛋白β(A4)前体蛋白(APP),ATP合成酶,H+转运,线粒体F0复合体,亚基F6(ATP5J),唐氏综合症判别区域基因5(DSCR5),胎盘特异4(PLAC4),推测蛋白BC005107(LOC90625),核糖体蛋白L17(RPL17),丝氨酸蛋白酶抑制剂分枝B(卵清蛋白)成员2(SERPINB2)和胶原IVα2(COL4A2)中的至少一个遗传座位。
19.如权利要求18所述的方法,其中所述RNA含有至少一个所述遗传座位的单核苷酸多态。
20.如权利要求19所述的方法,其中所述RNA转录自胶原VIα1(COL6A1)和胶原VIα2(COL6A2)中的至少一个遗传座位。
21.如权利要求20所述的方法,其中所述转录自COL6A1遗传座位的RNA中的SNP是Arg850HisSer932Ser
22.如权利要求20所述的方法,其中所述转录自COL6A2遗传座位的RNA中的SNP是Val728Val
23.如权利要求18所述的方法,其中所述RNA转录自胎盘特异4(PLAC4)的遗传座位。
24.如权利要求23所述的方法,其中所述RNA是转录自诸如AF269287,AK027868,AK092431,BC093685,BC101615,BC101617,L13197,NM_182832和LOC191585的PLAC4遗传座位的任何基因转录变异体。
25.如权利要求23所述的方法,其中所述RNA转录自含有单核苷酸多态或插入/缺失多态的PLAC4基因的遗传座位。这些单核苷酸多态或插入/缺失多态选自rs3804026,rs4818219,rs7844,rs9015,rs13643,rs9305729,rs9305730,rs5019195,rs5019194,rs5844069,rs1049904,rs16998089,rs12482116,rs11909439,rs7278659,rs121 06409,rs12106395,rs12106401,rs12106434,rs2183584,rs3949725,rs8130833,rs10222145,rs9981478,rs8130833,rs9977003,PLAC4-41471145和PLAC4-41476236。
26.如权利要求1所述的方法,其中所述妇女处于头三个月妊娠期。
27.如权利要求1所述的方法,其中所述妇女处于中三个月妊娠期。
28.如权利要求1所述的方法,如果步骤(b)中所述比例高于或低于标准对照的1个标准偏差,则步骤(c)的比较说明所述胎儿染色体异常的风险增加。
29.如权利要求1所述的方法,如果步骤(b)中所述比例高于或低于标准对照的2个标准偏差,则步骤(c)的比较说明所述胎儿染色体异常的风险增加。
30.如权利要求1所述的方法,如果步骤(b)中所述比例高于或低于标准对照的3个标准偏差,则步骤(c)的比较说明所述胎儿染色体异常的风险增加。
31.检测孕妇怀有染色体异常胎儿的试剂盒,该试剂盒包括:
(a)扩增目的区域的引物;及
(b)代表从怀有染色体正常胎儿的孕妇获得的对应生物样本中的等位基因比例的标准对照。
32.如权利要求31所述的试剂盒,还包括:
(c)对每个RNA类型的不同等位基因进行鉴别的杂交探针。
CN200680007354.2A 2005-03-18 2006-03-17 检测染色体非整倍性的方法 Active CN101137760B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US66317305P 2005-03-18 2005-03-18
US60/663,173 2005-03-18
PCT/CN2006/000412 WO2006097049A1 (en) 2005-03-18 2006-03-17 A method for the detection of chromosomal aneuploidies

Publications (2)

Publication Number Publication Date
CN101137760A true CN101137760A (zh) 2008-03-05
CN101137760B CN101137760B (zh) 2011-01-26

Family

ID=36991287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680007354.2A Active CN101137760B (zh) 2005-03-18 2006-03-17 检测染色体非整倍性的方法

Country Status (10)

Country Link
US (2) US7645576B2 (zh)
EP (1) EP1859050B1 (zh)
JP (1) JP5219516B2 (zh)
CN (1) CN101137760B (zh)
AU (1) AU2006224971B2 (zh)
CA (1) CA2601221C (zh)
ES (1) ES2398233T3 (zh)
HK (1) HK1114127A1 (zh)
TW (1) TWI367259B (zh)
WO (1) WO2006097049A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011130880A1 (zh) * 2010-04-23 2011-10-27 深圳华大基因科技有限公司 胎儿染色体非整倍性的检测方法
CN102483406A (zh) * 2009-06-24 2012-05-30 健康公司-拉姆巴姆 用于分离胎盘来源微粒的方法和试剂盒以及它们用于诊断胎儿疾病的应用
CN102791881A (zh) * 2009-11-06 2012-11-21 香港中文大学 基于大小的基因组分析
CN103045596A (zh) * 2012-12-20 2013-04-17 徐勇 唐氏综合征21号染色体相关miRNA、基因、筛选方法和应用
CN103045736A (zh) * 2012-12-20 2013-04-17 徐勇 唐氏综合征21号染色体miRNA差异表达图谱模型、构建方法及应用
CN103131787A (zh) * 2013-03-11 2013-06-05 四川大学 基于y染色体snp遗传标记的法医学复合检测试剂盒
CN103534591A (zh) * 2010-10-26 2014-01-22 利兰·斯坦福青年大学托管委员会 通过测序分析进行的非侵入性胎儿遗传筛选
CN104169929A (zh) * 2013-09-10 2014-11-26 深圳华大基因科技有限公司 用于确定胎儿是否存在性染色体数目异常的方法、系统和计算机可读介质
CN104178572A (zh) * 2010-04-23 2014-12-03 深圳华大基因科技有限公司 测序数据的处理方法及装置
WO2016011982A1 (zh) * 2014-07-25 2016-01-28 深圳华大基因股份有限公司 确定生物样本中游离核酸比例的方法、装置及其用途
CN105814574A (zh) * 2013-10-04 2016-07-27 塞昆纳姆股份有限公司 遗传变异的非侵入性评估的方法和过程
CN106086243A (zh) * 2016-08-01 2016-11-09 王燕芸 一种无创式检测怀孕中胎儿是否健康的系统及其应用
CN104732118B (zh) * 2008-08-04 2017-08-22 纳特拉公司 等位基因调用和倍性调用的方法
CN107841543A (zh) * 2012-04-06 2018-03-27 香港中文大学 通过使用靶向大规模并行测序的等位基因比率分析进行的胎儿三体性的非侵入性产前诊断
CN107988343A (zh) * 2011-02-09 2018-05-04 纳特拉公司 非侵入性产前倍性识别方法
CN108152497A (zh) * 2017-11-29 2018-06-12 天津市湖滨盘古基因科学发展有限公司 一种人的atp合酶突变蛋白及其应用
CN109243536A (zh) * 2012-12-19 2019-01-18 阿瑞奥萨诊断公司 卵子供体妊娠中胎儿非整倍性的无创检测
WO2020143044A1 (zh) * 2019-01-11 2020-07-16 深圳市双科生物科技有限公司 一种双质控检测方法
US10741270B2 (en) 2012-03-08 2020-08-11 The Chinese University Of Hong Kong Size-based analysis of cell-free tumor DNA for classifying level of cancer

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8024128B2 (en) * 2004-09-07 2011-09-20 Gene Security Network, Inc. System and method for improving clinical decisions by aggregating, validating and analysing genetic and phenotypic data
US20070026418A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
WO2007044091A2 (en) 2005-06-02 2007-04-19 Fluidigm Corporation Analysis using microfluidic partitioning devices
US9133517B2 (en) * 2005-06-28 2015-09-15 Medtronics, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
US20080280843A1 (en) * 2006-05-24 2008-11-13 Van Bilsen Paul Methods and kits for linking polymorphic sequences to expanded repeat mutations
US10081839B2 (en) 2005-07-29 2018-09-25 Natera, Inc System and method for cleaning noisy genetic data and determining chromosome copy number
US9424392B2 (en) 2005-11-26 2016-08-23 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10083273B2 (en) 2005-07-29 2018-09-25 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US8515679B2 (en) * 2005-12-06 2013-08-20 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US20070027636A1 (en) * 2005-07-29 2007-02-01 Matthew Rabinowitz System and method for using genetic, phentoypic and clinical data to make predictions for clinical or lifestyle decisions
US20070178501A1 (en) * 2005-12-06 2007-08-02 Matthew Rabinowitz System and method for integrating and validating genotypic, phenotypic and medical information into a database according to a standardized ontology
US11111544B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US8921102B2 (en) 2005-07-29 2014-12-30 Gpb Scientific, Llc Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US8532930B2 (en) 2005-11-26 2013-09-10 Natera, Inc. Method for determining the number of copies of a chromosome in the genome of a target individual using genetic data from genetically related individuals
US7888017B2 (en) * 2006-02-02 2011-02-15 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis
KR20080107464A (ko) * 2006-03-06 2008-12-10 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 혼합된 태아-모체 소스로부터 태아 dna 서열의 특이적 증폭
US9273356B2 (en) * 2006-05-24 2016-03-01 Medtronic, Inc. Methods and kits for linking polymorphic sequences to expanded repeat mutations
US20080050739A1 (en) * 2006-06-14 2008-02-28 Roland Stoughton Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
US20080070792A1 (en) 2006-06-14 2008-03-20 Roland Stoughton Use of highly parallel snp genotyping for fetal diagnosis
EP2589668A1 (en) 2006-06-14 2013-05-08 Verinata Health, Inc Rare cell analysis using sample splitting and DNA tags
US8137912B2 (en) * 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
TWI335354B (en) 2006-09-27 2011-01-01 Univ Hong Kong Chinese Methods for the detection of the degree of the methylation of a target dna and kits
US7902345B2 (en) 2006-12-05 2011-03-08 Sequenom, Inc. Detection and quantification of biomolecules using mass spectrometry
US20100112590A1 (en) 2007-07-23 2010-05-06 The Chinese University Of Hong Kong Diagnosing Fetal Chromosomal Aneuploidy Using Genomic Sequencing With Enrichment
PT2557517T (pt) 2007-07-23 2023-01-04 Univ Hong Kong Chinese Determinação de um desequilíbrio de sequências de ácido nucleico
US9404150B2 (en) 2007-08-29 2016-08-02 Sequenom, Inc. Methods and compositions for universal size-specific PCR
AU2009205956B2 (en) 2008-01-18 2015-07-02 President And Fellows Of Harvard College Methods of detecting signatures of disease or conditions in bodily fluids
US20110033862A1 (en) * 2008-02-19 2011-02-10 Gene Security Network, Inc. Methods for cell genotyping
EP2271772B1 (en) 2008-03-11 2014-07-16 Sequenom, Inc. Nucleic acid-based tests for prenatal gender determination
WO2009146335A1 (en) * 2008-05-27 2009-12-03 Gene Security Network, Inc. Methods for embryo characterization and comparison
WO2010012002A1 (en) * 2008-07-25 2010-01-28 Saryna Medical Corporation Methods and systems for genetic analysis of fetal nucleated red blood cells
US8962247B2 (en) 2008-09-16 2015-02-24 Sequenom, Inc. Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses
US8476013B2 (en) 2008-09-16 2013-07-02 Sequenom, Inc. Processes and compositions for methylation-based acid enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses
AU2009293232B2 (en) 2008-09-16 2015-05-14 Sequenom Center For Molecular Medicine Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses
SI2334812T1 (sl) 2008-09-20 2017-05-31 The Board of Trustees of the Leland Stanford Junior University Office of the General Counsel Building 170 Neinvazivna diagnoza fetalne anevploidije s sekvenciranjem
US8563242B2 (en) * 2009-08-11 2013-10-22 The Chinese University Of Hong Kong Method for detecting chromosomal aneuploidy
EP2473638B1 (en) 2009-09-30 2017-08-09 Natera, Inc. Methods for non-invasive prenatal ploidy calling
RS63944B1 (sr) 2009-11-05 2023-02-28 Univ Hong Kong Chinese Analiza genoma fetusa iz biološkog uzorka majke
WO2011087760A2 (en) * 2009-12-22 2011-07-21 Sequenom, Inc. Processes and kits for identifying aneuploidy
WO2011091046A1 (en) 2010-01-19 2011-07-28 Verinata Health, Inc. Identification of polymorphic sequences in mixtures of genomic dna by whole genome sequencing
US9260745B2 (en) 2010-01-19 2016-02-16 Verinata Health, Inc. Detecting and classifying copy number variation
US8700341B2 (en) 2010-01-19 2014-04-15 Verinata Health, Inc. Partition defined detection methods
US20120100548A1 (en) 2010-10-26 2012-04-26 Verinata Health, Inc. Method for determining copy number variations
WO2011090556A1 (en) 2010-01-19 2011-07-28 Verinata Health, Inc. Methods for determining fraction of fetal nucleic acid in maternal samples
EP2366031B1 (en) * 2010-01-19 2015-01-21 Verinata Health, Inc Sequencing methods in prenatal diagnoses
US9323888B2 (en) 2010-01-19 2016-04-26 Verinata Health, Inc. Detecting and classifying copy number variation
US10388403B2 (en) 2010-01-19 2019-08-20 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
US20110312503A1 (en) 2010-01-23 2011-12-22 Artemis Health, Inc. Methods of fetal abnormality detection
US8774488B2 (en) 2010-03-11 2014-07-08 Cellscape Corporation Method and device for identification of nucleated red blood cells from a maternal blood sample
US9309565B2 (en) * 2010-05-14 2016-04-12 Life Technologies Corporation Karyotyping assay
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
WO2011146632A1 (en) 2010-05-18 2011-11-24 Gene Security Network Inc. Methods for non-invasive prenatal ploidy calling
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US20190010543A1 (en) 2010-05-18 2019-01-10 Natera, Inc. Methods for simultaneous amplification of target loci
US9677118B2 (en) 2014-04-21 2017-06-13 Natera, Inc. Methods for simultaneous amplification of target loci
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US20120053073A1 (en) 2010-07-23 2012-03-01 President And Fellows Of Harvard College Methods for Detecting Signatures of Disease or Conditions in Bodily Fluids
WO2012012717A1 (en) 2010-07-23 2012-01-26 President And Fellows Of Harvard College Methods of detecting prenatal or pregnancy-related diseases or conditions
CN103124795A (zh) 2010-07-23 2013-05-29 哈佛大学校长及研究员协会 利用吞噬细胞检测疾病或病症的方法
EP2596116A4 (en) 2010-07-23 2014-03-19 Harvard College METHODS FOR DETECTION OF AUTOIMMUNE OR IMMUNE-RELATED DISEASES / PATHOLOGIES
US11203786B2 (en) 2010-08-06 2021-12-21 Ariosa Diagnostics, Inc. Detection of target nucleic acids using hybridization
US20130261003A1 (en) 2010-08-06 2013-10-03 Ariosa Diagnostics, In. Ligation-based detection of genetic variants
US20140342940A1 (en) 2011-01-25 2014-11-20 Ariosa Diagnostics, Inc. Detection of Target Nucleic Acids using Hybridization
US11031095B2 (en) 2010-08-06 2021-06-08 Ariosa Diagnostics, Inc. Assay systems for determination of fetal copy number variation
US20120034603A1 (en) 2010-08-06 2012-02-09 Tandem Diagnostics, Inc. Ligation-based detection of genetic variants
US20130040375A1 (en) 2011-08-08 2013-02-14 Tandem Diagnotics, Inc. Assay systems for genetic analysis
US8700338B2 (en) 2011-01-25 2014-04-15 Ariosa Diagnosis, Inc. Risk calculation for evaluation of fetal aneuploidy
US10533223B2 (en) 2010-08-06 2020-01-14 Ariosa Diagnostics, Inc. Detection of target nucleic acids using hybridization
US10167508B2 (en) 2010-08-06 2019-01-01 Ariosa Diagnostics, Inc. Detection of genetic abnormalities
JP6328934B2 (ja) 2010-12-22 2018-05-23 ナテラ, インコーポレイテッド 非侵襲性出生前親子鑑定法
EP2655666A2 (en) * 2010-12-23 2013-10-30 Sequenom, Inc. Fetal genetic variation detection
US11270781B2 (en) 2011-01-25 2022-03-08 Ariosa Diagnostics, Inc. Statistical analysis for non-invasive sex chromosome aneuploidy determination
US9994897B2 (en) 2013-03-08 2018-06-12 Ariosa Diagnostics, Inc. Non-invasive fetal sex determination
EP3546595B1 (en) * 2011-01-25 2023-02-15 Roche Diagnostics GmbH Risk calculation for evaluation of fetal aneuploidy
US8756020B2 (en) 2011-01-25 2014-06-17 Ariosa Diagnostics, Inc. Enhanced risk probabilities using biomolecule estimations
AU2011358564B9 (en) 2011-02-09 2017-07-13 Natera, Inc Methods for non-invasive prenatal ploidy calling
HUE050032T2 (hu) 2011-04-12 2020-11-30 Verinata Health Inc Genomfrakciók feloldása polimorfizmus-szám alkalmazásával
GB2484764B (en) 2011-04-14 2012-09-05 Verinata Health Inc Normalizing chromosomes for the determination and verification of common and rare chromosomal aneuploidies
CN102199668B (zh) * 2011-04-15 2014-03-12 上海交通大学 纳米颗粒分子单倍型分型方法
US9411937B2 (en) 2011-04-15 2016-08-09 Verinata Health, Inc. Detecting and classifying copy number variation
EP3378954B1 (en) 2011-04-29 2021-02-17 Sequenom, Inc. Quantification of a minority nucleic acid species
WO2012177792A2 (en) 2011-06-24 2012-12-27 Sequenom, Inc. Methods and processes for non-invasive assessment of a genetic variation
US8712697B2 (en) 2011-09-07 2014-04-29 Ariosa Diagnostics, Inc. Determination of copy number variations using binomial probability calculations
WO2013052907A2 (en) 2011-10-06 2013-04-11 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US9984198B2 (en) 2011-10-06 2018-05-29 Sequenom, Inc. Reducing sequence read count error in assessment of complex genetic variations
US9367663B2 (en) 2011-10-06 2016-06-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10196681B2 (en) 2011-10-06 2019-02-05 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10424394B2 (en) 2011-10-06 2019-09-24 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US8688388B2 (en) 2011-10-11 2014-04-01 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
ES2651612T3 (es) * 2011-10-18 2018-01-29 Multiplicom Nv Diagnóstico de aneuploidía cromosómica fetal
ES2929923T3 (es) 2012-01-20 2022-12-02 Sequenom Inc Procesos de diagnóstico que condicionan las condiciones experimentales
EP4155401A1 (en) 2012-03-02 2023-03-29 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
EP4239081A3 (en) 2012-03-26 2023-11-08 The Johns Hopkins University Rapid aneuploidy detection
US9920361B2 (en) 2012-05-21 2018-03-20 Sequenom, Inc. Methods and compositions for analyzing nucleic acid
US10504613B2 (en) 2012-12-20 2019-12-10 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
EP2852682B1 (en) 2012-05-21 2017-10-04 Fluidigm Corporation Single-particle analysis of particle populations
US10289800B2 (en) 2012-05-21 2019-05-14 Ariosa Diagnostics, Inc. Processes for calculating phased fetal genomic sequences
US9193992B2 (en) * 2012-06-05 2015-11-24 Agilent Technologies, Inc. Method for determining ploidy of a cell
US20150275298A1 (en) * 2012-06-15 2015-10-01 Harry Stylli Methods of detecting diseases or conditions
US11261494B2 (en) * 2012-06-21 2022-03-01 The Chinese University Of Hong Kong Method of measuring a fractional concentration of tumor DNA
US10497461B2 (en) 2012-06-22 2019-12-03 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CA2878979C (en) 2012-07-13 2021-09-14 Sequenom, Inc. Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses
CN104583421A (zh) 2012-07-19 2015-04-29 阿瑞奥萨诊断公司 遗传变体的基于多重的顺序连接的检测
US10482994B2 (en) 2012-10-04 2019-11-19 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US20130309666A1 (en) 2013-01-25 2013-11-21 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
SG11201506516TA (en) 2013-02-28 2015-09-29 Univ Hong Kong Chinese Maternal plasma transcriptome analysis by massively parallel rna sequencing
US11585814B2 (en) 2013-03-09 2023-02-21 Immunis.Ai, Inc. Methods of detecting prostate cancer
NZ771629A (en) 2013-03-09 2022-12-23 Harry Stylli Methods of detecting cancer
WO2014168711A1 (en) 2013-03-13 2014-10-16 Sequenom, Inc. Primers for dna methylation analysis
CN105121660B (zh) 2013-03-15 2018-09-28 香港中文大学 确定多胎妊娠的胎儿基因组
ES2939547T3 (es) 2013-04-03 2023-04-24 Sequenom Inc Métodos y procedimientos para la evaluación no invasiva de variaciones genéticas
WO2014190286A2 (en) 2013-05-24 2014-11-27 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
ES2721051T3 (es) 2013-06-21 2019-07-26 Sequenom Inc Método para la evaluación no invasiva de variaciones genéticas
US10262755B2 (en) 2014-04-21 2019-04-16 Natera, Inc. Detecting cancer mutations and aneuploidy in chromosomal segments
WO2015048535A1 (en) 2013-09-27 2015-04-02 Natera, Inc. Prenatal diagnostic resting standards
US10577655B2 (en) 2013-09-27 2020-03-03 Natera, Inc. Cell free DNA diagnostic testing standards
US10438691B2 (en) 2013-10-07 2019-10-08 Sequenom, Inc. Non-invasive assessment of chromosome alterations using change in subsequence mappability
GB2520763A (en) 2013-12-02 2015-06-03 Vanadis Diagnostics Ab Nucleic acid probe and method of detecting genomic fragments
EP3117011B1 (en) 2014-03-13 2020-05-06 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CN113774132A (zh) 2014-04-21 2021-12-10 纳特拉公司 检测染色体片段中的突变和倍性
US11783911B2 (en) 2014-07-30 2023-10-10 Sequenom, Inc Methods and processes for non-invasive assessment of genetic variations
TWI564742B (zh) * 2014-08-22 2017-01-01 Methods for determining the aneuploidy of fetal chromosomes, systems and computer-readable media
EP3693742B1 (en) 2014-09-11 2022-04-06 Harry Stylli Methods of detecting prostate cancer
US10364467B2 (en) 2015-01-13 2019-07-30 The Chinese University Of Hong Kong Using size and number aberrations in plasma DNA for detecting cancer
EP3271481B1 (en) * 2015-01-15 2020-04-08 Good Start Genetics, Inc. Methods of quality control using single-nucleotide polymorphisms in pre-implantation genetic screening
US11479812B2 (en) 2015-05-11 2022-10-25 Natera, Inc. Methods and compositions for determining ploidy
JP7102338B2 (ja) 2016-04-28 2022-07-19 三菱瓦斯化学株式会社 光学部品形成組成物及びその硬化物
CN105925691B (zh) * 2016-05-16 2019-11-08 吴迪 一种快速检测人13号、18号、21号、x和y染色体数目的试剂盒
WO2018022890A1 (en) 2016-07-27 2018-02-01 Sequenom, Inc. Genetic copy number alteration classifications
WO2018067517A1 (en) 2016-10-04 2018-04-12 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
CA3207879A1 (en) 2017-01-24 2018-08-02 Sequenom, Inc. Methods and processes for assessment of genetic variations
CA3049139A1 (en) 2017-02-21 2018-08-30 Natera, Inc. Compositions, methods, and kits for isolating nucleic acids
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
WO2022174000A2 (en) 2021-02-12 2022-08-18 Alnylam Pharmaceuticals, Inc. Superoxide dismutase 1 (sod1) irna compositions and methods of use thereof for treating or preventing superoxide dismutase 1- (sod1-) associated neurodegenerative diseases
CN114990207A (zh) * 2022-06-13 2022-09-02 迈基诺(重庆)基因科技有限责任公司 用于检测染色体非整倍体及单基因突变的试剂盒及应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641628A (en) * 1989-11-13 1997-06-24 Children's Medical Center Corporation Non-invasive method for isolation and detection of fetal DNA
WO1993023574A1 (en) * 1992-05-14 1993-11-25 Kozal Michael J Polymerase chain reaction assays for monitoring antiviral therapy
US5629147A (en) * 1992-07-17 1997-05-13 Aprogenex, Inc. Enriching and identifying fetal cells in maternal blood for in situ hybridization
WO1994003638A1 (en) 1992-07-30 1994-02-17 Applied Biosystems, Inc. Method of detecting aneuploidy by amplified short tandem repeats
CN1110573C (zh) * 1998-10-12 2003-06-04 韩健 检测人21号染色体三体的方法和试剂盒
US7115584B2 (en) * 1999-01-22 2006-10-03 Emory University HIV-1 mutations selected for by β-2′,3′-didehydro-2′,3′-dideoxy-5-fluorocytidine
US7229758B2 (en) * 2001-02-26 2007-06-12 Mulder Kathleen M Control of TGFβ signaling by km23 superfamily members
GB0016742D0 (en) * 2000-07-10 2000-08-30 Simeg Limited Diagnostic method
GB0104690D0 (en) 2001-02-26 2001-04-11 Cytogenetic Dna Services Ltd Diagnostic test
CA2495529C (en) * 2001-10-01 2009-05-19 Mount Sinai School Of Medicine Of New York University Noonan syndrome gene
CN1650032A (zh) * 2002-03-01 2005-08-03 拉瓦格恩公司 检测遗传疾病的方法
CN101245376A (zh) * 2003-01-17 2008-08-20 香港中文大学 作为妊娠相关病症的诊断标志物的循环mRNA
CA2517017A1 (en) * 2003-02-28 2004-09-16 Ravgen, Inc. Methods for detection of genetic disorders
US7191068B2 (en) * 2003-03-25 2007-03-13 Proteogenix, Inc. Proteomic analysis of biological fluids
SG119192A1 (en) 2003-06-27 2006-02-28 Parkway Lab Services Ltd Detection of aneuploidy
WO2005021793A1 (en) * 2003-08-29 2005-03-10 Pantarhei Bioscience B.V. Prenatal diagnosis of down syndrome by detection of fetal rna markers in maternal blood
US20050221336A1 (en) * 2003-09-10 2005-10-06 Mount Sinai School Of Medicine Of New York University Mutations in capillary morphogenesis gene-2 (CMG-2) and use thereof
US7879543B2 (en) * 2003-11-17 2011-02-01 Luminex Molecular Diagnostics, Inc. Method of detecting mutations associated with thrombosis
WO2005056838A1 (en) * 2003-12-08 2005-06-23 The Clinic For Special Children Association of tspyl polymorphisms with siddt syndrome

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732118B (zh) * 2008-08-04 2017-08-22 纳特拉公司 等位基因调用和倍性调用的方法
CN102483406A (zh) * 2009-06-24 2012-05-30 健康公司-拉姆巴姆 用于分离胎盘来源微粒的方法和试剂盒以及它们用于诊断胎儿疾病的应用
CN102791881A (zh) * 2009-11-06 2012-11-21 香港中文大学 基于大小的基因组分析
US11365448B2 (en) 2009-11-06 2022-06-21 The Chinese University Of Hong Kong Size-based genomic analysis
CN107312844B (zh) * 2009-11-06 2021-01-22 香港中文大学 基于大小的基因组分析
CN107312844A (zh) * 2009-11-06 2017-11-03 香港中文大学 基于大小的基因组分析
CN102791881B (zh) * 2009-11-06 2017-08-08 香港中文大学 基于大小的基因组分析
WO2011130880A1 (zh) * 2010-04-23 2011-10-27 深圳华大基因科技有限公司 胎儿染色体非整倍性的检测方法
CN102753703A (zh) * 2010-04-23 2012-10-24 深圳华大基因科技有限公司 胎儿染色体非整倍性的检测方法
CN104178572A (zh) * 2010-04-23 2014-12-03 深圳华大基因科技有限公司 测序数据的处理方法及装置
CN102753703B (zh) * 2010-04-23 2014-12-24 深圳华大基因健康科技有限公司 胎儿染色体非整倍性的检测方法
CN103534591B (zh) * 2010-10-26 2016-04-06 利兰·斯坦福青年大学托管委员会 通过测序分析进行的非侵入性胎儿遗传筛选
CN103534591A (zh) * 2010-10-26 2014-01-22 利兰·斯坦福青年大学托管委员会 通过测序分析进行的非侵入性胎儿遗传筛选
CN107988343A (zh) * 2011-02-09 2018-05-04 纳特拉公司 非侵入性产前倍性识别方法
US10741270B2 (en) 2012-03-08 2020-08-11 The Chinese University Of Hong Kong Size-based analysis of cell-free tumor DNA for classifying level of cancer
US11031100B2 (en) 2012-03-08 2021-06-08 The Chinese University Of Hong Kong Size-based sequencing analysis of cell-free tumor DNA for classifying level of cancer
CN107841543B (zh) * 2012-04-06 2021-12-31 香港中文大学 通过使用靶向大规模并行测序的等位基因比率分析进行的胎儿三体性的非侵入性产前诊断
CN107841543A (zh) * 2012-04-06 2018-03-27 香港中文大学 通过使用靶向大规模并行测序的等位基因比率分析进行的胎儿三体性的非侵入性产前诊断
CN109243536B (zh) * 2012-12-19 2021-12-10 豪夫迈·罗氏有限公司 卵子供体妊娠中胎儿非整倍性的无创检测
CN109243536A (zh) * 2012-12-19 2019-01-18 阿瑞奥萨诊断公司 卵子供体妊娠中胎儿非整倍性的无创检测
CN103045596A (zh) * 2012-12-20 2013-04-17 徐勇 唐氏综合征21号染色体相关miRNA、基因、筛选方法和应用
CN103045736A (zh) * 2012-12-20 2013-04-17 徐勇 唐氏综合征21号染色体miRNA差异表达图谱模型、构建方法及应用
CN103131787B (zh) * 2013-03-11 2014-05-21 四川大学 基于y染色体snp遗传标记的法医学复合检测试剂盒
CN103131787A (zh) * 2013-03-11 2013-06-05 四川大学 基于y染色体snp遗传标记的法医学复合检测试剂盒
CN104169929A (zh) * 2013-09-10 2014-11-26 深圳华大基因科技有限公司 用于确定胎儿是否存在性染色体数目异常的方法、系统和计算机可读介质
CN104169929B (zh) * 2013-09-10 2016-12-28 深圳华大基因股份有限公司 用于确定胎儿是否存在性染色体数目异常的系统和装置
CN105814574A (zh) * 2013-10-04 2016-07-27 塞昆纳姆股份有限公司 遗传变异的非侵入性评估的方法和过程
WO2016011982A1 (zh) * 2014-07-25 2016-01-28 深圳华大基因股份有限公司 确定生物样本中游离核酸比例的方法、装置及其用途
CN106086243A (zh) * 2016-08-01 2016-11-09 王燕芸 一种无创式检测怀孕中胎儿是否健康的系统及其应用
CN108152497A (zh) * 2017-11-29 2018-06-12 天津市湖滨盘古基因科学发展有限公司 一种人的atp合酶突变蛋白及其应用
WO2020143044A1 (zh) * 2019-01-11 2020-07-16 深圳市双科生物科技有限公司 一种双质控检测方法

Also Published As

Publication number Publication date
EP1859050B1 (en) 2012-10-24
JP5219516B2 (ja) 2013-06-26
ES2398233T3 (es) 2013-03-14
CA2601221A1 (en) 2006-09-21
US7645576B2 (en) 2010-01-12
CA2601221C (en) 2013-08-06
TWI367259B (en) 2012-07-01
AU2006224971B2 (en) 2009-07-02
EP1859050A4 (en) 2009-03-25
JP2008518639A (ja) 2008-06-05
WO2006097049A1 (en) 2006-09-21
AU2006224971A1 (en) 2006-09-21
EP1859050A1 (en) 2007-11-28
US20100311046A1 (en) 2010-12-09
TW200700558A (en) 2007-01-01
HK1114127A1 (en) 2008-10-24
US20060252071A1 (en) 2006-11-09
CN101137760B (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
CN101137760B (zh) 检测染色体非整倍性的方法
US10731217B2 (en) Markers for prenatal diagnosis and monitoring
CA2909479A1 (en) Method of determining the fraction of fetal dna in maternal blood using hla markers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1114127

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1114127

Country of ref document: HK