CN101113995A - 基于Nuttall窗双峰插值FFT的基波与谐波检测方法 - Google Patents
基于Nuttall窗双峰插值FFT的基波与谐波检测方法 Download PDFInfo
- Publication number
- CN101113995A CN101113995A CNA2007100356533A CN200710035653A CN101113995A CN 101113995 A CN101113995 A CN 101113995A CN A2007100356533 A CNA2007100356533 A CN A2007100356533A CN 200710035653 A CN200710035653 A CN 200710035653A CN 101113995 A CN101113995 A CN 101113995A
- Authority
- CN
- China
- Prior art keywords
- harmonic
- signal
- frequency
- fft
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
本发明公开了一种基于Nuttall窗双峰插值FFT(快速傅立叶变换)的基波与谐波检测方法:对被测信号进行模数转换和低通滤波处理,采用旁瓣电平低、衰减速度快的Nuttall窗对信号进行加窗FFT运算,运用双峰插值算法检测被测信号中的基波和各谐波量。包括下列方面:(1)模数转换与数字低通滤波;(2)基于Nuttall窗的FFT运算;(3)双峰插值和多项式拟合求取基波与谐波参数。
Description
所属技术领域
本发明涉及一种用于信号中基波与谐波参数检测的方法。具体是一种基于Nuttall窗双峰插值FFT(快速傅立叶变换)的基波与谐波参数检测方法,属于信号处理技术领域,也可用于其它信号的谐波分析。
背景技术
以电力信号检测为例,随着电力电子技术的发展,非线性设备在电力系统中得到广泛应用,非线性设备带来的谐波问题对电力系统安全、稳定、经济运行构成的威胁日趋严重。基波与谐波的精确测量可为电网电能计量、谐波潮流计算、设备入网检测、电力系统谐波补偿与抑制等提供科学依据。
基波与谐波分量检测方法一般有:(1)基于频域分析的FFT方法,其特点是电网频率波动时,检测精度较低;(2)滤波器检测谐波方法,其特点是难以获得理想频率特性;(3)基于瞬时无功功率理论的方法,其特点是计算量大,处理复杂;(4)基于神经网络理论和小波变换的方法,其特点是计算量大,难以在嵌入式系统中实现。
基于FFT的基波、谐波分析算法,易于在DSP(数字信号处理器)上实现,是当今应用最广泛的一种谐波分析方法。在电力系统中,电网电压、电流畸变导致基波频率变化,由于非同步采样造成FFT算法存在频谱泄露和栅栏效应等问题,使得基波与谐波检测的精度受到影响。减少FFT算法的频谱泄露和栅栏效应影响、提高电测量中基波和各谐波检测精度是电测量信号分析和电能质量管理中的难题。
已有专利文件“测量工厂谐波的方法和测量仪”(200310105446.2),“计量工厂谐波的方法和计量仪”(200310105446.2),“电力系统谐波定量计量方法和计量仪”(98110414.2)等。其发明的目的是精确定量地测量电力系统中谐波电压、电流的动态特性。已有技术的不足之处是:已有技术提供了一些基波与谐波测量的电气设备设计方法,但由于谐波具有多样性、随机性和多态性等特征,基波频率波动造成的频谱泄露和栅栏效应依然存在,因此实时、高精度的基波与谐波测量分析难以实现。
发明内容
为克服已有技术的不足,本发明的目的在于提供基于Nuttall窗的双峰插值FFT方法,该方法能快速、准确检测信号中基波和各谐波分量。
设包含多项整数次谐波的时域被测信号为
其中,M为所含谐波的项数;rm代表谐波的次数;当m=0时,r0=1,f0、A0和0分别为基波的频率、幅值和初相角;当m≠0时,rm、Am和m分别为第m项谐波的次数、幅值和初相角。信号x(t)经过采样率为fs的数据采集系统后,得到离散序列
根据傅立叶变换的定义,信号x(n)的连续傅立叶变换为
在嵌入式系统上或计算机上实现时,数据总是有限长的,即相当于信号x(n)被一个窗函数w(n)(n=0,1,…N-1)截短为N点长序列。加窗后,信号频谱由原来的谱线变为以f0为中心向两边扩展的连续谱,信号频谱旁瓣之间的相互干扰,能量泄露到整个频带,即为频谱泄露。
对X(f)以离散频率间隔Δf=fs/N进行离散化,可得到X(kΔf)(k=0,1,…N-1,代表离散频谱线的序号)。由于电网频率并非恒定,存在一定波动,加上被测信号中可能存在间谐波(即非整数次谐波),因而难以严格做到同步采样。非同步采样造成峰值频率很难正好位于离散谱线频点上,即f0=k0Δf(k0为非整数),导致的对信号峰值点的观测偏差,即为栅栏效应。
基于以上分析,本发明提出的基于Nuttall窗的基波与谐波检测方法,其特征在于:对被测信号进行模数转换和低通滤波处理,采用旁瓣电平低、衰减速度快的Nuttall窗对信号进行加窗FFT运算,运用双峰插值算法检测被测信号中的基波和各谐波量。它包括下列步骤:
(1)模数转换与低通滤波
高速模数转换器将被测信号(模拟量)x(t)转换为数字量,采样频率为fs,该数字量作为基波与谐波检测处理的输入量。根据谐波分析精度要求,确定需检测的最高次谐波次数及频率fMAX,设计截止频率为稍大于fMAX的低通数字滤波器,输入量经过数字低通滤波器后,得到去除高频信号分量的输入量x(n)。
式中,M为所含最高谐波的次数。
(2)构建离散四项三阶Nuttall窗
Nuttall窗是一种余弦组合窗,其离散表达式为
式中,G为Nuttall窗函数的项数;N为FFT运算的数据长度;也是窗函数的长度(n=1,2,…N-1);bg应满足以下约束条件
四项三阶Nuttall窗的系数分别是b0=0.338946、b1=0.481973、b2=0.161054、b3=0.018027,其离散时域特性如图2所示。图3给出了四项三阶Nuttall窗的幅频特性,四项三阶Nuttall窗具有优良的旁瓣特性,旁瓣衰减速率达到30分贝/倍频程,旁瓣电平达到了-83分贝,采用四项三阶Nuttall窗对输入信号进行加窗处理。
(3)基于Nuttall窗的FFT运算
根据检测精度的要求,确定FFT运算的数据长度N。为便于嵌入式系统实现,本发明考虑只含有单次谐波存在的情况,将去除高频分量的输入信号量x(n)进行加窗FFT运算,可得到加窗后信号的离散傅立叶变换的表达式为
其中,W(·)是w(n)的频谱函数。
(4)双峰插值算法
非同步采样情况下,离散峰值频率f0=k0Δf不处于离散谱线频点上,设需要计算的各频率峰值点k0附近幅值最大和次最大的谱线分别k1和k2。显然,k1≤k0≤k2(k2=k1+1),这两条谱线的幅值分别为y1=|X(k1Δf)|和y2=|X(k2Δf)|,设 、α=k0-k1-0.5,可知α取值范围为[-0.5,0.5],可得以α为自变量,以β为因变量的函数关系β=h(α)
其反函数为α=h-1(β)。由β可求出参数α,则被测信号的频率计算公式为
f0=k0Δf=(α+k1+0.5)Δf
被测信号的幅值计算公式为
被测信号的初相位计算公式
=arg[X(kΔf)]+π/2-arg[W2π(kΔf-k0)Ts)]
由此可计算出被测信号基波与谐波的真实频率和各项参数。
本发明所述的模数转换是指通过对被测信号(可以是电压或电流信号等)进行高速模数转换,将被测信号转换为数字量。
本发明所述的低通滤波是指能将被测信号中高频信号进行滤除的滤波算法。根据模数转换速率和谐波分析要求,确定被测信号进行谐波分析的最高次数和低通数字滤波器的各参数,对被测信号进行低通滤波处理,可以消除高次谐波对谐波分析结果的影响。
本发明所述的信号数据长度N是进行一次FFT变换的数据长度,N根据谐波检测精度和计算机或嵌入式系统设备的运行速度综合考虑确定。
本发明所述的Nuttall窗是一类余弦组合窗函数,在非同步采样情况下,不加窗的FFT运算将存在严重的频谱泄露和栅栏效应,检测精度低,加Nuttall窗FFT算法的频谱泄露和栅栏效应能显著降低,能提高基波与谐波检测精度。
本发明所述的双峰插值FFT算法是指在非同步采样情况下,离散谱线与真实频率点存在偏差,通过寻找真实频率点附近的两根峰值谱线,采用多项式拟合的方法求取真实谱线处的频率值、幅值和初相位。
本发明与已有技术相比有以下优点:1、本发明可以对被测信号的基波与谐波分量进行快速、准确检测;2、本发明可以克服被测信号频率波动的影响,实现频率准确测量;3、本发明便于嵌入式系统实现,可以连续、长期对被测信号进行检测。
附图说明
图1是本发明的基波与谐波测量原理框图
图2是四项三阶Nuttall窗离散时域特性图
图3是四项三阶Nuttall窗幅频特性图
图4是FFT双峰插值算法示意图
图5是本发明的基波与谐波测量流程框图
具体实施方式
本发明提出了一种基于Nuttall窗双峰插值FFT的基波与谐波检测方法。以下结合附图作详述,但不作为本发明的限定。
本实施例为可用于实现电力系统谐波电能计量的三相多功能谐波电能表的谐波参数检测部分。
设定本实施例中谐波检测最高次数为21次,模数转换器采用TDK公司生产的71M6513,CPU采用ADI公司生产的BF533处理器,主要参数选择如下:
(1)采样速率:fs=2520;
(2)电网基波频率:在50Hz左右波动;
(3)FFT运算数据长度:N=512。
本实施例的处理流程框图如图1所示,信号经过A/D转换(模数转换)后送入DSP(BF533)进行处理,BF533完成构建离散四项三阶Nuttall窗,进行加窗插值FFT运算,得到各次谐波参数。
本实施例中离散四项三阶Nuttall窗的表达式如下
式中,G为Nuttall窗函数的项数;N为FFT运算的数据长度,也是窗函数的长度(n=1,2,…N-1);bg应满足以下约束条件
四项三阶Nuttall窗的系数分别是b0=0.338946、b1=0.481973、b2=0.161054、b3=0.018027,其离散时域特性如图2所示。图3给出了四项三阶Nuttall窗的幅频特性,四项三阶Nuttall窗具有优良的旁瓣特性,旁瓣衰减速率达到30dB/倍频程,旁瓣电平达到了-83dB。
本实施例中双峰插值算法的示意图如图4所示,k1和k2分别表示真实频率点附近的两根谱线,以基频fs=50Hz为例,则k1和k2将位于40~60Hz频率范围内,找出该范围内的两根峰值谱线,则真实频率点位于两根谱线之间。两根峰值谱线的幅值分别为y1=|X(k1Δf)|和y2=|X(k2Δf)|,设 、α=k0-k1-0.5,可知α取值范围为[-0.5,0.5]。
Nuttall窗的频谱幅度函数为
式中,
令 可得
将k=-α±0.5代入上式,因|-α±0.5|≤1,且N一般较大,可得
进行多项式拟合逼近,得到基于四项三阶Nuttall窗的计算公式为
α=H(β)=2.95494514β+0.17671943β3+0.09230694β5
频率计算公式为
f0=k0Δf=(α+k1+0.5)Δf
幅值计算公式为
相位计算公式为
0=arg[X(kiΔf)]+π/2-π(α-0.5(-1)i)
式中,i=1,2。
本实施例的基波与谐波参数检测误差结果如下:
表1基波~21次谐波幅值相对误差(%)
谐波次数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
误差 | -0.0002 | 0.0003 | 0.0002 | 0.0009 | 0.0002 | -0.0001 | -0.0001 |
谐波次数 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
误差 | -0.0009 | 0.0001 | 0.0001 | -0.0001 | -0.0006 | 0.0001 | 0.0004 |
谐波次数 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
误差 | -0.0002 | 0.0005 | -0.0000 | 0.0005 | -0.0002 | -0.0008 | -0.0001 |
表2基波~21次谐波初相位相对误差(%)
谐波次数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
误差 | 0.0209 | 0.0409 | -0.0013 | 0.0039 | -0.0004 | -0.0041 | 0.0026 |
谐波次数 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
误差 | -0.0100 | -0.0019 | -0.0347 | 0.0291 | -0.0105 | 0.0097 | -0.0254 |
谐波次数 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
误差 | 0.0010 | 0.0178 | 0.0001 | -0.0132 | 0.0307 | -0.0017 | 0.0010 |
Claims (5)
1.一种用于信号处理的基于Nuttall窗双峰插值FFT的基波与谐波参数检测方法,其特征是:对被测信号进行模数转换和低通滤波处理,采用旁瓣电平低、衰减速度快的Nuttall窗对信号进行加窗FFT处理,运用双峰插值算法检测被测信号中的基波和各谐波量。
2.根据权利要求1所述的模数转换是指通过对被测信号(可以是电压或电流信号等)进行高速模数转换,将被测信号转换为数字量。
3.根据权利要求1所述的低通滤波是指能将被测信号中高频信号进行滤除的滤波算法。根据模数转换速率和谐波分析要求,确定被测信号进行谐波分析的最高次数和低通数字滤波器的各参数,对被测信号进行低通滤波处理,可以消除高次谐波对谐波分析结果的影响。
4.根据权利要求1所述的Nuttall窗是一类余弦组合窗函数,在非同步采样情况下,不加窗的FFT运算将存在严重的频谱泄露和栅栏效应,检测精度低,加Nuttall窗FFT算法的频谱泄露和栅栏效应能显著降低,能有效提高基波与谐波检测精度。
5.根据权利要求1述的双峰插值FFT算法是指在非同步采样情况下,离散谱线与真实频率谱线存在偏差,通过寻找真实频率点附近的两根峰值谱线,采用多项式拟合的方法求取真实谱线处的频率值、幅值和初相位。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100356533A CN101113995A (zh) | 2007-08-29 | 2007-08-29 | 基于Nuttall窗双峰插值FFT的基波与谐波检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100356533A CN101113995A (zh) | 2007-08-29 | 2007-08-29 | 基于Nuttall窗双峰插值FFT的基波与谐波检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101113995A true CN101113995A (zh) | 2008-01-30 |
Family
ID=39022443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100356533A Pending CN101113995A (zh) | 2007-08-29 | 2007-08-29 | 基于Nuttall窗双峰插值FFT的基波与谐波检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101113995A (zh) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101950012A (zh) * | 2010-03-24 | 2011-01-19 | 北京北研兴电力仪表有限责任公司 | 交流电能表现场测试仪 |
CN101701984B (zh) * | 2009-11-23 | 2011-05-18 | 浙江大学 | 基于三项系数Nuttall窗插值FFT的基波与谐波检测方法 |
CN102253282A (zh) * | 2011-06-10 | 2011-11-23 | 中国矿业大学 | 纳托尔窗函数连续频谱内插电力谐波参数获取方法 |
CN102331526A (zh) * | 2011-06-10 | 2012-01-25 | 中国矿业大学 | 汉宁窗函数连续频谱内插电力谐波参数获取方法 |
CN102539915A (zh) * | 2012-01-06 | 2012-07-04 | 中国矿业大学 | 时延傅立叶变换测频法精确计算电力谐波参数方法 |
CN101900761B (zh) * | 2009-11-05 | 2012-08-22 | 中国航天科技集团公司第五研究院第五一四研究所 | 一种高准确度非整周期采样谐波分析测量方法 |
CN103148897A (zh) * | 2013-02-01 | 2013-06-12 | 浙江大学 | 一种基于dsp的数字化智能涡街流量计及其计量方法 |
CN103245832A (zh) * | 2013-05-16 | 2013-08-14 | 湖南大学 | 基于快速s变换的谐波时频特性参数估计方法及分析仪 |
WO2013173975A1 (zh) * | 2012-05-22 | 2013-11-28 | 深圳市英威腾电气股份有限公司 | 谐波检测方法及相关装置 |
CN103454495A (zh) * | 2013-09-13 | 2013-12-18 | 电子科技大学 | 自适应高精度快速频谱分析方法 |
CN103607179A (zh) * | 2013-11-14 | 2014-02-26 | 广东省电信规划设计院有限公司 | 滤波方法、系统及滤波器 |
CN103675447A (zh) * | 2013-12-17 | 2014-03-26 | 国家电网公司 | 一种电气化铁路的高精度实时谐波分析方法 |
WO2014206265A1 (zh) * | 2013-06-26 | 2014-12-31 | 华为技术有限公司 | 谐波分析方法和装置以及确定谐波间杂波的方法和装置 |
CN104655928A (zh) * | 2013-11-21 | 2015-05-27 | 国家电网公司 | 一种电动汽车充电机的输入电压间谐波的检测方法 |
CN105137181A (zh) * | 2015-09-15 | 2015-12-09 | 福州大学 | 基于Nuttall-Kaiser组合窗双谱线插值的谐波分析方法 |
CN105137198A (zh) * | 2015-09-15 | 2015-12-09 | 福州大学 | 一种基于Nuttall窗-五点变换FFT的介损测量新方法 |
CN105353215A (zh) * | 2015-12-23 | 2016-02-24 | 合肥工业大学 | 基于Nuttall窗四谱线插值FFT的谐波检测方法 |
CN105388361A (zh) * | 2015-12-31 | 2016-03-09 | 武汉大学 | 双向插值同步化采样序列的fft电力谐波检测方法 |
CN106154035A (zh) * | 2016-06-20 | 2016-11-23 | 哈尔滨工业大学 | 一种快速谐波及间谐波检测方法 |
CN106918741A (zh) * | 2017-03-02 | 2017-07-04 | 浙江大学 | 应用于频率宽范围波动电网的自适应采样的相位差校正法 |
CN107479019A (zh) * | 2017-07-10 | 2017-12-15 | 三峡大学 | 一种高精度数字化电能表在线校验系统 |
CN108572277A (zh) * | 2017-06-28 | 2018-09-25 | 北京航空航天大学 | 多频信号测量方法及系统 |
CN108776263A (zh) * | 2018-05-02 | 2018-11-09 | 三峡大学 | 基于高阶汉宁自卷积窗及改进插值算法的谐波检测方法 |
CN108802502A (zh) * | 2018-07-24 | 2018-11-13 | 山东大学 | 基于无线电技术的太阳射电流量监测系统及方法 |
CN109598094A (zh) * | 2018-12-29 | 2019-04-09 | 北京化工大学 | 地震矢量波场有限差分数值模拟方法、设备以及系统 |
CN109782063A (zh) * | 2018-10-23 | 2019-05-21 | 国网安徽省电力有限公司芜湖供电公司 | 一种基于纳托尔自卷积窗三谱线插值fft的动态间谐波分析方法 |
CN110763930A (zh) * | 2019-09-28 | 2020-02-07 | 沈阳工程学院 | 基于布莱克曼双峰插值谐波分析法的避雷器阻性电流在线监测系统 |
CN110837001A (zh) * | 2019-11-13 | 2020-02-25 | 河南工程学院 | 一种电力系统中谐波和间谐波的分析方法与装置 |
CN111224377A (zh) * | 2019-10-30 | 2020-06-02 | 东北大学 | 基于加Nuttall窗插值算法的永磁同步电机保护方法 |
CN112180163A (zh) * | 2020-09-30 | 2021-01-05 | 南方电网科学研究院有限责任公司 | 一种基于fpga的电力谐波检测系统及方法 |
-
2007
- 2007-08-29 CN CNA2007100356533A patent/CN101113995A/zh active Pending
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101900761B (zh) * | 2009-11-05 | 2012-08-22 | 中国航天科技集团公司第五研究院第五一四研究所 | 一种高准确度非整周期采样谐波分析测量方法 |
CN101701984B (zh) * | 2009-11-23 | 2011-05-18 | 浙江大学 | 基于三项系数Nuttall窗插值FFT的基波与谐波检测方法 |
CN101950012A (zh) * | 2010-03-24 | 2011-01-19 | 北京北研兴电力仪表有限责任公司 | 交流电能表现场测试仪 |
CN102331526B (zh) * | 2011-06-10 | 2013-07-17 | 中国矿业大学 | 汉宁窗函数连续频谱内插电力谐波参数获取方法 |
CN102253282A (zh) * | 2011-06-10 | 2011-11-23 | 中国矿业大学 | 纳托尔窗函数连续频谱内插电力谐波参数获取方法 |
CN102331526A (zh) * | 2011-06-10 | 2012-01-25 | 中国矿业大学 | 汉宁窗函数连续频谱内插电力谐波参数获取方法 |
CN102253282B (zh) * | 2011-06-10 | 2014-07-16 | 中国矿业大学 | 纳托尔窗函数连续频谱内插电力谐波参数获取方法 |
CN102539915A (zh) * | 2012-01-06 | 2012-07-04 | 中国矿业大学 | 时延傅立叶变换测频法精确计算电力谐波参数方法 |
WO2013173975A1 (zh) * | 2012-05-22 | 2013-11-28 | 深圳市英威腾电气股份有限公司 | 谐波检测方法及相关装置 |
CN103547328A (zh) * | 2012-05-22 | 2014-01-29 | 深圳市英威腾电气股份有限公司 | 谐波检测方法及相关装置 |
CN103547328B (zh) * | 2012-05-22 | 2015-12-23 | 深圳市英威腾电气股份有限公司 | 谐波检测方法及相关装置 |
CN103148897A (zh) * | 2013-02-01 | 2013-06-12 | 浙江大学 | 一种基于dsp的数字化智能涡街流量计及其计量方法 |
CN103245832A (zh) * | 2013-05-16 | 2013-08-14 | 湖南大学 | 基于快速s变换的谐波时频特性参数估计方法及分析仪 |
CN103245832B (zh) * | 2013-05-16 | 2015-08-12 | 湖南大学 | 基于快速s变换的谐波时频特性参数估计方法及分析仪 |
CN104251934B (zh) * | 2013-06-26 | 2018-08-14 | 华为技术有限公司 | 谐波分析方法和装置以及确定谐波间杂波的方法和装置 |
WO2014206265A1 (zh) * | 2013-06-26 | 2014-12-31 | 华为技术有限公司 | 谐波分析方法和装置以及确定谐波间杂波的方法和装置 |
CN104251934A (zh) * | 2013-06-26 | 2014-12-31 | 华为技术有限公司 | 谐波分析方法和装置以及确定谐波间杂波的方法和装置 |
CN103454495B (zh) * | 2013-09-13 | 2016-01-20 | 电子科技大学 | 自适应高精度快速频谱分析方法 |
CN103454495A (zh) * | 2013-09-13 | 2013-12-18 | 电子科技大学 | 自适应高精度快速频谱分析方法 |
CN103607179A (zh) * | 2013-11-14 | 2014-02-26 | 广东省电信规划设计院有限公司 | 滤波方法、系统及滤波器 |
CN104655928A (zh) * | 2013-11-21 | 2015-05-27 | 国家电网公司 | 一种电动汽车充电机的输入电压间谐波的检测方法 |
CN103675447A (zh) * | 2013-12-17 | 2014-03-26 | 国家电网公司 | 一种电气化铁路的高精度实时谐波分析方法 |
CN105137181A (zh) * | 2015-09-15 | 2015-12-09 | 福州大学 | 基于Nuttall-Kaiser组合窗双谱线插值的谐波分析方法 |
CN105137198A (zh) * | 2015-09-15 | 2015-12-09 | 福州大学 | 一种基于Nuttall窗-五点变换FFT的介损测量新方法 |
CN105353215A (zh) * | 2015-12-23 | 2016-02-24 | 合肥工业大学 | 基于Nuttall窗四谱线插值FFT的谐波检测方法 |
CN105388361A (zh) * | 2015-12-31 | 2016-03-09 | 武汉大学 | 双向插值同步化采样序列的fft电力谐波检测方法 |
CN105388361B (zh) * | 2015-12-31 | 2018-01-23 | 武汉大学 | 双向插值同步化采样序列的fft电力谐波检测方法 |
CN106154035A (zh) * | 2016-06-20 | 2016-11-23 | 哈尔滨工业大学 | 一种快速谐波及间谐波检测方法 |
CN106918741A (zh) * | 2017-03-02 | 2017-07-04 | 浙江大学 | 应用于频率宽范围波动电网的自适应采样的相位差校正法 |
CN106918741B (zh) * | 2017-03-02 | 2019-04-23 | 浙江大学 | 应用于频率宽范围波动电网的自适应采样的相位差校正法 |
CN108572277A (zh) * | 2017-06-28 | 2018-09-25 | 北京航空航天大学 | 多频信号测量方法及系统 |
CN108572277B (zh) * | 2017-06-28 | 2020-06-09 | 北京航空航天大学 | 多频信号测量方法及系统 |
CN107479019A (zh) * | 2017-07-10 | 2017-12-15 | 三峡大学 | 一种高精度数字化电能表在线校验系统 |
CN108776263B (zh) * | 2018-05-02 | 2020-07-28 | 三峡大学 | 基于高阶汉宁自卷积窗及改进插值算法的谐波检测方法 |
CN108776263A (zh) * | 2018-05-02 | 2018-11-09 | 三峡大学 | 基于高阶汉宁自卷积窗及改进插值算法的谐波检测方法 |
CN108802502A (zh) * | 2018-07-24 | 2018-11-13 | 山东大学 | 基于无线电技术的太阳射电流量监测系统及方法 |
CN109782063A (zh) * | 2018-10-23 | 2019-05-21 | 国网安徽省电力有限公司芜湖供电公司 | 一种基于纳托尔自卷积窗三谱线插值fft的动态间谐波分析方法 |
CN109598094A (zh) * | 2018-12-29 | 2019-04-09 | 北京化工大学 | 地震矢量波场有限差分数值模拟方法、设备以及系统 |
CN109598094B (zh) * | 2018-12-29 | 2020-12-04 | 北京化工大学 | 地震矢量波场有限差分数值模拟方法、设备以及系统 |
CN110763930A (zh) * | 2019-09-28 | 2020-02-07 | 沈阳工程学院 | 基于布莱克曼双峰插值谐波分析法的避雷器阻性电流在线监测系统 |
CN111224377A (zh) * | 2019-10-30 | 2020-06-02 | 东北大学 | 基于加Nuttall窗插值算法的永磁同步电机保护方法 |
CN111224377B (zh) * | 2019-10-30 | 2021-10-01 | 东北大学 | 基于加Nuttall窗插值算法的永磁同步电机保护方法 |
CN110837001A (zh) * | 2019-11-13 | 2020-02-25 | 河南工程学院 | 一种电力系统中谐波和间谐波的分析方法与装置 |
CN110837001B (zh) * | 2019-11-13 | 2021-10-01 | 河南工程学院 | 一种电力系统中谐波和间谐波的分析方法与装置 |
CN112180163A (zh) * | 2020-09-30 | 2021-01-05 | 南方电网科学研究院有限责任公司 | 一种基于fpga的电力谐波检测系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101113995A (zh) | 基于Nuttall窗双峰插值FFT的基波与谐波检测方法 | |
CN101261292A (zh) | 基于5项Rife-Vincent(I)窗双谱线插值FFT的基波与谐波检测方法 | |
Jwo et al. | Windowing techniques, the welch method for improvement of power spectrum estimation | |
CN104897960B (zh) | 基于加窗四谱线插值fft的谐波快速分析方法及系统 | |
CN103454497B (zh) | 基于改进加窗离散傅立叶变换的相位差测量方法 | |
CN101334431B (zh) | 电网谐波的频谱插值校正分析方法 | |
CN101441233A (zh) | 基于Kaiser窗双谱线插值FFT的基波与谐波检测方法 | |
CN101701984B (zh) | 基于三项系数Nuttall窗插值FFT的基波与谐波检测方法 | |
CN110837001B (zh) | 一种电力系统中谐波和间谐波的分析方法与装置 | |
Wen et al. | Hanning self-convolution window and its application to harmonic analysis | |
CN103353550A (zh) | 一种测量电力系统信号频率及谐波参数的方法 | |
CN106405229B (zh) | 一种基波和谐波电能计量方法 | |
CN110763930A (zh) | 基于布莱克曼双峰插值谐波分析法的避雷器阻性电流在线监测系统 | |
CN102539915A (zh) | 时延傅立叶变换测频法精确计算电力谐波参数方法 | |
CN108776263B (zh) | 基于高阶汉宁自卷积窗及改进插值算法的谐波检测方法 | |
CN110954746A (zh) | 一种基于四项Nuttall余弦窗的六插值FFT算法 | |
CN112881796A (zh) | 频谱泄漏校正的多频实信号频率估计算法 | |
CN109669072A (zh) | 一种配电网的自适应同步相量量测方法 | |
CN109541304B (zh) | 基于六项最小旁瓣窗插值的电网高次弱幅值谐波检测方法 | |
CN117169590B (zh) | 一种基于软件变采样率的电力谐波分析的方法和装置 | |
CN101718816A (zh) | 基于四项系数Nuttall窗插值FFT的基波与谐波检测方法 | |
Minzhong et al. | Error analysis for dielectric loss factor measurement based on harmonic analysis | |
CN112152567A (zh) | 高效率高谐波抑制功率放大装置及方法 | |
CN112180161A (zh) | 一种非同步高采样率采样条件下谐波间谐波群测量方法 | |
Jiao et al. | An approach for electrical harmonic analysis based on interpolation DFT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |