CN101038920A - 半导体结构及其形成方法 - Google Patents

半导体结构及其形成方法 Download PDF

Info

Publication number
CN101038920A
CN101038920A CNA2007100886987A CN200710088698A CN101038920A CN 101038920 A CN101038920 A CN 101038920A CN A2007100886987 A CNA2007100886987 A CN A2007100886987A CN 200710088698 A CN200710088698 A CN 200710088698A CN 101038920 A CN101038920 A CN 101038920A
Authority
CN
China
Prior art keywords
diffusion region
semiconductor structure
length
substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100886987A
Other languages
English (en)
Other versions
CN100539152C (zh
Inventor
柯志欣
李文钦
葛崇祜
陈宏玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN101038920A publication Critical patent/CN101038920A/zh
Application granted granted Critical
Publication of CN100539152C publication Critical patent/CN100539152C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供一种半导体结构及其形成方法,该方法以扩散地形程序(diffusion topography engineering,DTE)形成半导体结构。首先在半导体基板中形成沟槽隔离区以定义扩散区。在含氢环境下,对半导体基板进行DTE程序,且在扩散区上形成MOS元件。DTE程序造成硅迁移,形成圆形或T形的扩散区表面。此方法更可包括在进行DTE程序前,使扩散区的一部分形成凹陷。在DTE程序后,此扩散区形成倾斜表面。本发明能够改善各MOS元件内部的应力,从而提高元件的性能。

Description

半导体结构及其形成方法
技术领域
本发明关于MOS元件及其形成方法,且特别关于利用DTE程序来改善MOS元件的性能。
背景技术
浅沟槽隔离区(以下简称STI)及扩散区(源/漏极区)的轮廓会强烈影响MOS元件的性能,例如,结电容、栅极氧化漏电流、次临界漏电流、结漏电流等。目前已有人提出具有圆角的扩散区来解决上述问题。但随着减少浅沟槽隔离区及扩散区的尺寸愈来愈小。控制轮廓已经变得愈来愈具有挑战性。
传统MOS元件的制造方法有许多缺点。例如,在形成STI的过程中,会在STI及扩散区上形成不良的凹陷(divot)。凹陷会造成寄生边缘晶体管(parasitic corner transistor)并使电场聚集在STI的边缘,因而产生逆短沟道效应(RNCE),导致栅极边角漏电流(corner gate leakage)、多晶硅栅极桥接(polygate stringer)并对栅极关键尺寸的控制产生问题。此外,在宽度较小的元件中进行填充后热循环(post-gapfill thermal cycle)时,沿着STI侧壁进行的氧化程序也可能会导致不佳的STI压应力,而降低元件性能。
目前已有利用地形程序的例子。例如,在源/漏极区形成凹陷以改进扩散区的轮廓,再结合高应力接触蚀刻停止层(high-stress contact etch stop layer)技术,以在沟道区内产生更佳的应力,增进MOS元件的性能。
具有凹槽的源/漏极区与应力接触蚀刻停止层可在沟道区中产生更佳的应变效应(strain effects),然而凹槽会破坏源/漏极电阻与结深度的平衡并可能造成硅化物突穿(punch through)导致源/漏极至基板的漏电流。
因此业界亟需能增进MOS元件性能,却不会产生上述缺点的方法。
发明内容
本发明优选实施例为提供一种改进扩散区的半导体元件,及利用DTE程序来形成MOS元件的方法。
本发明的一个方案为半导体结构,包括:基板,该基板包括第一扩散区及第二扩散区,该第一扩散区有大抵圆弧的第一表面,该第二扩散区有大抵圆弧的第二表面;第一MOS元件在该第一扩散区上;第二MOS元件在该第二扩散区上;第一应力介电层在该第一MOS元件上;以及第二应力介电层在该第二MOS元件上,其中该第一及第二应力介电层具有实质上不同的应力。第一MOS元件优选为NMOS元件,且第二MOS元件优选为PMOS元件,其中该第一介电层有张应力,且该第二介电层有压应力。
如上所述的半导体结构,其中该第一扩散区具有第一长度,且当该第一长度小于约10μm时,该第一扩散区的半径大于约0.5μm。
如上所述的半导体结构,其中该第一扩散区有第一顶部表面,该第二扩散区有第二顶部表面,且其中该第一顶部表面与第二顶部表面有大于10的差距。
如上所述的半导体结构,其中该第一扩散区的中心区高于边缘区。
如上所述的半导体结构,其中该中心区与该边缘区的高度差大于该扩散区长度的1/50。
如上所述的半导体结构,其中该中心区与该边缘区的高度差大于该扩散区长度的10%。
如上所述的半导体结构,其中该第一应力介电层及该第二应力介电层的厚度差约在25至250。本发明的另一方案为半导体结构,包括:基板,该基板包括扩散区;沟槽隔离区,邻接该扩散区,且从基板表面延伸至该基板内,其中该扩散区有延伸区延伸至该沟槽隔离区之上;MOS元件在该扩散区;以及应力层在该MOS元件上。该半导体结构包括具有第二MOS元件的第二扩散区。
如上所述的半导体结构,其中该延伸区长度与该扩散区长度的比值大于约3/50。
如上所述的半导体结构,其中该延伸区长度与该扩散区长度的比值大于约1/10。
如上所述的半导体结构,其中当主动区密度大于约35%时,该延伸区的长度小于约650,当该主动区密度介于约15%至35%之间时,该延伸区的长度小于约550,当该主动区密度小于约15%时,该延伸区的长度小于约450。
本发明的另一方案为半导体结构,包括:基板,包括扩散区;沟槽隔离区,邻接该扩散区,且从该基板表面延伸至该基板内,其中该扩散区呈倾斜状,且靠近栅极电极的第一区实质上高于靠近该沟槽隔离层区的第二区,MOS元件在该扩散区上,以及应力层在该MOS元件上。该半导体结构可包括具有MOS元件的第二倾斜的扩散区。
本发明还提供一种优选实施例的形成方法,包括:提供半导体基板;形成浅沟槽隔离区,且从基板表面延伸至半导体基板内,其中该浅沟槽隔离区可界定出扩散区;在半导体基板上的含氢周围进行扩散地形程序(以下简称DTE);形成栅极介电层在该基板上;形成栅极电极在该栅极介电层上;形成栅极间隙壁在该栅极电极的侧壁上;形成源/漏极区实质上邻接该栅极间隙壁的侧壁;以及形成应力膜在该栅极电极、该栅极间隙壁及源/漏极区上。该栅极间隙壁可为复合介电层,复合介电层的厚度可依元件所需的性能控制在约20至700之间。在源/漏极形成后可移除间隙壁,因此由应力介电层提供较大的应力。
在本发明的一种方案中,形成圆形表面的扩散区。在另一方案中,形成T形表的面扩散区。在又一方案中,在进行DTE程序前,预蚀刻(pre-etching)曝露的扩散区,以形成倾斜的扩散区表面。且扩散区的形状会受到DTE程序时的气压及温度影响。
因DTE程序改变扩散区的表面形状,因此改善各MOS元件内部的应力,从而提高元件的性能。
为了让本发明的上述和其它目的、特征、和优点能更明显易懂,下文特举优选实施例,并配合所附附图,作如下详细说明。
附图说明
图1显示基板及用来形成浅沟槽隔离区的前驱结构。
图2显示形成异向性沟槽。
图3显示以化学机械研磨程序平坦化晶圆表面。
图4显示移除垫层及掩模层。
图5显示形成圆弧状的扩散区表面。
图6显示形成MOS元件在基板上。
图7显示形成双高应力膜。
图8显示形成延伸区在STI的凹陷内及形成T形扩散区表面。
图9显示形成NOMS元件及PMOS元件在扩散区上。
图10显示分别形成栅极结构在扩散区上。
图11显示在形成栅极间隙壁后,分别在扩散区中形成凹槽。
图12显示进行DTE程序。
图13显示漏电流(Ioff)与元件驱动电流(Ion)的关系图。
其中,附图标记说明如下:
20~基板;         22~垫层;         24~掩模层;
26~光阻层;       28~异向性沟槽;   30~STI区;
100~第一扩散区;  200~第二扩散区;  r~半径;
L1~扩散区100、200的长度;   D~高度差;
140~NMOS元件;              240~PMOS元件;
144、244~栅极电极;         142、242~栅极介电层;
148、248~源/漏极区;        150、250~源/漏极扩增区;
152、252~应力介电层;       31~STI的凹陷;
50~延伸区;                 L2~延伸区50的长度;
152、252~应力介电层;       141、241~栅极结构;
146、246~栅极间隙壁;       160、260~凹槽;
E~深度;                    L3~宽度;
162、262~倾斜表面;         152、252~应力介电层;
164~张应力;                42、44、46、48~曲线。
具体实施方式
依照硅迁移原理,在氢气下进行退火程序可减少硅的悬浮键(danglingbonds)量,使表面原子迁移,形成低表面能量、低表面面积及低应力的表面。DTE的过程可形成良好形状的MOS元件,以增加沟道区内的应力,此应力来自于应力介电层,并可改善MOS元件的性能。
图1至图10显示本发明DTE的优选实施例。参照图1,有基板20及用来形成浅沟槽隔离区(以下简称STI)的前驱结构。在优选实施例中,基板20为硅基板。在另一实施例中,基板20包括硅、锗、铜或上述的组合。基板20可为绝缘层上有硅(SOI)的结构。
形成垫层22及掩模层24在基板20上。垫层22优选为薄膜,且以热处理形成。在优选实例中,可利用低压化学气相沉积氮化硅以形成掩模层24。在另一实施例中,利用氮气-氢气进行硅的热氮化处理或等离子体阳极氮化以形成掩模24。接着,形成图案化光刻胶层26。在掩模层24和光刻胶层26之间可形成介电抗反射层(ARC)(未图示)。介电抗反射层包括有机或无机介电材质,例如,以等离子体增强化学气相沉积氮氧化硅或氧化硅。
参照图2,形成异向性沟槽28,优选利用含氟化合物以异向性等离子体蚀刻来形成。接着移除光刻胶层26。在优选实施例中,填入介电材质至沟槽28中,介电材质优选为以高密度等离子体形成的氧化硅。在另一实施例中,填入混合材质,例如,结合CVD氧化硅及CVD多晶硅。在填满沟槽28后,填入的材质最好在800℃下进行高温氧化退火或传统的1000℃含氩退火来致密化。再以化学机械研磨程序平坦化晶圆表面,以形成STI区30,如图3所示。STI区30可界定出第一扩散区100(有时称为主动区)及第二扩散区200。扩散区100及200优选具有轻掺杂杂质,杂质的种类依后序形成的MOS元件来决定。在优选实施例中,扩散区100掺杂P型杂质,且扩散区200掺杂N型杂质。
图4显示,移除垫层22及掩模层24。掩模层24优选在磷酸中进行蚀刻,且温度介于50℃至200℃之间。垫层22优选以释稀的氢氟酸移除。应注意的是,蚀刻程序会导致扩散区/STI区的边缘形成凹陷(divots)31。
接着进行DTE程序。在优选实施例中,在含氢气的退火条件下进行DTE程序。环境周围最好包含其它的气体,例如,氮、氦、氖、氩、氙及上述的组合。气压优选介于约1托至1000托之间,且更优选介于约1托至300托之间。DTE程序的温度优选于约700℃至1200℃之间,更优选介于约900℃至1100℃之间,且持续进行约5至120秒。
参照图5,因DTE程序会迁移硅原子,所以扩散区100及200的表面会呈圆弧状。温度、压力及退火的时间皆会影响扩散区100、200的表面轮廓。扩散区100、200的圆形表面受许多因素影响,例如,扩散区的材质及其长度L1,因此对于不同的材质及长度L1需要不同的温度、压力及退火时间,本领域技术人员通过例行的实验即可找出适合的温度、压力及退火时间。
基板20优选为弯曲表面,因此可减少STI区30边角产生的应力。弯曲可以半径r来定义,其为一种标准值(normalized value)且优选小于1μm。半径r与扩散区100、200的长度L1有关,且当扩散区100、200的长度L1分别小于约10μm时,半径r最好大于约0.5μm。且实质上靠近扩散区100、200中心的最高点与实质上靠近STI区30的最低点有高度差D,高度差D与长度L的比例优选大于约1/50,更优选介于约1/2至1/10之间。扩散区100、200的表面优选有相同的曲率。
在芯片上,理想的半径r与主动区的密度有关。主动区密度是所有主动区面积与所有区域面积的比值。若主动区的密度大于约35%,则半径r优选小于约3μm,若主动区的密度介于约15%至35%之间,则半径r优选小于约2μm,若主动区的密度小于15%,则半径r优选小于约1μm。
参照图6,形成MOS元件在基板20上。在优选实施例中,形成NMOS元件140在扩散区100上,且形成PMOS元件240在扩散区200上。
接着,可按照现有技术的方式形成栅极介电层142、242与栅极电极144、244。在沉积栅极介电层后,接着沉积栅极电极。栅极介电层可包括氧化硅、氮氧化硅、氮化硅、氧化铝、氧化镧、氧化铪、氧化锆、氮氧化铪及上述的组合。栅极电极层优选包括导电材质,例如,金属、硅化金属、氮化金属、掺杂多晶硅或其它导电材质。进行光刻步骤,接着以蚀刻程序在扩散层100、200中形成栅极介电层142、242与栅极电极144、244。且优选以杂质注入形成源/漏极扩增区150、250。
接着在各栅极电极144、244的侧边上形成间隙壁146、246。先以化学气相沉积介电材质,再对介电材质进行异向性蚀刻以形成间隙层壁146、246。间隙壁146、246可为复合间隙壁,包括介电衬层及间隙壁主体(spacer body),且间隙壁的厚度依元件的性能介于约20至700之间。在形成源/漏极后移除间隙壁146、246,因此,应力介电层可提供较大的应力。且优选以杂质注入来形成源/漏极148、248。
参照图7,形成双应力膜(dual high-stress film),包括在扩散区100中有应力介电层152,在扩散区200中有应力介电层252。应力介电层152、252可为接触蚀刻停止层(contact etch stop layers)或额外形成的介电层。在优选实施例中,应力介电层提供高应力,且可用氮化硅、氮氧化硅及其类似物来形成。应力介电层152优选有张应力,且应力介电层252优选有压应力。应力介电层152、252的应力优选介于约0.1至3GPa之间。因张应力介电层152可对MOS元件140的沟道区内提供张应力以提高电子迁移速率,而压应力介电层252可对MOS元件240的沟道区提供压应力以提高空穴迁移速率,因此可增进NMOS元件140及PMOS元件240的性能。在优选实施例中,应力层152、252包括相同的材质,例如,氮化硅或氮氧化硅,但因为以不同的沉积参数来形成,所以可形成不同的应力层。在另一实施例中,可利用不同的材质来形成应力层。应力层152、252优选以化学气相沉积来形成,例如低压化学气相沉积(LPCVD),等离子体增强化学气相沉积(PECVD)等常用及现有的技术。
应力介电层152、252的厚度优选介于约250至1500之间,且更优选介于约250至850之间。当扩散区100、200的长度L1小于约10μm时,应力介电层152、252的厚度最优选介于250至1000之间。应力介电层152、252彼此间的厚度差优选介于25至250之间,且应力介电层152、252的顶部表面有大于约10的阶梯差(step difference)。而应力介电层152、252的厚度T也与主动区的密度有关。因此,需依主动区的密度选择厚度T。若主动区的密度大于约35%时,则厚度T优选小于约900nm。若主动区的密度介于约15%至35%之间时,则厚度T优选小于约1μm。若主动区的密度小于约15%时,则厚度T优选小于约100nm。
参照图8、图9,在优选实施例中,先前的步骤与图1至图4的步骤类似。在另一优选实施例中,在含氢气的环境下进行DTE程序,且环境中优选有气体,例如,氮、氦、氖、氩、氙及上述的组合。气压优选介于约1托至1000托之间,更优选介于1托至100托之间。DTE程序的温度优选介于700℃至1200℃之间,更优选介于约1000℃至1200℃间,且持续进行约10至200秒。
以DTE程序形成延伸区(extension)50在STI的凹陷31(参照图4)内,及形成T形扩散区表面。通过STI区30的边角向沟道区施加应力。DTE程序的优选参数与上述类似。例如,较高的温度、较低的压力及/或较长的退火时间以促进更多的硅迁移会形成具T形的扩散区表面。而较低的温度、较高的压力及/或较短的退火时间则会形成具圆形的扩散区表面。因此,可通过控制温度、压力及处理时间,来形成T形或圆形的扩散区表面。例如,表一显示各种不同的DTE参数及其形成的扩散区表面。
表一
  温度(℃)   压力(托)   处理时间   表面
 参数设定1   950   1   40秒   圆形
 参数设定2   950   10   2分钟   圆形
 参数设定3   1000   1   10秒   圆形
 参数设定4   1000   1   40秒   T形
 参数设定5   1000   10   2分钟   T形
由上述可知,影响形成T形或圆形扩散区表面的因素众多,例如,材质、扩散区的尺寸,而上述DTE的参数只为举例说明,本领域技术人员可通过例行的试验找出适合形成T形或圆形扩散区表面的参数。
在优选实施例中,在形成沟槽的程序中自然会形成延伸区50。在另一实施例中,蚀刻STI区30的边角后形成延伸区50。
延伸区50的长度L2优选依主动区的密度来决定。若主动区的密度大于约35%,则长度L2优选小于约650,若主动区的密度介于约15%至35%之间时,则长度L2优选小于约550。若主动区的密度小于约15%时,则长度L2优选小于约450。扩散区100、200长度L1与L2的比值优选介于约1/50至3/5之间,更优选介于约1/10至3/5之间。且扩散区100、200的顶部表面优选与STI区30的顶部表面相同。
参照图9,分别形成NOMS元件140及PMOS元件240在扩散区100、200上。然后形成双应力膜152、252覆盖在MOS元件140、240上。关于应力介电层152、252已详述于上述实施例中,因此不再重复叙述。
参照图10至图12,在优选实施例中,先前的步骤与图1至图4的步骤类似。参照图10,分别形成栅极结构141、241在扩散区100、200上。在形成栅极结构141、241前可不进行DTE程序,但也可进行DTE程序。参照图11,在形成栅极间隙壁146、246后,分别在扩散区100、200中形成凹槽160、260,优选以干等离子体蚀刻或其它蚀刻技术来形成。在另一优选实施例中,基板20包括硅,且在等离子体蚀刻程序中可使用含氟化学物质。凹槽160、260的深度E与宽度L3的比值优选介于约3/500至1/2之间,更优选介于约1/10至1/2之间。
参照图12,进行DTE程序。利用硅迁移,分别在扩散区100、200中形成倾斜表面162、262。DTE程序的参数,例如,温度、压力及处理时间与上述实施例类似。利用调整DTE程序的参数,可实质上平坦化表面162、262,但其仍维持倾斜。倾斜表面162、262的高度差H及长度L3的比值优选介于约3/500至1/2之间,且更优选介于约1/10至1/1之间,最优选介于1/5至1/2之间。
在DTE程序后,形成源/漏极区148、248及应力介电层152、252,且形成的详细步验已详述于上述实施例中。
应力接触蚀刻停止层(stressed-GESL)不只可对倾斜的源/漏极提供水平的应力,也可提供垂直的应力。例如,应力介电层152在沿着倾斜面162上有张应力164,可对沟道提供垂直的压应力及水平的张应力。应力介电层的水平及垂直应力可增进NMOS元件的驱动电流。
图13显示漏电流(Ioff)与元件驱动电流(Ion)的关系图。传统PMOS元件及经DTE程序的PMOS元件可分别获得曲线42、44,且传统NMOS元件及经DTE程序的NMOS元件可分别获得曲线46、48。NMOS及PMOS元件在相同的漏电流下,本发明的元件的驱动电流比未经DTE程序的传统元件提高约24%至27%的性能。在其它的试验结果(图未示)亦显示经DTE程序形成的元件在延迟时间上较传统的元件减少约10%。
本发明的优选实施例中可增加MOS元件内的应力。一般来说,由应力介电层提供应力比由扩散区表面提供要好。且STI区的边角的应力也可提高性能。第一,在优选实施例中,可轻易地与双应力膜技术结合,以获得应变集中位置(strain superposition)。第二,DTE程序使扩散区表面更平坦,可使在其上方的栅极介电层更为完整,且MOS元件更可靠。第三、可减少硅化物冲击造成源/漏极区产生凹槽的问题。综上所述,DTE程序对CMOS元件的改进提供低成本的技术。
虽然本发明已以优选实施例公开如上,然其并非用以限制本发明,本领域技术人员在不脱离本发明的精神和范围内,当可作些许变更与修饰,因此本发明的保护范围当视后附的权利要求书所界定的范围为准。

Claims (15)

1.一种半导体结构,包括:
基板,包括第一扩散区及第二扩散区,该第一扩散区有大抵圆弧的第一表面,该第二扩散区有大抵圆弧的第二表面;
第一MOS元件在该第一扩散区上;
第二MOS元件在该第二扩散区上;
第一应力介电层在该第一MOS元件上;以及
第二应力介电层在该第二MOS元件上,其中该第一及第二应力介电层具有实质上不同的应力。
2.如权利要求1所述的半导体结构,其中该第一扩散区具有第一长度,且当该第一长度小于约10μm时,该第一扩散区的半径大于约0.5μm。
3.如权利要求1所述的半导体结构,其中该第一扩散区有第一顶部表面,该第二扩散区有第二顶部表面,且其中该第一顶部表面与第二顶部表面有大于10的差距。
4.如权利要求1所述的半导体结构,其中该第一扩散区的中心区高于边缘区。
5.权利要求4所述的半导体结构,其中该中心区与该边缘区的高度差大于该扩散区长度的1/50。
6.如权利要求5所述的半导体结构,其中该中心区与该边缘区的高度差大于该扩散区长度的10%。
7.如权利要求1所述的半导体结构,其中该第一应力介电层及该第二应力介电层的厚度差约在25至250。
8.一种半导体结构,包括:
基板,包括扩散区;
沟槽隔离区,邻接该扩散区,且从基板表面延伸至该基板内,其中该扩散区有延伸区延伸至该沟槽隔离区之上;
MOS元件在该扩散区上;以及
应力层在该MOS元件上。
9.如权利要求8所述的半导体结构,其中该延伸区长度与该扩散区长度的比值大于约3/50。
10.如权利要求9所述的半导体结构,其中该延伸区长度与该扩散区长度的比值大于约1/10。
11.如权利要求8所述的半导体结构,其中当主动区密度大于约35%时,该延伸区的长度小于约650,当该主动区密度介于约15%至35%之间时,该延伸区的长度小于约550,当该主动区密度小于约15%时,该延伸区的长度小于约450。
12.一种半导体结构的形成方法,包括:
提供基板,包括扩散区;
形成沟槽隔离区,邻接该扩散区,且从该基板表面延伸至该基板内;
在该基板上进行扩散地形程序;
形成栅极介电层在该基板上;
形成栅极电极在该栅极介电层上;
形成栅极间隙壁在该栅极电极的侧壁上;
形成源/漏极区,且实质上邻接该栅极间隙壁;以及
形成应力膜在该栅极电极、该栅极间隙壁及该源/漏极区上。
13.如权利要求12所述的半导体结构的形成方法,其中该扩散区表面呈圆形。
14.如权利要求12所述的半导体结构的形成方法,其中该扩散区呈表面T形。
15.如权利要求12所述的半导体结构的形成方法,其中在进行该扩散地形程序前,先预蚀刻曝露的扩散区,以形成倾斜的扩散区表面。
CNB2007100886987A 2006-03-17 2007-03-16 半导体结构及其形成方法 Active CN100539152C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/378,907 US7355262B2 (en) 2006-03-17 2006-03-17 Diffusion topography engineering for high performance CMOS fabrication
US11/378,907 2006-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2009101343192A Division CN101533856B (zh) 2006-03-17 2007-03-16 半导体结构

Publications (2)

Publication Number Publication Date
CN101038920A true CN101038920A (zh) 2007-09-19
CN100539152C CN100539152C (zh) 2009-09-09

Family

ID=38516902

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2007100886987A Active CN100539152C (zh) 2006-03-17 2007-03-16 半导体结构及其形成方法
CN2009101343192A Active CN101533856B (zh) 2006-03-17 2007-03-16 半导体结构

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2009101343192A Active CN101533856B (zh) 2006-03-17 2007-03-16 半导体结构

Country Status (2)

Country Link
US (1) US7355262B2 (zh)
CN (2) CN100539152C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840881B (zh) * 2009-03-16 2012-07-25 台湾积体电路制造股份有限公司 制造集成电路元件的方法
CN104979293A (zh) * 2014-04-08 2015-10-14 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843244B1 (ko) 2007-04-19 2008-07-02 삼성전자주식회사 반도체 소자 및 그 제조 방법
US7553732B1 (en) 2005-06-13 2009-06-30 Advanced Micro Devices, Inc. Integration scheme for constrained SEG growth on poly during raised S/D processing
DE102005037566B4 (de) * 2005-08-09 2008-04-24 Qimonda Ag Herstellungsverfahren für eine Halbleiterstruktur und entsprechende Halbleiterstruktur
US7572705B1 (en) * 2005-09-21 2009-08-11 Advanced Micro Devices, Inc. Semiconductor device and method of manufacturing a semiconductor device
KR100660327B1 (ko) * 2005-11-18 2006-12-22 동부일렉트로닉스 주식회사 반도체 소자의 트랜지스터 및 그 형성방법
US8921193B2 (en) * 2006-01-17 2014-12-30 Taiwan Semiconductor Manufacturing Company, Ltd. Pre-gate dielectric process using hydrogen annealing
US7544584B2 (en) 2006-02-16 2009-06-09 Micron Technology, Inc. Localized compressive strained semiconductor
JP4984600B2 (ja) * 2006-03-30 2012-07-25 富士通株式会社 半導体装置及びその製造方法
US8294224B2 (en) * 2006-04-06 2012-10-23 Micron Technology, Inc. Devices and methods to improve carrier mobility
US7485544B2 (en) * 2006-08-02 2009-02-03 Micron Technology, Inc. Strained semiconductor, devices and systems and methods of formation
US7968960B2 (en) 2006-08-18 2011-06-28 Micron Technology, Inc. Methods of forming strained semiconductor channels
US7759233B2 (en) * 2007-03-23 2010-07-20 Micron Technology, Inc. Methods for stressing semiconductor material structures to improve electron and/or hole mobility of transistor channels fabricated therefrom, and semiconductor devices including such structures
US7732877B2 (en) * 2007-04-02 2010-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Gated diode with non-planar source region
US8736016B2 (en) * 2007-06-07 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Strained isolation regions
JP5444694B2 (ja) * 2008-11-12 2014-03-19 ソニー株式会社 固体撮像装置、その製造方法および撮像装置
KR101776926B1 (ko) 2010-09-07 2017-09-08 삼성전자주식회사 반도체 소자 및 그 제조 방법
US8859357B2 (en) * 2010-11-03 2014-10-14 Texas Instruments Incorporated Method for improving device performance using dual stress liner boundary
US8552478B2 (en) * 2011-07-01 2013-10-08 Nanya Technology Corporation Corner transistor and method of fabricating the same
CN104979208B (zh) * 2014-04-08 2018-03-20 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN108074814B (zh) * 2016-11-11 2020-06-09 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
FR3060201B1 (fr) * 2016-12-12 2019-05-17 Aledia Dispositif electronique comprenant une tranchee d'isolation electrique et son procede de fabrication

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248893A (en) * 1990-02-26 1993-09-28 Advanced Micro Devices, Inc. Insulated gate field effect device with a smoothly curved depletion boundary in the vicinity of the channel-free zone
US5572040A (en) * 1993-07-12 1996-11-05 Peregrine Semiconductor Corporation High-frequency wireless communication system on a single ultrathin silicon on sapphire chip
JP3761918B2 (ja) * 1994-09-13 2006-03-29 株式会社東芝 半導体装置の製造方法
US5963817A (en) * 1997-10-16 1999-10-05 International Business Machines Corporation Bulk and strained silicon on insulator using local selective oxidation
JP3762136B2 (ja) * 1998-04-24 2006-04-05 株式会社東芝 半導体装置
US6465842B2 (en) * 1998-06-25 2002-10-15 Kabushiki Kaisha Toshiba MIS semiconductor device and method of fabricating the same
US6160287A (en) * 1998-12-08 2000-12-12 United Microelectronics Corp. Flash memory
US6281532B1 (en) * 1999-06-28 2001-08-28 Intel Corporation Technique to obtain increased channel mobilities in NMOS transistors by gate electrode engineering
KR100421046B1 (ko) * 2001-07-13 2004-03-04 삼성전자주식회사 반도체 장치 및 그 제조방법
CN1191620C (zh) * 2002-02-05 2005-03-02 台湾积体电路制造股份有限公司 形成隔离装置的方法
DE10212149B4 (de) * 2002-03-19 2007-10-04 Infineon Technologies Ag Transistoranordnung mit Schirmelektrode außerhalb eines aktiven Zellenfeldes und reduzierter Gate-Drain-Kapazität
US6573172B1 (en) * 2002-09-16 2003-06-03 Advanced Micro Devices, Inc. Methods for improving carrier mobility of PMOS and NMOS devices
US7022561B2 (en) * 2002-12-02 2006-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS device
US6870179B2 (en) * 2003-03-31 2005-03-22 Intel Corporation Increasing stress-enhanced drive current in a MOS transistor
US7388251B2 (en) * 2004-08-11 2008-06-17 Micron Technology, Inc. Non-planar flash memory array with shielded floating gates on silicon mesas
KR100605499B1 (ko) * 2004-11-02 2006-07-28 삼성전자주식회사 리세스된 게이트 전극을 갖는 모스 트랜지스터 및 그제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840881B (zh) * 2009-03-16 2012-07-25 台湾积体电路制造股份有限公司 制造集成电路元件的方法
CN104979293A (zh) * 2014-04-08 2015-10-14 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN104979293B (zh) * 2014-04-08 2018-05-04 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法

Also Published As

Publication number Publication date
US20070215936A1 (en) 2007-09-20
CN101533856B (zh) 2011-09-07
CN100539152C (zh) 2009-09-09
US7355262B2 (en) 2008-04-08
CN101533856A (zh) 2009-09-16

Similar Documents

Publication Publication Date Title
CN101038920A (zh) 半导体结构及其形成方法
CN1293637C (zh) 具有应变沟道的互补式金属氧化物半导体及其制作方法
CN2704927Y (zh) 可同时具有部分空乏晶体管与完全空乏晶体管的芯片
CN101064310A (zh) 应用自对准双应力层的cmos结构和方法
CN1497708A (zh) 半导体器件的制造方法及制成的半导体器件
CN1681103A (zh) 形成有掩埋氧化物图形的半导体器件的方法及其相关器件
CN1913175A (zh) 半导体元件及其形成方法
CN2736934Y (zh) 静态随机存储单元及半导体元件
CN1941411A (zh) 包括横向延伸的有源区的晶体管及其制造方法
CN101043055A (zh) 制造场效应晶体管的方法以及半导体结构
CN101047182A (zh) 半导体结构及其形成方法
CN1797743A (zh) 具有完全硅化闸电极的拉伸型通道cmos装置及其形成方法
CN1725515A (zh) 具有重叠栅电极的半导体器件及其制造方法
CN1812076A (zh) 制造半导体器件的方法
CN1503372A (zh) 具有多重闸极及应变的通道层的晶体管及其制造方法
CN1787230A (zh) 包括场效应晶体管的半导体装置
CN101047129A (zh) 半导体结构及n型金属氧化物半导体晶体管的形成方法
CN1203445A (zh) 能减小寄生电容的半导体器件的制造方法
CN1825627A (zh) 半导体元件及形成半导体元件的方法
CN1841772A (zh) 半导体器件及其制造方法
CN1913111A (zh) 半导体元件及其形成方法
JP3821707B2 (ja) 半導体装置の製造方法
CN101079443A (zh) 半导体装置及其制作方法
US6562676B1 (en) Method of forming differential spacers for individual optimization of n-channel and p-channel transistors
CN1499646A (zh) 半导体器件和半导体器件的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant