CN101061436A - 包括具有氢流速渐变的光刻胶等离子体老化步骤的蚀刻方法 - Google Patents
包括具有氢流速渐变的光刻胶等离子体老化步骤的蚀刻方法 Download PDFInfo
- Publication number
- CN101061436A CN101061436A CNA2005800370648A CN200580037064A CN101061436A CN 101061436 A CN101061436 A CN 101061436A CN A2005800370648 A CNA2005800370648 A CN A2005800370648A CN 200580037064 A CN200580037064 A CN 200580037064A CN 101061436 A CN101061436 A CN 101061436A
- Authority
- CN
- China
- Prior art keywords
- plasma
- gas
- aging
- arbitrary
- photoresist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920002120 photoresistant polymer Polymers 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000005530 etching Methods 0.000 title claims abstract description 36
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 239000001257 hydrogen Substances 0.000 title claims abstract description 21
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 21
- 230000003750 conditioning effect Effects 0.000 title abstract 7
- 239000007789 gas Substances 0.000 claims abstract description 81
- 239000000758 substrate Substances 0.000 claims abstract description 22
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims abstract description 12
- 230000032683 aging Effects 0.000 claims description 64
- 230000008859 change Effects 0.000 claims description 41
- 238000012545 processing Methods 0.000 claims description 22
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 239000004065 semiconductor Substances 0.000 claims description 5
- 238000011065 in-situ storage Methods 0.000 claims 2
- 230000008569 process Effects 0.000 abstract description 19
- 230000001143 conditioned effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 28
- 230000006870 function Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 208000034189 Sclerosis Diseases 0.000 description 7
- 238000007789 sealing Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000006117 anti-reflective coating Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- -1 monox Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012749 thinning agent Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
- H01L21/0276—Photolithographic processes using an anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Drying Of Semiconductors (AREA)
Abstract
本发明提供了通过光刻胶掩模(212)在衬底(204)上方在蚀刻层(208)中蚀刻特征的方法。将具有设置在光刻胶掩模下面的蚀刻层的衬底置于加工室中。对光刻胶掩模进行老化,其中所述老化包括向所述加工室提供老化气体,所述老化气体包括具有一定流速的碳氟化合物和氢氟碳化合物中的至少一种以及具有一定流速的含氢气体;和使所述老化气体能量化以形成老化等离子体从而使光刻胶(214)硬化。停止所述老化等离子体。向所述加工室提供蚀刻等离子体,其中所述蚀刻等离子体不同于所述老化等离子体。用所述蚀刻等离子体在蚀刻层(208)中蚀刻特征。
Description
背景技术
本发明涉及光刻胶掩模在半导体器件制备中的用途。具体而言,本发明涉及在半导体器件制备过程中通过光刻胶掩模蚀刻。
在半导体晶片加工过程中,采用公知的图案化和蚀刻方法将半导体器件的特征限定在晶片中。在这些方法中,可以在晶片上沉积光刻胶(PR)材料,然后暴露到由分划板过滤过的光中。分划板通常是指用示例性特征几何形状进行图案化处理过的玻璃板,所述示例性特征几何形状阻挡光穿过分划板。
光在通过分划板之后,接触光刻胶材料的表面。光改变了光刻胶材料的化学组成,使得显影剂可以去除部分光刻胶材料。在正性光刻胶材料的情况下,去除的是暴露的区域,而在负性光刻胶材料的情况下,去除的是未暴露的区域。随后,蚀刻晶片以从不再受到光刻胶材料保护的区域中去除下面的材料,由此在晶片中制备所需的特征。
为了提供增加的密度,减少了特征尺寸。这可以通过减少特征的临界尺寸(CD)来实现,而所述减少需要有提高的光刻胶分辨率。提高光刻胶分辨率的一种方式是提供更薄的光刻胶掩模。
人们正在追求新型光刻胶材料(193和157nm PR)来在光刻胶中制备小的CD尺寸,但是和以前的DIV和248nm光刻胶掩模相比,这些光刻胶的抗等离子体破坏性较差。另外,采用现有的单层方法,必须采用越来越薄的光刻胶来和特征的分辨率保持一致。这样可能无法为氧化物蚀刻提供足量的光刻胶,而且可能导致其它问题,比如条纹。为了跟得上越来越小的特征尺寸,本行业一直在研究新的技术,比如包括数个加工步骤的多层方法。毫无疑问,转用新技术将代价昂贵而且耗时。
发明内容
为了实现上述内容并和本发明的目标相一致,提供了通过光刻胶掩模在衬底上方在蚀刻层中蚀刻特征的方法。将具有设置在光刻胶掩模下面的蚀刻层的衬底置于加工室中。对光刻胶掩模进行老化,其中所述老化包括向加工室提供老化气体,所述老化气体包括具有一定流速的碳氟化合物和氢氟碳化合物中的至少一种和具有一定流速的含氢气体;使所述老化气体能量化以形成老化等离子体。所述老化等离子体被停止(stepped)。向加工室提供蚀刻等离子体,其中所述蚀刻等离子体不同于所述老化等离子体。用蚀刻等离子体在蚀刻层中蚀刻特征。
在本发明的另一方面,提供了通过防反射涂层和光刻胶掩模在衬底上方在蚀刻层中蚀刻特征的方法。将在防反射涂层和光刻胶掩模下方设置有蚀刻层的衬底放置在加工室中。打开防反射涂层,包括向加工室提供老化气体,所述老化气体包括具有一定流速的碳氟化合物和氢氟碳化合物中的至少一种和具有一定流速的含氢气体;使所述老化气体能量化以形成老化等离子体。在打开防反射涂层之后停止所述老化等离子体。向加工室提供蚀刻等离子体,其中所述蚀刻等离子体和老化等离子体不同。采用蚀刻等离子体通过防反射涂层和光刻胶掩模在蚀刻层中蚀刻特征。
在下面发明详述将结合附图对本发明的这些和其它特征进行更详细的描述。
附图说明
在附图的图中通过举例对本发明进行了说明,而不是对本发明的限制,其中相似的附图标记是指相似的元件,而且其中:
图1是本发明实施方案的高级流程图。
图2A-2C是根据本发明加工过的衬底的剖面示意图。
图3是可以在本发明优选实施方案中使用的加工室的示意图。
图4是具有氢渐变(ramp)的掩模老化实施方案的更详细流程图。
图5是在老化过程中老化气体中H2的流速和时间的关系图。
图6图示了采用本发明的渐变处理通过改变所述渐变的初始流速来实现最终顶部CD的调谐式减少。
图7是H2流速的不同渐变方案图。
图8A和8B示出了计算机系统,它适用于操作本发明实施方案中所用的控制器。
图9是离散的、不连续的阶跃函数渐变图。
优选实施方案详述
现在参考附图中所示的一些优选实施方案详细描述本发明。在下列描述中,为了提供对本发明的全面理解,给出了众多的具体细节。但是,对本领域普通技术人员而言,本发明可以在没有一些或全部这些具体细节的情况下实施。在其它情况下,为了不至于不必要地使本发明变得晦涩,对已知的工艺步骤和/或结构没有进行详细的描述。
图1是本发明实施方案的高级流程图。将具有蚀刻层和掩模的衬底提供到加工室(步骤104)。图2A是衬底204的剖面示意图,所述衬底可以是晶片或者晶片上的层的一部分。在衬底204上形成蚀刻层208。虽然所示的蚀刻层208位于衬底204上,但是在其它实施方案中,在蚀刻层208和衬底204之间可以具有一层或多层。在蚀刻层208上方形成掩模212。在该实例中,在蚀刻层208和掩模212之间放置了BARC(底部防反射涂层)210。在优选实施方案中,蚀刻层208是单层。优选在所述形成蚀刻层的单层的整个厚度上所述单层是均匀的。
图3是在本发明优选实施方案中可以使用的加工室300的示意图。在该实施方案中,等离子体加工室300是LamResearch Corp.,Fremont,California生产的200mm 2300 Exelan,它包括密封环302、上部电极304、下部电极308、气体源310和排气泵320。气体源310可以包括第一气体源312、第二气体源314和第三气体源316。在等离子体加工室300内,其上沉积有蚀刻层的衬底晶片204被设置在下部电极308上。下部电极308结合了用于夹持衬底晶片204的合适的衬底夹紧机构(例如,静电夹持、机械夹持等)。反应器顶部328结合了上部电极304,上部电极304被设置成和下部电极308正相对。上部电极304、下部电极308和密封环302限定了被封闭的等离子体体积340。气体由气体源310通过气体进口343供给所述被封闭的等离子体体积,由排气泵320通过密封环302和排气口从所述被封闭的等离子体体积中排出。排气泵320形成等离子体加工室的气体出口。在该实施方案中,上部电极304接地。RF源(Source)348电连接到下部电极308上。室壁352限定其中设置了密封环302、上部电极304和下部电极308的等离子体外壳。RF源348可以包括27MHz电源和2MHz电源。将RF能量(power)连接至电极的不同组合都是可行的。控制器335可控性地连接到RF源348、排气泵320、密封环302、连接到第一气体源312的第一控制阀337、连接到第二气体源314的第二控制阀339、和连接到第三气体源316的第三控制阀341上。气体入口343将来自气体源312、314、316的气体提供至等离子体加工外壳内。可以将喷头连接到气体入口343。气体入口343可以是针对每个气体源的单一入口,或者针对每个气体源的不同入口、或者针对每个气体源的多个入口、或者其它可行的组合。本发明的其它实施方案可以采用其它类型的等离子体加工室,比如Lam Research Inc生产的2300 Exelan。
图8A和8B示出了计算机系统800,它适于操作本发明实施方案中所用的控制器335。图8A示出了计算机系统的一种可行物理形式。当然,计算机系统可以具有许多物理形式,从集成电路、印刷线路板、小型手持设备直至巨型计算机。计算机系统800包括监控器802、显示器804、外壳806、盘驱动器808、键盘810和鼠标812。盘814是用于从计算机系统800往来传递数据的计算机可读介质。
图8B是计算机系统800的方框图实例。多个子系统连接在系统主线820上。处理器(一个或多个)822(也称作中央处理单元,或者CPU)连接到存储设备,包括存储器428上。存储器824包括随机访问存储器(RAM)和只读存储器(ROM)。如同本领域所公知的,ROM的作用是将数据和指令单向传递给CPU,RAM通常用于以双向方式传递数据和指令。这两种类型的存储器都可以包括任何合适的下述计算机可读介质。固定盘826也是和CPU 822双向连接;它提供了另外的数据存储容量,也可以包括任何下述的计算机可读介质。固定盘826可用于存储程序和数据等,通常是比一级存储(primary storage)慢的二级存储介质(比如硬盘)。应该认识到,保留在固定盘826中的信息在合适情况下可以作为虚拟存储器以标准方式结合到存储器824中。可移动盘814可以采用下述任何计算机可读介质形式。
CPU822也连接到各种输入/输出设备,比如显示器804、键盘810、鼠标812和扬声器830上。一般而言,输入/输出设备可以是任何下述设备:视频显示器、转球、鼠标、键盘、麦克风、触摸式显示器、转换卡读取器、磁带或者纸带读取器、图形输入板、手写笔、声音或者手写识别器、仿生读取器或者其它计算机。CPU822任选地可以通过网络接口840连接到另一计算机或者电讯网络上。采用所述网络接口,预期在执行上述方法步骤中CPU可以从网络接收信息,或者可以向网络输出信息。另外,本发明的方法实施方案可以仅仅在CPU822上执行,或者可以在网络比如Internet上结合远程CPU执行,其中远程CPU分担部分处理。
另外,本发明的实施方案进一步涉及具有计算机可读介质的计算机存储产品,所述产品具有位于其中的计算机代码以执行各种计算机实现的操作。介质和计算机代码可以是针对本发明的目的而特别设计和构建的,或者可以是计算机软件领域普通技术人员公知并可得的那些。计算机可读介质的实例包括但不限于:磁性介质比如硬盘、软盘和磁带;光学介质比如CD-ROM和全息摄影设备;磁光介质,比如可光读的盘;经特别配置以存储和执行程序代码的硬件设备,比如专用集成电路(ASIC)、可编程逻辑设备(PLD)以及ROM和RAM设备。计算机代码的实例包括机器代码,比如编译器生成的代码,和含有由计算机通过解释器执行的高级代码的文件。计算机可读介质也可以是如下计算机代码:它通过体现在载体波中的计算机数据信号传递,表示处理器可以执行的指令序列。
然后,提供掩模老化(步骤108)。图4是具有氢渐变的掩模老化实施方案的详细流程图(步骤108)。这通过向加工室300提供光刻胶老化气体来完成(步骤404)。光刻胶老化气体包含含氢气体,比如H2,和碳氟化合物与氢氟碳化合物中的至少一种,在本实例中是CF4。在光刻胶老化气体中也可以加入稀释剂,比如氩气。所以,在该实例中,由第一气体源312提供第一气体H2,由第二气体源314提供第二气体CF4。随后,可以将光刻胶老化气体转变成光刻胶老化等离子体(步骤408)。优选地,光刻胶老化等离子体在加工室中原位形成。在上面示出的加工室300中,这是通过由RF电源348提供RF能量到下部电极308来实现的,这激发老化气体从而将所述老化气体转变成老化等离子体。
在反应器中,所述老化通过老化气体的渐变而得到最优化(步骤412)。老化气体具有含氢气体的流速与碳氟化合物和氢氟碳化合物气体中的至少一种的流速之比。在老化气体的渐变期间,含氢气体流速与碳氟化合物和氢氟碳化合物气体中的至少一种的流速之比下降。在实例中,这是通过将含氢气体,比如H2,的流速渐变变小而氟烃和烃的流速保持大约不变来实现的。图5是在老化过程中老化气体中的H2流速和时间的关系图。如图所示,H2的流速504在t0时开始,流速是x,然后渐变变小,以至于在t1时H2流速变为0,如图所示,使得老化气体仅仅为CF4。一般而言,H2气体流速渐变变小导致老化气体中H2浓度渐变变小。在该实施方案中,光刻胶老化等离子体蚀刻通过BARC210的暴露部分,但是保留下蚀刻抗力更强的、硬化的光刻胶掩模212。图2B是在光刻胶老化之后衬底204、蚀刻层208、掩模212和BARC 210的剖面示意图,所述老化打开了BARC 210。在老化过程完成后,发现光刻胶掩模中孔隙的CD已经变小。
在其它实施方案中,H2的流速可以保持恒定,CF4的流速可以渐变增加。在这些实施方案中,含氢气体(H2)的流速与氢氟碳化合物或者碳氟化合物(CF4)的流速之比随着时间渐变变小。
尽管不希望受到理论的束缚,但是相信所述老化过程在光刻胶212上形成了保护层214,其除了使光刻胶掩模硬化以外还使得CD减少。由于在BARC 210打开期间蚀刻掩模的厚度实际上增加,所以本发明提供了一种具有近乎无限大的光刻胶选择性的打开BARC的方式。优选的,所述老化在打开BARC时,提供了至少100∶1的光刻胶选择性。另一方面,可能是老化等离子体中氢的存在可能导致了化学反应,所述化学反应是使蚀刻掩模硬化而不是形成保护层,或者是使蚀刻掩模硬化并形成保护层。
然后,通过老化后的光刻胶掩模在蚀刻层中蚀刻特征(步骤112)。在该实施方案中,蚀刻层208是二氧化硅介电体。虽然在蚀刻过程中要去除一些光刻胶,但是已经发现所述老化使得光刻胶掩模硬化,因而在蚀刻期间去除了较少的光刻胶。所述硬化可以或者通过在光刻胶上形成层或者通过使光刻胶本身硬化来实现。图2C是在完成了氧化物蚀刻之后衬底204、蚀刻层208、掩模212和BARC 210的剖面示意图。
通过改变初始或最终的H2流速或者渐变时间或者渐变曲线(profile),CD减少也可以发生变化并受控。图6示出了采用H2渐变处理通过改变所述渐变的初始流速而实现的最终顶部CD的调谐减少,所述顶部CD的调谐减少在0-25nm之间变化。从数据点和曲线604可以发现,当没有提供H2时,顶部CD是130nm。当H2流速在40-90sccm之间开始并线性渐变变小时,顶部CD是大约100nm,该减少值为25-20nm之间。
其它实施方案可以采用线性渐变以外的其它渐变曲线。图7图示了H2流速的不同渐变方案。线性渐变708是流速随着时间线性减小的渐变,如图所示。亚线性渐变712是其中流速随着时间以亚线性方式下降的渐变,如图所示。这种类型渐变的实例是指数函数、二次函数或者双曲线函数,但是许多其它更复杂的函数也是合适的。超线性渐变704是其中流速随着时间以超线性方式减少的渐变,如图所示。在该图中所述渐变都是连续渐变,所述连续渐变在实践中可以利用软件或者一系列模仿所述渐变的离散步骤进行近似。
图9是离散的、不连续的阶跃函数渐变904的图。该离散渐变904使流速随着时间以离散步阶下降。虚线916显示出离散渐变904提供了流速随着时间的线性下降。在该实例中,示出了7个离散步阶。其它实施方案可以具有更多或更少的步阶。优选的,阶跃函数具有至少三个步阶。更优选的,阶跃函数具有至少5个步阶。更优选的,阶跃函数具有至少7个步阶。最优选的,阶跃函数具有软件可以合理提供的许多个步阶,以最相似的模仿连续渐变。对于采用离散步阶的渐变而言,渐变持续的时间定义为从第一个步阶的结尾到最后一个步阶的开始。在所述定义下,渐变是从时间t1到t2,如图所示。步阶可以单独手动输入,或者一旦指定了端点就可以通过计算机生成。一般而言,计算机可读介质814具有计算机可读对象代码,所述代码指导控制器335提供离散的或者连续的渐变。
H2渐变是所述处理的组成部分,这是因为它利用了不同H2∶CF4比值的不同行为。对于CF4/H2混合物而言,观察到了三种行为模式。仅有CF4的等离子体蚀刻光刻胶、BARC和氧化物。仅仅单独采用CF4打开BARC的过程可以去除至多一半的光刻胶掩模。这样使得CD增加,并用尽光刻胶。在CF4等离子体中加入少量H2也会蚀刻,但是在H2流量充足时,混合物在光刻胶上形成光滑的沉积层。该层保护光刻胶,蚀刻BARC,但是不蚀刻氧化物并导致蚀刻停止。最后,发现加入大量H2会蚀刻光刻胶,但是不蚀刻BARC或氧化物,和仅有H2的等离子体的蚀刻行为类似,它也可以使CD增大。在这三个不同模式之间之间的交叉流量(crossover flow)依赖于等离子体功率和CF4流量。例如,在200-400W、27MHz、60-100sccm CF4的情况下,交叉流量是~7和~60sccm H2。如果没有渐变,那么在蚀刻或者沉积模式之间会需要权衡。为了利用沉积模式的优点,但不出现蚀刻停止,那么混合物从沉积模式渐变到蚀刻模式(H2流量从高变到低)。
本发明通过将软的光刻胶,比如193nm和157nm光刻胶老化成耐蚀刻性更强的光刻胶,减少了光刻胶的损失。本发明能够通过允许采用更薄的光刻胶掩模(这样提供了更高的分辨率)并通过提供CD比初始掩模图案的CD小的氧化物蚀刻特征,减少了特征的CD(在一个实施方案中,高达30nm(CD减少~25%))。这种CD减少具有重大意义,这是因为由于对CD公差的要求日益严格,所以当器件特征变小为<100nm时,在纳米尺度上对CD进行控制可能直接关系到器件的性能。另外,本发明的方法减少了条纹。条纹可能导致缺陷增加。
本发明的渐变提供了另外的调谐参数,比如初始流速、最终流速和渐变曲线,以对所述调谐进行改进来获得各种所需的结果。
本发明的其它实施方案将使含氢组分气体比如CHF3、CH2F2、CH3F、CH4渐变。可用于其它实施方案的碳氟化合物和氢氟碳化合物的实例是CHF3、CH2F2和CH3F。
在本发明的实施方案中,形成老化等离子体的老化气体包含H2和CF4,其中H2和CF4的初始流速比为1∶10-2∶1。更优选的,H2和CF4的初始流速比为1∶8-3∶2。最优选的,H2和CF4的初始流速比为1∶2-5∶4。在渐变结束时,优选H2和CF4的最终流速比为0-1∶20。
对于2300 Exelan而言,H2的初始流速为5-200sccm。更优选的,H2的初始流速为10-150sccm。最优选的,H2的初始流速为15-100sccm。优选的,CF4的流速是20-200sccm。更优选的,CF4的流速是20-150sccm。最优选的,CF4的流速是30-120sccm。优选的,在老化过程中,以大约27MHz提供50-900瓦。更优选的,在老化过程中,以大约27MHz提供100-800瓦。优选的,还以大约2MHz提供0-300瓦。
优选的,本发明的方法用于老化覆盖着介电层的光刻胶蚀刻掩模。介电层可以是有机或无机材料,比如氧化硅、氮化硅和有机硅酸盐玻璃。
优选的,所述光刻胶老化和打开BARC以单一渐变来完成,从而不重复渐变,而是在开始介电体蚀刻之前仅仅进行一次。
在其它实施方案中,可以采用其它防反射涂层(ARC)代替BARC(底部防反射涂层),或者完全不用ARC。
尽管根据数个优选实施方案描述了本发明,但是存在着落在本发明范围内的改变、变化和各种替代性等同物。应该注意的是,有许多替换方式来执行本发明的方法和装置。所以,下面所述的权利要求应该理解成包括落在本发明真实精神和范围内的所有这些改变、变化和各种替代性等同物。
Claims (19)
1.一种用于通过光刻胶掩模在衬底上方在蚀刻层中蚀刻特征的方法,包括:
将具有设置在光刻胶掩模下面的蚀刻层的衬底置于加工室中;
对光刻胶掩模进行老化,包括:
向所述加工室提供老化气体,所述老化气体包括具有一定流速的碳氟化合物和氢氟碳化合物中的至少一种以及具有一定流速的含氢气体;和
使所述老化气体能量化以形成老化等离子体;和
停止所述老化等离子体;
向所述加工室提供蚀刻等离子体,其中所述蚀刻等离子体不同于所述老化等离子体;和
用所述蚀刻等离子体在蚀刻层中蚀刻特征。
2.权利要求1的方法,进一步包括使老化气体渐变,以使含氢气体的流速与碳氟化合物和氢氟碳化合物中的至少一种的流速之比渐变下降。
3.权利要求1-2任一的方法,其中所述含氢气体是H2。
4.权利要求1-3任一的方法,其中所述老化等离子体是原位等离子体。
5.权利要求1-4任一的方法,其中在光刻胶掩模和蚀刻层之间设置BARC,其中所述光刻胶掩模的老化打开了BARC。
6.权利要求2-5任一的方法,其中所述渐变是非线性渐变。
7.权利要求5-6任一的方法,其中所述老化在打开BARC时提供至少100∶1的光刻胶选择性。
8.权利要求1-7任一的方法,其中所述蚀刻层是介电层。
9.权利要求1-8任一的方法,其中所述含氢气体是H2,所述氟碳化合物和氢氟碳化合物中的至少一种是CF4。
10.权利要求1-9任一的方法,其中所述老化气体的初始H2和CF4的流速比为1∶10-2∶1,最终H2和CF4流速比为0-1∶20。
11.一种由权利要求1-10任一的方法形成的半导体芯片。
12.一种用于实施权利要求1-10任一的方法的装置。
13.一种用于通过防反射涂层和光刻胶掩模在衬底上方在蚀刻层中蚀刻特征的方法,包括:
将具有设置在防反射涂层和光刻胶掩模下面的蚀刻层的衬底放置在加工室中;
打开防反射涂层,包括:
向加工室提供老化气体,所述老化气体包括具有一定流速的碳氟化合物和氢氟碳化合物中的至少一种和具有一定流速的含氢气体;和
使所述老化气体能量化以形成老化等离子体;和
在打开防反射涂层之后停止所述老化等离子体;
向加工室提供蚀刻等离子体,其中所述蚀刻等离子体和老化等离子体不同;和
采用蚀刻等离子体通过防反射涂层和光刻胶掩模在蚀刻层中蚀刻特征。
14.权利要求13的方法,进一步包括使老化气体渐变,以使含氢气体的流速与碳氟化合物和氢氟碳化合物中的至少一种的流速之比渐变下降。
15.权利要求18的方法,其中所述含氢气体是H2。
16.权利要求13-15任一的方法,其中所述老化等离子体是原位等离子体。
17.权利要求13-16任一的方法,其中所述老化在打开ARC时提供至少100∶1的光刻胶选择性。
18.权利要求13-17任一的方法,其中所述含氢气体是H2,所述氟碳化合物和氢氟碳化合物中的至少一种是CF4。
19.权利要求1-18任一的方法,其中所述老化气体的初始H2和CF4的流速比为1∶2-5∶4,最终H2和CF4的流速比为0-1∶20。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/975,209 US7053003B2 (en) | 2004-10-27 | 2004-10-27 | Photoresist conditioning with hydrogen ramping |
US10/975,209 | 2004-10-27 | ||
PCT/US2005/034172 WO2006049736A1 (en) | 2004-10-27 | 2005-09-23 | Etching method including photoresist plasma conditioning step with hydrogen flow rate ramping |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101061436A true CN101061436A (zh) | 2007-10-24 |
CN101061436B CN101061436B (zh) | 2011-05-11 |
Family
ID=35517501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800370648A Expired - Fee Related CN101061436B (zh) | 2004-10-27 | 2005-09-23 | 包括具有氢流速渐变的光刻胶等离子体老化步骤的蚀刻方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US7053003B2 (zh) |
JP (1) | JP5086090B2 (zh) |
KR (1) | KR101335137B1 (zh) |
CN (1) | CN101061436B (zh) |
TW (1) | TWI423322B (zh) |
WO (1) | WO2006049736A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777493A (zh) * | 2010-01-28 | 2010-07-14 | 上海宏力半导体制造有限公司 | 硬掩膜层刻蚀方法 |
CN103400761A (zh) * | 2008-07-11 | 2013-11-20 | 东京毅力科创株式会社 | 基板处理方法 |
Families Citing this family (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060134917A1 (en) * | 2004-12-16 | 2006-06-22 | Lam Research Corporation | Reduction of etch mask feature critical dimensions |
US20070163995A1 (en) * | 2006-01-17 | 2007-07-19 | Tokyo Electron Limited | Plasma processing method, apparatus and storage medium |
JP5362176B2 (ja) * | 2006-06-12 | 2013-12-11 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
JP5276289B2 (ja) * | 2006-08-25 | 2013-08-28 | アイメック | 高アスペクト比ビアエッチング |
US7309646B1 (en) * | 2006-10-10 | 2007-12-18 | Lam Research Corporation | De-fluoridation process |
US8283255B2 (en) * | 2007-05-24 | 2012-10-09 | Lam Research Corporation | In-situ photoresist strip during plasma etching of active hard mask |
US7785484B2 (en) * | 2007-08-20 | 2010-08-31 | Lam Research Corporation | Mask trimming with ARL etch |
US8010225B2 (en) * | 2008-01-30 | 2011-08-30 | International Business Machines Corporation | Method and system of monitoring manufacturing equipment |
CN101625966A (zh) * | 2008-07-11 | 2010-01-13 | 东京毅力科创株式会社 | 基板处理方法 |
US8298958B2 (en) * | 2008-07-17 | 2012-10-30 | Lam Research Corporation | Organic line width roughness with H2 plasma treatment |
US20100018944A1 (en) * | 2008-07-25 | 2010-01-28 | United Microelectronics Corp. | Patterning method |
JP5107842B2 (ja) * | 2008-09-12 | 2012-12-26 | 東京エレクトロン株式会社 | 基板処理方法 |
JP5486883B2 (ja) * | 2009-09-08 | 2014-05-07 | 東京エレクトロン株式会社 | 被処理体の処理方法 |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US8304262B2 (en) | 2011-02-17 | 2012-11-06 | Lam Research Corporation | Wiggling control for pseudo-hardmask |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8808563B2 (en) | 2011-10-07 | 2014-08-19 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
US8883028B2 (en) * | 2011-12-28 | 2014-11-11 | Lam Research Corporation | Mixed mode pulsing etching in plasma processing systems |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US8999184B2 (en) | 2012-08-03 | 2015-04-07 | Lam Research Corporation | Method for providing vias |
JP6030886B2 (ja) * | 2012-08-09 | 2016-11-24 | 東京エレクトロン株式会社 | プラズマエッチング方法及びプラズマエッチング装置 |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US8828744B2 (en) | 2012-09-24 | 2014-09-09 | Lam Research Corporation | Method for etching with controlled wiggling |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9190293B2 (en) * | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9499898B2 (en) | 2014-03-03 | 2016-11-22 | Applied Materials, Inc. | Layered thin film heater and method of fabrication |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9269590B2 (en) | 2014-04-07 | 2016-02-23 | Applied Materials, Inc. | Spacer formation |
US9711365B2 (en) | 2014-05-02 | 2017-07-18 | International Business Machines Corporation | Etch rate enhancement for a silicon etch process through etch chamber pretreatment |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
US9368364B2 (en) | 2014-09-24 | 2016-06-14 | Applied Materials, Inc. | Silicon etch process with tunable selectivity to SiO2 and other materials |
US9478434B2 (en) | 2014-09-24 | 2016-10-25 | Applied Materials, Inc. | Chlorine-based hardmask removal |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US9299583B1 (en) | 2014-12-05 | 2016-03-29 | Applied Materials, Inc. | Aluminum oxide selective etch |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US9502258B2 (en) | 2014-12-23 | 2016-11-22 | Applied Materials, Inc. | Anisotropic gap etch |
US9343272B1 (en) | 2015-01-08 | 2016-05-17 | Applied Materials, Inc. | Self-aligned process |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9373522B1 (en) | 2015-01-22 | 2016-06-21 | Applied Mateials, Inc. | Titanium nitride removal |
US9449846B2 (en) | 2015-01-28 | 2016-09-20 | Applied Materials, Inc. | Vertical gate separation |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US9613824B2 (en) * | 2015-05-14 | 2017-04-04 | Tokyo Electron Limited | Etching method |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
TWI716818B (zh) | 2018-02-28 | 2021-01-21 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
US20230280653A1 (en) * | 2022-02-24 | 2023-09-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Surface treatment to photosensitive layer |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56111246A (en) * | 1980-01-23 | 1981-09-02 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Preparation of semiconductor device |
JPS57181378A (en) * | 1981-04-30 | 1982-11-08 | Toshiba Corp | Dry etching method |
JPS5939048A (ja) * | 1982-08-27 | 1984-03-03 | Toshiba Corp | 半導体装置の製造方法 |
JPH0770518B2 (ja) * | 1986-02-25 | 1995-07-31 | 日本電装株式会社 | ドライエツチング方法 |
JPS6313334A (ja) | 1986-07-04 | 1988-01-20 | Hitachi Ltd | ドライエツチング方法 |
US4729815A (en) | 1986-07-21 | 1988-03-08 | Motorola, Inc. | Multiple step trench etching process |
JPH01251617A (ja) * | 1988-03-31 | 1989-10-06 | Toshiba Corp | ドライエッチング方法 |
US6040619A (en) | 1995-06-07 | 2000-03-21 | Advanced Micro Devices | Semiconductor device including antireflective etch stop layer |
JP3865323B2 (ja) * | 1996-03-14 | 2007-01-10 | 富士通株式会社 | エッチング方法及び半導体装置の製造方法 |
US5843226A (en) | 1996-07-16 | 1998-12-01 | Applied Materials, Inc. | Etch process for single crystal silicon |
EP1357584A3 (en) | 1996-08-01 | 2005-01-12 | Surface Technology Systems Plc | Method of surface treatment of semiconductor substrates |
US5807789A (en) | 1997-03-20 | 1998-09-15 | Taiwan Semiconductor Manufacturing, Co., Ltd. | Method for forming a shallow trench with tapered profile and round corners for the application of shallow trench isolation (STI) |
US6183940B1 (en) * | 1998-03-17 | 2001-02-06 | Integrated Device Technology, Inc. | Method of retaining the integrity of a photoresist pattern |
US6103457A (en) * | 1998-05-28 | 2000-08-15 | Philips Electronics North America Corp. | Method for reducing faceting on a photoresist layer during an etch process |
US6211092B1 (en) * | 1998-07-09 | 2001-04-03 | Applied Materials, Inc. | Counterbore dielectric plasma etch process particularly useful for dual damascene |
US6228279B1 (en) * | 1998-09-17 | 2001-05-08 | International Business Machines Corporation | High-density plasma, organic anti-reflective coating etch system compatible with sensitive photoresist materials |
TW419635B (en) * | 1999-02-26 | 2001-01-21 | Umax Data Systems Inc | Scanner calibration device and method |
US6326307B1 (en) * | 1999-11-15 | 2001-12-04 | Appllied Materials, Inc. | Plasma pretreatment of photoresist in an oxide etch process |
US6449038B1 (en) | 1999-12-13 | 2002-09-10 | Applied Materials, Inc. | Detecting a process endpoint from a change in reflectivity |
JP3447647B2 (ja) * | 2000-02-25 | 2003-09-16 | 株式会社日立製作所 | 試料のエッチング方法 |
JP2002289592A (ja) * | 2001-03-28 | 2002-10-04 | Sony Corp | 半導体装置の製造方法 |
JP2003264228A (ja) * | 2002-03-08 | 2003-09-19 | Seiko Epson Corp | 半導体装置の製造方法 |
AU2003244166A1 (en) * | 2002-06-27 | 2004-01-19 | Tokyo Electron Limited | Plasma processing method |
US7135410B2 (en) | 2003-09-26 | 2006-11-14 | Lam Research Corporation | Etch with ramping |
-
2004
- 2004-10-27 US US10/975,209 patent/US7053003B2/en not_active Expired - Lifetime
-
2005
- 2005-09-23 WO PCT/US2005/034172 patent/WO2006049736A1/en active Application Filing
- 2005-09-23 CN CN2005800370648A patent/CN101061436B/zh not_active Expired - Fee Related
- 2005-09-23 KR KR1020077011775A patent/KR101335137B1/ko not_active IP Right Cessation
- 2005-09-23 JP JP2007538921A patent/JP5086090B2/ja not_active Expired - Fee Related
- 2005-09-29 TW TW094133995A patent/TWI423322B/zh not_active IP Right Cessation
-
2006
- 2006-01-25 US US11/339,870 patent/US7682480B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400761A (zh) * | 2008-07-11 | 2013-11-20 | 东京毅力科创株式会社 | 基板处理方法 |
CN103400761B (zh) * | 2008-07-11 | 2016-06-22 | 东京毅力科创株式会社 | 基板处理方法 |
CN101777493A (zh) * | 2010-01-28 | 2010-07-14 | 上海宏力半导体制造有限公司 | 硬掩膜层刻蚀方法 |
Also Published As
Publication number | Publication date |
---|---|
US7053003B2 (en) | 2006-05-30 |
JP2008518463A (ja) | 2008-05-29 |
TW200625441A (en) | 2006-07-16 |
KR20070085441A (ko) | 2007-08-27 |
TWI423322B (zh) | 2014-01-11 |
KR101335137B1 (ko) | 2013-12-09 |
US20060124242A1 (en) | 2006-06-15 |
JP5086090B2 (ja) | 2012-11-28 |
CN101061436B (zh) | 2011-05-11 |
WO2006049736A1 (en) | 2006-05-11 |
US7682480B2 (en) | 2010-03-23 |
US20060089005A1 (en) | 2006-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101061436B (zh) | 包括具有氢流速渐变的光刻胶等离子体老化步骤的蚀刻方法 | |
TWI447800B (zh) | 光阻雙重圖形化 | |
US7491647B2 (en) | Etch with striation control | |
CN100543946C (zh) | 蚀刻掩模特征临界尺寸的减小 | |
US7785484B2 (en) | Mask trimming with ARL etch | |
US7772122B2 (en) | Sidewall forming processes | |
US8262920B2 (en) | Minimization of mask undercut on deep silicon etch | |
US7838426B2 (en) | Mask trimming | |
US20110117749A1 (en) | Method for reducing line width roughness with plasma pre-etch treatment on photoresist | |
CN101971301B (zh) | 利用稀有气体等离子的线宽粗糙度改进 | |
CN101292197A (zh) | 具有减小的线条边缘粗糙度的蚀刻特征 | |
KR20060126909A (ko) | 피쳐 임계 치수의 감소 | |
CN102318037B (zh) | 利用arc层打开的cd偏置负载控制 | |
CN101057320A (zh) | 具有均匀性控制的蚀刻 | |
US8361564B2 (en) | Protective layer for implant photoresist | |
KR20070046095A (ko) | 유전층 에칭 방법 | |
WO2009152036A1 (en) | Organic arc etch selective for immersion photoresist | |
CN101060080A (zh) | 控制掩模轮廓以控制特征轮廓 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110511 Termination date: 20190923 |