JP7102338B2 - 光学部品形成組成物及びその硬化物 - Google Patents

光学部品形成組成物及びその硬化物 Download PDF

Info

Publication number
JP7102338B2
JP7102338B2 JP2018514745A JP2018514745A JP7102338B2 JP 7102338 B2 JP7102338 B2 JP 7102338B2 JP 2018514745 A JP2018514745 A JP 2018514745A JP 2018514745 A JP2018514745 A JP 2018514745A JP 7102338 B2 JP7102338 B2 JP 7102338B2
Authority
JP
Japan
Prior art keywords
group
formula
compound
acid
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018514745A
Other languages
English (en)
Other versions
JPWO2017188452A1 (ja
Inventor
雅敏 越後
具明 瀧川
匠 樋田
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2017188452A1 publication Critical patent/JPWO2017188452A1/ja
Application granted granted Critical
Publication of JP7102338B2 publication Critical patent/JP7102338B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C395/00Compounds containing tellurium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Description

本発明は、光学部品形成組成物及びその硬化物に関する。
近年、光学部品形成組成物として、様々なものが提案されている。このような光学部品形成組成物としては、例えば、アクリル系樹脂、エポキシ系樹脂又はアントラセン誘導体を含んだものが挙げられる(例えば、下記特許文献1~4参照)。
一方、テルル含有のポリマーが提案されている(非特許文献1~3参照)。
特開2016-12061号公報 特開2015-174877号公報 特開2014-73986号公報 特開2010-138393号公報
Chem. Lett.,40,762-764(2011) Angew. Chem. Int. Ed. 49, 10140 - 10144 (2010). Org. Lett., 11, 1487 - 1490 (2009).
しかしながら、従来数多くの光学部材向け組成物が提案されているにもかかわらず、保存安定性、構造体形成能(膜形成能)、耐熱性、透明性及び屈折率を高い次元で両立させたものはなく、新たな材料の開発が求められている。
更に、上述のように非特許文献1~3にはテルル含有のポリマーが提案されているが、これを光学部品形成組成物としての適用する示唆するものは一切無い。
本発明の目的は、光学材料に有用に用いられる光学部品形成組成物及びその硬化物を提供することである。
すなわち、本発明は次のとおりである。
<1>テルルを含有する化合物又はテルルを含有する樹脂を含有する光学部品形成組成物。
<2>前記テルルを含有する化合物が、下記式(A-1)で示される前記<1>に記載の光学部品形成組成物。
Figure 0007102338000001
(式(A-1)中、Xは、テルルを含む炭素数0~60の2m価の基であり、Zは、酸素原子、硫黄原子又は無架橋であり、Rは、各々独立して、酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、ハロゲン原子、及びそれらの組み合わせからなる群より選択され、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、nは、各々独立して0~(5+2×p)の整数である。)
<3>前記テルルを含有する化合物が、下記式(A-2)で示される前記<2>に記載の光学部品形成組成物。
Figure 0007102338000002
(式(A-2)中、Xは、テルルを含む炭素数0~60の2m価の基であり、Zは、酸素原子、硫黄原子、単結合又は無架橋であり、R0Aは、各々独立して、炭化水素基、ハロゲン原子、シアノ基、ニトロ基、アミノ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、水酸基又は水酸基の水素原子が酸架橋性反応基又は酸解離性反応基で置換された基、及びそれらの組み合わせからなる群より選択され、ここで、前記アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、nは、各々独立して0~(5+2×p)の整数である。)
<4>前記テルルを含有する化合物が、下記式(A-3)で示される前記<2>に記載の光学部品形成組成物。
Figure 0007102338000003
(式(A-3)中、Xは、テルルを含む炭素数0~30の2m価の基であり、Zは、酸素原子、硫黄原子又は無架橋であり、R0Bは、各々独立して、酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、nは、各々独立して0~(5+2×p)の整数である。)
<5>前記テルルを含有する化合物が、下記式(1A)で示される前記<2>に記載の光学部品形成組成物。
Figure 0007102338000004
(式(1A)中、X、Z、m、pは前記式(A-1)と同義であり、Rは、各々独立して、炭化水素基、ハロゲン原子、シアノ基、ニトロ基、アミノ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、Rは、各々独立して、水素原子、酸架橋性反応基又は酸解離性反応基であり、nは各々独立して、0~(5+2×p)の整数であり、nは各々独立して、0~(5+2×p)の整数である。但し、少なくとも一つのnは1~(5+2×p)の整数である。)
<6>前記テルルを含有する化合物が、下記式(1B)で示される前記<4>に記載の光学部品形成組成物。
Figure 0007102338000005
(式(1B)中、X、Z、m、pは前記式(A-3)と同義であり、R1Aは、各々独立して、アルキル基、アリール基、アルケニル基又はハロゲン原子であり、Rは、各々独立して、水素原子、酸架橋性反応基又は酸解離性反応基であり、nは各々独立して、0~(5+2×p)の整数であり、nは各々独立して、0~(5+2×p)の整数である。但し、少なくとも一つのnは1~(5+2×p)の整数である。)
<7>前記テルルを含有する化合物が、下記式(2A)で示される前記<6>に記載の光学部品形成組成物。
Figure 0007102338000006
(式(2A)中、Z、R1A、R、p、n、nは前記式(1B)と同義であり、Xは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、水素原子、又はハロゲン原子である。)
<8>前記テルルを含有する化合物が、下記式(2A')で示される前記<7>に記載の光学部品形成組成物。
Figure 0007102338000007
(式(2A')中、R1B及びR1B'は各々独立して、アルキル基、アリール基、アルケニル基、ハロゲン原子、水酸基又は水酸基の水素原子が酸架橋性反応基又は酸解離性反応基で置換された基であり、Xは前記式(2A)のXと、n及びn1'は前記式(2A)のnと、p及びp'は前記式(2A)のpと同義であり、R1BとR1B'、nとn1'、pとp' 、R1Bの置換位置とR1B'の置換位置、のうち少なくとも一つは異なる。)
<9>前記テルルを含有する化合物が、下記式(3A)で示される前記<7>に記載の光学部品形成組成物。
Figure 0007102338000008
(式(3A)中、R1A、R、X、n、nは前記式(2A)と同義である。)
<10>前記テルルを含有する化合物が、下記式(4A)で示される前記<9>に記載の光学部品形成組成物。
Figure 0007102338000009
(式(4A)中、R1A、R、Xは前記式(3A)と同義である。)
<11>前記テルルを含有する化合物が、下記式(2B)で示される前記<6>に記載の光学部品形成組成物。
Figure 0007102338000010
(式(2B)中、Z、R1A、R、p、n、nは前記式(1B)と同義である。)
<12>前記テルルを含有する化合物が、下記式(2B')で示される前記<11>に記載の光学部品形成組成物。
Figure 0007102338000011
(式(2B')中、R1B及びR1B'は各々独立して、アルキル基、アリール基、アルケニル基、ハロゲン原子、水酸基又は水酸基の水素原子が酸架橋性反応基又は酸解離性反応基で置換された基であり、n及びn1'は前記式(2B)のnと、p及びp'は前記式(2B)のpと同義であり、R1BとR1B'、nとn1'、pとp'、R1Bの置換位置とR1B'の置換位置、のうち少なくとも一つは異なる。)
<13>前記テルルを含有する化合物が、下記式(3B)で示される前記<11>に記載の光学部品形成組成物。
Figure 0007102338000012
(式(3B)中、R1A、R、n、nは前記式(2B)と同義である。)
<14>前記テルルを含有する化合物が、下記式(4B)で示される前記<13>に記載の光学部品形成組成物。
Figure 0007102338000013
(式(4B)中、R、R、Xは前記式(3B)と同義である。)
<15>前記テルルを含有する化合物は、前記Rとして、少なくとも一つの酸解離性反応基を有する前記<5>~<7>,<9>~<11>,<13>~<14>のいずれか一つに記載の光学部品形成組成物。
<16>前記テルルを含有する化合物は、前記Rが全て水素原子である前記<5>~<7>,<9>~<11>,<13>~<14>のいずれか一つに記載の光学部品形成組成物。
<17>前記テルルを含有する樹脂が、下記式(A-1)で示される化合物に由来する構成単位を含む樹脂である前記<1>に記載の光学部品形成組成物。
Figure 0007102338000014
(式(A-1)中、Xは、テルルを含む炭素数0~60の2m価の基であり、Zは、酸素原子、硫黄原子又は無架橋であり、Rは、各々独立して、酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、ハロゲン原子、及びそれらの組み合わせからなる群より選択され、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、nは、各々独立して0~(5+2×p)の整数である。)
<18>前記テルルを含有する樹脂が、下記式(A-2)で示される化合物に由来する構成単位を含む樹脂である前記<1>に記載の光学部品形成組成物。
Figure 0007102338000015
(式(A-2)中、Xは、テルルを含む炭素数0~60の2m価の基であり、Zは、酸素原子、硫黄原子、単結合又は無架橋であり、R0Aは、各々独立して、炭化水素基、ハロゲン原子、シアノ基、ニトロ基、アミノ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、水酸基又は水酸基の水素原子が酸架橋性反応基又は酸解離性反応基で置換された基、及びそれらの組み合わせからなる群より選択され、ここで、前記アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、nは、各々独立して0~(5+2×p)の整数である。)
<19>前記テルルを含有する樹脂が、下記式(A-3)で示される化合物に由来する構成単位を含む樹脂である前記<1>に記載の光学部品形成組成物。
Figure 0007102338000016
(式(A-3)中、Xは、テルルを含む炭素数0~30の2m価の基であり、Zは、酸素原子、硫黄原子又は無架橋であり、R0Bは、各々独立して、酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、nは、各々独立して0~(5+2×p)の整数である。)
<20>前記テルルを含有する樹脂が、下記式(B1-M)で示される構成単位を含む樹脂である前記<1>に記載の光学部品形成組成物。
Figure 0007102338000017
(式(B1-M)中、Xは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、水素原子、又はハロゲン原子であり、Rは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、qは0~2の整数であり、nは0~(4+2×q)である。Rは、単結合又は下記一般式(5)で示されたいずれかの構造である。)
Figure 0007102338000018
(一般式(5)中において、Rは、置換又は無置換の炭素数1~20の直鎖状、炭素数3~20の分岐状若しくは炭素数3~20の環状のアルキレン基、或いは、置換又は無置換の炭素数6~20のアリーレン基であり、R'は各々独立して、前記式(5')のいずれかである。式(5')中において、*はRに接続していることを表す。)
<21>前記テルルを含有する樹脂は、前記Rが前記一般式(5)で示されたいずれかの構造である前記<20>に記載の光学部品形成組成物。
<22>前記テルルを含有する樹脂が、下記式(B2-M')で示される構成単位を含む樹脂である前記<20>に記載の光学部品形成組成物。
Figure 0007102338000019
(式(B2-M')中、X、R、q、nは式(B1-M)と同義であり、Rは、下記一般式(6)で示されたいずれかの構造である。)
Figure 0007102338000020
(一般式(6)中において、Rは、置換又は無置換の炭素数1~20の直鎖状、炭素数3~20の分岐状若しくは炭素数3~20の環状のアルキレン基、或いは、置換又は無置換の炭素数6~20のアリーレン基であり、R7'は各々独立して、前記式(6')のいずれかである。式(6')中において、*はRに接続していることを表す。)
<23>前記テルルを含有する樹脂が、下記式(C1)で示される構成単位を含む樹脂である前記<1>に記載の光学部品形成用組成物。
Figure 0007102338000021
(式(C1)中、Xは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、水素原子、又はハロゲン原子であり、Rは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、rは0~2の整数であり、nは2~(4+2×r)である。)
<24>前記テルルを含有する樹脂が、下記式(B3-M)で示される構成単位を含む樹脂である前記<1>に記載の光学部品形成用組成物。
Figure 0007102338000022
(式(B3-M)中、Rは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、qは0~2の整数であり、nは0~(4+2×q)である。Rは、単結合又は下記一般式(5)で示されたいずれかの構造である。)
Figure 0007102338000023
(一般式(5)中において、Rは、置換又は無置換の炭素数1~20の直鎖状、炭素数3~20の分岐状若しくは炭素数3~20の環状のアルキレン基、或いは、置換又は無置換の炭素数6~20のアリーレン基であり、R'は各々独立して、前記式(5')のいずれかである。式(5')中において、*はRに接続していることを表す。式(5')中において、*はRに接続していることを表す。)
<25>前記テルルを含有する樹脂は、前記Rが前記一般式(5)で示されたいずれかの構造である前記<24>に記載の光学部品形成用組成物。
<26>前記テルルを含有する樹脂が、下記式(B4-M')で示される構成単位を含む樹脂である前記<24>に記載の光学部品形成用組成物。
Figure 0007102338000024
(式(B4-M')中、R、q、nは式(B3-M)と同義であり、Rは、下記一般式(6)で示されたいずれかの構造である。)
Figure 0007102338000025
(一般式(6)中において、Rは、置換又は無置換の炭素数1~20の直鎖状、炭素数3~20の分岐状若しくは炭素数3~20の環状のアルキレン基、或いは、置換又は無置換の炭素数6~20のアリーレン基であり、R7'は各々独立して、前記式(6')のいずれかである。式(6')中において、*はRに接続していることを表す。)
<27>前記テルルを含有する樹脂が、下記式(C2)で示される構成単位を含む樹脂である前記<1>に記載の光学部品形成用組成物。
Figure 0007102338000026
(式(C2)中、Rは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、rは0~2の整数であり、nは2~(4+2×r)である。)
<28>前記<1>~<27>のいずれか一項に記載の光学部品形成用組成物の製造方法であって、ハロゲン化テルルと、置換又は無置換のフェノール誘導体とを、塩基触媒存在下にて反応させて前記テルルを含有する化合物を合成する工程を含む、光学部品形成用組成物の製造方法。
<29>溶媒を更に含む前記<1>~<28>のいずれか一つに記載の光学部品形成用組成物。
<30>酸発生剤を更に含有する、前記<29>に記載の光学部品形成用組成物。
<31>酸架橋剤を更に含有する、前記<29>又は<30>に記載の光学部品形成用組成物。
<32>前記<1>~<31>のいずれか一つに記載の光学部品形成用組成物を用いて得られる硬化物。
本発明によれば、光学材料に有用に用いられる光学部品形成組成物及びその硬化物を提供することができる。
以下、本発明の実施の形態について説明する(以下、「本実施形態」と称する場合がある)。なお、本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
[光学部品形成組成物及びその硬化物]
本実施形態の光学部品形成組成物は、テルルを含有する化合物又は樹脂を含有する光学部品形成組成物である。本実施形態の光学部品形成組成物は、テルルを含有する化合物又は樹脂を含有することにより、高屈折率及び高透明性が期待でき、さらに、保存安定性、構造体形成能(膜形成能)、耐熱性が期待される。前記光学部品形成組成物は、例えば、後述の式(A-1)で示される化合物及びこれをモノマーとして得られる(即ち、式(A-1)で示される化合物に由来する構成単位を含む)樹脂から選ばれる1種以上を含有する。
また当該光学部品形成組成物を硬化して得られる本発明の硬化物は、低温から高温までの広範囲の熱処理によって着色が抑制され、高屈折率及び高透明性が期待できる。
(式(A-1)で示されるテルルを含有する化合物)
本実施形態の光学部品形成組成物の第一の実施形態は、下記式(A-1)で示されるテルルを含有する化合物を含有することができる。
Figure 0007102338000027
(式(A-1)中、Xは、テルルを含む炭素数0~60の2m価の基であり、Zは、酸素原子、硫黄原子又は無架橋であり、Rは、各々独立して、酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、ハロゲン原子、及びそれらの組み合わせからなる群より選択され、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、nは、各々独立して0~(5+2×p)の整数である。)
本実施形態の光学部品形成組成物に含有させる前記化合物の化学構造は、1H-NMR分析により決定できる。
本実施形態の光学部品形成組成物に含有させる前記化合物は、前記式(A-1)のとおりテルルを含むため、屈折率が高く、また透明性が高く、ベンゼン骨格又はナフタレン骨格等を有するため、耐熱性に優れ、また低温から高温までの広範囲の熱処理によって安定かつ着色が抑制されることから、各種光学部品形成組成物としても有用である。更に、前記式(A-1)の構造を有するため、保存安定性、構造体形成能(膜形成能)に優れる。
本実施形態の光学部品形成組成物を用いて硬化物を適用できる光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。
前記式(A-1)中、mは1~4の整数である。mが2以上の整数の場合、m個の繰り返し単位の構造式は同一であっても、異なっていてもよい。耐熱性や解像度、ラフネス等のレジスト特性の点から、前記式(A-1)中、mは1~3であることが好ましい。
なお、本実施形態の化合物はポリマーではないが、便宜上、前記式(A-1)中のXに結合する[ ](括弧)部内の構造を、"繰り返し単位の構造式"と称する(以下、式についても同様である)。
前記式(A-1)中、pは、各々独立して0~2の整数であり、付属する環構造(式(A-1)においてナフタレンで示される環構造(以下、当該環構造を単に"環構造A"と称することがある。))の構造を決定する値である。即ち、下記に示すように、式(A-1)において、p=0の場合には環構造Aはベンゼン構造を示し、p=1の場合には環構造Aはナフタレン構造を示し、p=2の場合には環構造Aはアントラセン又はフェナントレン等の三環構造を示す。特に限定されるものではないが、前記環構造Aとしては、溶解性の観点からベンゼン構造又はナフタレン構造が好ましい。式(A-1)において、X、Z及びRは環構造A上の任意の結合可能部位に結合される。
Figure 0007102338000028
前記式(A-1)中、Xは、テルルを含む炭素数0~60の2m価の基である。Xとしては、テルルを含む単結合、又はテルルを含む炭素数0~60の2m価の炭化水素基が挙げられる。
前記2m価の基とは、例えば、m=1のときには、炭素数1~60のアルキレン基、m=2のときには、炭素数1~60のアルカンテトライル基、m=3のときには、炭素数2~60のアルカンヘキサイル基、m=4のときには、炭素数3~60のアルカンオクタイル基のことを示す。前記2m価の基としては、例えば、直鎖状、分岐状又は環状構造を有するものが挙げられる。
また、前記2m価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~60の芳香族基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
Xは、耐熱性の点から、縮合多環芳香基(特に2~4環の縮合環構造)を有することが好ましく、安全溶媒への溶解性や耐熱性の点から、ビフェニル基等のポリフェニル基を有することが好ましい。
Xで示される、テルルを含む炭素数0~60の2m価の基の具体例としては、例えば、下記の基が挙げられる。
Figure 0007102338000029
Figure 0007102338000030
前記式(A-1)中、Zは、酸素原子、硫黄原子又は無架橋であることを示す。mが2以上の場合、それぞれのZは同一であってもよいし異なっていてもよい。また、mが2以上場合、異なる繰り返し単位の構造式間がZを介して結合されていてもよい。例えば、mが2以上の場合に、異なる繰り返し単位の構造式間がZを介して結合され、複数の繰り返し単位の構造式がカップ型等の構造を構成していてもよい。特に限定されるものではないが、Zとしては、耐熱性の観点から酸素原子又は硫黄原子であることが好ましい。
前記式(A-1)中、Rは、酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、ハロゲン原子及びそれらの組み合わせである。
ここで、酸素原子を含む1価の基としては、以下に限定されないが、例えば、炭素数1~20のアシル基、炭素数2~20のアルコキシカルボニル基、炭素数1~6の直鎖状アルキルオキシ基、炭素数3~20の分岐状アルキルオキシ基、炭素数3~20の環状アルキルオキシ基、炭素数2~6の直鎖状アルケニルオキシ基、炭素数3~6の分岐状アルケニルオキシ基、炭素数3~10の環状アルケニルオキシ基、炭素数6~10のアリールオキシ基、炭素数1~20のアシルオキシ基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数2~20のアルコキシカルボニルアルキル基、炭素数2~20の1-置換アルコキシメチル基、炭素数2~20の環状エーテルオキシ基、炭素数2~20のアルコキシアルキルオキシ基、グリシジルオキシ基、アリルオキシ基、(メタ)アクリル基、グリシジルアクリレート基、グリシジルメタクリレート基及び水酸基等が挙げられる。
炭素数1~20のアシル基としては、以下に限定されないが、例えば、メタノイル基(ホルミル基)、エタノイル基(アセチル基)、プロパノイル基、ブタノイル基、ペンタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ベンゾイル基等が挙げられる。
炭素数2~20のアルコキシカルボニル基としては、以下に限定されないが、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、オクチルオキシカルボニル基、デシルオキシカルボニル基等が挙げられる。
炭素数1~6の直鎖状アルキルオキシ基としては、以下に限定されないが、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基等が挙げられる。
炭素数3~20の分岐状アルキルオキシ基としては、以下に限定されないが、例えば、イソプロポキシ基、イソブトキシ基、tert-ブトキシ基等が挙げられる。
炭素数3~20の環状アルキルオキシ基としては、以下に限定されないが、例えば、シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロオクチルオキシ基、シクロデシルオキシ基等が挙げられる。
炭素数2~6の直鎖状アルケニルオキシ基としては、以下に限定されないが、例えば、ビニルオキシ基、1-プロペニルオキシ基、2-プロペニルオキシ基、1-ブテニルオキシ基、2-ブテニルオキシ基等が挙げられる。
炭素数3~6の分岐状アルケニルオキシ基としては、以下に限定されないが、例えば、イソプロペニルオキシ基、イソブテニルオキシ基、イソペンテニルオキシ基、イソヘキセニルオキシ基等が挙げられる。
炭素数3~10の環状アルケニルオキシ基としては、以下に限定されないが、例えば、シクロプロペニルオキシ基、シクロブテニルオキシ基、シクロペンテニルオキシ基、シクロヘキセニルオキシ基、シクロオクテニルオキシ基、シクロデシニルオキシ基等が挙げられる。
炭素数6~10のアリールオキシ基としては、以下に限定されないが、例えば、フェニルオキシ基(フェノキシ基)、1-ナフチルオキシ基、2-ナフチルオキシ基等が挙げられる。
炭素数1~20のアシルオキシ基としては、以下に限定されないが、例えば、ホルミルオキシ基、アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ベンゾイルオキシ基等が挙げられる。
炭素数2~20のアルコキシカルボニルオキシ基としては、以下に限定されないが、例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、プロポキシカルボニルオキシ基、ブトキシカルボニルオキシ基、オクチルオキシカルボニルオキシ基、デシルオキシカルボニルオキシ基等が挙げられる。
炭素数2~20のアルコキシカルボニルアルキル基としては、以下に限定されないが、例えば、メトキシカルボニルメチル基、エトキシカルボニルメチル基、n-プロポキシカルボニルメチル基、イソプロポキシカルボニルメチル基、n-ブトキシカルボニルメチル基等が挙げられる。
炭素数2~20の1-置換アルコキシメチル基としては、以下に限定されないが、例えば、1-シクロペンチルメトキシメチル基、1-シクロペンチルエトキシメチル基、1-シクロヘキシルメトキシメチル基、1-シクロヘキシルエトキシメチル基、1-シクロオクチルメトキシメチル基及び1-アダマンチルメトキシメチル基等が挙げられる。
炭素数2~20の環状エーテルオキシ基としては、以下に限定されないが、例えば、テトラヒドロピラニルオキシ基、テトラヒドロフラニルオキシ基、テトラヒドロチオピラニルオキシ基、テトラヒドロチオフラニルオキシ基、4-メトキシテトラヒドロピラニルオキシ基及び4-メトキシテトラヒドロチオピラニルオキシ基等が挙げられる。
炭素数2~20のアルコキシアルキルオキシ基としては、以下に限定されないが、例えば、メトキシメトキシ基、エトキシエトキシ基、シクロヘキシルオキシメトキシ基、シクロヘキシルオキシエトキシ基、フェノキシメトキシ基、フェノキシエトキシ基等が挙げられる。
(メタ)アクリル基としては、以下に限定されないが、例えば、アクリロイルオキシ基、メタクリロイルオキシ基等が挙げられる。また、グリシジルアクリレート基は、グリシジルオキシ基にアクリル酸を反応させて得ることができるものであれば特に限定されない。更に、グリシジルメタクリレート基としては、グリシジルオキシ基にメタクリル酸を反応させて得ることができるものであれば特に限定されない。
硫黄原子を含む1価の基としては、以下に限定されないが、例えば、チオール基等が挙げられる。硫黄原子を含む1価の基としては、式(A-1)における環構造(A-1)を構成する炭素原子に硫黄原子が直接結合した基であることが好ましい。
窒素原子を含む1価の基としては、以下に限定されないが、例えば、ニトロ基、アミノ基、ジアゾ基等が挙げられる。窒素原子を含む1価の基としては、式(A-1)における環構造(A-1)を構成する炭素原子に窒素原子が直接結合した基であることが好ましい。
炭化水素基としては、以下に限定されないが、例えば、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基、炭素数3~10の環状アルキル基、炭素数2~6の直鎖状アルケニル基、炭素数3~6の分岐状アルケニル基、炭素数3~10の環状アルケニル基、炭素数6~10のアリール基等が挙げられる。
炭素数1~6の直鎖状アルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。
炭素数3~6の分岐状アルキル基としては、以下に限定されないが、例えば、イソプロピル基、イソブチル基、tert-ブチル基、ネオペンチル基、2-ヘキシル基等が挙げられる。
炭素数3~10の環状アルキル基としては、以下に限定されないが、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロデシル基等が挙げられる。
炭素数2~6の直鎖状アルケニル基としては、以下に限定されないが、例えば、ビニル基、1-プロペニル基、2-プロペニル基(アリル基)、1-ブテニル基、2-ブテニル基、2-ペンテニル基、2-ヘキセニル基等が挙げられる。
炭素数3~6の分岐状アルケニル基としては、以下に限定されないが、例えば、イソプロペニル基、イソブテニル基、イソペンテニル基、イソヘキセニル基等が挙げられる。
炭素数3~10の環状アルケニル基としては、以下に限定されないが、例えば、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘキセニル基、シクロオクテニル基、シクロデシニル基等が挙げられる。
炭素数6~10のアリール基としては、以下に限定されないが、例えば、フェニル基、ナフチル基等が挙げられる。
ハロゲン原子としては、以下に限定されないが、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
前記式(1)において、nは各々独立して、0~(5+2×p)の整数である。本実施形態においては、溶媒に対する溶解性の観点から、前記式(A-1)中のnの少なくとも1つが、1~4の整数であることが好ましい。
本実施形態において、溶媒に対する溶解性と架橋性の導入との観点から、上記式(A-1)中のRの少なくとも1つが、酸素原子を含む1価の基であることが好ましい。
前記式(A-1)で示されるテルルを含有する化合物は、硬化性の観点から下記式(A-2)で示されるテルル含有化合物であることが好ましい。
Figure 0007102338000031
(式(A-2)中、Xは、テルルを含む炭素数0~60の2m価の基であり、Zは、酸素原子、硫黄原子、単結合又は無架橋であり、R0Aは、各々独立して、炭化水素基、ハロゲン原子、シアノ基、ニトロ基、アミノ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、水酸基又は水酸基の水素原子が酸架橋性反応基又は酸解離性反応基で置換された基、及びそれらの組み合わせからなる群より選択され、ここで、前記アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、nは、各々独立して0~(5+2×p)の整数である。)
0Aにおける「酸架橋性基」及び「酸解離性反応基」については後述する。
前記式(A-1)で示されるテルルを含有する化合物は、安全溶媒への溶解性の観点から下記式(A-3)で示されるテルル含有化合物であることが好ましい。
Figure 0007102338000032
(式(A-3)中、Xは、テルルを含む炭素数0~30の2m価の基であり、Zは、酸素原子、硫黄原子又は無架橋であり、R0Bは、各々独立して、酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、nは、各々独立して0~(5+2×p)の整数である。)
本実施形態において、得られるレジストのパターン形状の観点から、前記式(A-1)で示されるテルルを含有する化合物は、後述するBMPT、BHPT、TDP以外の化合物であることが好ましい。
-式(1A)で示されるテルル含有化合物-
前記式(A-1)で示されるテルルを含有する化合物は、下記式(1A)で示されるテルル含有化合物であることが好ましい。
Figure 0007102338000033
(式(1A)中、X、Z、m、pは前記式(A-1)と同義であり、Rは、各々独立して、炭化水素基、ハロゲン原子、シアノ基、ニトロ基、アミノ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、Rは、各々独立して、水素原子、酸架橋性反応基又は酸解離性反応基であり、nは各々独立して、0~(5+2×p)の整数であり、nは各々独立して、0~(5+2×p)の整数である。但し、少なくとも一つのnは1~(5+2×p)の整数である。)
式(1A)において、nは各々独立して、0~(5+2×p)の整数であり、nは各々独立して、0~(5+2×p)の整数である。また、少なくとも一つのnは1~(5+2×p)の整数である。即ち、一般式(1)のテルルを含有する化合物は、一つの環構造Aに対して、少なくとも一つの「-OR」を有する。式(1)において、X、Z、R及び-ORは環構造A上の任意の結合可能部位に結合される。このため、一つの環構造Aにおけるn+nの上限は、X及びZと結合部位を考慮に入れた後の環構造Aの結合可能部位数の上限と一致する。
は、各々独立して、炭化水素基、ハロゲン原子、シアノ基、ニトロ基、アミノ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。
上述のように、Rで示される炭化水素基としては、置換又は無置換の直鎖状、置換又は無置換の分岐状若しくは置換又は無置換の環状の炭化水素基が挙げられる。
直鎖状、分岐状若しくは環状の炭化水素基としては、以下に限定されないが、例えば、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐状アルキル基、炭素数3~30の環状アルキル基が挙げられる。
炭素数1~30の直鎖状アルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。
炭素数3~30の分岐状アルキル基としては、以下に限定されないが、例えば、イソプロピル基、イソブチル基、tert-ブチル基、ネオペンチル基、2-ヘキシル基等が挙げられる。
炭素数3~30の環状アルキル基としては、以下に限定されないが、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロデシル基等が挙げられる。
上述のように、Rで示されるアリール基としては、以下に限定されないが、炭素数6~40のアリール基が挙げられ、例えば、フェニル基、ナフチル基等が挙げられる。
上述のように、Rで示されるアルケニル基としては、以下に限定されないが、置換又は無置換のアルケニル基が挙げられ、例えば、炭素数2~30の直鎖状アルケニル基、炭素数3~30の分岐状アルケニル基、炭素数3~30の環状アルケニル基が挙げられる。
炭素数2~30の直鎖状アルケニル基としては、以下に限定されないが、例えば、ビニル基、1-プロペニル基、2-プロペニル基(アリル基)、1-ブテニル基、2-ブテニル基、2-ペンテニル基、2-ヘキセニル基等が挙げられる。
炭素数3~30の分岐状アルケニル基としては、以下に限定されないが、例えば、イソプロペニル基、イソブテニル基、イソペンテニル基、イソヘキセニル基等が挙げられる。
炭素数3~30の環状アルケニル基としては、以下に限定されないが、例えば、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘキセニル基、シクロオクテニル基、シクロデシニル基等が挙げられる。
ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
なお、本明細書での「置換」とは、別途の定義がない限り、官能基中の一つ以上の水素原子が、ハロゲン原子、水酸基、シアノ基、ニトロ基、複素環基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~20の分岐状脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~20のアリール基、炭素数7~30のアラルキル基、炭素数1~20のアルコキシ基、炭素数0~20のアミノ基、炭素数2~20のアルケニル基、炭素数1~20のアシル基、炭素数2~20のアルコキシカルボニル基、炭素数1~20のアルキロイルオキシ基、炭素数7~30のアリーロイルオキシ基又は炭素数1~20のアルキルシリル基で置換されていることを意味する。
無置換の炭素数1~20の直鎖状脂肪族炭化水素基とは、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基等が挙げられる。
置換の炭素数1~20の直鎖状脂肪族炭化水素基とは、例えば、フルオロメチル基、2-ヒドロキシエチル基、3-シアノプロピル基及び20-ニトロオクタデシル基等が挙げられる。
無置換の炭素数3~20の分岐脂肪族炭化水素基とは、例えば、イソプロピル基、イソブチル基、ターシャリーブチル基、ネオペンチル基、2-ヘキシル基、2-オクチル基、2-デシル基、2-ドデシル基、2-ヘキサデシル基、2-オクタデシル基等が挙げられる。
置換の炭素数3~20の分岐脂肪族炭化水素基とは、例えば、1-フルオロイソプロピル基及び1-ヒドロキシ-2-オクタデシル基等が挙げられる。
無置換の炭素数3~20の環状脂肪族炭化水素基とは、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロデシル基、シクロドデシル基、シクロヘキサデシル基、シクロオクタデシル基等が挙げられる。
置換の炭素数3~20の環状脂肪族炭化水素基とは、例えば、2-フルオロシクロプロピル基及び4-シアノシクロヘキシル基等が挙げられる。
無置換の炭素数6~20のアリール基とは、例えば、フェニル基、ナフチル基等が挙げられる。
置換の炭素数6~20のアリール基とは、例えば、4-イソプロピルフェニル基、4-シクロヘキシルフェニル基、4-メチルフェニル基、6-フルオロナフチル基等が挙げられる。
無置換の炭素数2~20のアルケニル基とは、例えば、ビニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、オクチニル基、デシニル基、ドデシニル基、ヘキサデシニル基、オクタデシニル基等が挙げられる。
置換の炭素数2~20のアルケニル基とは、例えば、クロロプロピニル基等が挙げられる。
ハロゲン原子とは、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
式(1A)において、Rは、各々独立して、水素原子、酸架橋性反応基又は酸解離性反応基である。
本実施形態において「酸架橋性基」とは、ラジカル又は酸/アルカリの存在下で反応し、塗布溶媒や現像液に使用される酸、アルカリ又は有機溶媒に対する溶解性が変化する特性基をいう。酸架橋性基としては、例えば、アリル基、(メタ)アクリロイル基、ビニル基、エポキシ基、アルコキシメチル基、シアナト基が挙げられるが、ラジカル又は酸/アルカリの存在下で反応すれば、これらに限定されない。酸架橋性基は、生産性を向上させる観点から、酸の存在下で連鎖的に開裂反応を起こす性質を有することが好ましい。
本実施形態において「酸解離性反応基」とは、酸の存在下で開裂して、アルカリ可溶性基等の変化を生じる特性基をいう。アルカリ可溶性基としては、特に限定されないが、例えば、フェノール性水酸基、カルボキシル基、スルホン酸基、ヘキサフルオロイソプロパノール基などが挙げられ、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基が特に好ましい。前記酸解離性反応基としては、特に限定されないが、例えば、KrFやArF用の化学増幅型レジスト組成物に用いられるヒドロキシスチレン系樹脂、(メタ)アクリル酸系樹脂等において提案されているもののなかから適宜選択して用いることができる。
前記酸解離性反応基の好ましい例としては、酸により解離する性質を有する、置換メチル基、1-置換エチル基、1-置換-n-プロピル基、1-分岐アルキル基、シリル基、アシル基、1-置換アルコキシメチル基、環状エーテル基、アルコキシカルボニル基及びアルコキシカルボニルアルキル基からなる群より選ばれる基が挙げられる。なお、前記酸解離性反応基は、架橋性官能基を有さないことが好ましい。
置換メチル基としては、特に限定されないが、通常、炭素数2~20の置換メチル基とすることができ、炭素数4~18の置換メチル基が好ましく、炭素数6~16の置換メチル基がより好ましい。置換メチル基の具体例としては、以下に限定されないが、メトキシメチル基、メチルチオメチル基、エトキシメチル基、n-プロポキシメチル基、イソプロポキシメチル基、n-ブトキシメチル基、t-ブトキシメチル基、2-メチルプロポキシメチル基、エチルチオメチル基、メトキシエトキシメチル基、フェニルオキシメチル基、1-シクロペンチルオキシメチル基、1-シクロヘキシルオキシメチル基、ベンジルチオメチル基、フェナシル基、4-ブロモフェナシル基、4-メトキシフェナシル基、ピペロニル基、及び下記式(13-1)で表される置換基群等を挙げることができる。なお、下記式(13-1)中のRの具体例としては、以下に限定されないが、メチル基、エチル基、イソプロピル基、n-プロピル基、t-ブチル基、n-ブチル基等が挙げられる。
Figure 0007102338000034
前記式(13-1)中、R2Aは、炭素数1~4のアルキル基である。
1-置換エチル基としては、特に限定されないが、通常、炭素数3~20の1-置換エチル基とすることができ、炭素数5~18の1-置換エチル基が好ましく、炭素数7~16の置換エチル基がより好ましい。1-置換エチル基の具体例としては、以下に限定されないが、1-メトキシエチル基、1-メチルチオエチル基、1,1-ジメトキシエチル基、1-エトキシエチル基、1-エチルチオエチル基、1,1-ジエトキシエチル基、n-プロポキシエチル基、イソプロポキシエチル基、n-ブトキシエチル基、t-ブトキシエチル基、2-メチルプロポキシエチル基、1-フェノキシエチル基、1-フェニルチオエチル基、1,1-ジフェノキシエチル基、1-シクロペンチルオキシエチル基、1-シクロヘキシルオキシエチル基、1-フェニルエチル基、1,1-ジフェニルエチル基、及び下記式(13-2)で表される置換基群等を挙げることができる。
Figure 0007102338000035
前記式(13-2)中、R2Aは、前記(13-1)と同義である。
1-置換-n-プロピル基としては、特に限定されないが、通常、炭素数4~20の1-置換-n-プロピル基とすることができ、炭素数6~18の1-置換-n-プロピル基が好ましく、炭素数8~16の1-置換-n-プロピル基がより好ましい。1-置換-n-プロピル基の具体例としては、以下に限定されないが、1-メトキシ-n-プロピル基及び1-エトキシ-n-プロピル基等を挙げることができる。
1-分岐アルキル基としては、特に限定されないが、通常、炭素数3~20の1-分岐アルキル基とすることができ、炭素数5~18の1-分岐アルキル基が好ましく、炭素数7~16の分岐アルキル基がより好ましい。1-分岐アルキル基の具体例としては、以下に限定されないが、イソプロピル基、sec-ブチル基、tert-ブチル基、1,1-ジメチルプロピル基、1-メチルブチル基、1,1-ジメチルブチル基、2-メチルアダマンチル基、及び2-エチルアダマンチル基等を挙げることができる。
シリル基としては、特に限定されないが、通常、炭素数1~20のシリル基とすることができ、炭素数3~18のシリル基が好ましく、炭素数5~16のシリル基がより好ましい。シリル基の具体例としては、以下に限定されないが、トリメチルシリル基、エチルジメチルシリル基、メチルジエチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジエチルシリル基、tert-ブチルジフェニルシリル基、トリ-tert-ブチルシリル基及びトリフェニルシリル基等を挙げることができる。
アシル基としては、特に限定されないが、通常、炭素数2~20のアシル基とすることができ、炭素数4~18のアシル基が好ましく、炭素数6~16のアシル基がより好ましい。アシル基の具体例としては、以下に限定されないが、アセチル基、フェノキシアセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル基、バレリル基、ピバロイル基、イソバレリル基、ラウリロイル基、アダマンチルカルボニル基、ベンゾイル基及びナフトイル基等を挙げることができる。
1-置換アルコキシメチル基としては、特に限定されないが、通常、炭素数2~20の1-置換アルコキシメチル基とすることができ、炭素数4~18の1-置換アルコキシメチル基が好ましく、炭素数6~16の1-置換アルコキシメチル基がより好ましい。1-置換アルコキシメチル基の具体例としては、以下に限定されないが、1-シクロペンチルメトキシメチル基、1-シクロペンチルエトキシメチル基、1-シクロヘキシルメトキシメチル基、1-シクロヘキシルエトキシメチル基、1-シクロオクチルメトキシメチル基及び1-アダマンチルメトキシメチル基等を挙げることができる。
環状エーテル基としては、特に限定されないが、通常、炭素数2~20の環状エーテル基とすることができ、炭素数4~18の環状エーテル基が好ましく、炭素数6~16の環状エーテル基がより好ましい。環状エーテル基の具体例としては、以下に限定されないが、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基、4-メトキシテトラヒドロピラニル基及び4-メトキシテトラヒドロチオピラニル基等を挙げることができる。
アルコキシカルボニル基としては、通常、炭素数2~20のアルコキシカルボニル基とすることができ、炭素数4~18のアルコキシカルボニル基が好ましく、炭素数6~16のアルコキシカルボニル基が更に好ましい。アルコキシカルボニル基の具体例としては、以下に限定されないが、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、tert-ブトキシカルボニル基又は下記式(13-3)のn=0で表される酸解離性反応基群等を挙げることができる。
アルコキシカルボニルアルキル基としては、特に限定されないが、通常、炭素数2~20のアルコキシカルボニルアルキル基とすることができ、炭素数4~18のアルコキシカルボニルアルキル基が好ましく、炭素数6~16のアルコキシカルボニルアルキル基が更に好ましい。アルコキシカルボニルアルキル基の具体例としては、以下に限定されないが、メトキシカルボニルメチル基、エトキシカルボニルメチル基、n-プロポキシカルボニルメチル基、イソプロポキシカルボニルメチル基、n-ブトキシカルボニルメチル基又は下記式(13-3)のn=1~4で表される酸解離性反応基群等を挙げることができる。
Figure 0007102338000036
前記式(13-3)中、R3Aは水素原子又は炭素数1~4の直鎖状若しくは分岐状アルキル基であり、nは0~4の整数である。
これらの酸解離性反応基のうち、置換メチル基、1-置換エチル基、1-置換アルコキシメチル基、環状エーテル基、アルコキシカルボニル基、及びアルコキシカルボニルアルキル基が好ましく、より高い感度を発現する観点から、置換メチル基、1-置換エチル基、アルコキシカルボニル基及びアルコキシカルボニルアルキル基がより好ましく、更に炭素数3~12のシクロアルカン、ラクトン及び6~12の芳香族環から選ばれる構造を有する酸解離性反応基が更に好ましい。炭素数3~12のシクロアルカンとしては、単環でも多環でもよいが、多環であることが好ましい。炭素数3~12のシクロアルカンの具体例としては、以下に限定されないが、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカン等が挙げられ、より具体的には、以下に限定されないが、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロデカン等のポリシクロアルカンが挙げられる。これらの中でも、アダマンタン、トリシクロデカン、テトラシクロデカンが好ましく、アダマンタン、トリシクロデカンがより好ましい。炭素数3~12のシクロアルカンは置換基を有してもよい。ラクトンとしては、以下に限定されないが、例えば、ブチロラクトン又はラクトン基を有する炭素数3~12のシクロアルカン基が挙げられる。6~12の芳香族環としては、以下に限定されないが、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環等が挙げられ、ベンゼン環、ナフタレン環が好ましく、ナフタレン環がより好ましい。
特に下記式(13-4)で表される各基からなる群から選ばれる酸解離性反応基群が、解像性が高く好ましい。
Figure 0007102338000037
前記式(13-4)中、R5Aは、水素原子又は炭素数1~4の直鎖状若しくは分岐状アルキル基であり、R6Aは、水素原子、炭素数1~4の直鎖状若しくは分岐状アルキル基、シアノ基、ニトロ基、複素環基、ハロゲン原子又はカルボキシル基であり、n1Aは0~4の整数であり、n2Aは1~5の整数であり、n0Aは0~4の整数である。
上述の構造的特徴により、前記式(1A)で示される化合物は、低分子量ながらも、その剛直さにより高い耐熱性を有し、高温ベーク条件でも使用可能である。また、本実施形態の光学部品形成組成物は、このような低分子量であり、高温ベークが可能でありながら更にテルルを含有する化合物を含むことから高感度であり、更に、良好なレジストパターン形状を付与できる。
本実施形態において、前記式(1A)で示される化合物は、安全溶媒への溶解性の点から、下記式(1B)で示される化合物であることが好ましい。
Figure 0007102338000038
(式(1B)中、X、Z、m、pは前記式(A-3)と同義であり、R1Aは、各々独立して、アルキル基、アリール基、アルケニル基又はハロゲン原子であり、Rは、各々独立して、水素原子、酸架橋性反応基又は酸解離性反応基であり、nは各々独立して、0~(5+2×p)の整数であり、nは各々独立して、0~(5+2×p)の整数である。但し、少なくとも一つのnは1~(5+2×p)の整数である。)
本実施形態において、前記式(1B)で示される化合物は、安全溶媒への溶解性やレジストパターンの特性の点から、下記式(2A)で示される化合物であることが好ましい。
Figure 0007102338000039
(式(2A)中、Z、R、R、p、n、nは前記式(1B)と同義であり、Xは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、水素原子、又はハロゲン原子である。)
本実施形態において、前記式(2A)で示される化合物は、物性制御の容易性の点から、下記式(2A')で示される化合物であることが好ましい。記式(2A')で示される化合物は非対称の化合物であり、R1BとR1B'、nとn1' 、pとp'の組み合わせ、R1Bの置換位置とR1B'の置換位置、のうち少なくとも一つの組み合わせにおいて互いに異なる。
Figure 0007102338000040
(式(2A')中、R1B及びR1B'は各々独立して、アルキル基、アリール基、アルケニル基、ハロゲン原子、水酸基又は水酸基の水素原子が酸架橋性反応基又は酸解離性反応基で置換された基であり、Xは前記式(2A)のXと、n及びn1'は前記式(2A)のnと、p及びp'は前記式(2A)のpと同義(即ち、Xは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、水素原子又はハロゲン原子)であり、R1BとR1B'、nとn1' 、pとp'、R1Bの置換位置とR1B'の置換位置、のうち少なくとも一つは異なる。)
本実施形態において、前記式(2A)で示される化合物は、耐熱性の点から、下記式(3A)で示される化合物であることが好ましい。
Figure 0007102338000041
(式(3A)中、R1A、R、X、n、nは前記式(2A)と同義である。)
本実施形態において、前記式(3A)で示される化合物は、製造容易性の点から、下記一般式(4A)で示される化合物であることが好ましい。
Figure 0007102338000042
(式(4A)中、R、R、Xは前記と同様である。)
本実施形態において、式(2A)、式(2A')、式(3A)、式(4A)中のXは、製造容易性の点から、ハロゲン原子であることがより好ましい。
本実施形態において、前記式(1B)で示される化合物は、安全溶媒への溶解性やレジストパターンの特性の点から、下記式(2B)で示される化合物であることが好ましい。
Figure 0007102338000043
(式(2B)中、Z、R1A、R、p、n、nは前記式(1B)と同義である。)
本実施形態において、前記式(2B)で示される化合物は、物性制御の容易性の点から、下記式(2B')で示される化合物であることが好ましい。記式(2B')で示される化合物は非対称の化合物であり、R1BとR1B'、nとn1' 、pとp'、R1Bの置換位置とR1B'の置換位置、の組み合わせのうち少なくとも一つの組み合わせにおいて互いに異なる。
Figure 0007102338000044
(式(2B')中、R1B、及びR1B'は各々独立して、アルキル基、アリール基、アルケニル基、ハロゲン原子、水酸基又は水酸基の水素原子が酸架橋性反応基又は酸解離性反応基で置換された基であり、n及びn1'は前記式(2B)のnと、p及びp'は前記式(2B)のpと同義であり(即ち、p、及びp'は、各々独立して0~2の整数であり、n及びn1'は、各々独立して、0~(5+2×p)、又は0~(5+2×p')の整数である)、R1BとR1B'、nとn1'、pとp'、R1Bの置換位置とR1B'の置換位置、のうち少なくとも一つは異なる。)
本実施形態において、前記式(2B)で示される化合物は、耐熱性の点から、下記式(3B)で示される化合物であることが好ましい。
Figure 0007102338000045
(式(3B)中、R1A、R、n、nは前記式(2B)と同義である。)
本実施形態において、前記式(3B)で示される化合物は、製造容易性の点から、下記一般式(4B)で示される化合物であることが好ましい。
Figure 0007102338000046
(式(4B)中、R、R、Xは前記式(3B)と同義である。)
本実施形態において、アルカリ現像によりポジ型パターンを形成する場合又は有機現像によりネガ型パターンを形成する場合は、前記式(1A)で示される化合物は、R'として、少なくとも一つの酸解離性反応基を有することが好ましい。このように少なくとも一つの酸解離性反応基を有するテルルを含有する化合物としては、下記式(1A')で示されるテルルを含有する化合物を挙げることができる。
Figure 0007102338000047
(式(1A')中、X、Z、m、p、R、n、nは前記式(1A)と同義であり、R2'は、各々独立して、水素原子、酸架橋性反応基又は酸解離性反応基であり、少なくともひとつのR2'は、酸解離性反応基である。)
本実施形態において、アルカリ現像によりネガ型パターンを形成する場合は、前記式(1A)で示される化合物は、Rが全て水素原子であるテルルを含有する化合物を用いることができる。このような化合物としては、下記一般式(1A'')で示される化合物を挙げることができる。
Figure 0007102338000048
(前記式(1A'')において、X、Z、R、m、p、n、nは、式(1A)と同様のものを表す。)
本実施形態において、アルカリ現像によりポジ型パターンを形成する場合又は有機現像によりネガ型パターンを形成する場合は、前記式(1B)で示される化合物は、R'として、少なくとも一つの酸解離性反応基を有することが好ましい。このように少なくとも一つの酸解離性反応基を有するテルルを含有する化合物としては、下記式(1B')で示されるテルルを含有する化合物を挙げることができる。
Figure 0007102338000049
(式(1B')中、X、Z、m、p、R1A、n、nは、前記式(1B)と同義であり、R'は、各々独立して、水素原子又は酸解離性反応基であり、少なくとも一つのR'は、酸解離性反応基である。)
本実施形態において、アルカリ現像によりネガ型パターンを形成する場合は、前記式(1B)で示される化合物は、Rが全て水素原子であるテルルを含有する化合物を用いることができる。このような化合物としては、下記一般式(1B'')で示される化合物を挙げることができる。)
Figure 0007102338000050
(式(1B'')中、X、Z、m、p、R1A、n、nは、前記式(1B)と同義である。)
本実施形態において、前記式(A-1)で示される化合物の製造方法は、特に限定されず、例えば、アルコキシベンゼン類と対応するハロゲン化テルルを、反応させることによってポリアルコキシベンゼン化合物を得て、続いて三臭化ホウ素等の還元剤で還元反応を行い、ポリフェノール化合物を得て、得られたポリフェノール化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性反応基を導入することにより前記式(A-1)で示される化合物を得ることができる。
また、フェノール類或いはチオフェノール類と対応するハロゲン化テルルを、反応させることによってポリフェノール化合物を得て、得られたポリフェノール化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性反応基を導入することにより前記式(A-1)で示される化合物を得ることができる。
更には、フェノール類或いはチオフェノール類と対応するテルルを含むアルデヒド類或いはテルルを含むケトン類を、酸又は塩基触媒下にて反応させることによってポリフェノール化合物を得て、得られたポリフェノール化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性反応基を導入することにより前記式(A-1)で示される化合物を得ることができる。
特に限定されるものではないが、例えば、後述のように、四塩化テルル(テルル(IV)テトラクロライド)等のハロゲン化テルルと、置換又は無置換のフェノール誘導体とを、塩基触媒存在下にて反応させて前記テルルを含有する化合物を合成することができる。即ち、本実施形態の光学部品形成組成物は、ハロゲン化テルルと、置換又は無置換のフェノール誘導体とを、塩基触媒存在下にて反応させて前記テルルを含有する化合物を合成する工程を含む光学部品形成組成物の製造方法によって製造することができる。
ハロゲン化テルルとフェノール類を反応させて式(A-1)等で示される化合物を合成する際、例えば、ハロゲン化テルルとフェノール類とを反応させ、反応終了後に、フェノール類を追加反応させる方法を用いてもよい。当該方法によると、ポリアルコキシベンゼン化合物を経由しないため、高純度のポリフェノール化合物を得ることができる。
当該方法においては、高収率で目的のポリフェノール化合物を得るための観点からは、例えば、ハロゲン化テルルとフェノール類とを、ハロゲン化テルル1モルあたりフェノール類0.4~1.2モルで反応させ、反応終了後に、フェノール類を追加反応させることができる。
また、このような方法においては、異なるフェノール類を反応させることによって、得ることができるポリフェノール化合物の種類を増加するための観点から、ハロゲン化テルルとフェノール類[I]とを反応させ、反応終了後に、フェノール類[II]を追加反応させ、フェノール類[I]及びフェノール類[II]として異なるフェノール類を用いる方法とすることもできる。
このような方法においては、ポリフェノール化合物を高純度で得るための観点から、ハロゲン化テルルとフェノール類の反応終了後に、反応中間体を分離し、反応中間体のみを用いてフェノール類と反応させることが望ましい。反応中間体は公知の方法により分離することができる。反応中間体の分離方法は、特に限定されず、例えば、ろ過により分離することが出来る。
さらに、収率向上の観点から、ハロゲン化テルルとフェノール類とからテルル含有樹脂を得る反応で、ハロゲン化テルル1モルあたりフェノール類3モル以上を用いてもよい。限定されないが、ハロゲン化テルルとフェノール類とからテルル含有樹脂を得る反応で、ハロゲン化テルル1モルあたりフェノール類3モル以上を用いる製造方法は、式(C1)、及び式(C2)の製造方法として特に好ましい。
前記ハロゲン化テルルとしては、特に限定されず、例えば、テルル(IV)テトラフルオライド、テルル(IV)テトラクロライド、テルル(IV)テトラブロマイド、テルル(IV)テトラヨーダイド等が挙げられる。
前記アルコキシベンゼン類としては、特に限定されず、例えば、メトキシベンゼン、ジメトキシベンゼン、メチルメトキシベンゼン、メチルジメトキシベンゼン、フェニルメトキシベンゼン、フェニルジメトキシベンゼン、メトキシナフタレン、ジメトキシナフタレン、エトキシベンゼン、ジエトキシベンゼン、メチルエトキシベンゼン、メチルジエトキシベンゼン、フェニルエトキシベンゼン、フェニルジエトキシベンゼン、エトキシナフタレン、ジエトキシナフタレン等が挙げられる。
前記ポリアルコキシベンゼン化合物を製造する際、反応溶媒を用いてもよい。反応溶媒としては、用いるアルコキシベンゼン類と対応するハロゲン化テルルとの反応が進行すれば特に限定されないが、例えば、水、塩化メチレン、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、ジメチルアセトアミド、N-メチルピロリドン又はこれらの混合溶媒を用いることができる。
前記溶媒の量は、特に限定されず、例えば、反応原料100質量部に対して0~2000質量部の範囲とすることができる。
前記テルルを含むポリフェノール化合物を製造する際、反応温度は、特に限定されず、反応原料の反応性に応じて適宜選択することができるが、10~200℃の範囲であることが好ましい。
前記ポリアルコキシベンゼンの製造方法は、特に限定されないが、例えば、アルコキシベンゼン類と対応するハロゲン化テルルを一括で仕込む方法や、アルコキシベンゼン類と対応するハロゲン化テルルを滴下していく方法が挙げられる。反応終了後、系内に存在する未反応原料等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去することもできる。
前記ポリアルコキシベンゼン化合物を製造する際の原料の量は、特に限定されないが、例えば、ハロゲン化テルル1モルに対し、アルコキシベンゼン類を1モル~過剰量使用し、常圧で、20~150℃で20分間~100時間程度反応させることにより進行させることができる。
前記ポリアルコキシベンゼン化合物を製造する際、前記反応終了後、公知の方法により目的物を単離することができる。目的物の単離方法は、特に限定されず、例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離、得られた固形物を濾過し、乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的化合物を得る方法が挙げられる。
前記ポリフェノール化合物は、ポリアルコキシベンゼン化合物を還元して得ることができる。還元反応は、三臭化ホウ素等の還元剤を用いて行うことができる。前記ポリフェノール化合物を製造する際、反応溶媒を用いてもよい。また反応時間、反応温度、原料の量及び単離の方法は、前記ポリフェノール化合物が得られる限りにおいて特に限定されない。
前記フェノール類としては、特に限定されず、例えば、フェノール、ジヒドロキシベンゼン類、トリヒドロキシベンゼン類、ナフトール類、ジヒドロキシナフタレン類、トリヒドロキシアントラセン類、ヒドロキシビフェノール類、ジヒドロキシビフェノール類、側鎖に炭素数1~4のアルキル基及び/又はフェニル基を持つフェノール類、側鎖に炭素数1~4のアルキル基及び/又はフェニル基を持つナフトール類等が挙げられる。
前記ポリフェノール化合物の少なくとも1つのフェノール性水酸基に酸解離性反応基を導入する方法は公知の方法を用いることができる。例えば以下のようにして、前記ポリフェノール化合物の少なくとも1つのフェノール性水酸基に酸解離性反応基を導入することができる。酸解離性反応基を導入するための化合物は、公知の方法で合成若しくは容易に入手でき、例えば、酸クロライド、酸無水物、ジカーボネートなどの活性カルボン酸誘導体化合物、アルキルハライド、ビニルアルキルエーテル、ジヒドロピラン、ハロカルボン酸アルキルエステルなどが挙げられるが特に限定はされない。
例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート、ジメチルアセトアミド、N-メチルピロリドン等の非プロトン性溶媒に前記ポリフェノール化合物を溶解又は懸濁させる。続いて、エチルビニルエーテル等のビニルアルキルエーテル又はジヒドロピランを加え、ピリジニウム p-トルエンスルホナート等の酸触媒の存在下、常圧で、20~60℃、6~72時間反応させる。反応液をアルカリ化合物で中和し、蒸留水に加え白色固体を析出させた後、分離した白色固体を蒸留水で洗浄し、乾燥することにより前記式(A-1)で示される化合物を得ることができる。
前記酸触媒は、特に限定されず、周知の酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。
また、例えば、アセトン、THF、プロピレングリコールモノメチルエーテルアセテート、ジメチルアセトアミド、N-メチルピロリドン等の非プロトン性溶媒にポリフェノール化合物を溶解又は懸濁させる。続いて、エチルクロロメチルエーテル等のアルキルハライド又はブロモ酢酸メチルアダマンチル等のハロカルボン酸アルキルエステルを加え、炭酸カリウム等のアルカリ触媒の存在下、常圧で、20~110℃、6時間~72時間反応させる。反応液を塩酸等の酸で中和し、蒸留水に加え白色固体を析出させた後、分離した白色固体を蒸留水で洗浄し、乾燥することにより前記式(A-1)で示される化合物を得ることができる。
前記塩基触媒は、特に限定されず、周知の塩基触媒より適宜選択することができ、例えば、金属水素化物(水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物等)、金属アルコール塩(ナトリウムメトキシドやカリウムエトキシド等のアルカリ金属のアルコール塩)、金属水酸化物(水酸化ナトリウム、水酸化カリウム等のアルカリ金属又はアルカリ土類金属水酸化物等)、金属炭酸塩(炭酸ナトリウム、炭酸カリウム等のアルカリ金属又はアルカリ土類金属炭酸塩等)、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属又はアルカリ土類金属炭酸水素塩等の無機塩基、アミン類(例えば、第3級アミン類(トリエチルアミン等のトリアルキルアミン、N,N-ジメチルアニリン等の芳香族第3級アミン、1-メチルイミダゾール等の複素環式第3級アミン)等、カルボン酸金属塩(酢酸ナトリウム、酢酸カルシウム等の酢酸アルカリ金属又はアルカリ土類金属塩等)等の有機塩基が挙げられる。入手の容易さや取り扱い易さ等の製造上の観点から、炭酸ナトリウム、炭酸カリウムが好ましい。また、塩基触媒として1種類又は2種類以上を用いることができる。
前記酸解離性反応基は、更に高感度・高解像度なパターン形成を可能にするために、酸の存在下で連鎖的に開裂反応を起こす性質を有することが好ましい。
式(A-1)で表されるテルルを含有する化合物の具体例としては、例えば、以下を挙げることができる。
Figure 0007102338000051
Figure 0007102338000052
Figure 0007102338000053
Figure 0007102338000054
Figure 0007102338000055
Figure 0007102338000056
Figure 0007102338000057
Figure 0007102338000058
Figure 0007102338000059
Figure 0007102338000060
Figure 0007102338000061
Figure 0007102338000062
Figure 0007102338000063
Figure 0007102338000064
Figure 0007102338000065
Figure 0007102338000066
Figure 0007102338000067
Figure 0007102338000068
Figure 0007102338000069
Figure 0007102338000070
Figure 0007102338000071
Figure 0007102338000072
Figure 0007102338000073
Figure 0007102338000074
(式(A-1)に由来する構成単位を含む樹脂)
本実施形態の光学部品形成組成物は、式(A-1)で示されるテルルを含有する化合物に代えて又はこれと共に、式(A-1)に由来する構成単位を含む樹脂を含有していてもよい。換言すると、本実施形態の光学部品形成組成物は、式(A-1)で示される化合物をモノマーとして得られる樹脂を含有することができる。
また、本実施形態の樹脂は、例えば、式(A-1)で示される化合物と架橋反応性を有する化合物とを反応させることによって得ることができる。
架橋反応性を有する化合物としては、式(A-1)で示される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
前記テルルを含有する樹脂としては、例えば、上述の式(A-1)で示される化合物に由来する化合物を含む樹脂(例えば、上述の式(A-2)で示される化合物に由来する化合物を含む樹脂、上述の式(A-3)で示される化合物に由来する化合物を含む樹脂を含む)の他、以下の式で示される構成単位を含む樹脂を用いてもよい。
下記式(B1-M)で示される構成単位を含む樹脂
Figure 0007102338000075
(式(B1-M)中、Xは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、水素原子、又はハロゲン原子であり、Rは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、qは0~2の整数であり、nは0~(4+2×q)である。Rは、単結合又は下記一般式(5)で示されたいずれかの構造である。)
Figure 0007102338000076
(一般式(5)中において、Rは、置換又は無置換の炭素数1~20の直鎖状、炭素数3~20の分岐状若しくは炭素数3~20の環状のアルキレン基、或いは、置換又は無置換の炭素数6~20のアリーレン基であり、R'は各々独立して、前記式(5')のいずれかである。式(5')中において、*はRに接続していることを表す。)
下記式(B1-M')で示される構成単位を含む樹脂(式(B1-M)において前記Rが単結合である樹脂)
Figure 0007102338000077
(式(B1-M')中、Xは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、水素原子、又はハロゲン原子であり、Rは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、qは0~2の整数であり、nは0~(4+2×q)である。)
下記式(B2-M)で示される構成単位を含む樹脂(式(B1-M)において前記Rが前記一般式(5)で示されたいずれかの構造である構成単位を含む樹脂)
Figure 0007102338000078
(式(B2-M)中、X、R、q、nは式(B1-M)と同義であり、Rは、前記一般式(5)で示されたいずれかの構造である。)
下記式(B2-M')で示される構成単位を含む樹脂
Figure 0007102338000079
(式(B2-M')中、X、R、q、nは式(B1-M)と同義であり、Rは、下記一般式(6)で示されたいずれかの構造である。)
Figure 0007102338000080
(一般式(6)中において、Rは、置換又は無置換の炭素数1~20の直鎖状、炭素数3~20の分岐状若しくは炭素数3~20の環状のアルキレン基、或いは、置換又は無置換の炭素数6~20のアリーレン基であり、R7'は各々独立して、前記式(6')のいずれかである。式(6')中において、*はRに接続していることを表す。)
下記式(C1)で示される構成単位を含む樹脂
Figure 0007102338000081
(式(C1)中、Xは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、水素原子、又はハロゲン原子であり、Rは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、rは0~2の整数であり、nは2~(4+2×r)である。)
下記式(B3-M)で示される構成単位を含む樹脂
Figure 0007102338000082
(式(B3-M)中、Rは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、qは0~2の整数であり、nは0~(4+2×q)である。Rは、単結合又は下記一般式(5)で示されたいずれかの構造である。)
Figure 0007102338000083
(一般式(5)中において、Rは、置換又は無置換の炭素数1~20の直鎖状、炭素数3~20の分岐状若しくは炭素数3~20の環状のアルキレン基、或いは、置換又は無置換の炭素数6~20のアリーレン基であり、R'は各々独立して、前記式(5')のいずれかである。式(5')中において、*はRに接続していることを表す。)
下記式(B3-M')で示される構成単位を含む樹脂(式(B3-M)において前記Rが単結合である樹脂)
Figure 0007102338000084
(式(B3-M')中、Rは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、qは0~2の整数であり、nは0~(4+2×q)である。)
下記式(B4-M)で示される構成単位を含む樹脂(式(B3-M)において前記Rが前記一般式(5)で示されたいずれかの構造である構成単位を含む樹脂)
Figure 0007102338000085
(式(B4-M)中、R、q、nは式(B3-M)と同義であり、Rは、上述の一般式(5)で示されたいずれかの構造である。)
下記式(B4-M')で示される構成単位を含む樹脂。
Figure 0007102338000086
(式(B4-M')中、R、q、nは式(B3-M)と同義であり、Rは、下記一般式(6)で示されたいずれかの構造である。)
Figure 0007102338000087
(一般式(6)中において、Rは、置換又は無置換の炭素数1~20の直鎖状、炭素数3~20の分岐状若しくは炭素数3~20の環状のアルキレン基、或いは、置換又は無置換の炭素数6~20のアリーレン基であり、R7'は各々独立して、前記式(6')のいずれかである。式(6')中において、*はRに接続していることを表す。)
下記式(C2)で示される構成単位を含む樹脂
Figure 0007102338000088
(式(C2)中、Rは、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、又はハロゲン原子であり、rは0~2の整数であり、nは2~(4+2×r)である。)
尚、上述の各構成単位を含む樹脂は、構成単位間で各置換基が異なっていてもよい。例えば、式(B1-M)又は(B3-M)におけるRが一般式(5)である場合におけるRや、式(B2-M')又は(B4-M')における一般式(6)中のRは、それぞれの構成単位間において同じであってもよいし異なっていてもよい。
式(A-1)に由来する構成単位としては、具体例としては例えば以下を挙げることができる。
Figure 0007102338000089
Figure 0007102338000090
Figure 0007102338000091
Figure 0007102338000092
Figure 0007102338000093
Figure 0007102338000094
ここで、本実施形態における樹脂は、前記式(A-1)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。
また、本実施形態における樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、本実施形態における樹脂は、前記式(A-1)で表される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、前記式(A-1)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、前記式(A-1)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であっても構わない。
なお、本実施形態における樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30,000であることが好ましく、より好ましくは750~20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、本実施形態における樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2~7の範囲内のものが好ましい。なお、前記Mnは、後述する実施例に記載の方法により求めることができる。
上述した式(A-1)で表される化合物及び/又は該化合物を構成単位として得られる樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、これら化合物及び/又は樹脂は、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、前記式(A-1)で表される化合物及び/又は該化合物をモノマーとして得られる樹脂10gがPGMEA90gに対して溶解すると評価されるのは、式(A-1)で表される化合物及び/又は該化合物をモノマーとして得られる樹脂のPGMEAに対する溶解度が「3質量%以上」となる場合であり、溶解しないと評価されるのは、当該溶解度が「3質量%未満」となる場合である。
[化合物又は樹脂の精製方法]
本実施形態の化合物又は樹脂は、以下の工程を含む精製方法によって精製することができる。
即ち、前記精製方法は、式(A-1)で示される化合物、又は、式(A-1)に由来する構成単位を含む樹脂を、水と任意に混和しない有機溶媒を含む溶媒に溶解させて溶液(A)を得る工程と、得られた溶液(A)と酸性の水溶液とを接触させて、前記式(A-1)で示される化合物又は前記樹脂中の不純物を抽出する第一抽出工程と、を含む。
また、本実施形態の精製方法を適用する場合、前記樹脂は、式(A-1)で示される化合物と架橋反応性を有する化合物との反応によって得られる樹脂であることが好ましい。
本実施形態の精製方法によれば、上述した特定の構造を有する化合物又は樹脂に不純物として含まれうる種々の金属の含有量を効果的に低減することができる。
式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂を含む溶液(A)に含まれる金属分を水相に移行させたのち、有機相と水相とを分離して金属含有量の低減された、式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂を得ることができる。
本実施形態の精製方法で使用する式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂は単独でもよいが、2種以上混合することもできる。また、式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂は、各種界面活性剤、各種架橋剤、各種酸発生剤、各種安定剤と共に本実施形態の製造方法に適用されてもよい。
本実施形態の精製方法で使用される「水と任意に混和しない有機溶媒」とは、水に対し任意の割合で均一に混ざり合わない有機溶媒を意味する。このような有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましく、具体的には、室温下における水への溶解度が30%未満である有機溶媒であり、より好ましくは20%未満であり、特に好ましくは10%未満である有機溶媒が好ましい。当該有機溶媒の使用量は、使用する式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂100質量部に対して、1~100質量部であることが好ましい。
水と任意に混和しない有機溶媒の具体例としては、以下に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類;酢酸エチル、酢酸n-ブチル、酢酸イソアミル等のエステル類;メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン(CHN)、シクロペンタノン、2-ヘプタノン、2-ペンタノン等のケトン類;エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類;n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等からなる群より選ばれる1種以上の有機溶媒が好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがより更に好ましい。メチルイソブチルケトン、酢酸エチル等は式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。
これらの有機溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
本実施形態の精製方法で使用される"酸性の水溶液"としては、一般に知られる有機系化合物若しくは無機系化合物を水に溶解させた水溶液の中から適宜選択される。酸性の水溶液は、以下に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた有機酸水溶液が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液が更に好ましく、蓚酸の水溶液がより更に好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施形態の精製方法の目的に沿って、金属含有量の少ない水、例えばイオン交換水等を用いることが好ましい。
本実施形態の精製方法で使用する酸性の水溶液のpHは特に限定されないが、式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂への影響を考慮し、水溶液の酸性度を調整することが好ましい。通常、酸性の水溶液のpH範囲は0~5程度であり、好ましくはpH0~3程度である。
本実施形態の精製方法で使用する酸性の水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点及び全体の液量を考慮して操作性を確保する観点から、当該使用量を調整することが好ましい。前記観点から、酸性の水溶液の使用量は、前記溶液(A)100質量%に対して、好ましくは10~200質量%であり、より好ましくは20~100質量%である。
本実施形態の精製方法においては、前記のような酸性の水溶液と、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂から選ばれる1種以上及び水と任意に混和しない有機溶媒を含む溶液(A)とを接触させることにより、溶液(A)中の前記化合物又は前記樹脂から金属分を抽出することができる。
水と任意に混和する有機溶媒を含むと、式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂の仕込み量を増加させることができ、また分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と任意に混和する有機溶媒を加える方法は特に限定されない。例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性の水溶液に加える方法、有機溶媒を含む溶液と水又は酸性の水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、予め有機溶媒を含む溶液に加える方法が操作の作業性や仕込み量の管理のし易さの点で好ましい。
本実施形態の精製方法で使用される水と任意に混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。水と任意に混和する有機溶媒の使用量は、溶液相と水相とが分離する範囲であれば特に限定されないが、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂100質量部に対して、0.1~100質量部であることが好ましく、0.1~50質量部であることがより好ましく、0.1~20質量部であることが更に好ましい。
本実施形態の精製方法において使用される水と任意に混和する有機溶媒の具体例としては、以下に限定されないが、テトラヒドロフラン、1,3-ジオキソラン等のエーテル類;メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、N-メチルピロリドン等のケトン類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N-メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N-メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
本実施形態の精製方法において、溶液(A)と酸性の水溶液との接触の際、すなわち、抽出処理を行う際の温度は、好ましくは20~90℃であり、より好ましくは30~80℃の範囲である。抽出操作は、特に限定されないが、例えば、溶液(A)と酸性の水溶液とを、撹拌等により、よく混合させたあと、得られた混合溶液を静置することにより行われる。これにより、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂から選ばれる1種以上と、有機溶媒とを含む溶液(A)に含まれていた金属分が水相に移行する。また、本操作により、溶液(A)の酸性度が低下し、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂の変質を抑制することができる。
前記混合溶液の静置により、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂から選ばれる1種以上と有機溶媒を含む溶液相と、水相とに分離するので、デカンテーション等により式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂から選ばれる1種以上と有機溶媒とを含む溶液相を回収することができる。混合溶液を静置する時間は特に限定されないが、有機溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分間以上であり、好ましくは10分間以上であり、より好ましくは30分間以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
本実施形態の精製方法において、前記第一抽出工程後、前記化合物又は前記樹脂を含む溶液相を、更に水に接触させて、前記化合物又は前記樹脂中の不純物を抽出する工程(第二抽出工程)を含むことが好ましい。
具体的には、例えば、酸性の水溶液を用いて前記抽出処理を行った後に、該水溶液から抽出され、回収された式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂から選ばれる1種以上と有機溶媒を含む溶液相を、更に水による抽出処理に供することが好ましい。前記の水による抽出処理は、特に限定されないが、例えば、前記溶液相と水とを、撹拌等により、よく混合させたあと、得られた混合溶液を、静置することにより行うことができる。当該静置後の混合溶液は、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂から選ばれる1種以上と有機溶媒とを含む溶液相と、水相とに分離するのでデカンテーション等により式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂から選ばれる1種以上と有機溶媒とを含む溶液相を回収することができる。
また、ここで用いられる水は、本実施形態の目的に沿って、金属含有量の少ない水、例えばイオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
こうして得られた式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂から選ばれる1種以上と有機溶媒を含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により前記溶液に有機溶媒を加え、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂の濃度を任意の濃度に調整することができる。
得られた式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂から選ばれる1種以上と有機溶媒を含む溶液から、前記式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂から選ばれる1種以上を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
(光学部品形成組成物の物性等)
本実施形態の光学部品形成組成物は、スピンコート等公知の方法によってアモルファス膜を形成することができる。
(光学部品形成組成物の他の成分)
本実施形態の光学部品形成組成物は、テルルを含有する化合物又はテルルを含有する樹脂、好ましくは、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂の少なくともいずれかを固形成分として含有する。本実施形態の光学部品形成組成物は、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂との両方を含有してもよい。
(溶媒)
本実施形態の光学部品形成組成物は、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂以外に、更に溶媒を含有することが好ましい。
本実施形態の光学部品形成組成物で使用される溶媒は、特に限定されないが、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート(PGMEA)、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテルなどのプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メトキシ-3-メチルプロピオン酸ブチル、3-メトキシ-3-メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;メチルエチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)等のケトン類;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ラクトン等のラクトン類等を挙げることができる。これらの溶媒は、単独で又は2種以上を使用することができる。
本実施形態の光学部品形成組成物で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA、PGME、CHN、CPN、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれる少なくとも一種であり、更に好ましくはPGMEA、PGME及びCHNから選ばれる少なくとも一種である。
本実施形態の光学部品形成組成物において、固形成分の量と溶媒の量との関係は、特に限定されないが、固形成分及び溶媒の合計に対して、固形成分1~80質量%及び溶媒20~99質量%であることが好ましく、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、更に好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、特に好ましくは固形成分2~10質量%及び溶媒90~98質量%である。
本実施形態の光学部品形成組成物は、他の固形成分として、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)からなる群より選ばれる少なくとも一種を含有してもよい。
本実施形態の光学部品形成組成物において、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂(即ち、テルルを含有する化合物又はテルルを含有する樹脂)の含有量は、特に限定されないが、固形成分の全質量(式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)などの任意に使用される固形成分の総和、以下同様)の50~99.4質量%であることが好ましく、より好ましくは55~90質量%、更に好ましくは60~80質量%、特に好ましくは60~70質量%である。
なお、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂の両方を含有する場合、前記含有量は、式(A-1)で示される化合物及び式(A-1)で示される化合物に由来する構成単位を含む樹脂との合計量である。
(酸発生剤(C))
本実施形態の光学部品形成組成物は、熱により直接的又は間接的に酸を発生する酸発生剤(C)を一種以上含有することが好ましい。
この場合、本実施形態の光学部品形成組成物において、酸発生剤(C)の含有量は、固形成分の全質量の0.001~49質量%が好ましく、1~40質量%がより好ましく、3~30質量%が更に好ましく、10~25質量%が特に好ましい。前記含有量の範囲内で酸発生剤(C)を使用することにより、一層高屈折率が得られる。
本実施形態の光学部品形成組成物では、系内に酸が発生すれば、酸の発生方法は限定されない。g線、i線などの紫外線の代わりにエキシマレーザーを使用すれば、より微細加工が可能であるし、また高エネルギー線として電子線、極端紫外線、X線、イオンビームを使用すれば更に微細加工が可能である。
前記酸発生剤(C)は、特に限定されず、下記式(8-1)~(8-8)で示される化合物からなる群から選択される少なくとも一種類であることが好ましい。
Figure 0007102338000095
(式(8-1)中、R13は、各々同一でも異なっていてもよく、それぞれ独立に、水素原子、直鎖状、分岐状若しくは環状アルキル基、直鎖状、分岐状若しくは環状アルコキシ基、ヒドロキシル基又はハロゲン原子であり、X-は、アルキル基、アリール基、ハロゲン置換アルキル基若しくはハロゲン置換アリール基を有するスルホン酸イオン又はハロゲン化物イオンである。)
前記式(8-1)で示される化合物は、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、ジフェニルトリルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、ジフェニル-4-メチルフェニルスルホニウムトリフルオロメタンスルホネート、ジ-2,4,6-トリメチルフェニルスルホニウムトリフルオロメタンスルホネート、ジフェニル-4-t-ブトキシフェニルスルホニウムトリフルオロメタンスルホネート、ジフェニル-4-t-ブトキシフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、ジフェニル-4-ヒドロキシフェニルスルホニウムトリフルオロメタンスルホネート、ビス(4-フルオロフェニル)-4-ヒドロキシフェニルスルホニウムトリフルオロメタンスルホネート、ジフェニル-4-ヒドロキシフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、ビス(4-ヒドロキシフェニル)-フェニルスルホニウムトリフルオロメタンスルホネート、トリ(4-メトキシフェニル)スルホニウムトリフルオロメタンスルホネート、トリ(4-フルオロフェニル)スルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムp-トルエンスルホネート、トリフェニルスルホニウムベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェニル-p-トルエンスルホネート、ジフェニル-2,4,6-トリメチルフェニルスルホニウム-2-トリフルオロメチルベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェニルスルホニウム-4-トリフルオロメチルベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェニルスルホニウム-2,4-ジフルオロベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェニルスルホニウムヘキサフルオロベンゼンスルホネート、ジフェニルナフチルスルホニウムトリフルオロメタンスルホネート、ジフェニル-4-ヒドロキシフェニルスルホニウム-p-トルエンスルホネート、トリフェニルスルホニウム10-カンファースルホネート、ジフェニル-4-ヒドロキシフェニルスルホニウム10-カンファースルホネート及びシクロ(1,3-パーフルオロプロパンジスルホン)イミデートからなる群から選択される少なくとも一種類であることが好ましい。
Figure 0007102338000096
(式(8-2)中、R14は、各々同一でも異なっていてもよく、それぞれ独立に、水素原子、直鎖状、分岐状若しくは環状アルキル基、直鎖状、分岐状若しくは環状アルコキシ基、ヒドロキシル基又はハロゲン原子を表す。X-は前記と同様である。)
前記式(8-2)で示される化合物は、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム p-トルエンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム-2-トリフルオロメチルベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム-4-トリフルオロメチルベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム-2,4-ジフルオロベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムヘキサフルオロベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム10-カンファースルホネート、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ジフェニルヨードニウム p-トルエンスルホネート、ジフェニルヨードニウムベンゼンスルホネート、ジフェニルヨードニウム10-カンファースルホネート、ジフェニルヨードニウム-2-トリフルオロメチルベンゼンスルホネート、ジフェニルヨードニウム-4-トリフルオロメチルベンゼンスルホネート、ジフェニルヨードニウム-2,4-ジフルオロベンゼンスルホネート、ジフェニルヨードニウムへキサフルオロベンゼンスルホネート、ジ(4-トリフルオロメチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ジ(4-トリフルオロメチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ジ(4-トリフルオロメチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、ジ(4-トリフルオロメチルフェニル)ヨードニウム p-トルエンスルホネート、ジ(4-トリフルオロメチルフェニル)ヨードニウムベンゼンスルホネート及びジ(4-トリフルオロメチルフェニル)ヨードニウム10-カンファースルホネートからなる群から選択される少なくとも一種類であることが好ましい。
Figure 0007102338000097
(式(8-3)中、Qはアルキレン基、アリーレン基又はアルコキシレン基であり、R15はアルキル基、アリール基、ハロゲン置換アルキル基又はハロゲン置換アリール基である。)
前記式(8-3)で示される化合物は、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルイミド、N-(10-カンファースルホニルオキシ)スクシンイミド、N-(10-カンファースルホニルオキシ)フタルイミド、N-(10-カンファースルホニルオキシ)ジフェニルマレイミド、N-(10-カンファースルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(10-カンファースルホニルオキシ)ナフチルイミド、N-(n-オクタンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(n-オクタンスルホニルオキシ)ナフチルイミド、N-(p-トルエンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(p-トルエンスルホニルオキシ)ナフチルイミド、N-(2-トリフルオロメチルベンゼンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(2-トリフルオロメチルベンゼンスルホニルオキシ)ナフチルイミド、N-(4-トリフルオロメチルベンゼンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(4-トリフルオロメチルベンゼンスルホニルオキシ)ナフチルイミド、N-(パーフルオロベンゼンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(パーフルオロベンゼンスルホニルオキシ)ナフチルイミド、N-(1-ナフタレンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-ナフタレンスルホニルオキシ)ナフチルイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ナフチルイミド、N-(パーフルオロ-n-オクタンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エンー2,3-ジカルボキシイミド及びN-(パーフルオロ-n-オクタンスルホニルオキシ)ナフチルイミドからなる群から選択される少なくとも一種類であることが好ましい。
Figure 0007102338000098
(式(8-4)中、R16は、各々同一でも異なっていてもよく、それぞれ独立に、任意に置換された直鎖、分岐若しくは環状アルキル基、任意に置換されたアリール基、任意に置換されたヘテロアリール基又は任意に置換されたアラルキル基である。)
前記式(8-4)で示される化合物は、ジフェニルジスルフォン、ジ(4-メチルフェニル)ジスルフォン、ジナフチルジスルフォン、ジ(4-tert-ブチルフェニル)ジスルフォン、ジ(4-ヒドロキシフェニル)ジスルフォン、ジ(3-ヒドロキシナフチル)ジスルフォン、ジ(4-フルオロフェニル)ジスルフォン、ジ(2-フルオロフェニル)ジスルフォン及びジ(4-トルフルオロメチルフェニル)ジスルフォンからなる群から選択される少なくとも一種類であることが好ましい。
Figure 0007102338000099
(式(8-5)中、R17は、同一でも異なっていてもよく、それぞれ独立に、任意に置換された直鎖、分岐若しくは環状アルキル基、任意に置換されたアリール基、任意に置換されたヘテロアリール基又は任意に置換されたアラルキル基である。)
前記式(8-5)で示される化合物は、α-(メチルスルホニルオキシイミノ)-フェニルアセトニトリル、α-(メチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(トリフルオロメチルスルホニルオキシイミノ)-フェニルアセトニトリル、α-(トリフルオロメチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(エチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(プロピルスルホニルオキシイミノ)-4-メチルフェニルアセトニトリル及びα-(メチルスルホニルオキシイミノ)-4-ブロモフェニルアセトニトリルからなる群から選択される少なくとも一種類であることが好ましい。
Figure 0007102338000100
式(8-6)中、R18は、各々同一でも異なっていてもよく、それぞれ独立に、1以上の塩素原子及び1以上の臭素原子を有するハロゲン化アルキル基である。ハロゲン化アルキル基の炭素数は1~5が好ましい。
Figure 0007102338000101
Figure 0007102338000102
式(8-7)及び(8-8)中、R19及びR20はそれぞれ独立に、メチル基、エチル基、n-プロピル基、イソプロピル基等の炭素数1~3のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;メトキシ基、エトキシ基、プロポキシ基等の炭素数1~3のアルコキシル基;又はフェニル基、トルイル基、ナフチル基等アリール基;好ましくは、炭素数6~10のアリール基である。L19及びL20はそれぞれ独立に1,2-ナフトキノンジアジド基を有する有機基である。1,2-ナフトキノンジアジド基を有する有機基としては、具体的には、1,2-ナフトキノンジアジド-4-スルホニル基、1,2-ナフトキノンジアジド-5-スルホニル基、1,2-ナフトキノンジアジド-6-スルホニル基等の1,2-キノンジアジドスルホニル基を好ましいものとして挙げることができる。特に、1,2-ナフトキノンジアジド-4-スルホニル基及び1,2-ナフトキノンジアジド-5-スルホニル基が好ましい。s1はそれぞれ独立して、1~3の整数、s2はそれぞれ独立して、0~4の整数、かつ1≦s1+s2≦5である。J19は単結合、炭素数1~4のポリメチレン基、シクロアルキレン基、フェニレン基、下記式(8-7-1)で表わされる基、カルボニル基、エステル基、アミド基又はエーテル基であり、Y19は水素原子、アルキル基又はアリール基であり、X20は、それぞれ独立に下記式(8-8-1)で示される基である。
Figure 0007102338000103
Figure 0007102338000104
(式(8-8-1)中、Z22はそれぞれ独立に、アルキル基、シクロアルキル基又はアリール基であり、R22はアルキル基、シクロアルキル基又はアルコキシル基であり、rは0~3の整数である。)
その他の酸発生剤として、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(2,4-ジメチルフェニルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、1、3-ビス(シクロヘキシルスルホニルアゾメチルスルホニル)プロパン、1、4-ビス(フェニルスルホニルアゾメチルスルホニル)ブタン、1、6-ビス(フェニルスルホニルアゾメチルスルホニル)ヘキサン、1、10-ビス(シクロヘキシルスルホニルアゾメチルスルホニル)デカン等のビススルホニルジアゾメタン類;2-(4-メトキシフェニル)-4,6-(ビストリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシナフチル)-4,6-(ビストリクロロメチル)-1,3,5-トリアジン、トリス(2,3-ジブロモプロピル)-1,3,5-トリアジン、トリス(2,3-ジブロモプロピル)イソシアヌレート等のハロゲン含有トリアジン誘導体等が挙げられる。
前記酸発生剤のうち、本実施形態の光学部品形成組成物に用いられる酸発生剤(C)としては、芳香環を有する酸発生剤が好ましく、式(8-1)又は(8-2)で示される酸発生剤がより好ましい。式(8-1)又は(8-2)のX-が、アリール基若しくはハロゲン置換アリール基を有するスルホン酸イオンを有する酸発生剤が更に好ましく、アリール基を有するスルホン酸イオンを有する酸発生剤が特に好ましく、ジフェニルトリメチルフェニルスルホニウム p-トルエンスルホネート、トリフェニルスルホニウム p-トルエンスルホネート、トリフェニルスルホニウム トリフルオロメタンスルホナート、トリフェニルスルホニウム ノナフルオロメタンスルホナートが特に好ましい。該酸発生剤を用いることで、ラインエッジラフネスを低減することができる。
前記酸発生剤(C)は、単独で又は2種以上を使用することができる。
(酸架橋剤(G))
本実施形態の光学部品形成組成物は、構造体の強度を増す為の添加剤として使用する場合に、酸架橋剤(G)を一種以上含むことが好ましい。酸架橋剤(G)とは、酸発生剤(C)から発生した酸の存在下で、前記式(A-1)で表される化合物を分子内又は分子間架橋し得る化合物である。このような酸架橋剤(G)は、特に限定されないが、例えば前記式(A-1)で表される化合物を架橋し得る1種以上の基(以下、「架橋性基」という。)を有する化合物を挙げることができる。
このような架橋性基の具体例としては、特に限定されないが、例えば(i)ヒドロキシ(炭素数1~6のアルキル基)、炭素数1~6のアルコキシ(炭素数1~6のアルキル基)、アセトキシ(炭素数1~6のアルキル基)等のヒドロキシアルキル基又はそれらから誘導される基;(ii)ホルミル基、カルボキシ(炭素数1~6のアルキル基)等のカルボニル基又はそれらから誘導される基;(iii)ジメチルアミノメチル基、ジエチルアミノメチル基、ジメチロールアミノメチル基、ジエチロールアミノメチル基、モルホリノメチル基等の含窒素基含有基;(iv)グリシジルエーテル基、グリシジルエステル基、グリシジルアミノ基等のグリシジル基含有基;(v)ベンジルオキシメチル基、ベンゾイルオキシメチル基等の、炭素数1~6のアリルオキシ(炭素数1~6のアルキル基)、炭素数1~6のアラルキルオキシ(炭素数1~6のアルキル基)等の芳香族基から誘導される基;(vi)ビニル基、イソプロペニル基等の重合性多重結合含有基等を挙げることができる。酸架橋剤(G)の架橋性基としては、ヒドロキシアルキル基、及びアルコキシアルキル基等が好ましく、特にアルコキシメチル基が好ましい。
前記架橋性基を有する酸架橋剤(G)としては、特に限定されないが、例えば(i)メチロール基含有メラミン化合物、メチロール基含有ベンゾグアナミン化合物、メチロール基含有ウレア化合物、メチロール基含有グリコールウリル化合物、メチロール基含有フェノール化合物等のメチロール基含有化合物;(ii)アルコキシアルキル基含有メラミン化合物、アルコキシアルキル基含有ベンゾグアナミン化合物、アルコキシアルキル基含有ウレア化合物、アルコキシアルキル基含有グリコールウリル化合物、アルコキシアルキル基含有フェノール化合物等のアルコキシアルキル基含有化合物;(iii)カルボキシメチル基含有メラミン化合物、カルボキシメチル基含有ベンゾグアナミン化合物、カルボキシメチル基含有ウレア化合物、カルボキシメチル基含有グリコールウリル化合物、カルボキシメチル基含有フェノール化合物等のカルボキシメチル基含有化合物;(iv)ビスフェノールA系エポキシ化合物、ビスフェノールF系エポキシ化合物、ビスフェノールS系エポキシ化合物、ノボラック樹脂系エポキシ化合物、レゾール樹脂系エポキシ化合物、ポリ(ヒドロキシスチレン)系エポキシ化合物等のエポキシ化合物等を挙げることができる。
酸架橋剤(G)としては、更に、フェノール性水酸基を有する化合物、並びにアルカリ可溶性樹脂中の酸性官能基に前記架橋性基を導入し、架橋性を付与した化合物及び樹脂を使用することができる。その場合の架橋性基の導入率は、特に限定されず、フェノール性水酸基を有する化合物、及びアルカリ可溶性樹脂中の全酸性官能基に対して、例えば、5~100モル%、好ましくは10~60モル%、更に好ましくは15~40モル%に調節される。前記範囲であると、架橋反応が十分起こり、残膜率の低下、パターンの膨潤現象や蛇行等が避けられるので好ましい。
本実施形態の光学部品形成組成物において酸架橋剤(G)は、アルコキシアルキル化ウレア化合物若しくはその樹脂、又はアルコキシアルキル化グリコールウリル化合物若しくはその樹脂が好ましい。特に好ましい酸架橋剤(G)としては、下記式(11-1)~(11-3)で表される化合物及びアルコキシメチル化メラミン化合物を挙げることができる(酸架橋剤(G1))。
Figure 0007102338000105
(前記式(11-1)~(11-3)中、R7はそれぞれ独立して、水素原子、アルキル基又はアシル基を表し;R8~R11はそれぞれ独立して、水素原子、水酸基、アルキル基又はアルコキシル基を示し;X2は、単結合、メチレン基又は酸素原子を示す。)
7が表すアルキル基は、特に限定されず、炭素数1~6が好ましく、炭素数1~3がより好ましく、例えばメチル基、エチル基、プロピル基が挙げられる。R7が表すアシル基は、特に限定されず、炭素数2~6が好ましく、炭素数2~4がより好ましく、例えばアセチル基、プロピオニル基が挙げられる。R8~R11が表すアルキル基は、特に限定されず、炭素数1~6が好ましく、炭素数1~3がより好ましく、例えばメチル基、エチル基、プロピル基が挙げられる。R8~R11が表すアルコキシル基は、特に限定されず、炭素数1~6が好ましく、炭素数1~3がより好ましく、例えばメトキシ基、エトキシ基、プロポキシ基が挙げられる。X2は単結合又はメチレン基であるのが好ましい。R7~R11、X2は、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、水酸基、ハロゲン原子などで置換されていてもよい。複数個のR7、R8~R11は、各々同一でも異なっていてもよい。
式(11-1)で表される化合物として具体的には、例えば、以下に表される化合物等を挙げることができる。
Figure 0007102338000106
式(11-2)で表される化合物として、特に限定されないが、具体的には、例えば、N,N,N,N-テトラ(メトキシメチル)グリコールウリル、N,N,N,N-テトラ(エトキシメチル)グリコールウリル、N,N,N,N-テトラ(n-プロポキシメチル)グリコールウリル、N,N,N,N-テトラ(イソプロポキシメチル)グリコールウリル、N,N,N,N-テトラ(n-ブトキシメチル)グリコールウリル、N,N,N,N-テトラ(t-ブトキシメチル)グリコールウリル等を挙げることができる。この中で、特に、N,N,N,N-テトラ(メトキシメチル)グリコールウリルが好ましい。
式(11-3)で表される化合物として、特に限定されないが、具体的には、例えば、以下に表される化合物等を挙げることができる。
Figure 0007102338000107
アルコキシメチル化メラミン化合物として、特に限定されないが、具体的には、例えば、N,N,N,N,N,N-ヘキサ(メトキシメチル)メラミン、N,N,N,N,N,N-ヘキサ(エトキシメチル)メラミン、N,N,N,N,N,N-ヘキサ(n-プロポキシメチル)メラミン、N,N,N,N,N,N-ヘキサ(イソプロポキシメチル)メラミン、N,N,N,N,N,N-ヘキサ(n-ブトキシメチル)メラミン、N,N,N,N,N,N-ヘキサ(t-ブトキシメチル)メラミン等を挙げることができる。この中で特に、N,N,N,N,N,N-ヘキサ(メトキシメチル)メラミンが好ましい。
前記酸架橋剤(G1)は、例えば尿素化合物又はグリコールウリル化合物、及びホルマリンを縮合反応させてメチロール基を導入した後、更にメチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等の低級アルコール類でエーテル化し、次いで反応液を冷却して析出する化合物又はその樹脂を回収することで得られる。また前記酸架橋剤(G1)は、CYMEL(商品名、三井サイアナミッド製)、ニカラック(三和ケミカル(株)製)のような市販品としても入手することができる。
また、他の特に好ましい酸架橋剤(G)として、分子内にベンゼン環を1~6有し、ヒドロキシアルキル基及び/又はアルコキシアルキル基を分子内全体に2以上有し、該ヒドロキシアルキル基及び/又はアルコキシアルキル基が前記いずれかのベンゼン環に結合しているフェノール誘導体を挙げることができる(酸架橋剤(G2))。好ましくは、分子量が1500以下、分子内にベンゼン環を1~6有し、ヒドロキシアルキル基及び/又はアルコキシアルキル基を合わせて2以上有し、該ヒドロキシアルキル基及び/又はアルコキシアルキル基が前記ベンゼン環のいずれか一、又は複数のベンゼン環に結合してなるフェノール誘導体を挙げることができる。
ベンゼン環に結合するヒドロキシアルキル基としては、特に限定されず、ヒドロキシメチル基、2-ヒドロキシエチル基、及び2-ヒドロキシ-1-プロピル基などの炭素数1~6のものが好ましい。ベンゼン環に結合するアルコキシアルキル基としては、炭素数2~6のものが好ましい。具体的にはメトキシメチル基、エトキシメチル基、n-プロポキシメチル基、イソプロポキシメチル基、n-ブトキシメチル基、イソブトキシメチル基、sec-ブトキシメチル基、t-ブトキシメチル基、2-メトキシエチル基又は2-メトキシ-1-プロピル基が好ましい。
これらのフェノール誘導体のうち、特に好ましいものを以下に挙げる。
Figure 0007102338000108
Figure 0007102338000109
Figure 0007102338000110
Figure 0007102338000111
Figure 0007102338000112
Figure 0007102338000113
前記式中、L1~L8は、同じであっても異なっていてもよく、それぞれ独立して、ヒドロキシメチル基、メトキシメチル基又はエトキシメチル基を示す。ヒドロキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有さないフェノール化合物(前記式においてL1~L8が水素原子である化合物)とホルムアルデヒドとを塩基触媒下で反応させることによって得ることができる。この際、樹脂化やゲル化を防ぐために、反応温度を60℃以下で行うことが好ましい。具体的には、特開平6-282067号公報、特開平7-64285号公報等に記載されている方法にて合成することができる。
アルコキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有するフェノール誘導体とアルコールとを酸触媒下で反応させることによって得ることができる。この際、樹脂化やゲル化を防ぐために、反応温度を100℃以下で行うことが好ましい。具体的には、EP632003A1等に記載されている方法にて合成することができる。
このようにして合成されたヒドロキシメチル基及び/又はアルコキシメチル基を有するフェノール誘導体は、保存時の安定性の点で好ましいが、アルコキシメチル基を有するフェノール誘導体は保存時の安定性の観点から特に好ましい。酸架橋剤(G2)は、単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
また、他の特に好ましい酸架橋剤(G)として、少なくとも一つのα-ヒドロキシイソプロピル基を有する化合物を挙げることができる(酸架橋剤(G3))。α-ヒドロキシイソプロピル基を有する限り、その構造に特に限定はない。また、前記α-ヒドロキシイソプロピル基中のヒドロキシル基の水素原子を1種以上の酸解離性反応基(R-COO-基、R-SO2-基等、Rは、炭素数1~12の直鎖状炭化水素基、炭素数3~12の環状炭化水素基、炭素数1~12のアルコキシ基、炭素数3~12の1-分岐アルキル基及び炭素数6~12の芳香族炭化水素基からなる群から選ばれる置換基を表す)で置換されていてもよい。前記α-ヒドロキシイソプロピル基を有する化合物としては、例えば、少なくとも1つのα-ヒドロキシイソプロピル基を含有する置換又は非置換の芳香族系化合物、ジフェニル化合物、ナフタレン化合物、フラン化合物等の1種又は2種以上が挙げられる。具体的には、例えば、下記式(12-1)で表される化合物(以下、「ベンゼン系化合物(1)」という。)、下記式(12-2)で表される化合物(以下、「ジフェニル系化合物(2)」という。)、下記式(12-3)で表される化合物(以下、「ナフタレン系化合物(3」という。)、及び下記式(12-4)で表される化合物(以下、「フラン系化合物(4)」という。)等が挙げられる。
Figure 0007102338000114
前記式(12-1)~(12-4)中、各A2は独立にα-ヒドロキシイソプロピル基又は水素原子を示し、かつ少なくとも1のA2がα-ヒドロキシイソプロピル基である。
また、式(12-1)中、R51は水素原子、ヒドロキシル基、炭素数2~6の直鎖状若しくは分岐状のアルキルカルボニル基又は炭素数2~6の直鎖状若しくは分岐状のアルコキシカルボニル基を示す。更に、式(10-2)中、R52は単結合、炭素数1~5の直鎖状若しくは分岐状のアルキレン基、-O-、-CO-又は-COO-を示す。また、式(12-4)中、R53及びR54は、相互に独立に水素原子又は炭素数1~6の直鎖状若しくは分岐状のアルキル基を示す。
前記ベンゼン系化合物(1)として具体的には、特に限定されないが、例えば、α-ヒドロキシイソプロピルベンゼン、1,3-ビス(α-ヒドロキシイソプロピル)ベンゼン、1,4-ビス(α-ヒドロキシイソプロピル)ベンゼン、1,2,4-トリス(α-ヒドロキシイソプロピル)ベンゼン、1,3,5-トリス(α-ヒドロキシイソプロピル)ベンゼン等のα-ヒドロキシイソプロピルベンゼン類;3-α-ヒドロキシイソプロピルフェノール、4-α-ヒドロキシイソプロピルフェノール、3,5-ビス(α-ヒドロキシイソプロピル)フェノール、2,4,6-トリス(α-ヒドロキシイソプロピル)フェノール等のα-ヒドロキシイソプロピルフェノール類;3-α-ヒドロキシイソプロピルフェニルメチルケトン、4-α-ヒドロキシイソプロピルフェニルメチルケトン、4-α-ヒドロキシイソプロピルフェニルエチルケトン、4-α-ヒドロキシイソプロピルフェニル-n-プロピルケトン、4-α-ヒドロキシイソプロピルフェニルイソプロピルケトン、4-α-ヒドロキシイソプロピルフェニル-n-ブチルケトン、4-α-ヒドロキシイソプロピルフェニル-t-ブチルケトン、4-α-ヒドロキシイソプロピルフェニル-n-ペンチルケトン、3,5-ビス(α-ヒドロキシイソプロピル)フェニルメチルケトン、3,5-ビス(α-ヒドロキシイソプロピル)フェニルエチルケトン、2,4,6-トリス(α-ヒドロキシイソプロピル)フェニルメチルケトン等のα-ヒドロキシイソプロピルフェニルアルキルケトン類;3-α-ヒドロキシイソプロピル安息香酸メチル、4-α-ヒドロキシイソプロピル安息香酸メチル、4-α-ヒドロキシイソプロピル安息香酸エチル、4-α-ヒドロキシイソプロピル安息香酸n-プロピル、4-α-ヒドロキシイソプロピル安息香酸イソプロピル、4-α-ヒドロキシイソプロピル安息香酸n-ブチル、4-α-ヒドロキシイソプロピル安息香酸t-ブチル、4-α-ヒドロキシイソプロピル安息香酸n-ペンチル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸メチル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸エチル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸メチル等の4-α-ヒドロキシイソプロピル安息香酸アルキル類等が挙げられる。
また、前記ジフェニル系化合物(2)として具体的には、特に限定されないが、例えば、3-α-ヒドロキシイソプロピルビフェニル、4-α-ヒドロキシイソプロピルビフェニル、3,5-ビス(α-ヒドロキシイソプロピル)ビフェニル、3,3'-ビス(α-ヒドロキシイソプロピル)ビフェニル、3,4'-ビス(α-ヒドロキシイソプロピル)ビフェニル、4,4'-ビス(α-ヒドロキシイソプロピル)ビフェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)ビフェニル、3,3',5-トリス(α-ヒドロキシイソプロピル)ビフェニル、3,4',5-トリス(α-ヒドロキシイソプロピル)ビフェニル、2,3',4,6,-テトラキス(α-ヒドロキシイソプロピル)ビフェニル、2,4,4',6,-テトラキス(α-ヒドロキシイソプロピル)ビフェニル、3,3',5,5'-テトラキス(α-ヒドロキシイソプロピル)ビフェニル、2,3',4,5',6-ペンタキス(α-ヒドロキシイソプロピル)ビフェニル、2,2',4,4',6,6'-ヘキサキス(α-ヒドロキシイソプロピル)ビフェニル等のα-ヒドロキシイソプロピルビフェニル類;3-α-ヒドロキシイソプロピルジフェニルメタン、4-α-ヒドロキシイソプロピルジフェニルメタン、1-(4-α-ヒドロキシイソプロピルフェニル)-2-フェニルエタン、1-(4-α-ヒドロキシイソプロピルフェニル)-2-フェニルプロパン、2-(4-α-ヒドロキシイソプロピルフェニル)-2-フェニルプロパン、1-(4-α-ヒドロキシイソプロピルフェニル)-3-フェニルプロパン、1-(4-α-ヒドロキシイソプロピルフェニル)-4-フェニルブタン、1-(4-α-ヒドロキシイソプロピルフェニル)-5-フェニルペンタン、3,5-ビス(α-ヒドロキシイソプロピルジフェニルメタン、3,3'-ビス(α-ヒドロキシイソプロピル)ジフェニルメタン、3,4'-ビス(α-ヒドロキシイソプロピル)ジフェニルメタン、4,4'-ビス(α-ヒドロキシイソプロピル)ジフェニルメタン、1,2-ビス(4-α-ヒドロキシイソプロピルフェニル)エタン、1,2-ビス(4-α-ヒドロキシプロピルフェニル)プロパン、2,2-ビス(4-α-ヒドロキシプロピルフェニル)プロパン、1,3-ビス(4-α-ヒドロキシプロピルフェニル)プロパン、2,4,6-トリス(α-ヒドロキシイソプロピル)ジフェニルメタン、3,3',5-トリス(α-ヒドロキシイソプロピル)ジフェニルメタン、3,4',5-トリス(α-ヒドロキシイソプロピル)ジフェニルメタン、2,3',4,6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルメタン、2,4,4',6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルメタン、3,3',5,5'-テトラキス(α-ヒドロキシイソプロピル)ジフェニルメタン、2,3',4,5',6-ペンタキス(α-ヒドロキシイソプロピル)ジフェニルメタン、2,2',4,4',6,6'-ヘキサキス(α-ヒドロキシイソプロピル)ジフェニルメタン等のα-ヒドロキシイソプロピルジフェニルアルカン類;3-α-ヒドロキシイソプロピルジフェニルエーテル、4-α-ヒドロキシイソプロピルジフェニルエーテル、3,5-ビス(α-ヒドロキシイソプロピル)ジフェニルエーテル、3,3'-ビス(α-ヒドロキシイソプロピル)ジフェニルエーテル、3,4'-ビス(α-ヒドロキシイソプロピル)ジフェニルエーテル、4,4'-ビス(α-ヒドロキシイソプロピル)ジフェニルエーテル、2,4,6-トリス(α-ヒドロキシイソプロピル)ジフェニルエーテル、3,3',5-トリス(α-ヒドロキシイソプロピル)ジフェニルエーテル、3,4',5-トリス(α-ヒドロキシイソプロピル)ジフェニルエーテル、2,3',4,6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルエーテル、2,4,4',6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルエーテル、3,3',5,5'-テトラキス(α-ヒドロキシイソプロピル)ジフェニルエーテル、2,3',4,5',6-ペンタキス(α-ヒドロキシイソプロピル)ジフェニルエーテル、2,2',4,4',6,6'-ヘキサキス(α-ヒドロキシイソプロピル)ジフェニルエーテル等のα-ヒドロキシイソプロピルジフェニルエーテル類;3-α-ヒドロキシイソプロピルジフェニルケトン、4-α-ヒドロキシイソプロピルジフェニルケトン、3,5-ビス(α-ヒドロキシイソプロピル)ジフェニルケトン、3,3'-ビス(α-ヒドロキシイソプロピル)ジフェニルケトン、3,4'-ビス(α-ヒドロキシイソプロピル)ジフェニルケトン、4,4'-ビス(α-ヒドロキシイソプロピル)ジフェニルケトン、2,4,6-トリス(α-ヒドロキシイソプロピル)ジフェニルケトン、3,3',5-トリス(α-ヒドロキシイソプロピル)ジフェニルケトン、3,4',5-トリス(α-ヒドロキシイソプロピル)ジフェニルケトン、2,3',4,6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルケトン、2,4,4',6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルケトン、3,3',5,5'-テトラキス(α-ヒドロキシイソプロピル)ジフェニルケトン、2,3',4,5',6-ペンタキス(α-ヒドロキシイソプロピル)ジフェニルケトン、2,2',4,4',6,6'-ヘキサキス(α-ヒドロキシイソプロピル)ジフェニルケトン等のα-ヒドロキシイソプロピルジフェニルケトン類;3-α-ヒドロキシイソプロピル安息香酸フェニル、4-α-ヒドロキシイソプロピル安息香酸フェニル、安息香酸3-α-ヒドロキシイソプロピルフェニル、安息香酸4-α-ヒドロキシイソプロピルフェニル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸フェニル、3-α-ヒドロキシイソプロピル安息香酸3-α-ヒドロキシイソプロピルフェニル、3-α-ヒドロキシイソプロピル安息香酸4-α-ヒドロキシイソプロピルフェニル、4-α-ヒドロキシイソプロピル安息香酸3-α-ヒドロキシイソプロピルフェニル、4-α-ヒドロキシイソプロピル安息香酸4-α-ヒドロキシイソプロピルフェニル、安息香酸3,5-ビス(α-ヒドロキシイソプロピル)フェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸フェニル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸3-α-ヒドロキシイソプロピルフェニル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸4-α-ヒドロキシイソプロピルフェニル、3-α-ヒドロキシイソプロピル安息香酸3,5-ビス(α-ヒドロキシイソプロピル)フェニル、4-α-ヒドロキシイソプロピル安息香酸3,5-ビス(α-ヒドロキシイソプロピル)フェニル、安息香酸2,4,6-トリス(α-ヒドロキシイソプロピル)フェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸3-α-ヒドロキシイソプロピルフェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸4-α-ヒドロキシイソプロピルフェニル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸3,5-ビス(α-ヒドロキシイソプロピル)フェニル、3-α-ヒドロキシイソプロピル安息香酸2,4,6-トリス(α-ヒドロキシイソプロピル)フェニル、4-α-ヒドロキシイソプロピル安息香酸2,4,6-トリス(α-ヒドロキシイソプロピル)フェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸3,5-ビス(α-ヒドロキシイソプロピル)フェニル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸2,4,6-トリス(α-ヒドロキシイソプロピル)フェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸2,4,6-トリス(α-ヒドロキシイソプロピル)フェニル等のα-ヒドロキシイソプロピル安息香酸フェニル類等が挙げられる。
更に、前記ナフタレン系化合物(3)として具体的には、特に限定されないが、例えば、1-(α-ヒドロキシイソプロピル)ナフタレン、2-(α-ヒドロキシイソプロピル)ナフタレン、1,3-ビス(α-ヒドロキシイソプロピル)ナフタレン、1,4-ビス(α-ヒドロキシイソプロピル)ナフタレン、1,5-ビス(α-ヒドロキシイソプロピル)ナフタレン、1,6-ビス(α-ヒドロキシイソプロピル)ナフタレン、1,7-ビス(α-ヒドロキシイソプロピル)ナフタレン、2,6-ビス(α-ヒドロキシイソプロピル)ナフタレン、2,7-ビス(α-ヒドロキシイソプロピル)ナフタレン、1,3,5-トリス(α-ヒドロキシイソプロピル)ナフタレン、1,3,6-トリス(α-ヒドロキシイソプロピル)ナフタレン、1,3,7-トリス(α-ヒドロキシイソプロピル)ナフタレン、1,4,6-トリス(α-ヒドロキシイソプロピル)ナフタレン、1,4,7-トリス(α-ヒドロキシイソプロピル)ナフタレン、1,3,5,7-テトラキス(α-ヒドロキシイソプロピル)ナフタレン等が挙げられる。
また、前記フラン系化合物(4)として具体的には、特に限定されないが、例えば、3-(α-ヒドロキシイソプロピル)フラン、2-メチル-3-(α-ヒドロキシイソプロピル)フラン、2-メチル-4-(α-ヒドロキシイソプロピル)フラン、2-エチル-4-(α-ヒドロキシイソプロピル)フラン、2-n-プロピル-4-(α-ヒドロキシイソプロピル)フラン、2-イソプロピル-4-(α-ヒドロキシイソプロピル)フラン、2-n-ブチル-4-(α-ヒドロキシイソプロピル)フラン、2-t-ブチル-4-(α-ヒドロキシイソプロピル)フラン、2-n-ペンチル-4-(α-ヒドロキシイソプロピル)フラン、2,5-ジメチル-3-(α-ヒドロキシイソプロピル)フラン、2,5-ジエチル-3-(α-ヒドロキシイソプロピル)フラン、3,4-ビス(α-ヒドロキシイソプロピル)フラン、2,5-ジメチル-3,4-ビス(α-ヒドロキシイソプロピル)フラン、2,5-ジエチル-3,4-ビス(α-ヒドロキシイソプロピル)フラン等を挙げることができる。
前記酸架橋剤(G3)としては、遊離のα-ヒドロキシイソプロピル基を2以上有する化合物が好ましく、α-ヒドロキシイソプロピル基を2以上有する前記ベンゼン系化合物(1)、α-ヒドロキシイソプロピル基を2以上有する前記ジフェニル系化合物(2)、α-ヒドロキシイソプロピル基を2個以上有する前記ナフタレン系化合物(3)が更に好ましく、α-ヒドロキシイソプロピル基を2個以上有するα-ヒドロキシイソプロピルビフェニル類、α-ヒドロキシイソプロピル基を2個以上有するナフタレン系化合物(3)が特に好ましい。
前記酸架橋剤(G3)は、通常、1,3-ジアセチルベンゼン等のアセチル基含有化合物に、CH3MgBr等のグリニヤール試薬を反応させてメチル化した後、加水分解する方法や、1,3-ジイソプロピルベンゼン等のイソプロピル基含有化合物を酸素等で酸化して過酸化物を生成させた後、還元する方法により得ることができる。
本実施形態の光学部品形成組成物において、酸架橋剤(G)の含有量は、固形成分の全質量の0.5~49質量%が好ましく、0.5~40質量%がより好ましく、1~30質量%が更に好ましく、2~20質量%が特に好ましい。前記酸架橋剤(G)の含有割合を0.5質量%以上とすると、光学部品形成組成物の有機溶媒に対する溶解性の抑制効果を向上させることができるので好ましく、一方、49質量%以下とすると、光学部品形成組成物としての耐熱性の低下を抑制できることから好ましい。
また、前記酸架橋剤(G)中の前記酸架橋剤(G1)、酸架橋剤(G2)、酸架橋剤(G3)から選ばれる少なくとも1種の化合物の含有量も特に限定はなく、光学部品形成組成物を形成する際に使用される基板の種類等によって種々の範囲とすることができる。
全酸架橋剤成分において、前記アルコキシメチル化メラミン化合物及び/又は(12-1)~(12-3)で表される化合物の含有量は、特に限定されず、好ましくは50~99質量%、より好ましくは60~99質量%、更に好ましくは70~98質量%、特に好ましくは80~97質量%である。アルコキシメチル化メラミン化合物及び/又は(12-1)~(12-3)で表される化合物を全酸架橋剤成分の50質量%以上とすることにより、解像度を一層向上させることができるので好ましく、99質量%以下とすることにより、構造体の形状を良好とし易いので好ましい。
(酸拡散制御剤(E))
本実施形態の光学部品形成組成物は、酸発生剤から生じた酸の光学部品形成組成物中における拡散を制御して、好ましくない化学反応を阻止する作用等を有する酸拡散制御剤(E)を含有してもよい。この様な酸拡散制御剤(E)を使用することにより、光学部品形成組成物の貯蔵安定性が向上する。また解像度が一層向上するとともに、加熱後の引き置き時間の変動による構造体の線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。
このような酸拡散制御剤(E)は、特に限定されず、例えば、窒素原子含有塩基性化合物、塩基性スルホニウム化合物、塩基性ヨードニウム化合物等の放射線分解性塩基性化合物が挙げられる。酸拡散制御剤(E)は、単独で又は2種以上を使用することができる。
前記酸拡散制御剤としては、特に限定されず、例えば、含窒素有機化合物や、露光により分解する塩基性化合物等が挙げられる。前記含窒素有機化合物としては、特に限定されず、例えば、下記式(14)で示される化合物が挙げられる。
Figure 0007102338000115
前記式(14)で示される化合物(以下、「含窒素化合物(I)」という。)、同一分子内に窒素原子を2個有するジアミノ化合物(以下、「含窒素化合物(II)」という。)、窒素原子を3個以上有するポリアミノ化合物や重合体(以下、「含窒素化合物(III)」という。)、アミド基含有化合物、ウレア化合物、及び含窒素複素環式化合物等を挙げることができる。なお、酸拡散制御剤(E)は、1種単独で用いてもよく、2種以上を併用してもよい。
前記式(14)中、R61、R62及びR63は相互に独立に水素原子、直鎖状、分岐状若し
くは環状のアルキル基、アリール基又はアラルキル基を示す。また、前記アルキル基、アリール基又はアラルキル基は、非置換でもよく、ヒドロキシル基等で置換されていてもよい。ここで、前記直鎖状、分岐状若しくは環状のアルキル基は、特に限定されず、例えば、炭素数1~15、好ましくは1~10のものが挙げられ、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、n-へプチル基、n-オクチル基、n-エチルヘキシル基、n-ノニル基、n-デシル基等が挙げられる。また、前記アリール基としては、炭素数6~12のものが挙げられ、具体的には、フェニル基、トリル基、キシリル基、クメニル基、1-ナフチル基等が挙げられる。更に、前記アラルキル基は、特に限定されず、炭素数7~19、好ましくは7~13のものが挙げられ、具体的には、ベンジル基、α-メチルベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。
前記含窒素化合物(I)は、特に限定されず、具体的には、例えば、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、n-ドデシルアミン、シクロヘキシルアミン等のモノ(シクロ)アルキルアミン類;ジ-n-ブチルアミン、ジ-n-ペンチルアミン、ジ-n-ヘキシルアミン、ジ-n-ヘプチルアミン、ジ-n-オクチルアミン、ジ-n-ノニルアミン、ジ-n-デシルアミン、メチル-n-ドデシルアミン、ジ-n-ドデシルメチル、シクロヘキシルメチルアミン、ジシクロヘキシルアミン等のジ(シクロ)アルキルアミン類;トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、トリ-n-ノニルアミン、トリ-n-デシルアミン、ジメチル-n-ドデシルアミン、ジ-n-ドデシルメチルアミン、ジシクロヘキシルメチルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類;アニリン、N-メチルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、4-ニトロアニリン、ジフェニルアミン、トリフェニルアミン、1-ナフチルアミン等の芳香族アミン類等を挙げることができる。
前記含窒素化合物(II)は、特に限定されず、具体的には、例えば、エチレンジアミン、N,N,N',N'-テトラメチルエチレンジアミン、N,N,N',N'-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノベンゾフェノン、4,4'-ジアミノジフェニルアミン、2,2-ビス(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2-(4-アミノフェニル)-2-(3-ヒドロキシフェニル)プロパン、2-(4-アミノフェニル)-2-(4-ヒドロキシフェニル)プロパン、1,4-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン、1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン等を挙げることができる。
前記含窒素化合物(III)は、特に限定されず、具体的には、例えば、ポリエチレンイミン、ポリアリルアミン、N-(2-ジメチルアミノエチル)アクリルアミドの重合体等を挙げることができる。
前記アミド基含有化合物は、特に限定されず、具体的には、例えば、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン等を挙げることができる。
前記ウレア化合物は、特に限定されず、具体的には、例えば、尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリ-n-ブチルチオウレア等を挙げることができる。
前記含窒素複素環式化合物は、特に限定されず、具体的には、例えば、イミダゾール、ベンズイミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、2-フェニルベンズイミダゾール等のイミダゾール類;ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、2-メチル-4-フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、アクリジン等のピリジン類;及び、ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、モルホリン、4-メチルモルホリン、ピペラジン、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン等を挙げることができる。
また、前記放射線分解性塩基性化合物は、特に限定されず、例えば、下記式(15-1)で示されるスルホニウム化合物、又は下記式(15-2)で示されるヨードニウム化合物が挙げられる。
Figure 0007102338000116
Figure 0007102338000117
前記式(15-1)及び(15-2)中、R71、R72、R73、R74及びR75は相互に独立に水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシル基、ヒドロキシル基又はハロゲン原子を示す。Z-はHO-、R-COO-(ここで、Rは炭素数1~6のアルキル基、炭素数6~11のアリール基若しくは炭素数7~12のアルカリール基を示す。)又は下記式(15-3)で示されるアニオンを示す。
Figure 0007102338000118
前記放射線分解性塩基性化合物として具体的には、特に限定されず、例えば、トリフェニルスルホニウムハイドロオキサイド、トリフェニルスルホニウムアセテート、トリフェニルスルホニウムサリチレート、ジフェニル-4-ヒドロキシフェニルスルホニウムハイドロオキサイド、ジフェニル-4-ヒドロキシフェニルスルホニウムアセテート、ジフェニル-4-ヒドロキシフェニルスルホニウムサリチレート、ビス(4-t-ブチルフェニル)ヨードニウムハイドロオキサイド、ビス(4-t-ブチルフェニル)ヨードニウムアセテート、ビス(4-t-ブチルフェニル)ヨードニウムハイドロオキサイド、ビス(4-t-ブチルフェニル)ヨードニウムアセテート、ビス(4-t-ブチルフェニル)ヨードニウムサリチレート、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムハイドロオキサイド、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムアセテート、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムサリチレート等が挙げられる。
酸拡散制御剤(E)の含有量は、固形成分の全質量の0.001~49質量%が好ましく、0.01~10質量%がより好ましく、0.01~5質量%が更に好ましく、0.01~3質量%が特に好ましい。酸拡散制御剤(E)の含有量が前記範囲内であると、解像度の低下、パターン形状、寸法忠実度等の劣化を一層抑制できる。更に、電子線照射から放射線照射後加熱までの引き置き時間が長くなっても、パターン上層部の形状が劣化することがない。また、酸拡散制御剤(E)の含有量が10質量%以下であると、感度、未露光部の現像性等の低下を防ぐことができる。またこのような酸拡散制御剤を使用することにより、光学部品形成組成物の貯蔵安定性が向上し、また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動による光学部品形成組成物の線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。
(その他の任意成分(F))
本実施形態の光学部品形成組成物には、本実施形態の目的を阻害しない範囲で、必要に応じて、その他の任意成分(F)として、溶解促進剤、溶解制御剤、増感剤、界面活性剤及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。
-溶解促進剤-
低分子量溶解促進剤は、式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂の現像液に対する溶解性が低すぎる場合に、その溶解性を高めて、現像時の前記化合物の溶解速度を適度に増大させる作用を有する成分であり、本発明の効果を損なわない範囲で使用することができる。前記溶解促進剤としては、例えば、低分子量のフェノール性化合物を挙げることができ、例えば、ビスフェノール類、トリス(ヒドロキシフェニル)メタン等を挙げることができる。これらの溶解促進剤は、単独で又は2種以上を混合して使用することができる。溶解促進剤の含有量は、使用する式(A-1)で示されるテルルを含有する化合物の種類に応じて適宜調節されるが、固形成分の全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%が更に好ましく、0質量%が特に好ましい。
-溶解制御剤-
溶解制御剤は、式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂が現像液に対する溶解性が高すぎる場合に、その溶解性を制御して現像時の溶解速度を適度に減少させる作用を有する成分である。このような溶解制御剤としては、光学部品の焼成、加熱、現像等の工程において化学変化しないものが好ましい。
溶解制御剤は、特に限定されず、例えば、フェナントレン、アントラセン、アセナフテン等の芳香族炭化水素類;アセトフェノン、ベンゾフェノン、フェニルナフチルケトン等のケトン類;メチルフェニルスルホン、ジフェニルスルホン、ジナフチルスルホン等のスルホン類等を挙げることができる。これらの溶解制御剤は、単独で又は2種以上を使用することができる。
溶解制御剤の含有量は、特に限定されず、使用する式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂の種類に応じて適宜調節されるが、固形成分の全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%が更に好ましく、0質量%が特に好ましい。
-増感剤-
増感剤は、照射された放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(C)に伝達し、それにより酸の生成量を増加する作用を有し、レジストの見掛けの感度を向上させる成分である。このような増感剤は、特に限定されず、例えば、ベンゾフェノン類、ビアセチル類、ピレン類、フェノチアジン類、フルオレン類等を挙げることができる。これらの増感剤は、単独で又は2種以上を使用することができる。増感剤の含有量は、使用する式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂の種類に応じて適宜調節されるが、固形成分の全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%が更に好ましく、0質量%が特に好ましい。
-界面活性剤-
界面活性剤は、本実施形態の光学部品形成組成物の塗布性やストリエーション等を改良する作用を有する成分である。このような界面活性剤は、特に限定されず、アニオン系、カチオン系、ノニオン系或いは両性のいずれでもよい。好ましい界面活性剤はノニオン系界面活性剤である。ノニオン系界面活性剤は、光学部品形成組成物の製造に用いる溶媒との親和性がよく、より効果がある。ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類等が挙げられるが、特に限定はされない。市販品としては、以下商品名で、エフトップ(ジェムコ社製)、メガファック(大日本インキ化学工業社製)、フロラード(住友スリーエム社製)、アサヒガード、サーフロン(以上、旭硝子社製)、ペポール(東邦化学工業社製)、KP(信越化学工業社製)、ポリフロー(共栄社油脂化学工業社製)等を挙げることができる。界面活性剤の含有量は、特に限定されず、使用する式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂の種類に応じて適宜調節されるが、固形成分の全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%が更に好ましく、0質量%が特に好ましい。
-有機カルボン酸又はリンのオキソ酸若しくはその誘導体-
本実施形態の光学部品形成組成物は、感度劣化防止又は構造体、引き置き安定性等の向上の目的で、更に任意の成分として、有機カルボン酸又はリンのオキソ酸若しくはその誘導体を含有してもよい。なお、酸拡散制御剤と併用することもできるし、単独で用いてもよい。有機カルボン酸としては、特に限定されず、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステルなどのリン酸又はそれらのエステルなどの誘導体;ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステルなどのホスホン酸又はそれらのエステルなどの誘導体;ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルなどの誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。
有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、単独で又は2種以上を使用することができる。有機カルボン酸又はリンのオキソ酸若しくはその誘導体の含有量は、使用する式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂の種類に応じて適宜調節されるが、固形成分の全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%が更に好ましく、0質量%が特に好ましい。
-その他添加剤-
更に、本実施形態の光学部品形成組成物には、本発明の目的を阻害しない範囲で、必要に応じて、前記溶解制御剤、増感剤、及び界面活性剤以外の添加剤を1種又は2種以上含有できる。そのような添加剤としては、特に限定されず、例えば、染料、顔料、及び接着助剤等が挙げられる。例えば、染料又は顔料を含有すると、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和できるので好ましい。また、接着助剤を含有すると、基板との接着性を改善することができるので好ましい。更に、他の添加剤としては、特に限定されず、例えば、ハレーション防止剤、保存安定剤、消泡剤、形状改良剤等、具体的には4-ヒドロキシ-4'-メチルカルコン等を挙げることができる。
任意成分(F)の合計含有量は、固形成分の全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%が更に好ましく、0質量%が特に好ましい。
本実施形態の光学部品形成組成物において、式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂、酸発生剤(C)、酸拡散制御剤(E)、任意成分(F)の含有量(式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂/酸発生剤(C)/酸拡散制御剤(E)/任意成分(F))は、固形物基準の質量%で、好ましくは50~99.4/0.001~49/0.001~49/0~49、より好ましくは55~90/1~40/0.01~10/0~5、更に好ましくは60~80/3~30/0.01~5/0~1、特に好ましくは60~70/10~25/0.01~3/0である。
各成分の含有割合は、その総和が100質量%になるように各範囲から選ばれる。前記含有割合にすると、感度、解像度、現像性等の性能に一層優れる。
本実施形態の光学部品形成組成物の調製方法は、特に限定されず、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば孔径0.2μm程度のフィルター等でろ過する方法等が挙げられる。
本実施形態の光学部品形成組成物は、本発明の目的を阻害しない範囲で、樹脂を含むことができる。樹脂は、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体或いはこれらの誘導体などが挙げられる。当該樹脂の含有量は、特に限定されず、使用する式(A-1)で示される化合物又は式(A-1)で示される化合物に由来する構成単位を含む樹脂の種類に応じて適宜調節されるが、該化合物100質量部当たり、30質量部以下が好ましく、より好ましくは10質量部以下、更に好ましくは5質量部以下、特に好ましくは0質量部である。
また本実施形態の硬化物は、前記光学部品形成組成物を硬化して得られ、各種樹脂として使用することができる。これらの硬化物は、高融点、高屈折率及び高透明性といった様々な特性を付与する高汎用性の材料として様々な用途に用いることができる。なお、当該硬化物は、前記の組成物を光照射、加熱等の各組成に対応した公知の方法を用いることによって得ることができる。
これらの硬化物は、エポキシ樹脂、ポリカーボネート樹脂、アクリル樹脂等の各種合成樹脂として、更には、機能性を活かしてレンズ、光学シート等の光学部品として用いることができる。
以下、実施例を挙げて、本実施形態を更に具体的に説明する。但し、本発明は、これらの実施例に限定はされない。
以下に、実施例における化合物の測定方法及び光学部品性能等の評価方法を示す。
[測定法]
(1)化合物の構造
化合物の構造は、Bruker社製「Advance600II spectrometer」を用いて、以下の条件で、H-NMR測定を行い、確認した。
周波数:400MHz
溶媒:d6-DMSO(後述の合成例4以外)
内部標準:TMS
測定温度:23℃
(2)化合物の分子量
化合物の分子量は、GC-MS分析により、Agilent社製「Agilent5975/6890N」、又は、LC-MS分析により、Water社製「Acquity UPLC/MALDI-Synapt HDMS」を用いて測定した。
[評価方法]
(1)化合物の有機溶媒溶解度試験
化合物の有機溶媒への溶解度について、化合物のプロピレングリコールモノメチルエーテルアセテートに対する溶解性を測定した。当該溶解性は、プロピレングリコールモノメチルエーテルアセテートへの溶解量を用いて以下の基準に従って評価した。なお、溶解量の測定は23℃にて、化合物を試験管に精秤し、プロピレングリコールモノメチルエーテルアセテートを所定の濃度となるよう加え、超音波洗浄機にて30分間超音波をかけ、その後の液の状態を目視にて観察し、完全に溶解した溶解量の濃度を基準として評価した。
A:5.0質量%≦溶解量
B:3.0質量%≦溶解量<5.0質量%
C: 溶解量<3.0質量%
(2)光学部品形成組成物の保存安定性及び薄膜形成
化合物を含む光学部品形成組成物の保存安定性は、光学部品形成組成物を調製後、23℃にて3日間静置し、析出の有無を目視にて観察することにより評価した。3日間静置後の光学部品形成組成物において、均一溶液であり析出がない場合には「A」、析出が認められた場合は「C」と評価した。
また、均一状態の光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でプレベーク(prebake:PB)して、厚さ1μmの光学部品形成膜を形成した。調製した光学部品形成組成物について、膜形成が良好な場合には「A」、形成した膜に欠陥がある場合には「C」と評価した。
(3)屈折率及び透明性評価
均一な光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でPBして、厚さ1μmの膜を形成した。その膜につき、ジェー・エー・ウーラム製多入射角分光エリプソメーターVASEにて、25℃における屈折率(λ=589.3nm)を測定した。調製した膜について、屈折率が1.8以上の場合には「A」、1.6以上1.8未満の場合には「B」、1.6未満の場合には「C」と評価した。また透明性(λ=632.8nm)が90%以上の場合には「A」、90%未満の場合には「C」と評価した。
[合成例]
(合成例1)化合物(BHPT)の合成
グローブボックス中で、50mL容器に四塩化テルル(5.39g、20mmol)を仕込み、アニソール10.8g(100mmol)を加え還流条件下で160℃、6時間反応を行った。得られた生成物を減圧乾燥し、アセトニトリルを用いて再結晶を二回行い、濾過後橙色結晶を得た。得られた結晶を24時間減圧乾燥し、BMPT(ビス(4-メトキシフェニル)テルルジクロライド)を5.95g得た。
得られた化合物(BMPT)について、上述の測定方法(LC-MS)によって分子量を測定した結果、414であった。
得られた化合物(BMPT)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(BMPT)の化学構造を有することを確認した。
δ(ppm)7.0~7.9(8H,Ph-H)、3.8(6H,-CH
Figure 0007102338000119
続いて、攪拌機、冷却管及びビュレットを備えた内容積100mLの容器にビス(4-メトキシフェニル)テルルジクロライド1.1g(2.8mmol)、メチレンジクロライドを18ml加え、三臭化ホウ素3.9g(15.75mmol)を滴下し、-20℃で48時間で反応を行った。反応後の溶液を氷浴中で0.5N塩酸溶液に滴下し、濾過後、黄色固体を回収した。酢酸エチルで溶解させ、硫酸マグネシウムを加え、脱水処理後、濃縮を行い、カラムクロマトグラフィーによる分離精製を行うことで、BHPT(ビス(4-ヒドロキシフェニル)テルルジクロライド)を0.1g得た。
得られた化合物(BHPT)について、上述の測定方法(LC-MS)によって分子量を測定した結果、386であった。
得られた化合物(BHPT)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(BMPT)の化学構造を有することを確認した。
δ(ppm)10.2(2H,-OH)、6.8~7.8(8H,Ph-H)
Figure 0007102338000120
また、得られた化合物(BHPT)について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例2)化合物(BHPT-ADBAC)の合成
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器において、上述から得られた化合物(BHPT)3.9g(10mmol)、炭酸カリウム0.30g(22mmol)、テトラブチルアンモニウムブロマイド0.64g(2mmol)を、N-メチルピロリドン50mlに溶解させ、2時間撹拌した。撹拌後、更にブロモ酢酸-2-メチルアダマンタン-2-イル6.3g(22mmol)を加え、100℃にて24時間反応させた。反応終了後、1N塩酸水溶液に滴下し、生じた黒色固体をろ別し、カラムクロマトグラフィーによる分離精製を行うことで、下記化合物(BHPT-ADBAC:ビス(4-(2-メチル-2-アダマンチルオキシカルボニルメトキシ)フェニル)テルル ジクロライド)を1.9g得た。
得られた化合物(BHPT-ADBAC)について、上述の測定方法(LC-MS)によって分子量を測定した結果、798であった。
得られた化合物(BHPT-ADBAC)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(BHPT-ADBAC)の化学構造を有することを確認した。
δ(ppm)6.8~8.1(8H,Ph-H)、4.7~5.0(4H,O-CH-C(=O)-)、1.2~2.7(34H,C-H/Adamantane of methylene and methine)
Figure 0007102338000121
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例3)化合物(BHPT-BOC)の合成
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器において、上述から得られた化合物(BHPT)3.9g(10mmol)とジ-t-ブチルジカーボネート(アルドリッチ社製)5.5g(25mmol)とを、N-メチルピロリドン50mlに溶解させ、炭酸カリウム0.30g(22mmol)を加えて、100℃にて24時間反応させた。反応終了後、1N塩酸水溶液に滴下し、生じた黒色固体をろ別し、カラムクロマトグラフィーによる分離精製を行うことで、下記化合物(BHPT-BOC:ビス(tert-ブトキシカルボキシフェニル)テルル ジクロライド)を1.0g得た。
得られた化合物(BHPT-BOC)について、上述の測定方法(LC-MS)によって分子量を測定した結果、585であった。
得られた化合物(BHPT-BOC)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(BHPT-BOC)の化学構造を有することを確認した。
δ(ppm)7.1~7.3(8H,Ph-H)、1.4(18H,C-C
Figure 0007102338000122
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例4)化合物(BHPT-EE)の合成
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器において、上述から得られた化合物(BHPT)3.9g(10mmol)とエチルビニルエーテル(東京化成工業社製)1.8g(25mmol)とを、N-メチルピロリドン50mlに溶解させ、炭酸カリウム0.30g(22mmol)を加えて、100℃にて24時間反応させた。反応終了後、1N塩酸水溶液に滴下し、生じた黒色固体をろ別し、カラムクロマトグラフィーによる分離精製を行うことで、下記化合物(BHPT-EE:ビス(エトキシエチルフェニル)テルル ジクロライド)を1.0g得た。
得られた化合物(BHPT-EE)について、上述の測定方法(LC-MS)によって分子量を測定した結果、529であった。
得られた化合物(BHPT-EE)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(BHPT-EE)の化学構造を有することを確認した。
δ(ppm)6.9~7.4(8H,Ph-H)、5.6(2H,C)、1.6(6H,-C )、3.9(4H,O-C 2-)、1.2(6H,-C
Figure 0007102338000123
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例5)化合物(Ph-BHPT)の合成
グローブボックス中で、50mL容器に四塩化テルル(5.39g、20mmol)を仕込み、2-フェニルアニソール7.37g(40mmol)を加え還流条件下で160℃、6時間反応を行った。得られた生成物を減圧乾燥し、アセトニトリルを用いて再結晶を二回行い、濾過後橙色結晶を得た。得られた結晶を24時間減圧乾燥し、Ph-BMPT(ビス(3-フェニル4-メトキシフェニル)テルルジクロライド)を3.91g得た。
得られた化合物(Ph-BMPT)について、上述の測定方法(LC-MS)によって分子量を測定した結果、465であった。
得られた化合物(Ph-BMPT)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(Ph-BMPT)の化学構造を有することを確認した。
δ(ppm)7.0~8.1(16H,Ph-H)、3.8(6H,-CH
Figure 0007102338000124
続いて、攪拌機、冷却管及びビュレットを備えた内容積100mLの容器にPh-BMPT1.6g(2.8mmol)、メチレンジクロライドを25ml加え、三臭化ホウ素3.9g(15.75mmol)を滴下し、-20℃で48時間で反応を行った。反応後の溶液を氷浴中で0.5N塩酸溶液に滴下し、濾過後、黄色固体を回収した。酢酸エチルで溶解させ、硫酸マグネシウムを加え、脱水処理後、濃縮を行い、カラムクロマトグラフィーによる分離精製を行うことで、Ph-BHPT(ビス(3-フェニル4-ヒドロキシフェニル)テルルジクロライド)を0.2g得た。
得られた化合物(Ph-BHPT)について、上述の測定方法(LC-MS)によって分子量を測定した結果、537であった。
得られた化合物(Ph-BHPT)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(Ph-BHPT)の化学構造を有することを確認した。
δ(ppm)9.0(2H,-OH)、7.0~7.5(16H,Ph-H)
Figure 0007102338000125
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例6)化合物(TDP)の合成
グローブボックス中で、50mL容器に四塩化テルル(6.74g、25mmol)を仕込み、フェノール3.29g(35mmol)を加え還流条件下で160℃、6時間反応を行った。得られた生成物を減圧乾燥し、アセトニトリルを用いて再結晶を二回行い、濾過後かっ色結晶を得た。得られた結晶を24時間減圧乾燥し、TDP(4,4'-テルルジフェノール)を3.60g得た。
得られた化合物(TDP)について、上述の測定方法(LC-MS)によって分子量を測定した結果、314であった。
得られた化合物(TDP)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(TDP)の化学構造を有することを確認した。
δ(ppm)6.8~7.7(8H,Ph-H)、9.8(2H,-OH)
Figure 0007102338000126
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例7)化合物(Ph-TDP)の合成
グローブボックス中で、50mL容器に四塩化テルル(6.74g、25mmol)を仕込み、2-フェノール6.96g(35mmol)を加え還流条件下で160℃、6時間反応を行った。得られた生成物を減圧乾燥し、アセトニトリルを用いて再結晶を二回行い、濾過後かっ色結晶を得た。得られた結晶を24時間減圧乾燥し、Ph-TDP(ビス(3-フェニル4-ヒドロキシフェニル)テルル)を2.46g得た。
得られた化合物(Ph-TDP)について、上述の測定方法(LC-MS)によって分子量を測定した結果、466であった。
得られた化合物(Ph-TDP)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(Ph-TDP)の化学構造を有することを確認した。
δ(ppm)6.8~7.7(16H,Ph-H)、9.8(2H,-OH)
Figure 0007102338000127
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例8)化合物(Ph-BHPT-ADBAC)の合成
化合物(BHPT)3.9g(10mmol)に代えて化合物(Ph-BHPT)5.4g(10mmol)を用いること以外は、合成例2と同様に操作することにより、下記で示される構造を有する化合物(Ph-BHPT-ADBAC)が1.28g得られた。
得られた化合物(Ph-BHPT-ADBAC)について、上述の測定方法(LC-MS)によって分子量を測定した結果、537であった。
得られた化合物(Ph-BHPT-ADBAC)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(BHPT-ADBAC)の化学構造を有することを確認した。
δ(ppm)7.1~7.7(16H,Ph-H)、5.0(4H,O-CH-C(=O)-)、1.0~2.6(34H,C-H/Adamantane of methylene and methine)
Figure 0007102338000128
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例9)化合物(TDP-ADBAC)の合成
化合物(BHPT)3.9g(10mmol)に代えて化合物(TDP)3.2g(10mmol)を用いること以外は、合成例2と同様に操作することにより、下記で示される構造を有する化合物(TDP-ADBAC)が1.46g得られた。
得られた化合物(TDP-ADBAC)について、上述の測定方法(LC-MS)によって分子量を測定した結果、726であった。
得られた化合物(TDP-ADBAC)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(TDP-ADBAC)の化学構造を有することを確認した。
δ(ppm)7.0~7.4(8H,Ph-H)、5.0(4H,O-CH-C(=O)-)、1.0~2.6(34H,C-H/Adamantane of methylene and methine)
Figure 0007102338000129
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例10)化合物(Ph-TDP-ADBAC)の合成
化合物(BHPT)3.9g(10mmol)に代えて化合物(Ph-TDP)4.7g(10mmol)を用いること以外は、合成例2同様に操作することにより、下記で示される構造を有する化合物(Ph-TDP-ADBAC)が1.70g得られた。
得られた化合物(Ph-TDP-ADBAC)について、上述の測定方法(LC-MS)によって分子量を測定した結果、879であった。
得られた化合物(Ph-TDP-ADBAC)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(Ph-TDP-ADBAC)の化学構造を有することを確認した。
δ(ppm)7.1~7.7(16H,Ph-H)、5.0(4H,O-CH-C(=O)-)、1.0~2.6(34H,C-H/Adamantane of methylene and methine)
Figure 0007102338000130
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例11)化合物(Ph-TDP-BOC)の合成
化合物(BHPT)3.9g(10mmol)に代えて化合物(Ph-TDP)4.7g(10mmol)を用いること以外は、合成例3と同様に操作することにより、下記で示される構造を有する化合物(Ph-TDP-BOC)が1.14g得られた。
得られた化合物(Ph-TDP-BOC)について、上述の測定方法(LC-MS)によって分子量を測定した結果、666であった。
得られた化合物(Ph-TDP-BOC)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(Ph-TDP-BOC)の化学構造を有することを確認した。
δ(ppm)7.3~7.7(8H,Ph-H)、1.4(18H,C-C
Figure 0007102338000131
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例12)化合物(Ph-TDP-EE)の合成
化合物(BHPT)3.9g(10mmol)に代えて化合物(Ph-TDP)4.7g(10mmol)を用いること以外は、合成例4と同様に操作することにより、下記で示される構造を有する化合物(Ph-TDP-EE)が1.16g得られた。
得られた化合物(Ph-TDP-EE)について、上述の測定方法(LC-MS)によって分子量を測定した結果、610であった。
得られた化合物(Ph-TDP-EE)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(Ph-TDP-EE)の化学構造を有することを確認した。
δ(ppm)7.1~7.7(16H,Ph-H)、5.6(2H,C)、1.6(6H,-C )、3.9(4H,O-C 2-)、1.2(6H,-C
Figure 0007102338000132
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例13)R1-BHPTの合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に、化合物(BHPT)8.1g(21mmol)と、パラホルムアルデヒド0.7g(42mmol)、氷酢酸50mlとPGME50mlとを仕込み、95%の硫酸8mlを加えて、反応液を100℃で6時間撹拌して反応を行った。次に、反応液を濃縮し、メタノール1000mlを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で示される構造を有する目的樹脂(R1-BHPT)5.6gを得た。
得られた樹脂(R1-BHPT)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:587、Mw:1216、Mw/Mn:2.07であった。
得られた樹脂(R1-BHPT)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(R1-BHPT)の化学構造を有することを確認した。
δ(ppm)10.2(2H,-OH)、6.8~7.8(8H,Ph-H)、4.1(2H,-CH
Figure 0007102338000133
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例14)R2-BHPTの合成
パラホルムアルデヒド 0.7g(42mmol)に代えて4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)7.6g(42mmol)用いること以外は、合成例13と同様に操作することにより、下記式で示される構造を有する目的樹脂(R2-BHPT)を5.7g得た。
得られた樹脂(R2-BHPT)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:405、Mw:880、Mw/Mn:2.17であった。
得られた樹脂(R2-BHPT)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(R2-BHPT)の化学構造を有することを確認した。
δ(ppm)10.2(2H,-OH)、6.8~7.8(17H,Ph-H)、4.5(1H,-CH)
Figure 0007102338000134
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例15)R1-BHPT-ADBACの合成
化合物(BHPT) 8.1g(21mmol)に代えて化合物樹脂(BHPT-ADBAC)16.8gを用いること以外は合成例13と同様に操作することにより、下記式で示される構造を有する目的化合物樹脂(R1-BHPT-ADBAC)を5.0g得た。
得られた樹脂(R1-BHPT-ADBAC)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:1045、Mw:2330、Mw/Mn:2.23であった。
得られた化合物樹脂(R1-BHPT-ADBAC)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(R1-BHPT-ADBAC)の化学構造を有することを確認した。
δ(ppm)6.8~8.1(8H,Ph-H)、4.7~5.0(4H,O-CH-C(=O)-)、1.2~2.7(34H,C-H/Adamantane of methylene and methine)、4.1(2H,-CH
Figure 0007102338000135
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例16)R2-BHPT-ADBACの合成
パラホルムアルデヒド 0.7g(42mmol)に代えて4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)7.6g(42mmol)用いること以外は、合成例15と同様に操作することにより、下記式で示される構造を有する目的樹脂(R2-BHPT-ADBAC)を10.4g得た。
得られた樹脂(R2-BHPT-ADBAC)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:840、Mw:1819、Mw/Mn:2.16であった。
得られた樹脂(R2-BHPT-ADBAC)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(R2-BHPT-ADBAC)の化学構造を有することを確認した。
δ(ppm)6.8~8.1(17H,Ph-H)、4.7~5.0(4H,O-CH-C(=O)-)、1.2~2.7(34H,C-H/Adamantane of methylene and methine)、4.5(1H,-CH)
Figure 0007102338000136
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例17)R1-BHPT-BOCの合成
化合物(BHPT) 8.1g(21mmol)に代えて化合物樹脂(BHPT-BOC)12.3gを用いること以外は合成例13と同様に操作することにより、下記式で示される構造を有する目的化合物樹脂(R1-BHPT-BOC)を7.6g得た。
得られた樹脂(R1-BHPT-BOC)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:768、Mw:1846、Mw/Mn:2.40であった。
得られた化合物樹脂(R1-BHPT-BOC)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(R1-BHPT-BOC)の化学構造を有することを確認した。
δ(ppm)7.1~7.3(8H,Ph-H)、1.4(18H,C-C )、4.1(2H,-CH
Figure 0007102338000137
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例18)R2-BHPT-BOCの合成
パラホルムアルデヒド 0.7g(42mmol)に代えて4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)7.6g(42mmol)用いること以外は、合成例17と同様に操作することにより、下記式で示される構造を有する目的樹脂(R2-BHPT-BOC)を3.7g得た。
得られた樹脂(R2-BHPT-BOC)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:620、Mw:1336、Mw/Mn:2.15であった。
得られた樹脂(R2-BHPT-BOC)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(R2-BHPT-BOC)の化学構造を有することを確認した。
δ(ppm)7.1~7.3(17H,Ph-H)、1.4(18H,C-C )、4.5(1H,-CH)
Figure 0007102338000138
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例19)R1-BHPT-EEの合成
化合物(BHPT) 8.1g(21mmol)に代えて化合物樹脂(BHPT-EE)11.1gを用いること以外は合成例13と同様に操作することにより、下記式で示される構造を有する目的化合物樹脂(R1-BHPT-EE)を7.8g得た。
得られた樹脂(R1-BHPT-EE)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:694、Mw:1548、Mw/Mn:2.23であった。
得られた化合物樹脂(R1-BHPT-EE)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(R1-BHPT-EE)の化学構造を有することを確認した。
δ(ppm)6.9~7.4(8H,Ph-H)、5.6(2H,C)、1.6(6H,-C )、3.9(4H,O-C 2-)、1.2(6H,-C )、4.1(2H,-CH
Figure 0007102338000139
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例20)R2-BHPT-EEの合成
パラホルムアルデヒド 0.7g(42mmol)に代えて4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)7.6g(42mmol)用いること以外は、合成例19と同様に操作することにより、下記式で示される構造を有する目的樹脂(R2-BHPT-EE)を3.6g得た。
得られた樹脂(R2-BHPT-EE)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:610、Mw:1208、Mw/Mn:1.98であった。
得られた樹脂(R2-BHPT-EE)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(R2-BHPT-EE)の化学構造を有することを確認した。
δ(ppm)6.9~7.4(17H,Ph-H)、5.6(2H,C)、1.6(6H,-C )、3.9(4H,O-C 2-)、1.2(6H,-C )、4.5(1H,-CH)
Figure 0007102338000140
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例21)R1-Ph-BHPTの合成
化合物(BHPT) 8.1g(21mmol)に代えて化合物(Ph-BHPT)11.3gを用いること以外は合成例13と同様に操作することにより、下記式で示される構造を有する目的化合物樹脂(R1-Ph-BHPT)を7.0g得た。
得られた樹脂(R1-Ph-BHPT)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:764、Mw:1695、Mw/Mn:2.22であった。
得られた化合物樹脂(R1-Ph-BHPT)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(R1-Ph-BHPT)の化学構造を有することを確認した。
δ(ppm)9.0(2H,-OH)、7.0~7.5(16H,Ph-H)、4.1(2H,-CH
Figure 0007102338000141
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例22)R2-Ph-BHPTの合成
パラホルムアルデヒド 0.7g(42mmol)に代えて4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)7.6g(42mmol)用いること以外は、合成例21と同様に操作することにより、下記式で示される構造を有する目的樹脂(R2-Ph-BHPT)を3.4g得た。
得られた樹脂(R2-Ph-BHPT)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:672、Mw:1345、Mw/Mn:2.00であった。
得られた樹脂(R2-Ph-BHPT)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(R2-Ph-BHPT)の化学構造を有することを確認した。
δ(ppm)9.0(2H,-OH)、7.0~7.5(25H,Ph-H)、4.5(1H,-CH)
Figure 0007102338000142
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例23)R1-TDPの合成
化合物(BHPT) 8.1g(21mmol)に代えて化合物(TDP)6.6gを用いること以外は合成例13と同様に操作することにより、下記式で示される構造を有する目的化合物樹脂(R1-TDP)を4.6g得た。
得られた樹脂(R1-TDP)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:449、Mw:995、Mw/Mn:2.22であった。
得られた化合物樹脂(R1-TDP)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(R1-TDP)の化学構造を有することを確認した。
δ(ppm)6.8~7.7(8H,Ph-H)、9.8(2H,-OH)、4.1(2H,-CH
Figure 0007102338000143
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例24)R2-TDPの合成
パラホルムアルデヒド 0.7g(42mmol)に代えて4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)7.6g(42mmol)用いること以外は、合成例23と同様に操作することにより、下記式で示される構造を有する目的樹脂(R2-TDP)を2.0g得た。
得られた樹脂(R2-TDP)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:414、Mw:922、Mw/Mn:2.23であった。
得られた樹脂(R2-TDP)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(R2-TDP)の化学構造を有することを確認した。
δ(ppm)6.8~7.7(17H,Ph-H)、9.8(2H,-OH)、4.5(1H,-CH)
Figure 0007102338000144
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例25)R1-Ph-TDPの合成
化合物(BHPT) 8.1g(21mmol)に代えて化合物(Ph-TDP)9.8gを用いること以外は合成例13と同様に操作することにより、下記式で示される構造を有する目的化合物樹脂(R1-Ph-TDP)を6.9g得た。
得られた樹脂(R1-Ph-TDP)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:665、Mw:1474、Mw/Mn:2.22であった。
得られた化合物樹脂(R1-Ph-TDP)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(R1-Ph-TDP)の化学構造を有することを確認した。
δ(ppm)6.8~7.7(16H,Ph-H)、9.8(2H,-OH)、4.1(2H,-CH
Figure 0007102338000145
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例26)R2-Ph-TDPの合成
パラホルムアルデヒド 0.7g(42mmol)に代えて4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)7.6g(42mmol)用いること以外は、合成例25と同様に操作することにより、下記式で示される構造を有する目的樹脂(R2-Ph-TDP)を3.2g得た。
得られた樹脂(R2-Ph-TDP)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:608、Mw:1395、Mw/Mn:2.29であった。
得られた樹脂(R2-Ph-TDP)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(R2-Ph-TDP)の化学構造を有することを確認した。
δ(ppm)6.8~7.7(25H,Ph-H)、9.8(2H,-OH)、4.5(1H,-CH)
Figure 0007102338000146
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例27)R1-Ph-BHPT-ADBACの合成
化合物(BHPT) 8.1g(21mmol)に代えて化合物樹脂(Ph-BHPT-ADBAC)20.0gを用いること以外は合成例13と同様に操作することにより、下記式で示される構造を有する目的化合物樹脂(R1-Ph-BHPT-ADBAC)を5.0g得た。
得られた樹脂(R1-Ph-BHPT-ADBAC)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:1045、Mw:2330、Mw/Mn:2.23であった。
得られた化合物樹脂(R1-Ph-BHPT-ADBAC)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(R1-Ph-BHPT-ADBAC)の化学構造を有することを確認した。
δ(ppm)6.8~8.1(8H,Ph-H)、4.7~5.0(4H,O-CH-C(=O)-)、1.2~2.7(34H,C-H/Adamantane of methylene and methine)、4.1(2H,-CH
Figure 0007102338000147
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例28)R2-Ph-BHPT-ADBACの合成
パラホルムアルデヒド 0.7g(42mmol)に代えて4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)7.6g(42mmol)用いること以外は、合成例27と同様に操作することにより、下記式で示される構造を有する目的樹脂(R2-Ph-BHPT-ADBAC)を6.0g得た。
得られた樹脂(R2-Ph-BHPT-ADBAC)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:1188、Mw:2394、Mw/Mn:2.02であった。
得られた樹脂(R2-Ph-BHPT-ADBAC)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(R2-Ph-BHPT-ADBAC)の化学構造を有することを確認した。
δ(ppm)7.1~7.7(25H,Ph-H)、5.0(4H,O-CH2-C(=O)-)、1.0~2.6(34H,C-H/Adamantane of methylene and methine)、4.5(1H,-CH)
Figure 0007102338000148
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例29)R1-TDP-ADBACの合成
化合物(BHPT) 8.1g(21mmol)に代えて化合物樹脂(TDP-ADBAC)15.3gを用いること以外は合成例13と同様に操作することにより、下記式で示される構造を有する目的化合物樹脂(R1-TDP-ADBAC)を11.4g得た。
得られた樹脂(R1-TDP-ADBAC)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:954、Mw:2148、Mw/Mn:2.25であった。
得られた化合物樹脂(R1-TDP-ADBAC)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(R1-TDP-ADBAC)の化学構造を有することを確認した。
δ(ppm)7.0~7.4(8H,Ph-H)、5.0(4H,O-CH2-C(=O)-)、1.0~2.6(34H,C-H/Adamantane of methylene and methine)、4.1(2H,-CH2)
Figure 0007102338000149
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例30)R2-TDP-ADBACの合成
パラホルムアルデヒド 0.7g(42mmol)に代えて4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)7.6g(42mmol)用いること以外は、合成例29と同様に操作することにより、下記式で示される構造を有する目的樹脂(R2-TDP-ADBAC)を4.6g得た。
得られた樹脂(R2-TDP-ADBAC)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:910、Mw:1805、Mw/Mn:1.98であった。
得られた樹脂(R2-TDP-ADBAC)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(R2-TDP-ADBAC)の化学構造を有することを確認した。
δ(ppm)7.0~7.4(17H,Ph-H)、5.0(4H,O-CH2-C(=O)-)、1.0~2.6(34H,C-H/Adamantane of methylene and methine)、4.5(1H,-CH)
Figure 0007102338000150
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例31)R1-Ph-TDP-ADBACの合成
化合物(BHPT) 8.1g(21mmol)に代えて化合物樹脂(Ph-TDP-ADBAC)18.5gを用いること以外は合成例13と同様に操作することにより、下記式で示される構造を有する目的化合物樹脂(R1-Ph-TDP-ADBAC)を12.0g得た。
得られた樹脂(R1-Ph-TDP-ADBAC)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:1152、Mw:2570、Mw/Mn:2.23であった。
得られた化合物樹脂(R1-Ph-PTDP-ADBAC)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(R1-Ph-TDP-ADBAC)の化学構造を有することを確認した。
δ(ppm)7.1~7.7(16H,Ph-H)、5.0(4H,O-CH-C(=O)-)、1.0~2.6(34H,C-H/Adamantane of methylene and methine)、4.1(2H,-CH2)
Figure 0007102338000151
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例32)R2-Ph-TDP-ADBACの合成
パラホルムアルデヒド 0.7g(42mmol)に代えて4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)7.6g(42mmol)用いること以外は、合成例31と同様に操作することにより、下記式で示される構造を有する目的樹脂(R2-Ph-TDP-ADBAC)を5.6g得た。
得られた樹脂(R2-Ph-TDP-ADBAC)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:1100、Mw:2205、Mw/Mn:2.004であった。
得られた樹脂(R2-Ph-TDP-ADBAC)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(R2-Ph-TDP-ADBAC)の化学構造を有することを確認した。
δ(ppm)7.1~7.7(25H,Ph-H)、5.0(4H,O-CH-C(=O)-)、1.0~2.6(34H,C-H/Adamantane of methylene and methine)、4.5(1H,-CH)
Figure 0007102338000152
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例33)樹脂(BHPT-co-ADTBA)の合成
100mL容器に化合物(BHPT)0.58g(1.5mmol)を入れ、テトラブチルアンモニウムブロマイド0.05g(0.15mmol)、炭酸カリウム0.28g(2mmol)、N-メチルピロリドン2mlを加え80℃、2時間攪拌した。次に、ADTBA(1,3,5-アダマンタントリブロモアセテート)0.547g(1.0mmol)をN-メチルピロリドン1mlに溶解させて加え80℃、48時間反応させた。得られた反応物を1N-HClに滴下し、茶色結晶を得た。結晶をろ過後、減圧乾燥し目的樹脂(BHPT-co-ADTBA)を0.40g得た。
得られた樹脂(BHPT-co-ADTBA)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:750、Mw:1350、Mw/Mn:1.80であった。
得られた樹脂(BHPT-co-ADTBA)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(BHPT-co-ADTBA)の化学構造を有することを確認した。
δ(ppm)6.9~7.4(4H,Ph-H)、4.6(4H,-O-CH-CO-)、4.3(2H,-CH-Br)、1.2~3.4(13H,C-H/Adamantane of methylene and methine)
Figure 0007102338000153
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例34)樹脂(TDP-co-ADTBA)の合成
化合物(BHPT)0.58g(1.5mmol)に代えて化合物(TDP)0.47gを用いること以外は、合成例33と同様に操作することにより、下記式で示される構造を有する目的樹脂(TDP-co-ADTBA)を0.36g得た。
得られた樹脂(TDP-co-ADTBA)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:680、Mw:1238、Mw/Mn:1.82であった。
得られた樹脂(TDP-co-ADTBA)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(TDP-co-ADTBA)の化学構造を有することを確認した。
δ(ppm)6.9~7.4(4H,Ph-H)、4.6(4H,-O-CH-CO-)、4.3(2H,-CH-Br)、1.2~3.4(13H,C-H/Adamantane of methylene and methine)
Figure 0007102338000154
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例35)樹脂(DMB-co-TeCl2-OH)の合成
グローブボックス中で、100ml容器に四塩化テルル5.39g(20mmol)を仕込み、1,3-ジメトキシベンゼン2.8g(20mmol)、三塩化アルミニウム5.9g(44mmol)、クロロホルム20mlを加え、氷冷下で24時間反応を行った。得られた生成物を減圧乾燥し、アセトニトリルを用いて再結晶を二回行い、ろ過して得られた結晶を24時間減圧乾燥し、樹脂(DMB-co-TeCl2)を3.0g得た。
得られた樹脂(DBM-co-TeCl2)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:39820、Mw:62910、Mw/Mn:1.58であった。
得られた樹脂(DMB-co-TeCl2)について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(DMB-co-TeCl2)の化学構造を有することを確認した。
δ(ppm)6.0~7.2(2H,Ph-H)、3.6(6H,-CH
Figure 0007102338000155
得られた化合物について、上述の測定方法によってPGMEAへの溶解性を評価した結果、5質量%以上(評価A)であり、上記化合物は優れた溶解性を有するものと評価された。
続いて、攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に樹脂(DMB-co-TeCl2)0.78g、クロロホルムを15ml加え、三臭化ホウ素3.9g(15.75mmol)を滴下し、-20℃で48時間反応を行った。反応後の溶液を氷浴中で1.0N塩酸溶液に滴下し、濾過後、黒色固体を回収した。酢酸エチルで溶解させ、硫酸マグネシウムを加え、脱水処理後、濃縮を行い、カラムクロマトグラフィーによる分離精製を行うことで、樹脂(DMB-co-TeCl2-OH)を0.4g得た。
得られた樹脂(DMB-co-TeCl2-OH)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:39800、Mw:62880、Mw/Mn:1.58であった。
得られた樹脂(DMB-co-TeCl2-OH)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される樹脂(DMB-co-TeCl2-OH)の化学構造を有することを確認した。
δ(ppm)9.0(2H,-OH)、6.4~7.0(2H,Ph-H)
Figure 0007102338000156
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例36)樹脂(Re-co-Te)の合成
グローブボックス中で、100mL容器に四塩化テルル(7.54g、28mmol)を仕込み、レゾルシノール1.54g(14mmol)、四塩化炭素20mlを加え還流条件下で80℃、24時間反応を行った。得られた反応液にジクロロメタンを加えて洗浄し、ろ過して得られた固体を減圧乾燥した。
続いて、300ml容器中にアスコルビン酸ナトリウム13.0g(66mmol)を水25mlに溶解し、酢酸エチル60mlに溶解した前述の固体を滴下し、25℃、24時間反応した。反応後の溶液を酢酸エチルで15回抽出した後に、有機溶媒を留去し茶色固体を得た。
さらに、攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に得られた茶色固体を入れ、酢酸エチル10ml、銅粉13.0g(60mmol)を加えて還流条件下で80℃、24時間反応を行った。得られた反応液を2倍に濃縮し、クロロホルムに滴下して得られた沈殿物をろ過し乾燥して、黒茶色の樹脂(Re-co-Te)0.2gを得た。
得られた樹脂(Re-co-Te)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:21500、Mw:41500、Mw/Mn:1.93であった。
得られた樹脂(Re-co-Te)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される樹脂(Re-co-Te)の化学構造を有することを確認した。
δ(ppm)9.1(2H,-OH)、6.1~7.0(2H,Ph-H)
Figure 0007102338000157
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例37)樹脂(DMB-co-TeCl2-ADBAC)の合成
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器において、樹脂(DMB-co-TeCl2-OH)3.7g、炭酸カリウム0.30g(22mmol)、ブロモ酢酸-2-メチルアダマンタン-2-イル6.3g(22mmol)を、N-メチルピロリドン50mlに溶解させ、2時間撹拌した。撹拌後、更にブロモ酢酸アダマンタン5.7g(22mmol)を加え、100℃にて24時間反応させた。反応終了後、1N塩酸水溶液に滴下し、生じた黒色固体をろ別し、乾燥後、下記樹脂(DMB-co-TeCl2-ADBAC)を5.3g得た。
得られた樹脂(DMB-co-TeCl2-ADBAC)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される樹脂(DMB-co-TeCl2-ADBAC)の化学構造を有することを確認した。
δ(ppm)6.5~7.2(2H,Ph-H)、4.9~5.0(4H,-CH-)、1.0~2.6(34H,C-H/Adamantane of methylene and methine)
Figure 0007102338000158
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例38)樹脂(Re-co-Te-ADBAC)の合成
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器において、樹脂(Re-co-Te)2.7g、炭酸カリウム0.30g(22mmol)、テトラブチルアンモニウムブロマイド0.64g(2mmol)を、N-メチルピロリドン50mlに溶解させ、2時間撹拌した。撹拌後、更にブロモ酢酸-2-メチルアダマンタン-2-イル6.3g(22mmol)を加え、100℃にて24時間反応させた。反応終了後、1N塩酸水溶液に滴下し、生じた黒色固体をろ別し、乾燥後、下記樹脂(Re-co-Te-ADBAC)を4.6g得た。
得られた樹脂(Re-co-Te-ADBAC)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される樹脂(Re-co-Te-ADBAC)の化学構造を有することを確認した。
δ(ppm)6.5~7.2(2H,Ph-H)、4.9~5.0(4H,-CH-)、1.0~2.6(34H,C-H/Adamantane of methylene and methine)
Figure 0007102338000159
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例39)樹脂(DPE-co-Te)の合成
グローブボックス中で、300ml容器に四塩化テルル(75g、280mmol)を仕込み、四塩化炭素100ml、ジフェニルエーテル15g(140mmol)を加え還流条件下で80℃、24時間反応を行った。得られた反応液にジクロロメタンを加えて洗浄し、ろ過して得られた固体を減圧乾燥した。
続いて、1000ml容器中にアスコルビン酸ナトリウム130g(66mmol)を水250mlに溶解し、酢酸エチル120mlに溶解した前述の固体を滴下し、25℃、24時間反応した。反応後の溶液を酢酸エチルで5回抽出した後に、有機溶媒を留去し茶色固体を得た。
さらに、攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に得られた茶色固体を入れ、酢酸エチル20mlを加えて溶、銅粉38.0g(600mmol)を加えて還流条件下で80℃、24時間反応を行った。得られた反応液を2倍に濃縮し、ヘキサンに滴下して得られた沈殿物をろ過し乾燥して、赤色の樹脂(DPE-co-Te)0.11gを得た。
得られた樹脂(DPE-co-Te)について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:1280、Mw:2406、Mw/Mn:1.88であった。
得られた樹脂(DPE-co-Te)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される樹脂(DPE-co-Te)の化学構造を有することを確認した。
δ(ppm)6.9~8.8(8H,Ph-H)
Figure 0007102338000160
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(合成例40)テルル含有コアシェル型ハイパーブランチポリマーの合成
200mLの容器にテルル3.2g(25mmol)とTHF25mlを加え攪拌し懸濁させ、氷冷下でメチルリチウム溶液(1mol/l、ジエチルエーテル溶液)30mlを滴下し、0℃、1時間攪拌した。さらに、クロロメチルスチレン6.1g(40mmol)を加え、さらに25℃、2時間攪拌し、反応させた。次に反応液の溶媒を留去し、減圧乾燥して、メチルテラニルスチレン2.0gを得た。
また、200mLの容器にテルル3.2g(25mmol)とTHF25mlを加え攪拌し懸濁させ、氷冷下でメチルリチウム溶液(1mol/l、ジエチルエーテル溶液)30mlを滴下し、0℃、1時間攪拌した。次に、0.5mol/l塩化アンモニウム水溶液20mlを加え、25℃、2時間攪拌し、反応させた。反応後、水層を分液しジエチルエーテルで3回抽出した。抽出した有機層の溶媒を留去し、減圧乾燥してジメチルジテルリド2.2gを得た。
さらに、攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、クロロベンゼン80g、上述のメチルテラニルスチレン2.6g(10mmol)、ジメチルジテルリド0.7g(2.5mmol)、アゾビスイソブチロニトリル0.4g(2.5mmol)を加え、窒素気流中で110℃、1時間攪拌した。攪拌後、ベンゼン90g、アクリル酸0.4g、アクリル酸t-ブチル4.35gを加え、さらに110℃、5時間攪拌し、反応した。反応終了後、反応液に水1500mlを加えてろ過し乾燥してテルル含有コアシェル型ハイパーブランチポリマー2.0gを得た(尚、表1では"Te含有ハイパーブランチポリマー"と表する)。
得られたテルル含有コアシェル型ハイパーブランチポリマーについて、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:3260、Mw:5800、Mw/Mn:1.78であった。
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(製造例41)化合物(CCHT)の合成
グローブボックス中で、50mL容器に四塩化テルル(0.27g、1.0mmol)と、レゾルシノール(0.15g、1.36mmol)を仕込み、溶媒として四塩化炭素5mLを加え、還流条件化で6時間反応を行った。得られた生成物をろ過し、ジクロロメタンを用いて二回洗浄し、減圧乾燥して淡黄色固体を得た。この固体を50mL容器に入れ、レゾルシノール(1.10g、10mmmol)を加えた後、170℃、24時間反応を行った。得られた反応液を酢酸エチルに溶解させ、n-ヘキサンで再沈殿生成をすることにより、CCHT((2,4-ジヒドロキシフェニル)(4-ヒドロキシフェニル)テルルジクロライド)を得た。
得られた化合物(CCHT)について、上述の測定方法(LC-MS)によって分子量を測定した結果、401であった。
得られた化合物(CCHT)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(CCHT)の化学構造を有することを確認した。
δ(ppm)9.5~9.9(3H,-OH)、6.3~7.2(7H,Ph-H)
Figure 0007102338000161
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
(製造例42)化合物(CCHT-ADBAC)の合成
化合物(BHPT)3.9g(10mmol)に代えて化合物(CCHT)2.7g(6.7mmol)を用いること以外は、製造例2と同様に操作することにより、下記で示される構造を有する化合物(CCHT-ADBAC)が1.09g得られた。
得られた化合物(Ph-BHPT-ADBAC)について、上述の測定方法(LC-MS)によって分子量を測定した結果、537であった。
得られた化合物(CCHT-ADBAC)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記で示される化合物(CCHT-ADBAC)の化学構造を有することを確認した。
δ(ppm)6.5~7.0(7H,Ph-H)、5.0(6H,O-CH2-C(=O)-)、1.0~2.6(51H,C-H/Adamantane of methylene and methine)
Figure 0007102338000162
また、得られた上記化合物について、上述の方法により安全溶媒への溶解性を評価した。結果を表1に示す。
[比較合成例1]
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製、試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562、Mw:1168、Mw/Mn:2.08であった。
続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上述のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
得られた樹脂(CR-1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。また、得られた樹脂(CR-1)のPGMEAへの溶解性を上述の測定方法によって評価した結果、5質量%以上(評価A)であると評価された。
[実施例及び比較例]
(光学部品形成組成物の調製)
前記合成例および比較合成例で合成した各化合物を用いて、下記表1に示す配合で光学部品形成組成物を調製した。なお、表1中の光学部品形成組成物の各成分のうち、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及び溶媒(S-1)については、以下のものを用いた。
〔酸発生剤(C)〕
P-1:トリフェニルスルホニウム トリフルオロメタンスルホネート(みどり化学(株))
〔酸架橋剤(G)〕
G-1:三和ケミカル社製MX-270
〔酸拡散制御剤(E)〕
Q-1:トリオクチルアミン(東京化成工業(株))
〔溶媒〕
S-1:プロピレングリコールモノメチルエーテルアセテート(東京化成工業(株))
上述の測定方法により、得られた光学部品形成組成物の「保存安定性」を評価した。また、均一状態の光学部品形成組成物を用いて「膜形成」を評価した。得られた結果を表1に示す。
Figure 0007102338000163
表1から分かるように実施例1~48で用いた化合物は溶解性が良好であることが確認できた。
また、安定性評価について、実施例1~48で得られた光学部品形成組成物は析出が無く保存安定性が良好であることを確認した(評価:A)。
前記測定方法に従って、膜形成について評価したところ実施例1~48で得られた光学部品形成組成物は、優れた膜を形成することができた。
前記結果から、本発明の要件を満たす化合物は、有機溶媒に対する溶解性が高く、該化合物を含む光学部品形成組成物は、保存安定性が良好で、膜形成が可能であり、高屈折率及び高透過率を付与できることがわかった。上述した本発明の要件を満たす限り、実施例に記載した化合物以外の化合物も同様の効果を示す。
本発明の光学部品形成組成物は、特定の構造を有し、有機溶媒に対する溶解性が高い化合物を含み、保存安定性が良好で、膜形成が可能であり、かつ、高屈折率の構造体を付与できる。したがって、本発明は、高屈折率な光学部品形成組成物が使用される光学部品分野等において有用である。
2016年4月28日に出願された日本国特許出願2016-091792号の開示は、その全体が参照により本明細書に取り込まれる。
また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (17)

  1. 光学部品形成用組成物を含む光学部材であって、
    前記光学部品形成用組成物は、厚さ1μmの膜とした場合、25℃における屈折率(λ=589.3nm)が1.8以上、及び、透明性(λ=632.8nm)が90%以上であり、
    前記光学部品が、プラスッチックレンズ、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、又は、感光性光導波路であり、
    少なくともテルルを含有する化合物を含有し、
    前記テルルを含有する化合物が、下記式(1A)で示される光学部品形成組用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
    Figure 0007102338000164
    (式(1A)中、Xは、テルルを含む炭素数0~60の2m価の基であり、Zは、酸素原子、硫黄原子又は無架橋であり、R1は、各々独立して、炭化水素基、ハロゲン原子、シアノ基、ニトロ基、アミノ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、R2は、各々独立して、水素原子、酸架橋性反応基又は酸解離性反応基であり、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、n1は各々独立して、0~(5+2×p)の整数であり、n2は各々独立して、0~(5+2×p)の整数である。但し、少なくとも一つのn2は1~(5+2×p)の整数である。)
  2. 光学部品形成用組成物を含む光学部材であって、
    前記光学部品形成用組成物は、厚さ1μmの膜とした場合、25℃における屈折率(λ=589.3nm)が1.8以上、及び、透明性(λ=632.8nm)が90%以上であり、
    前記光学部品が、プラスッチックレンズ、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、又は、感光性光導波路であり、
    少なくともテルルを含有する化合物を含有し、
    前記テルルを含有する化合物が、下記式(1B)で示される光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
    Figure 0007102338000165
    (式(1B)中、X0は、テルルを含む炭素数0~30の2m価の基であり、Zは、酸素原子、硫黄原子又は無架橋であり、R1Aは、各々独立して、アルキル基、アリール基、アルケニル基又はハロゲン原子であり、R2は、各々独立して、水素原子、酸架橋性反応基又は酸解離性反応基であり、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、n1は各々独立して、0~(5+2×p)の整数であり、n2は各々独立して、0~(5+2×p)の整数である。但し、少なくとも一つのn2は1~(5+2×p)の整数である。)
  3. 前記テルルを含有する化合物が、下記式(2A)で示される請求項2に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
    Figure 0007102338000166
    (式(2A)中、Z、R1A、R2、p、n1、n2は前記式(1B)と同義であり、X1は、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、水素原子、又はハロゲン原子である。)
  4. 光学部品形成用組成物を含む光学部材であって、
    前記光学部品形成用組成物は、厚さ1μmの膜とした場合、25℃における屈折率(λ=589.3nm)が1.8以上、及び、透明性(λ=632.8nm)が90%以上であり、
    前記光学部品が、プラスッチックレンズ、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、又は、感光性光導波路であり、
    少なくともテルルを含有する化合物を含有し、
    前記テルルを含有する化合物が、下記式(2A')で示される光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
    Figure 0007102338000167
    (式(2A')中、R1B及びR1B'は各々独立して、アルキル基、アリール基、アルケニル基、ハロゲン原子、水酸基又は水酸基の水素原子が酸架橋性反応基又は酸解離性反応基で置換された基であり、X1は、各々独立して酸素原子を含む1価の基、硫黄原子を含む1価の基、窒素原子を含む1価の基、炭化水素基、水素原子、又はハロゲン原子であり1及びn1'は各々独立して、0~(5+2×p)の整数でありp及びp'は各々独立して0~2の整数であり、R1BとR1B'、n1とn1'、pとp'、R1Bの置換位置とR1B'の置換位置、のうち少なくとも一つは異なる。)
  5. 前記テルルを含有する化合物が、下記式(3A)で示される請求項3に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
    Figure 0007102338000168
    (式(3A)中、R1A、R2、X1、n1、n2は前記式(2A)と同義である。)
  6. 前記テルルを含有する化合物が、下記式(4A)で示される請求項5に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
    Figure 0007102338000169
    (式(4A)中、R1A、R2、X1は前記式(3A)と同義である。)
  7. 前記テルルを含有する化合物が、下記式(2B)で示される請求項2に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
    Figure 0007102338000170
    (式(2B)中、Z、R1A、R2、p、n1、n2は前記式(1B)と同義である。)
  8. 前記テルルを含有する化合物が、下記式(2B')で示される請求項4に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
    Figure 0007102338000171
    (式(2B')中、R1B及びR1B'は各々独立して、アルキル基、アリール基、アルケニル基、ハロゲン原子、水酸基又は水酸基の水素原子が酸架橋性反応基又は酸解離性反応基で置換された基であり、n1及びn1'は前記式(2A’)のn1と、p及びp'は前記式(2A’)のpと同義であり、R1BとR1B'、n1とn1'、pとp'、R1Bの置換位置とR1B'の置換位置、のうち少なくとも一つは異なる。)
  9. 前記テルルを含有する化合物が、下記式(3B)で示される請求項7に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
    Figure 0007102338000172
    (式(3B)中、R1A、R2、n1、n2は前記式(2B)と同義である。)
  10. 前記テルルを含有する化合物が、下記式(4B)で示される請求項9に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
    Figure 0007102338000173
    (式(4B)中、R1、R2、X1は前記式(3B)と同義である。)
  11. 前記テルルを含有する化合物は、前記R2として、少なくとも一つの酸解離性反応基を有する請求項1~3,5~7,9~10のいずれか一項に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
  12. 前記テルルを含有する化合物は、前記R2が全て水素原子である請求項1~3,5~7,9~10のいずれか一項に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
  13. 光学部品形成用組成物を含む光学部材であって、
    前記光学部品形成用組成物は、厚さ1μmの膜とした場合、25℃における屈折率(λ=589.3nm)が1.8以上、及び、透明性(λ=632.8nm)が90%以上であり、
    前記光学部品が、プラスッチックレンズ、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、又は、感光性光導波路であり、
    少なくともテルルを含有する樹脂を含有し、
    前記テルルを含有する樹脂が、下記式(1A)で示される化合物に由来する構成単位を含む樹脂である光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
    Figure 0007102338000174
    (式(1A)中、Xは、テルルを含む炭素数0~60の2m価の基であり、Zは、酸素原子、硫黄原子又は無架橋であり、R1は、各々独立して、炭化水素基、ハロゲン原子、シアノ基、ニトロ基、アミノ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数6~40のアリール基、及びそれらの組み合わせからなる群より選択され、ここで、該アルキル基、該アルケニル基及び該アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、R2は、各々独立して、水素原子、酸架橋性反応基又は酸解離性反応基であり、mは、1~4の整数であり、pは、各々独立して0~2の整数であり、n1は各々独立して、0~(5+2×p)の整数であり、n2は各々独立して、0~(5+2×p)の整数である。但し、少なくとも一つのn2は1~(5+2×p)の整数である。Lは、ビフェニル基を有していてもよいメチレン基である。
  14. 請求項1~13のいずれか一項に記載の光学部品形成用組成物を含む光学部材の製造方法であって、ハロゲン化テルルと、置換又は無置換のフェノール誘導体とを、塩基触媒存在下にて反応させて前記テルルを含有する化合物を合成する工程を含む、光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材の製造方法。
  15. 溶媒を更に含む請求項1~請求項13のいずれか一項に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物、中間層形成用組成物、下層膜形成用組成物を除く)を含む光学部材
  16. 酸発生剤を更に含有する、請求項15に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
  17. 酸架橋剤を更に含有する、請求項15又は請求項16に記載の光学部品形成用組成物(ただし、集積回路封止材料、リソグラフィー用材料組成物、レジスト組成物を除く)を含む光学部材
JP2018514745A 2016-04-28 2017-04-28 光学部品形成組成物及びその硬化物 Active JP7102338B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016091792 2016-04-28
JP2016091792 2016-04-28
PCT/JP2017/017092 WO2017188452A1 (ja) 2016-04-28 2017-04-28 光学部品形成組成物及びその硬化物

Publications (2)

Publication Number Publication Date
JPWO2017188452A1 JPWO2017188452A1 (ja) 2019-03-14
JP7102338B2 true JP7102338B2 (ja) 2022-07-19

Family

ID=60159737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018514745A Active JP7102338B2 (ja) 2016-04-28 2017-04-28 光学部品形成組成物及びその硬化物

Country Status (6)

Country Link
US (1) US20200262787A1 (ja)
JP (1) JP7102338B2 (ja)
KR (1) KR20190003527A (ja)
CN (1) CN109073782A (ja)
TW (1) TW201815903A (ja)
WO (1) WO2017188452A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033943A1 (ja) * 2015-08-24 2017-03-02 学校法人関西大学 リソグラフィー用材料及びその製造方法、リソグラフィー用組成物、パターン形成方法、並びに、化合物、樹脂、及びこれらの精製方法
US20210116813A1 (en) * 2018-04-27 2021-04-22 Mitsubishi Gas Chemical Company, Inc. Composition for resist underlayer film formation, underlayer film for lithography, and pattern formation method
TW202003661A (zh) * 2018-04-27 2020-01-16 日商三菱瓦斯化學股份有限公司 光學零件形成組成物,及其硬化物
TW202104241A (zh) * 2019-05-08 2021-02-01 學校法人關西大學 化合物及其製造方法、樹脂、組成物、抗蝕劑膜、圖型形成方法、微影術用下層膜、光學零件、以及化合物或樹脂的純化方法
CN115353630B (zh) * 2022-07-01 2023-07-25 清华大学 聚碲氧烷高分子材料及其制备方法、闭环降解方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219516B2 (ja) 2005-03-18 2013-06-26 ザ チャイニーズ ユニバーシティー オブ ホンコン 染色体異数性の検出方法
WO2016035560A1 (ja) 2014-09-02 2016-03-10 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び、電子デバイスの製造方法
WO2017033943A1 (ja) 2015-08-24 2017-03-02 学校法人関西大学 リソグラフィー用材料及びその製造方法、リソグラフィー用組成物、パターン形成方法、並びに、化合物、樹脂、及びこれらの精製方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219516A (en) * 1975-08-05 1977-02-14 Asahi Chem Ind Co Ltd Photosensitive composition
JPH0819248B2 (ja) * 1992-03-13 1996-02-28 新技術事業団 複素芳香族高分子超薄膜
JP4952966B2 (ja) * 2001-07-19 2012-06-13 三菱瓦斯化学株式会社 樹脂の製造方法
JP4206815B2 (ja) * 2003-05-14 2009-01-14 三菱瓦斯化学株式会社 光学材料の製造方法
JP4093938B2 (ja) * 2003-08-26 2008-06-04 松下電器産業株式会社 光情報記録媒体の原盤製造方法、パターン形成方法およびレジスト
JP2008163242A (ja) * 2006-12-28 2008-07-17 Lion Corp コアシェル型ハイパーブランチポリマーの合成方法
JP2014185086A (ja) * 2013-03-21 2014-10-02 Sekisui Chem Co Ltd チオフェンモノマーの製造方法、π電子共役ポリマーの製造方法、及び、エレクトロクロミックシート
JP6306403B2 (ja) * 2014-04-08 2018-04-04 東京応化工業株式会社 透明部材形成用組成物、及びその硬化物からなる透明部材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219516B2 (ja) 2005-03-18 2013-06-26 ザ チャイニーズ ユニバーシティー オブ ホンコン 染色体異数性の検出方法
WO2016035560A1 (ja) 2014-09-02 2016-03-10 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び、電子デバイスの製造方法
WO2017033943A1 (ja) 2015-08-24 2017-03-02 学校法人関西大学 リソグラフィー用材料及びその製造方法、リソグラフィー用組成物、パターン形成方法、並びに、化合物、樹脂、及びこれらの精製方法

Also Published As

Publication number Publication date
TW201815903A (zh) 2018-05-01
JPWO2017188452A1 (ja) 2019-03-14
WO2017188452A1 (ja) 2017-11-02
US20200262787A1 (en) 2020-08-20
CN109073782A (zh) 2018-12-21
KR20190003527A (ko) 2019-01-09

Similar Documents

Publication Publication Date Title
JP5446118B2 (ja) 感放射線性組成物
JP7102338B2 (ja) 光学部品形成組成物及びその硬化物
JP6883291B2 (ja) リソグラフィー用材料及びその製造方法、リソグラフィー用組成物、パターン形成方法、並びに、化合物、樹脂、及びこれらの精製方法
JP5982823B2 (ja) 環状化合物、その製造方法、感放射線性組成物およびレジストパターン形成方法
EP2599814B1 (en) Compound, radiation-sensitive composition, and method for forming resist pattern
JP5786713B2 (ja) 環状化合物、その製造方法、感放射線性組成物およびレジストパターン形成方法
WO2011065004A1 (ja) 環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法
JP6896233B2 (ja) 光学部材形成組成物
US10437148B2 (en) Resist material, resist composition and method for forming resist pattern
JPWO2011024967A1 (ja) 環状化合物、その製造方法、感放射線性組成物およびレジストパターン形成方法
US9785048B2 (en) Resist composition
JP2013140342A (ja) 感放射線性組成物
JP5413070B2 (ja) 感放射線性組成物、その製造方法およびレジストパターン形成方法
JP5493668B2 (ja) 感放射線性組成物、その製造方法、およびレジストパターン形成方法
JP2012128346A (ja) 包摂化合物および感放射線性組成物

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210623

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210623

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210630

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210701

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210813

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210817

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211109

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211227

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220523

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220620

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220706

R150 Certificate of patent or registration of utility model

Ref document number: 7102338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150