CN100560481C - 半导电碳纳米管的分离方法 - Google Patents

半导电碳纳米管的分离方法 Download PDF

Info

Publication number
CN100560481C
CN100560481C CNB2004100817803A CN200410081780A CN100560481C CN 100560481 C CN100560481 C CN 100560481C CN B2004100817803 A CNB2004100817803 A CN B2004100817803A CN 200410081780 A CN200410081780 A CN 200410081780A CN 100560481 C CN100560481 C CN 100560481C
Authority
CN
China
Prior art keywords
carbon nanotube
semiconduction
dispersion
acid solution
filtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004100817803A
Other languages
English (en)
Other versions
CN1644493A (zh
Inventor
朴玩濬
李永熙
杨撤玟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1644493A publication Critical patent/CN1644493A/zh
Application granted granted Critical
Publication of CN100560481C publication Critical patent/CN100560481C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/22Changing the web roll in winding mechanisms or in connection with winding operations
    • B65H19/2207Changing the web roll in winding mechanisms or in connection with winding operations the web roll being driven by a winding mechanism of the centre or core drive type
    • B65H19/2215Turret-type with two roll supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/22Changing the web roll in winding mechanisms or in connection with winding operations
    • B65H19/26Cutting-off the web running to the wound web roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/172Sorting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/417Handling or changing web rolls
    • B65H2301/418Changing web roll
    • B65H2301/41829Changing web roll positioning the core, e.g. in axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/175Plastic
    • B65H2701/1752Polymer film
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/745Carbon nanotubes, CNTs having a modified surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/745Carbon nanotubes, CNTs having a modified surface
    • Y10S977/748Modified with atoms or molecules bonded to the surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/789Of specified organic or carbon-based composition in array format

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种半导电碳纳米管的分离方法,它包括:将碳纳米管与硝酸和硫酸的混合酸溶液混合,获得碳纳米管分散体;对碳纳米管分散体进行搅拌;对碳纳米管分散体进行过滤;以及加热过滤后的碳纳米管,以除掉官能团。

Description

半导电碳纳米管的分离方法
技术领域
本发明涉及一种单壁碳纳米管(single walled nanotube)的分离(isolating)方法,具体涉及具有特定手征性(chirality)的半导电碳纳米管的分离方法。
背景技术
碳纳米管具有各种形状的各向异性结构,例如单壁形、多壁形、绳索(rope)形,其直径范围从几个纳米到几十个纳米,长度范围从几十微米到几百微米。碳纳米管根据其手征性展现出导电特性或半导电特性。碳纳米管粉末含有半导电碳纳米管和金属性(metallic)碳纳米管的混合物。当碳纳米管为扶手椅形(arm-chair)结构时,它们展现出金属特性,而当它为Z字形结构时,它们展现出半导电特性。半导电碳纳米管是准一维结构,其能隙随直径变化,由此展现出独特的量子效应。
内部中空的碳纳米管机械强度高(大约比钢高100倍)、化学稳定性好,具有很高的导热性。因此,碳纳米管已突出为预期有许多微观和宏观应用的新功能材料。人们进行了大量研究来将碳纳米管用于各种用途,例如用于存储器件、电子放大器、气体传感器、微波防护层、电化学存储单元(二次电池、燃料电池、或超级电容器)中的电极极板、场发射显示器(FED)、以及聚合物的组合物等。
为了进行这些碳纳米管的应用实践,必需获得具有特定手征性的碳纳米管。例如,半导电碳纳米管用于存储器件、传感器等,而金属性碳纳米管用于电池、电磁防护层等的电极材料。因此,需要一种能选择性地制造出具有特定手征性的碳纳米管的方法,或者从混合物中分离出具有特定手征性的碳纳米管的方法。
碳纳米管一般通过化学汽相淀积法(CVD)制造。但是,利用CVD很难选择性地制造出具有理想手征性的碳纳米管。人们提出了利用放电或者激光淀积法来制造具有特定手征性的碳纳米管的方法。但是,这些方法的产量很低。另外,利用激光会增加制造成本,而且也无法实现具有理想特性(导电或半导电)的碳纳米管的最优选择性生长(growth)。
因此,人们对一种新方法进行了研究,在该方法中,先生长出半导电碳纳米管和金属性碳纳米管的混合物,然后除掉不想要类型的碳纳米管。
人们建议了一种利用表面活性剂、十八烷基胺(ODA)的方法。该方法中,在分离出手征性碳纳米管后,还必需除掉碳纳米管中的表面活性剂,由此导致工艺复杂化和产量降低。
人们又提出了一种金属性碳纳米管的分离方法。该方法包括将碳纳米管分散到溶液中、通过电泳让金属性碳纳米管附着到电极。在该方法中,产量较低,难以大量制造出具有特定手征性的金属性碳纳米管。
韩国专利第0377630号公开了一种具有特定手征性的碳纳米管的分离方法。该方法包括:将碳纳米管的两端与电极平行相连,然后在预定温度范围内施加脉冲电压,以除掉具有不理想手征性的碳纳米管。但是,在该方法中,难以平行连接碳纳米管,并且该方法不适合大批量制造理想的碳纳米管。
发明内容
本发明提供了一种通过简易工序大批量分离半导电碳纳米管的方法。
依照本发明的一个方面,提供了一种半导电碳纳米管的分离方法,该方法包括:将碳纳米管与硝酸和硫酸的混合酸溶液混合,获得碳纳米管分散体(dispersion);搅拌碳纳米管分散体;过滤碳纳米管分散体;然后加热经过滤的碳纳米管,以除掉官能团。
附图说明
下面通过参照附图对示范性实施例的详细描述将使本发明的上述和其它特征、优点变得更显而易见,附图中:
图1是表示依照本发明实施例的半导电碳纳米管分离方法的流程图;
图2是表示例1和例2中处理过的各碳纳米管的Raman(喇曼)散射测试结果的曲线图;
图3是表示例1和1中处理过的各碳纳米管的Raman散射测试结果的曲线图。
具体实施方式
下面对本发明进行详细说明。
半导电碳纳米管的分离方法包括:将碳纳米管与硝酸和硫酸的混合酸溶液混合,获得碳纳米管分散体;搅拌碳纳米管分散体;对碳纳米管分散体进行过滤;然后加热经过过滤的碳纳米管,以除去官能团。与传统方法不同的是,该方法能在一个步骤中处理大量碳纳米管粉末样品,并且分离效率很高。
图1是表示依照本发明实施例的半导电碳纳米管分离方法的流程图。
在本发明的实施例中使用的碳纳米管可以是经过纯化的碳纳米管或者粗碳纳米管。碳纳米管可利用任何传统方法制造。例如,可以使用通过放电、激光淀积、汽相合成、等离子体化学汽相淀积或者热化学汽相淀积方法生产的任何粗碳纳米管。
在制备出碳纳米管后,将硝酸和硫酸以适当比例混合,生成混合酸溶液,然后将碳纳米管与混合酸溶液混合,获得碳纳米管分散体(S10)。混合酸溶液中的硫酸与硝酸反应,提高了硝酸根离子(nitronium ion)(NO2 +)的浓度。硝酸根离子是亲电子的,它一般用于将硝基引入苯环中。假设,在它用于碳纳米管时,硝酸根离子用作在碳纳米管的碳原子之间的SP2轨道上存在的电子的亲电子基团。该情况下,与半导电碳纳米管相比,金属性碳纳米管更容易作为电子给体(donor)。于是,金属性碳纳米管中的C-C键被破坏,形成C-N键。最后,由于金属性碳纳米管之间的键断裂,金属性碳纳米管变短。搅拌过程中,硫酸基团插到碳纳米管束之间,加大了纳米管束之间的间隔。硝酸根离子更容易插到分隔更宽的纳米管束之间与碳纳米管反应。
依照本实施例的方法能除去缺陷碳纳米管以及金属性碳纳米管。去除缺陷碳纳米管是因为它的C-C键很弱,它容易被硝酸根离子破坏。
以适当比例选择混合酸溶液中硝酸∶硫酸的体积比,优选为1∶9到2∶8。在该比例条件下,对半导电碳纳米管和金属性碳纳米管的选择性反应最佳,分离效率高。
接着,对碳纳米管分散体进行搅拌(S20)。搅拌可在室温下利用传统搅拌器进行。搅拌时间的范围为1到3小时,这要根据混合酸溶液中硝酸与硫酸的比例而变化。如果搅拌时间超过3小时,就存在半导电碳纳米管也发生反应的风险。另外,搅拌时间可根据未处理碳纳米管的状态而变化。
在金属性碳纳米管因与硝酸根离子的反应而变短或被破坏之后,对碳纳米管分散体进行过滤,获得半导电碳纳米管(S30)。可以使用微孔直径为几微米的过滤器,例如微滤器、超滤器等。在过滤之前或之中可用水对碳纳米管分散体进行稀释。当将分散体倒入微孔直径为几微米的过滤器时,因未参加反应而较长的半导电碳纳米管就会留在过滤器上,而因参加了反应而变短或遭到局部破坏的金属性碳纳米管通过过滤器。
最后,由过滤得到的半导电碳纳米管具有附着其表面的官能团如NO2 +和SO3。于是,要对过滤后的碳纳米管进行加热,以除去这些官能团(S40)。加热温度是600到1000摄氏度。如果加热温度低于600摄氏度,就存在不能除去这些官能团的风险。如果加热温度高于1000摄氏度,这些官能团就会与碳纳米管结合,从而让碳纳米管的特性变差。可在真空或氩气氛中加热过滤后的碳纳米管。必需至少加热30分钟,以确保除掉官能团。
如果本发明中使用的碳纳米管是粗碳纳米管,可在利用微滤器过滤碳纳米管分散体之前进一步利用滤网滤掉杂质,或者在碳纳米管与混合酸溶液混合之前进一步对粗产品进行纯化。为了获得高纯度的半导电碳纳米管,有利的是通过该过滤和纯化过程除掉粗产品中的碳聚集体(cluster)或者催化金属聚集体。
粗碳纳米管的纯化可利用任意一种传统纯化方法进行,例如通过汽相热处理或者酸处理。在酸处理过程中,要将粗碳纳米管浸到含有酸溶液的纯化浴(bath)中1到4小时。硝酸或盐酸等的水溶液可作为酸溶液。酸溶液中的H+离子能去掉粗产品中的碳聚集体和碳粒,而Cl-和NO3 -能去掉其中的催化金属聚集体。然后,将超纯水送入其中装着分散了碳纳米管的混合溶液的纯化浴,让酸溶液从纯化浴溢流出来,以便冲洗(rinse)产品。让冲洗后的产品通过尺寸不超过300μm的金属网过滤器,以去掉碳聚集体、碳粒和催化金属聚集体,并获得经过纯化的碳纳米管。由于该实施例的混合操作中使用了混合酸溶液,因此可同时完成通过酸处理进行的纯化。于是,在不用对要与混合酸溶液混合之前的碳纳米管进行进一步纯化的情况下,在混合操作中使用粗碳纳米管,然后在通过微滤器对半导电碳纳米管进行过滤之前利用滤网将杂质滤掉。如上所述,在利用微滤器过滤碳纳米管之前将杂质滤掉的情况下,可在一个工序中进行滤掉杂质的粗碳纳米管纯化过程和半导电碳纳米管的分离过程,由此提高了效率。
其间,在用于纯化的汽相热处理中,要将碳纳米管置于位于反应炉中央的舟皿(boat)中,然后加热。在酸性纯化气体如氢氯酸气体和硝酸气体等流入反应炉时,由于纯化气体的热分解产生氢离子。这些氢离子能除掉杂质如碳聚集体和其它热分解产物如Cl-或NO3 -,并能除掉催化金属聚集体。
下面,将参照例子详细描述本发明。给出这些例子仅用于说明目的,并不意在对本发明范围的限制。
例1
将纯化后的碳纳米管与体积比为1∶9的硝酸、硫酸混合酸溶液混合,获得碳纳米管分散体。利用搅拌器搅拌分散体3小时。然后,在用纯水混合并稀释的同时通过微滤器对碳纳米管分散体进行过滤。最后,将过滤后的半导电碳纳米管置于真空炉中,于700摄氏度下加热1小时,得到半导电碳纳米管。
例2
除了混合酸溶液中硝酸∶硫酸的体积比为2∶8、搅拌时间为2小时外,按照与例1相同的方式得到半导电碳纳米管。
实验1
通过Raman散射测试和吸收测试测量例1和2中获得的半导电碳纳米管的直径分布和手征性分布。实验结果示于图2和3中。参照图2,在未处理的碳纳米管中可以观察到与金属性碳纳米管相对应的峰,但是在例1和2中获得的碳纳米管内却看不到这样的峰。参照图3,在未处理的碳纳米管中可以看到位于1300cm-1附近的缺陷峰(D带(band)),但这个在例1和2中获得的碳纳米管中却看不到。因此,就能断定,依照本发明实施例的方法能高效地分离出大量半导电碳纳米管,同时还能去除有缺陷的碳纳米管。
如上所述,依照本发明的实施例,能分离出大量高纯度的半导电碳纳米管,于是这也增强了碳纳米管在存储器件、传感器等中的应用。另外,还能同时去除有缺陷的碳纳米管。此外,能在一个工序中一起实施粗碳纳米管的纯化和半导电碳纳米管的分离,于是提高了效率。
虽然参照本发明的示范性实施例具体示出并描述了本发明,但本领域普通技术人员应当理解的是,在不脱离由以下权利要求限定的发明精神和范围的情况下,可以做出形式和细节上的各种变化。

Claims (7)

1.一种半导电碳纳米管的分离方法,它包括:
将碳纳米管与硝酸、硫酸的混合酸溶液混合,获得碳纳米管分散体;
对碳纳米管分散体进行搅拌;
对碳纳米管分散体进行过滤;以及
加热过滤后的碳纳米管,以除掉官能团,
其中过滤后碳纳米管的加热要在600到1000摄氏度的温度下进行;
其中过滤后碳纳米管的加热要在真空或氩气氛中进行。
2.根据权利要求1所述的方法,其中混合酸溶液中硝酸∶硫酸的体积比范围是1∶9到2∶8。
3.根据权利要求1所述的方法,其中搅拌进行1到3小时。
4.根据权利要求1所述的方法,其中利用微滤器或超滤器进行碳纳米管分散体的过滤。
5.根据权利要求1所述的方法,还包括:在搅拌了碳纳米管分散体之后,利用滤网滤掉杂质。
6.根据权利要求1所述的方法,还包括在将碳纳米管与混合酸溶液混合之前,对粗碳纳米管进行纯化。
7.根据权利要求6所述的方法,其中粗碳纳米管通过汽相热处理或酸处理来纯化。
CNB2004100817803A 2004-01-02 2004-12-31 半导电碳纳米管的分离方法 Active CN100560481C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR52/04 2004-01-02
KR1020040000052A KR100580641B1 (ko) 2004-01-02 2004-01-02 반도체성 탄소나노튜브의 선별방법
KR52/2004 2004-01-02

Publications (2)

Publication Number Publication Date
CN1644493A CN1644493A (zh) 2005-07-27
CN100560481C true CN100560481C (zh) 2009-11-18

Family

ID=34567882

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100817803A Active CN100560481C (zh) 2004-01-02 2004-12-31 半导电碳纳米管的分离方法

Country Status (6)

Country Link
US (1) US7387735B2 (zh)
EP (1) EP1550635B1 (zh)
JP (1) JP4833546B2 (zh)
KR (1) KR100580641B1 (zh)
CN (1) CN100560481C (zh)
DE (1) DE602004009751T2 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508183A (ja) * 2004-07-29 2008-03-21 ウィリアム・マーシュ・ライス・ユニバーシティ バンドギャップによるカーボンナノチューブのバルク分離
JP4706066B2 (ja) * 2005-08-19 2011-06-22 独立行政法人産業技術総合研究所 電気化学キャパシタ及びそれに用いる電極材料
JP4435299B2 (ja) * 2005-09-06 2010-03-17 株式会社堀場製作所 カーボンナノチューブ分類装置、コンピュータプログラム、及びカーボンナノチューブ分類方法
KR101082440B1 (ko) 2005-10-04 2011-11-11 삼성에스디아이 주식회사 전자 방출 소자, 이를 구비한 전자 방출 디스플레이 장치및 그 제조 방법
US7435476B2 (en) * 2005-10-13 2008-10-14 Honda Motor Co., Ltd. Functionalized nanotube material for supercapacitor electrodes
JP4768463B2 (ja) * 2006-02-08 2011-09-07 株式会社日立製作所 カーボンナノチューブの選別装置、分別収集方法および電子素子の作成方法
KR100784993B1 (ko) 2006-02-14 2007-12-11 주식회사 엘지화학 강직한 랜덤 코일 및 이를 포함하는 조성물
KR100869152B1 (ko) * 2007-04-27 2008-11-19 한국화학연구원 탄소 나노튜브 반도체 소자 제조 방법 및 그에 의한 탄소나노튜브 반도체 소자
JP5177623B2 (ja) * 2007-05-21 2013-04-03 独立行政法人産業技術総合研究所 カーボンナノチューブの分離法
JP5177624B2 (ja) * 2007-05-21 2013-04-03 独立行政法人産業技術総合研究所 カーボンナノチューブの高効率分離法
US8591854B2 (en) 2007-08-08 2013-11-26 William Marsh Rice University Methods for solubilizing and separating large fullerenes
US7666915B2 (en) 2007-09-24 2010-02-23 Headwaters Technology Innovation, Llc Highly dispersible carbon nanospheres in a polar solvent and methods for making same
US20100196246A1 (en) * 2007-10-09 2010-08-05 Headwaters Technology Innovation, Llc Methods for mitigating agglomeration of carbon nanospheres using a crystallizing dispersant
US7858691B2 (en) * 2007-10-09 2010-12-28 Headwaters Technology Innovation, Llc Functionalization of carbon nanoshperes by severe oxidative treatment
US7960440B2 (en) * 2007-10-09 2011-06-14 Headwaters Technology Innovation Llc Highly dispersible carbon nanospheres in an organic solvent and methods for making same
US8052075B2 (en) * 2008-04-03 2011-11-08 Micron Technology, Inc. Method for purification of semiconducting single wall nanotubes
WO2010017546A1 (en) * 2008-08-08 2010-02-11 William Marsh Rice University Carbon nanotube based magnetic resonance imaging contrast agents
KR20100026432A (ko) * 2008-08-29 2010-03-10 삼성전자주식회사 탄소나노튜브 플레이트 제조 방법
US20100240900A1 (en) * 2009-03-23 2010-09-23 Headwaters Technology Innovation, Llc Dispersible carbon nanospheres and methods for making same
JP2010254494A (ja) * 2009-04-22 2010-11-11 Nec Corp ナノチューブ状物質の分離方法、製造方法及び分離装置
US8297444B2 (en) * 2009-08-24 2012-10-30 Empire Technology Development Llc Separation of carbon nanotubes using magnetic particles
US20110206932A1 (en) * 2009-10-23 2011-08-25 Showa Denko K.K. Surface-modified carbon nanotube and production method thereof
JP5553282B2 (ja) 2010-03-05 2014-07-16 独立行政法人産業技術総合研究所 カーボンナノチューブの分離回収方法及びカーボンナノチューブ
US9917225B2 (en) 2012-04-24 2018-03-13 Novasolix, Inc. Black body infrared antenna array
US9917217B2 (en) 2012-04-24 2018-03-13 Novasolix, Inc. Solar antenna array and its fabrication and uses
KR20140033555A (ko) 2012-08-29 2014-03-19 삼성전자주식회사 탄소나노튜브 분리 방법
EP3238275A4 (en) * 2014-12-24 2018-10-10 Novasolix, Inc. Solar antenna array and its fabrication
KR101744052B1 (ko) 2015-05-29 2017-06-20 가천대학교 산학협력단 폴리디메틸실록산 필름을 이용한 단일벽 탄소 나노 튜브의 분리 방법
CN104911732B (zh) * 2015-06-15 2017-08-01 东华大学 一种pps/多缺陷碳管杂化纤维及其制备方法
US10622503B2 (en) 2016-04-20 2020-04-14 Novasolix, Inc. Solar antenna array fabrication
US11114633B2 (en) 2016-04-20 2021-09-07 Novasolix, Inc. Solar antenna array fabrication
US10580920B2 (en) 2016-04-20 2020-03-03 Novasolix, Inc. Solar antenna array fabrication
US11824264B2 (en) 2016-04-20 2023-11-21 Novasolix, Inc. Solar antenna array fabrication
KR101766156B1 (ko) * 2016-09-06 2017-08-07 에스케이이노베이션 주식회사 탄소나노튜브 정제방법
CN110328211B (zh) * 2019-06-19 2022-02-01 东莞高伟光学电子有限公司 一种用于分离非金属传感器的分离方法及化学试剂

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697061A (en) * 1993-09-22 1997-12-09 Seattle Silicon Corporation Method and apparatus for providing information concerning products, using radio frequency transmissions
JP2595903B2 (ja) * 1994-07-05 1997-04-02 日本電気株式会社 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
ATE299474T1 (de) * 1997-03-07 2005-07-15 Univ Rice William M Kohlenstofffasern ausgehend von einwandigen kohlenstoffnanoröhren
KR100377630B1 (ko) 2000-09-25 2003-03-26 엘지전자 주식회사 탄소나노튜브의 선택적 제거방법
US6669918B2 (en) * 2001-08-07 2003-12-30 The Mitre Corporation Method for bulk separation of single-walled tubular fullerenes based on chirality
US7061749B2 (en) * 2002-07-01 2006-06-13 Georgia Tech Research Corporation Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
US7125533B2 (en) * 2002-11-15 2006-10-24 William Marsh Rice University Method for functionalizing carbon nanotubes utilizing peroxides

Also Published As

Publication number Publication date
JP2005194180A (ja) 2005-07-21
US7387735B2 (en) 2008-06-17
CN1644493A (zh) 2005-07-27
EP1550635B1 (en) 2007-10-31
EP1550635A1 (en) 2005-07-06
KR100580641B1 (ko) 2006-05-16
US20050214198A1 (en) 2005-09-29
DE602004009751D1 (de) 2007-12-13
DE602004009751T2 (de) 2008-08-28
KR20050071757A (ko) 2005-07-08
JP4833546B2 (ja) 2011-12-07

Similar Documents

Publication Publication Date Title
CN100560481C (zh) 半导电碳纳米管的分离方法
US20200048776A1 (en) Boron doped diamond electrode and preparation method and applications thereof
US7279247B2 (en) Carbon nanotube pastes and methods of use
JP3388222B2 (ja) カーボンナノチューブの精製方法
CN104178745B (zh) 一种多孔金刚石或多孔立方碳化硅自支撑膜的制备方法
WO2003057623A1 (fr) Complexe de nanotubes de carbone-nanocornets de carbone et son procede de production
Haniyeh et al. Controlled growth of well-Aligned carbon nanotubes, electrochemical modification and electrodeposition of multiple shapes of gold nanostructures
US8137516B2 (en) Method for manufacturing hydrogen-oxygen generating electrode plate
WO2021196518A1 (zh) 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用
CN100443402C (zh) 制备高分散短碳纳米管的化学剪切方法
Feng et al. Study on overpotential of the electrochemical hydrogen storage of multiwall carbon nanotubes
KR100753539B1 (ko) 반도체성 탄소나노튜브의 정제 방법
CN102557007B (zh) 分步萃取法分离碳纳米管的方法
CN100443167C (zh) 分次还原沉积高分散性铂催化剂颗粒的方法
Dong et al. Universal Synthesized Strategy for Amorphous Pd‐Based Nanosheets Boosting Ambient Ammonia Electrosynthesis
Thiele et al. Synthesis of carbon nanotubes on La0. 6Sr0. 4CoO3 as substrate
TWI558656B (zh) Preparation of metal-containing nano-graphite
CN103011153A (zh) 石墨烯溶胶及石墨烯的制备方法
Nützenadel et al. Electrochemical storage of hydrogen in carbon single wall nanotubes
Rath Carbon Nanofibers: Synthesis, Properties and Applications
TWI317299B (zh)
JPS6021806A (ja) 塩化ニツケル黒鉛層間化合物
Zhang et al. A horizontally aligned one-dimensional carbon nanotube array on a Si substrate
CN1865131A (zh) 纳米碳管管束的制备方法及制备装置
Luhrs et al. Process for making hollow carbon spheres

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant