CN101017959A - 脊形波导半导体激光二极管 - Google Patents

脊形波导半导体激光二极管 Download PDF

Info

Publication number
CN101017959A
CN101017959A CNA200610125681XA CN200610125681A CN101017959A CN 101017959 A CN101017959 A CN 101017959A CN A200610125681X A CNA200610125681X A CN A200610125681XA CN 200610125681 A CN200610125681 A CN 200610125681A CN 101017959 A CN101017959 A CN 101017959A
Authority
CN
China
Prior art keywords
layer
ridge portion
laser diode
semiconductor layer
portion according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200610125681XA
Other languages
English (en)
Other versions
CN101017959B (zh
Inventor
孙重坤
张泰勋
成演准
司空坦
白好善
李成男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN101017959A publication Critical patent/CN101017959A/zh
Application granted granted Critical
Publication of CN101017959B publication Critical patent/CN101017959B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H13/00Monuments; Tombs; Burial vaults; Columbaria
    • E04H13/006Columbaria, mausoleum with frontal access to vaults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • H01S5/0424Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer lateral current injection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3216Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities quantum well or superlattice cladding layers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Geometry (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明提供了一种具有改进的电流注入结构的脊形波导半导体激光二极管。所述脊形波导半导体激光二极管包括:衬底;形成于所述衬底上的下部多半导体层;形成于所述下部多半导体层上的有源层;具有脊形部分,并且形成于所述有源层上的上部多半导体层;以及形成于所述上部多半导体层上的上部电极,其中,所述上部电极覆盖所述脊形部分的至少一个侧表面。

Description

脊形波导半导体激光二极管
技术领域
本发明涉及一种脊形波导半导体激光二极管(LD),更具体而言,涉及一种配置成至少通过脊形部分的侧表面侧向注入电流的脊形波导半导体LD。
背景技术
半导体激光二极管(LD)广泛应用于在诸如光通信器件的通信器件以及诸如光盘播放器(CDP)或数字视频磁盘播放器(DVDP)的电子器件中传输、记录和读取数据。
随着半导体LD使用的增多,已经开发出了具有低临界电流值和抑制多横模振荡的脊形部分的半导体LD。所述脊形部分由向上突起的p型履层和p型接触层形成,电流(空穴)向下垂直注入到所述脊形部分当中。但是,垂直电流注入具有这样的缺点:当电流(空穴)通过包括p型覆层和p型波导层的p型半导体层时,由于掺有诸如镁(Mg)的杂质的区域的高电阻,功耗高并且产生热量。
发明内容
本发明提供了一种具有改进的电流注入结构的脊形波导半导体激光二极管。
根据本发明的一方面,提供了一种脊形波导半导体激光二极管,包括:衬底;形成于所述衬底上的下部多半导体层;形成于所述下部多半导体层上的有源层;具有脊形部分,并且形成于所述有源层上的上部多半导体层;以及形成于所述上部多半导体层上的上部电极,其中,所述上部电极覆盖所述脊形部分的至少一个侧表面。
附图说明
通过参考附图详细描述其示范性实施例,本发明的以上和其他特征和益处将变得更加显见,附图中:
图1是根据本发明实施例的脊形波导半导体激光二极管(LD)的截面图;
图2是说明图1的脊形波导半导体LD的电流注入结构的截面图;
图3是常规脊形波导半导体LD的截面图;
图4是说明图3的常规脊形波导半导体LD和根据本发明实施例的脊形波导半导体LD的工作电压和工作电流之间的关系的曲线图;以及
图5A和图5B是说明工作电流和电压如图4所示的两个LD的温度分布的图示。
具体实施方式
现在将参考附图更为充分地描述本发明,附图中展示了本发明的示范性实施例。
图1是根据本发明实施例的脊形波导半导体激光二极管(LD)的截面图。
参考图1,在衬底100上形成下部多半导体层110。下部多半导体层110包括下部接触层120、下部履层130和下部波导层140。在下部接触层120的一侧上依次形成有源层150、上部多半导体层160、上部接触层190和上部电极200,在下部接触层120的另一侧上形成下部电极210。
可以将上部多半导体层160划分为第一到第三区域R1、R2和R3。
第一区域R1具有从上部多半导体层160的中央部分以条状突起的脊形部分165。脊形部分165可以垂直突起,或者发生倾斜从而具有梯形截面。
上部多半导体层160包括上部波导层170和上部履层180。上部波导层170的一部分和上部履层180形成于脊形部分165上。
可以在上部波导层170内形成电子阻挡层171。电子阻挡层171的能级比上部波导层170的能级高得多,使得电子阻挡层171能够阻挡电子溢出。
可以在上部波导层170内埋入电流散布层175。将电流散布层175设置在上部波导层170上的脊形部分165上。电流散布层175使注入的电流遍布它的整个表面,使得电流能够被均匀地注入到有源层150内。
上部接触层190和上部电极200覆盖脊形部分165的至少一个侧表面165b,从而能够通过侧表面165b注入电流。为了通过脊形部分165的上表面165a注入电流,也可以形成覆盖脊形部分165的上表面165a的上部接触层190和上部电极200。
第二和第三区域R2和R3形成于脊形部分165之外的上部波导层170的部分上,在第二和第三区域R2和R3上形成绝缘层205。绝缘层205覆盖电流散布层175的两个侧边。绝缘层205使上部接触层190与上部波导层170和电流散布层175绝缘。
本实施例的脊形波导半导体LD可以是GaN基半导体LD。具体而言,可以按照下述说明形成脊形波导半导体LD。
衬底100可以由蓝宝石(Al2O3)、氮化镓(GaN)、硅(Si)、氮化铝(AlN)或碳化硅(SiC)形成。
下部接触层120可以由n-GaN形成。下部覆层130可以由n-AlxGa1-xN(0≤x<1)形成。下部波导层140可以由n-InxGa1-xN(0≤x<1)形成。有源层150可以由InxGa1-xN(0<x<1)形成,并且可以具有单量子阱或多量子阱结构。上部波导层170可以由p-InxGa1-xN(0≤x<1)形成。电子阻挡层171可以由p-AlxGa1-xN(0<x<1)化合物半导体形成。
电流散布层175可以具有p-GaN层和p-InGaN层的异质结结构,使得电流散布层175的能级可以比上部波导层170的能级低得多。
上部覆层180可以是由p-AlxGa1-xN(0≤x<1)形成的单层,或者可以具有超晶格结构,所述超晶格结构由交替重复叠置具有不同的铝(Al)成分比的p-AlxGa1-xN(0≤x<1)层形成。例如,上部覆层180可以具有超晶格结构,其中重复叠置p-Al0.08Ga0.92N层和p-GaN层。所述超晶格结构引起了载流子注入电阻和断裂危险二者的降低,因此能够使上部履层180进行稳定地晶体生长,并且能够保持高光限制效应。
上部接触层190改善了上部覆层180和上部电极200之间的欧姆接触特性,并且上部接触层190可以通过依次在上部覆层180的上表面180a和侧表面180b上叠置p+-GaN/Pd层形成。
上部电极200可以由例如通常使用的电极材料的高导电性金属材料构成。具体而言,上部电极200可以是由Au、Ni、Ti或Al形成的单层,或者可以是这些材料的双层。
绝缘层205可以由诸如SiO2的绝缘材料形成。
现在将参考图2解释根据本实施例的脊形波导半导体LD的工作。图2是说明图1的脊形波导半导体LD的电流注入结构的截面图。
参考图2,在向上部电极200施加电压后,电流即载流子被注入到了上部接触层190当中。当形成于有源层150上的层为如上所述的p型层时,注入到上部接触层190内的载流子为空穴。由于上部电极200和上部接触层190覆盖上部履层180,因此,载流子被通过上部覆层180的侧表面180b以及上表面180a注入。在如图2所示通过脊形部分165的侧表面165b注入电流时,缩短了载流子在具有高电阻的p型上部覆层180中经过的通路,由此降低了载流子注入电阻。而且,通过上表面180a和侧表面180b注入电流时的电流通路比仅通过上表面180a注入电流时的电流通路具有更大的面积,由此降低了电阻。因此,由于能够以比采用常规脊形波导半导体LD时低的工作电压提供相同的功率,因此,就工作电压和功率而言,本实施例的脊形波导半导体LD优于常规脊形波导半导体LD。此外,由于通过侧表面180b注入的电流在穿过电流散布层175的过程中散布开,防止了电流流向一侧。
而且,当上部覆层180具有通过交替叠置具有不同Al成分比的p-AlxGa1-xN(0≤xl)层形成的超晶格结构时,载流子通过隧穿或载流子溢出穿过上部覆层180,从而进一步降低了注入电阻。
此外,由于由具有高热导率的金属材料构成的上部电极200覆盖上部覆层180的侧表面180b和上表面180a,因此,本实施例的脊形波导半导体LD具有高散热能力。
此外,本实施例的脊形波导半导体LD能够改善长波长半导体LD的电特性。一般而言,发射具有长波长的蓝色或绿色激光束的半导体LD采用低温p型半导体层。就电特性而言,低温p型半导体层较高温p型半导体层的逊色之处在于:低温p型半导体中空穴浓度低,电阻高。本实施例的脊形波导半导体LD能够通过改善电流注入机制而改善采用低温半导体层的长波长半导体LD的电特性。
现在,将在下文中解释与常规脊形波导半导体LD比较,根据本发明实施例的脊形波导半导体LD的效果。
<常规脊形波导半导体LD>
制造了具有如图3所示的垂直电流注入结构的常规脊形波导半导体LD。所述常规脊形波导半导体LD为III族氮化物基半导体LD。上部波导层270形成于有源层250上。上部履层280从上部波导层270的中央部分向上突出。上部履层280构成了脊形部分。上部接触层290和上部电极300依次叠置于上部履层280的上表面上。绝缘层305形成于上部履层280的侧表面上以及脊形部分之外的上部波导层270的上表面上。脊形部分之外的上部波导层270的厚度D1大约为500,绝缘层305的厚度D2大约为1500或更低。
<本实施例的脊形波导半导体LD>
制造了如图2所示的、根据本发明实施例的、既允许垂直注入又允许侧面注入的脊形波导半导体LD。本实施例的脊形波导半导体LD与常规脊形波导半导体LD类似,除了所形成的上部接触层190和上电极200覆盖上部覆层180的侧表面和上表面以外。
现在将参考图4、图5A和图5B解释所制造的两个LD的特性。
图4是说明图3的常规脊形波导半导体LD和根据本发明实施例的脊形波导半导体LD的工作电压和工作电流之间的关系的曲线图。参考图4,就常规脊形波导半导体LD而言,产生50mA的电流所需的工作电压为4.36V,而就本实施例的脊形波导半导体LD而言,产生50mA的电流所需的工作电压为4.03V,比4.36V低了大约0.3V。也就是说,常规脊形波导半导体LD的注入电阻为17.0Ω,本实施例的脊形波导半导体LD的注入电阻为15.5Ω。
图5A和图5B分别是说明常规脊形波导半导体LD和本实施例的脊形波导半导体LD的温度分布的图示。参考图5A和图5B,本实施例脊形波导半导体LD的温度总体上低于常规脊形波导半导体LD的温度。在常规脊形波导半导体LD的表面温度为130.47℃时,本实施例的脊形波导半导体LD的表面温度为117.93℃,比130.47℃低大约10%。这是因为,本实施例的脊形波导半导体LD在上部履层的低注入电阻的作用下减少了上部履层中的热生成量,并且能够通过形成于上部覆层的侧表面上的由金属构成的上部电极散热。
如上所述,根据本发明的脊形波导半导体LD具有下述优点。
首先,由于通过脊形部分的两个侧表面注入电流,因而能够降低注入电阻,并且能够取得高工作电压和功率。
其次,由于由金属材料构成的上部电极覆盖脊形部分的两个侧表面,因此能够确保有效的散热。
尽管已经参考其示范性实施例特别展示和描述了本发明,但是本领域的普通技术人员将理解,可以在其中做出多种形式和细节上的变化而不脱离由权利要求所限定的本发明的精神和范围。

Claims (10)

1.一种脊形波导半导体激光二极管,包括:
衬底;
形成于所述衬底上的下部多半导体层;
形成于所述下部多半导体层上的有源层;
具有脊形部分并且形成于所述有源层上的上部多半导体层;以及
形成于所述上部多半导体层上的上部电极,
其中,所述上部电极覆盖所述脊形部分的至少一个侧表面,通过所述脊形部分的侧表面注入电流。
2.根据权利要求1所述的脊形波导半导体激光二极管,其中,所述上部电极覆盖所述脊形部分的至少一个侧面和上表面。
3.根据权利要求1所述的脊形波导半导体激光二极管,其中,所述上部多半导体层包括上部波导层和上部履层,所述上部波导层的一部分和所述上部履层形成于所述脊形部分上。
4.根据权利要求3所述的脊形波导半导体激光二极管,还包括形成于所述上部电极和所述上部履层之间的上部接触层。
5.根据权利要求4所述的脊形波导半导体激光二极管,还包括埋入所述上部波导层内并形成于所述脊形部分上的电流散布层。
6.根据权利要求5所述的脊形波导半导体激光二极管,其中,所述电流散布层具有p-GaN层和p-InGaN层的异质结结构。
7.根据权利要求4所述的脊形波导半导体激光二极管,还包括使所述上部接触层与所述上部波导层和所述电流散布层绝缘的绝缘层。
8.根据权利要求3所述的脊形波导半导体激光二极管,其中,所述上部覆层具有通过交替重复叠置具有不同铝成分比的AlxGa1-xN层形成的超晶格结构,其中0≤x<1。
9.根据权利要求1所述的脊形波导半导体激光二极管,其中,所述下部多半导体层由n型半导体形成,所述上部多半导体层由p型半导体形成。
10.根据权利要求1所述的脊形波导半导体激光二极管,其中,所述下部多半导体层、所述有源层和所述上部多半导体层由GaN基材料形成。
CN200610125681XA 2006-02-09 2006-08-31 脊形波导半导体激光二极管 Expired - Fee Related CN101017959B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060012602A KR101221067B1 (ko) 2006-02-09 2006-02-09 리지 도파형 반도체 레이저 다이오드
KR12602/06 2006-02-09

Publications (2)

Publication Number Publication Date
CN101017959A true CN101017959A (zh) 2007-08-15
CN101017959B CN101017959B (zh) 2011-09-21

Family

ID=37524068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610125681XA Expired - Fee Related CN101017959B (zh) 2006-02-09 2006-08-31 脊形波导半导体激光二极管

Country Status (4)

Country Link
US (1) US7483463B2 (zh)
JP (1) JP5314251B2 (zh)
KR (1) KR101221067B1 (zh)
CN (1) CN101017959B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257080B (zh) * 2008-03-11 2014-10-15 北京大学东莞光电研究院 氮化物基脊型发光二极管和激光器及制备方法
US10355453B2 (en) 2017-11-08 2019-07-16 International Business Machines Corporation Electro-optical device with lateral electron blocking layer
CN110140264A (zh) * 2016-12-29 2019-08-16 欧司朗光电半导体有限公司 半导体激光二极管

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169890B2 (en) * 2005-07-20 2012-05-01 Qualcomm Incorporated Systems and method for high data rate ultra wideband communication
JP2009021424A (ja) * 2007-07-12 2009-01-29 Opnext Japan Inc 窒化物半導体発光素子及びその製造方法
US8073031B2 (en) * 2008-03-03 2011-12-06 Sharp Kabushiki Kaisha Laser diode with improved heat dissipation
KR101064006B1 (ko) * 2009-03-03 2011-09-08 엘지이노텍 주식회사 발광소자
KR101827975B1 (ko) * 2011-10-10 2018-03-29 엘지이노텍 주식회사 발광소자
CN111357158B (zh) * 2017-11-17 2022-08-30 三菱电机株式会社 半导体装置及半导体装置的制造方法
WO2022097258A1 (ja) * 2020-11-06 2022-05-12 三菱電機株式会社 光半導体装置およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622673A (en) * 1984-05-24 1986-11-11 At&T Bell Laboratories Heteroepitaxial ridge overgrown laser
JP3772651B2 (ja) * 1996-03-25 2006-05-10 日亜化学工業株式会社 窒化物半導体レーザ素子
JP3431389B2 (ja) * 1996-03-25 2003-07-28 日亜化学工業株式会社 窒化物半導体レーザ素子
JPH09275243A (ja) * 1996-04-05 1997-10-21 Nichia Chem Ind Ltd 窒化物半導体の結晶成長方法およびレーザ素子の共振面の形成方法
JP3314641B2 (ja) * 1996-11-29 2002-08-12 日亜化学工業株式会社 窒化物半導体レーザ素子
US6160830A (en) 1998-03-04 2000-12-12 Motorola, Inc. Semiconductor laser device and method of manufacture
JP4166885B2 (ja) * 1998-05-18 2008-10-15 富士通株式会社 光半導体装置およびその製造方法
JP3609661B2 (ja) 1999-08-19 2005-01-12 株式会社東芝 半導体発光素子
JP2004048080A (ja) * 2000-05-17 2004-02-12 Sony Corp 半導体レーザの製造方法
JP3813472B2 (ja) * 2000-07-10 2006-08-23 三洋電機株式会社 窒化物系半導体発光素子
JP2002076505A (ja) * 2000-08-30 2002-03-15 Sony Corp 半導体レーザとその製造方法
JP2002094189A (ja) * 2000-09-14 2002-03-29 Sharp Corp 窒化物半導体レーザ素子およびそれを用いた光学装置
JP4315583B2 (ja) * 2000-09-19 2009-08-19 パイオニア株式会社 Iii族窒化物系半導体レーザ素子
DE60230602D1 (de) * 2001-03-28 2009-02-12 Nichia Corp Nitrid-halbleiterelement
JP4178807B2 (ja) * 2002-02-19 2008-11-12 ソニー株式会社 半導体発光素子およびその製造方法
CN1756010A (zh) * 2004-09-29 2006-04-05 中国科学院半导体研究所 半绝缘衬底长波长半导体激光器及其制作方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257080B (zh) * 2008-03-11 2014-10-15 北京大学东莞光电研究院 氮化物基脊型发光二极管和激光器及制备方法
CN110140264A (zh) * 2016-12-29 2019-08-16 欧司朗光电半导体有限公司 半导体激光二极管
US11011887B2 (en) 2016-12-29 2021-05-18 Osram Oled Gmbh Semiconductor laser diode
US11626707B2 (en) 2016-12-29 2023-04-11 Osram Oled Gmbh Semiconductor laser diode
US10355453B2 (en) 2017-11-08 2019-07-16 International Business Machines Corporation Electro-optical device with lateral electron blocking layer
US10700496B2 (en) 2017-11-08 2020-06-30 International Business Machines Corporation Electro-optical device with lateral electron blocking layer

Also Published As

Publication number Publication date
JP5314251B2 (ja) 2013-10-16
CN101017959B (zh) 2011-09-21
KR101221067B1 (ko) 2013-01-11
US20060280215A1 (en) 2006-12-14
JP2007214570A (ja) 2007-08-23
KR20070080984A (ko) 2007-08-14
US7483463B2 (en) 2009-01-27

Similar Documents

Publication Publication Date Title
CN101017959B (zh) 脊形波导半导体激光二极管
US7125732B2 (en) Semiconductor light emitting device and its manufacturing method
JP4018177B2 (ja) 窒化ガリウム系化合物半導体発光素子
US6185238B1 (en) Nitride compound semiconductor laser and its manufacturing method
US7365369B2 (en) Nitride semiconductor device
US8679876B2 (en) Laser diode and method for fabricating same
US20230299562A1 (en) Semiconductor laser diode
US20110121337A1 (en) Semiconductor light-emitting device
CN103444021A (zh) 氮化物半导体发光元件
US7741654B2 (en) Group III nitride semiconductor optical device
US7867798B2 (en) Semiconductor laser, method of manufacturing semiconductor laser, optical pickup and optical disk system
EP1524740B1 (en) III-V group GaN-based semiconductor device and method of manufacturing the same
JP3678399B2 (ja) 窒化物系半導体レーザ装置
JP3221073B2 (ja) 発光素子
JP2003243772A (ja) 半導体発光素子およびその製造方法
JP2007109793A (ja) 半導体発光素子および光散乱基板
KR100511530B1 (ko) 질화물반도체소자
US7738521B2 (en) Semiconductor laser device
JP4118065B2 (ja) 窒化物系半導体レーザ素子
JP2002261393A (ja) 窒化物半導体素子
JP2004072044A (ja) GaN系半導体発光素子の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SAMUNG LED CO., LTD.

Free format text: FORMER OWNER: SAMSUNG ELECTRONICS CO., LTD

Effective date: 20100511

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20100511

Address after: Gyeonggi Do, South Korea

Applicant after: Samsung LED Co.,Ltd.

Address before: Gyeonggi Do, South Korea

Applicant before: Samsung Electronics Co.,Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SAMSUNG ELECTRONICS CO., LTD.

Free format text: FORMER OWNER: SAMSUNG LED CO., LTD.

Effective date: 20121130

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20121130

Address after: Gyeonggi Do, South Korea

Patentee after: SAMSUNG ELECTRONICS Co.,Ltd.

Address before: Gyeonggi Do, South Korea

Patentee before: Samsung LED Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110921

CF01 Termination of patent right due to non-payment of annual fee