WO2021196518A1 - 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用 - Google Patents

一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用 Download PDF

Info

Publication number
WO2021196518A1
WO2021196518A1 PCT/CN2020/112922 CN2020112922W WO2021196518A1 WO 2021196518 A1 WO2021196518 A1 WO 2021196518A1 CN 2020112922 W CN2020112922 W CN 2020112922W WO 2021196518 A1 WO2021196518 A1 WO 2021196518A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead dioxide
submicron
adsorptive
carbon nanotube
electrochemical reactor
Prior art date
Application number
PCT/CN2020/112922
Other languages
English (en)
French (fr)
Inventor
韩卫清
刘睿谦
刘思琪
魏卡佳
李唯
王陆
王连军
刘晓东
李健生
孙秀云
沈锦优
Original Assignee
南京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京理工大学 filed Critical 南京理工大学
Priority to US17/418,144 priority Critical patent/US20220332608A1/en
Publication of WO2021196518A1 publication Critical patent/WO2021196518A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the invention belongs to the technical field of electrocatalytic electrode preparation, and more specifically, relates to a lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor and its preparation method and its application in the treatment of low-concentration and highly toxic pollutants .
  • Electrode dioxide is a commonly used electrode material, which has attracted widespread attention due to its low price, simple preparation, and good catalytic activity.
  • Our research group discloses a method for preparing a three-dimensional ordered porous lead dioxide film electrode by a template electrodeposition method in the prior art of Chinese Patent Application Publication No. CN107302102A.
  • An intermediate layer of antimony-doped tin dioxide was first prepared on the porous titanium substrate by the sol-gel method, and then the monodispersed polystyrene microspheres were used as a template, and then assembled on the intermediate layer by natural sedimentation.
  • a lead dioxide active layer is prepared in the gap of the template agent, and finally the template agent is dissolved to obtain a lead dioxide film electrode with a porous structure.
  • the lead dioxide membrane electrode in the prior art has a three-dimensional ordered porous structure, a large specific surface area, many electrochemically active sites, and a large filtering flux, which overcomes the compact structure of the traditional lead dioxide electrode and cannot be applied to filter type
  • the defects of the electrochemical system have great application value in the field of electrochemical catalysis.
  • a carbon nanotube-ruthenium dioxide adsorption electrode can be obtained by introducing a layer of carbon nanotubes on the prepared active layer of ruthenium dioxide through filtration, solvent evaporation, and high-temperature sintering. Composed of a matrix, a ruthenium dioxide catalytic layer and a carbon nanotube adsorption layer, it can increase the mass transfer rate of organic matter on the electrode surface, and achieve good results in the treatment of low-concentration, refractory pollutants in the water (A multi-walled carbon nanotube electrode based on porous Graphite-RuO 2 in electrochemical filter for pyrrole degradation. Chemical Engineering Journal, 2017,330,956-964.).
  • the adsorptive electrode of this structure simply superimposes the adsorption layer and the catalytic layer.
  • the contact area between carbon nanotubes and ruthenium dioxide is small. After the adsorption is saturated, there is only a thin layer of carbon adjacent to the ruthenium dioxide catalytic layer.
  • the organic matter on the nanotube adsorption layer can be desorbed in situ by electrocatalysis. After filtration and solvent evaporation, the structure of the carbon nanotube adsorption layer is too dense, the specific surface area drops sharply, and the adsorption capacity decreases.
  • the carbon nanotube adsorption layer prepared by solvent evaporation and high-temperature sintering only adheres to the surface of ruthenium dioxide through physical action, and is easy to fall off during the electrolysis process.
  • ruthenium dioxide has low oxygen evolution potential and poor catalytic activity, and is not suitable for the treatment of difficult-to-degrade organics. Therefore, the adsorption capacity of this kind of adsorptive electrode is small, the in-situ desorption is not complete, the adsorption layer is unstable, the catalytic efficiency is low, and the electrode life is poor.
  • the present invention provides a lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor and a preparation method thereof And application, the carbon nanotubes are embedded in the three-dimensional ordered porous lead dioxide electrode, so that the carbon nanotubes are evenly distributed and fully play the role of adsorption. At the same time, the stability of the electrode is improved, and the carbon nanotubes are not easy to fall off during the electrolysis process. It can be used repeatedly to improve electrochemical oxidation efficiency and reduce energy consumption through adsorption-catalysis synergy.
  • a lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor is composed of multiple layers of orderly arranged submicron lead dioxide spherical cavities, and the cavities are connected to each other , Carbon nanotubes are partially or completely embedded (branched) inside the lead dioxide cavity and on the wall of the hole. Because the carbon nanotubes are partially or completely embedded in the lead dioxide cavities, they have good stability and are not easy to fall off; each lead dioxide cavity and the carbon nanotubes in it form a submicron electrochemical reactor.
  • the carbon nanotubes pass through Active adsorption promotes the diffusion of organic matter in the bulk solution into the sub-micron electrochemical reactor, and then the pollutants entering the sub-micron reactor are oxidized and removed by the hydroxyl radicals generated on the surface of the lead dioxide.
  • the active adsorption of carbon nanotubes can significantly improve the mass transfer efficiency in the electrochemical process, strengthen the removal of pollutants, and reduce treatment costs. Under the above-mentioned submicron electrochemical reactor's adsorption-catalysis synergy, the electrochemical oxidation efficiency is effectively improved.
  • the size of the cavity is 0.3-10 ⁇ m.
  • the present invention also provides a method for preparing the above-mentioned submicron electrochemical reactor, and a method for preparing a lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor, including: firstly adopting a spherical template with carbon nanotubes attached Settling on the substrate to form a thin film, and then prepare a lead dioxide active layer in the gaps of the spherical template agent by electrodeposition, and finally dissolve the template to prepare the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor .
  • the hard template and carbon nanotubes are simultaneously introduced. After the hard template is removed, interconnected spherical cavities are formed in the lead dioxide active layer, and the carbon nanotubes are directly retained and fixed. In the inner cavity of the active layer, it is more uniform and stable, and it is not easy to fall off.
  • the substrate is selected from one of tin oxide antimony conductive glass, titanium plate, foamed titanium, foamed nickel, and graphite plate.
  • the spherical template agent is selected from one or more of polystyrene microspheres and polyacrylic acid microspheres.
  • the preparation method includes the following steps:
  • Step 1 Clean the tin oxide antimony conductive glass; mix the dispersion containing polystyrene and the dispersion of carbon nanotubes, and after heating, obtain a mixed dispersion of carbon nanotubes adhered to the surface of the polystyrene microsphere template ;
  • Step 2 Drop the mixed dispersion liquid described in Step 1 onto the surface of the tin oxide antimony conductive glass, and after drying, the polystyrene microsphere template with carbon nanotubes adhered to form a thin film;
  • Step 3 Use electrodeposition to prepare a lead dioxide active layer in the gaps of the polystyrene microsphere template in the film described in Step 2;
  • Step 4 using an organic solvent dissolution method to dissolve the polystyrene microsphere template to obtain a lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor.
  • the mass ratio of polystyrene and carbon nanotubes in the mixed dispersion in the step 1 is (1-3):1.
  • the mass fraction of the polystyrene dispersion liquid and the carbon nanotube dispersion liquid in the step 1 are the same, and within the range of 0.1% to 1%.
  • the heating temperature after mixing the polystyrene and the carbon nanotubes in the step 1 is 80-180° C., and the heating time is 10-60 min.
  • the dropping amount of the mixed dispersion liquid on the surface of the tin oxide antimony conductive glass is 0.1-1 mL/cm 2 .
  • the drying temperature in the step 2 is 40-80°C, and the drying time is 0.5-2h.
  • the electrodeposition current is 5-30 mA/cm -2
  • the electrodeposition time is 5-30 min
  • the temperature is 30-70°C.
  • the organic solvent in step 4 is selected from one of tetrachloroethane, styrene, isopropane, benzene, chloroform, xylene, toluene, carbon tetrachloride, and methyl ethyl ketone.
  • the invention also provides an application of the above-mentioned lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor in removing pollutants in water.
  • the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor of the present invention is composed of multiple layers of orderly arranged submicron lead dioxide spherical cavities, and each cavities are connected to each other.
  • the tubes are uniformly staggered in the shape of "branches" in the lead dioxide cavities and on the pore walls.
  • the carbon nanotubes are not easy to fall off, and the electrode stability is good; the sub-micron lead dioxide cavities greatly increase the electrochemical activity of the electrode
  • the area and the narrow pore size can effectively increase the local concentration of hydroxyl radicals in the pore;
  • the introduction of carbon nanotubes can provide a large number of adsorption sites for the electrode, which significantly enhances the active adsorption of pollutants in the bulk solution on the electrode surface .
  • the adsorption-catalysis synergistic effect inside the submicron reactor effectively improves the low catalytic efficiency and diffusion control problems of the traditional flat lead dioxide electrode, and greatly improves the electrochemical catalytic performance of the electrode; at the same time, the adsorption on the carbon nanotubes Pollutants hinder the attack of active oxidants such as hydroxyl radicals on carbon nanotubes and enhance the life of the adsorptive electrode;
  • the carbon nanotubes are adhered to the spherical template, and then deposited on the substrate to form a thin film, and then the lead dioxide active layer is prepared in the gap of the spherical template by the electrodeposition method, and finally the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor prepared by dissolving the template can ensure that the carbon nanotubes are partially or completely embedded in the lead dioxide active layer, so that the two are more firmly combined, and the electrodes are repeated Stability in use;
  • the present invention can make the carbon nanotubes evenly and staggeredly embedded in the lead dioxide active layer, avoiding the excessive density of the carbon nanotubes.
  • Figure 1 is a SEM image of a lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor obtained in Example 1 of the present invention.
  • Example 2 is a diagram showing the pore size distribution of (a) a lead dioxide electrode prepared by a traditional method and (b) a lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor obtained in Example 1 of the present invention.
  • Figure 3 shows the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor (PbO 2 submicroreactor) prepared in Example 1 and CF-PbO 2 , 3D-PbO 2 , CNTs/ CNTs prepared in Comparative Examples 1A-1D. Adsorption equilibrium diagrams of ferulic acid on PbO 2 and PbO 2 -CNTs electrodes.
  • Figure 4 shows the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor (PbO 2 submicroreactor) prepared in Example 1 of the present invention and CF-PbO 2 , 3D-PbO 2 , 3D-PbO 2, prepared in Comparative Examples 1A-1D CNTs/PbO 2 and PbO 2 -CNTs electrodes for ferulic acid removal efficiency changes with time.
  • PbO 2 submicroreactor lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor
  • Figure 5 shows the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor (PbO 2 submicroreactor) prepared in Example 1 of the present invention and PbO 2 -CNTs prepared in Comparative Example 1D for repeated adsorption of ferulic acid Renderings.
  • Fig. 6 is an adsorption equilibrium diagram of the lead dioxide-carbon nanotube adsorbent submicroreactor (PbO 2 submicroreactor) obtained in Example 1 of the present invention for adsorption of bisphenol A, salicylic acid, and carbamazepine.
  • the term "about” is used to provide flexibility and imprecision associated with a given term, metric, or value. Those skilled in the art can easily determine the degree of flexibility of specific variables.
  • the prepared sample is used as the anode, the same size stainless steel is used as the cathode, the distance between the two electrodes is controlled to be 0.5 cm, the magnetic stirrer is turned on, and the anode constant current electrodeposition is performed in the electrodeposition solution.
  • the electrodeposition solution is an aqueous solution containing 0.5mol/L lead nitrate and 0.2mol/L nitric acid, the current density is 5mAcm -2 , the electrodeposition time is 30min, and the temperature is controlled at 55°C, then the anode is taken out and rinsed with deionized water , Soak in toluene solution for 8 hours, dissolve the polystyrene microspheres, take out the sample, rinse, and dry to prepare a lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor.
  • Figure 1 is a SEM image of the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor obtained in this example. It can be seen in the figure that after dissolving the polystyrene microspheres, the lead dioxide-carbon nanotube composite active layer can maintain a complete inverse opal-like structure, and it can be seen that the carbon nanotubes and lead dioxide in the framework are well compounded, and the formation is similar to The structure of asbestos, and the edge of the skeleton is burr-like, which increases the exposure of carbon nanotubes, greatly increases the adsorption capacity and specific surface area of the electrode, and facilitates the adsorption of pollutants on the catalytic surface of the electrode.
  • the anode constant current electrodeposition is carried out in the electrodeposition solution.
  • the electrodeposition solution is an aqueous solution containing 0.5mol/L lead nitrate and 0.2mol/L nitric acid, the current density is 5mAcm -2 , the electrodeposition time is 30min, and the temperature is controlled at 55°C, then the anode is taken out and rinsed with deionized water After taking out the sample, washing and drying, the traditional flat lead dioxide electrode is made.
  • the specific steps are as follows: Cut the tin oxide antimony conductive glass into a size of 5*5cm, wash it with acetone, ethanol and water; add 2.5 mL of a dispersion of 0.17% polystyrene microspheres with a diameter of 0.6 ⁇ m on On the cleaned tin oxide antimony conductive glass, the sample is placed in an oven at 40° C. to dry, and a layer of polystyrene microsphere film is formed on the surface of the tin oxide antimony conductive glass.
  • the prepared sample is used as the anode, the same size stainless steel is used as the cathode, the distance between the two electrodes is controlled to be 0.5 cm, the magnetic stirrer is turned on, and the anode constant current electrodeposition is performed in the electrodeposition solution.
  • the electrodeposition solution is an aqueous solution containing 0.5mol/L lead nitrate and 0.2mol/L nitric acid, the current density is 5mAcm -2 , the electrodeposition time is 30min, and the temperature is controlled at 55°C, then the anode is taken out and rinsed with deionized water , Soak in toluene solution for 8 hours, dissolve the polystyrene microspheres, take out the sample, rinse, and dry to prepare a three-dimensional ordered porous lead dioxide electrode.
  • the specific preparation steps of the carbon nanotube/lead dioxide composite electrode are as follows: Cut the tin oxide antimony conductive glass into a size of 5*5cm, and wash it with acetone, ethanol and water; 2.5mL of 0.08% carbon The nanotube dispersion was added dropwise to the cleaned tin oxide antimony conductive glass, and then the sample was dried in an oven at 40°C to form a carbon nanotube film on the surface of the tin oxide antimony conductive glass.
  • the prepared sample is used as the anode, the same size stainless steel is used as the cathode, the distance between the two electrodes is controlled to be 0.5 cm, the magnetic stirrer is turned on, and the anode constant current electrodeposition is performed in the electrodeposition solution.
  • the electrodeposition solution is an aqueous solution containing 0.5mol/L lead nitrate and 0.2mol/L nitric acid, the current density is 5mAcm -2 , the electrodeposition time is 30min, and the temperature is controlled at 55°C, then the anode is taken out and rinsed with deionized water ,
  • the carbon nanotube/lead dioxide composite electrode was prepared.
  • the specific preparation steps are as follows: cut the tin oxide antimony conductive glass into a size of 5*5cm, wash it with acetone, ethanol and water; use the treated conductive glass as the anode, and the same size stainless steel as the cathode, control the distance between the two electrodes to 0.5cm, and turn it on Stir with a magnetic stirrer, and perform anode constant current electrodeposition in the electrodeposition solution.
  • the electrodeposition solution is an aqueous solution containing 0.5mol/L lead nitrate and 0.2mol/L nitric acid, the current density is 5mAcm -2 , the electrodeposition time is 30min, and the temperature is controlled at 55°C, then the anode is taken out and rinsed with deionized water .
  • Table 1 shows the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor (PbO 2 submicroreactor) obtained in Example 1 and the CF-PbO 2 , 3D-PbO 2 , CNTs/PbO obtained in Comparative Examples 1A-1D 2 and PbO 2 -CNTs specific surface area values obtained by BET test.
  • Carbon nanotubes are covered by lead dioxide, resulting in a small specific surface area; in Comparative Example 1D, by simply bonding carbon nanotubes to the surface of the lead dioxide electrode, the lead dioxide-carbon nanotube adsorbent electrode (PbO 2- The specific surface area of CNTs is increased to 79.62m 2 /g. Although the specific surface area of the electrode is greatly increased, only the carbon nanotubes are simply bonded to the electrode surface. This method produces short-lived, surface-adhesive carbon nanotubes. Easy to fall off. In Example 1, when the polystyrene template was used to introduce the porous structure and carbon nanotubes at the same time, the specific surface area reached 76.56m 2 /g.
  • Example 2 is a diagram showing the pore size distribution of (a) Comparative Example 1A electrode CF-PbO 2 and (b) the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor obtained in Example 1 of the present invention. It can be seen from the figure that the resulting lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor has more micropores and mesopores, which are beneficial to increase the specific surface area of the electrode.
  • the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor prepared in Comparative Example 1 and the CF-PbO 2 , 3D-PbO 2 , CNTs/PbO 2 and PbO 2 -CNTs prepared in Comparative Examples 1A-1D The adsorption effect of several kinds of electrodes on ferulic acid.
  • the specific method is: preparing 300 mL of ferulic acid simulated wastewater with a concentration of 40 mg/L, and using the prepared electrode and stainless steel plate as the anode and the cathode, respectively.
  • the size of the anode is 5cm*5cm
  • the geometric surface area is 25cm 2
  • the thickness is 0.1cm.
  • the geometric size of the cathode is the same as that of the anode.
  • Titanium wires are used to connect the positive and negative electrodes of the power supply respectively. Adsorb ferulic acid and compare the adsorption performance of several electrodes for ferulic acid.
  • Figure 3 shows the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor prepared in Example 1 and CF-PbO 2 , 3D-PbO 2 , CNTs/PbO 2 and PbO 2 prepared in Comparative Examples 1A-1D -Adsorption equilibrium diagram of ferulic acid on several CNTs electrodes. It can be seen from the figure that within 120 minutes, when carbon nanotubes are not introduced, the adsorption capacity of CF-PbO 2 and 3D-PbO 2 is very small. After the introduction of carbon nanotubes, the adsorption capacity of CNTs/PbO 2 is still very high. Small, because the carbon nanotubes are almost completely covered by lead dioxide.
  • the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor and PbO 2 -CNTs rely on pure adsorption to reduce the concentration of ferulic acid solution from 40 mg/L to less than 16 mg/L in about 50 minutes.
  • the carbon nanotubes in the lead dioxide-carbon nanotubes adsorptive submicron electrochemical reactor obtained in 1 are not affected by the lead dioxide coverage, and the adsorption effect is still relatively obvious.
  • Figure 4 is the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor prepared in Example 1 of the present invention and CF-PbO 2 , 3D-PbO 2 , CNTs/PbO 2 and CF-PbO 2, 3D-PbO 2, and CNTs/PbO 2 prepared in Comparative Examples 1A-1D
  • the removal efficiency of ferulic acid by PbO 2 -CNTs electrodes changes with time. It can be seen from the figure that after 1 hour of electrolysis, the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor has better electrocatalytic performance, and ferulic acid is almost completely removed.
  • Fig. 5 is a graph showing the repeated adsorption of ferulic acid on the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor prepared in Example 1 of the present invention and the PbO 2 -CNTs electrode prepared in Comparative Example 1D. It can be seen that after 10 times of repeated use, the adsorption effect of PbO 2 -CNTs decreased significantly, and the adsorption effect was almost 0 at the third time, which may be caused by the carbon nanotubes falling off during the electrolysis process.
  • the adsorption effect of the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor did not decrease significantly after repeated use for 10 times, indicating that the prepared lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor can be effective Adsorb organic pollutants and oxidize them in situ.
  • Fig. 6 is an adsorption equilibrium diagram of the lead dioxide-carbon nanotube adsorbent submicroreactor (PbO 2 submicroreactor) obtained in Example 1 of the present invention for adsorption of bisphenol A, salicylic acid, and carbamazepine. It can be seen from the figure that within 60 minutes, the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor can reduce the concentration of bisphenol A, salicylic acid, and carbamazepine from 40 mg/ The L decreased to 25 mg/L, indicating that the lead dioxide-carbon nanotube adsorbent submicron electrochemical reactor obtained in Example 1 of the present invention has a good adsorption effect on a variety of pollutants.
  • spherical templating agents with dimensions other than 0.6 ⁇ m in the range of 0.3 to 10 ⁇ m are also used to prepare lead dioxide-carbon nanotube adsorbents with different pore sizes in the same method as in Example 1. Micron electrochemical reactor.
  • the mass ratio of polystyrene and carbon nanotubes is (1 ⁇ 3): 1 other than 1:1 to introduce templating agent and carbon nanotubes, so as to be the same as in Example 1.
  • the method prepares lead dioxide-carbon nanotube adsorptive submicron electrochemical reactors with different embedded amounts of carbon nanotubes.
  • polystyrene dispersions and carbon nanotube dispersions with the same mass fraction in the range of 0.1 to 1% are used to prepare cavities and carbon nanotubes with different densities in the same method as in Example 1.
  • the heating temperature is 80-180°C, and the heating time is 10-60 min.
  • the lead dioxide-carbon nanotubes are prepared in the same manner as in Example 1. Tube adsorptive submicron electrochemical reactor.
  • the dropping amount of the mixed dispersion of polystyrene and carbon nanotubes on the surface of the tin oxide antimony conductive glass is 0.1 to 1 mL/cm 2 , and the two are prepared by the same method as in Example 1. Lead oxide-carbon nanotube adsorptive submicron electrochemical reactor.
  • the mixed dispersion is added dropwise to the cleaned tin oxide antimony conductive glass and the drying temperature is 40-80°C, and the drying time is 0.5-2h, and it is prepared by the same method as in Example 1.
  • a lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor is obtained.
  • the electrodeposition current is 5-30 mA/cm -2
  • the electrodeposition time is 5-30 min
  • the temperature is 30-70° C.
  • the method is the same as in Example 1.
  • the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor is prepared.
  • an organic solvent selected from the group consisting of tetrachloroethane, styrene, isopropane, benzene, chloroform, xylene, toluene, carbon tetrachloride, and methyl ethyl ketone is used to remove the polystyrene microsphere template.
  • the lead dioxide-carbon nanotube adsorptive submicron electrochemical reactor was prepared by the same method as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用,属于电催化电极制备技术领域。本发明的亚微米电化学反应器由多层有序排列的亚微米级二氧化铅球状孔腔组成,孔腔之间互相连通,碳纳米管部分或全部嵌入(枝杈状)在二氧化铅孔腔内部及孔壁上。亚微米级的二氧化铅孔腔极大地增加了电极的电化学活性面积,狭窄的孔腔尺寸提高了羟基自由基在孔腔内的局部浓度;碳纳米管的引入为电极提供大量吸附位点,显著增强了电极表面对本体溶液中污染物的主动吸附作用,亚微米反应器内部的吸附-催化协同效应有效改善了传统平板二氧化铅电极催化效率低和扩散控制等问题,极大地提高了电极的电化学催化性能。

Description

一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用 技术领域
本发明属于电催化电极制备技术领域,更具体地说,涉及一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法及其在低浓度高毒性污染物处理中的应用。
背景技术
电化学氧化法以其高效性、环境友好等独特的优点,在处理难降解有机废水领域引起了广泛的关注。二氧化铅是一种常用的电极材料,由于价格低廉、制备简单、催化活性好等优点已受到广泛关注。本课题组在中国专利申请公开号为CN107302102A的现有技术中公开了一种模板电沉积法制备三维有序多孔二氧化铅膜电极的方法。通过溶胶凝胶法首先在多孔钛基体上制备出掺锑二氧化锡中间层,再以聚苯乙烯微球单分散液作为模板剂,经过自然沉降组装在中间层上,然后通过电沉积法在模板剂间隙制备二氧化铅活性层,最后溶解模板剂获得具有多孔结构的二氧化铅膜电极。该现有技术中的二氧化铅膜电极具有三维有序的多孔结构,比表面积大、电化学活性位点多、过滤通量大,克服了传统二氧化铅电极结构致密、无法应用于过滤式电化学体系的缺陷,在电化学催化领域具有极大的应用价值。
但是,传统的电化学体系中,由于扩散控制的限制,存在传质效率低,能耗高等缺陷,且这些问题在传统电化学系统中难以解决,尽管上述的电极已经较传统二氧化铅电极传质效率有较大提高,但仍存在扩散控制瓶颈。近年来,研究发现将电催化与吸附作用耦合的吸附性电极可以显著增强传质以及促进电子转移(S.T.Lohner,D.Becker,K.-M.Mangold,A.Tiehm,Sequential(2011).Reductive and Oxidative Biodegradation of Chloroethenes Stimulated in a Coupled Bioelectro-Process.Environmental Science&Technology,45,6491-6497.)。
本课题组早前已经有文献报道在制备好的二氧化钌活性层上通过过滤、溶剂蒸发、高温烧结等手段引入一层碳纳米管可以得到碳纳米管-二氧化钌吸附性电极,该电极由基体、二氧化钌催化层和碳纳米管吸附层组成,可以提高有机物在电极表面的传质速率,并在处理水中低浓度、难降解污染物取得良好效果(A multi-walled carbon nanotube electrode based on porous Graphite-RuO 2in electrochemical filter for pyrrole degradation.Chemical Engineering Journal,2017,330,956-964.)。但是,这种结构的吸附性电极只是将吸附层与催化层的简单叠加,碳纳米管与二氧化钌接触面积小,吸附饱和后,只有与二氧化钌催化层毗邻的一层很薄的碳纳米管吸附层上的有机物可以通过电催化作用被原位解吸。通过过滤、溶剂蒸发后碳纳米管吸 附层结构过于致密,比表面积急剧下降,吸附能力减小。此外,通过溶剂蒸发和高温烧结制备的碳纳米管吸附层只是通过物理作用黏附在二氧化钌表面,电解过程中易脱落。而且,二氧化钌作为典型的活性电极析氧电位低、催化活性差,不适合用于难降解有机物的处理。因此,这种吸附性电极吸附量小、原位解吸不完全,吸附层不稳定,催化效率低,电极寿命差。
发明内容
1.要解决的问题
针对现有技术中通过物理作用在电极表面黏附碳纳米管吸附能力低且电解过程不稳定的问题,本发明提供一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用,将碳纳米管嵌入到三维有序多孔二氧化铅电极中,使碳纳米管均匀分布并充分发挥吸附作用,同时,提高了电极的稳定性,在电解过程中碳纳米管不易脱落,可多次反复使用,通过吸附-催化协同作用提高电化学氧化效率、降低能耗。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
一种二氧化铅-碳纳米管吸附性亚微米电化学反应器,所述亚微米电化学反应器由多层有序排列的亚微米级二氧化铅球状孔腔组成,孔腔之间互相连通,碳纳米管部分或全部嵌入(枝杈状)在二氧化铅孔腔内部及孔壁上。由于碳纳米管部分或全部嵌入在二氧化铅孔腔内部,稳定性好,不易脱落;每一个二氧化铅孔腔和其中的碳纳米管组成一个亚微米电化学反应器,首先碳纳米管通过主动吸附作用促进本体溶液中的有机物扩散进入亚微米电化学反应器中,之后进入亚微米反应器的污染物被二氧化铅表面产生的羟基自由基氧化去除。碳纳米管的主动吸附作用可以显著提高电化学过程中的传质效率,强化污染物去除,降低处理成本。在上述的亚微米电化学反应器的吸附-催化协同作用下,有效提高电化学氧化效率。
优选地,所述孔腔尺寸为0.3~10μm。
本发明还提供了上述亚微米电化学反应器的制备方法,一种二氧化铅-碳纳米管吸附性亚微米电化学反应器的制备方法,包括:首先采用黏附有碳纳米管的球状模板剂沉降在基体上形成薄膜,再通过电沉积法在所述球状模板剂的缝隙中制备二氧化铅活性层,最后溶解模板制得所述二氧化铅-碳纳米管吸附性亚微米电化学反应器。在制备二氧化铅催化层的过程中同步引入硬模板和碳纳米管,在去除硬模板剂后,在二氧化铅活性层中形成一个个互相连通的球形孔腔,碳纳米管被直接保留固定在活性层内部孔腔中,更为均匀、稳定,不易脱落。
优选地,所述基体选自氧化锡锑导电玻璃、钛板、泡沫钛、泡沫镍、石墨板中的一种。
优选地,所述球状模板剂选自聚苯乙烯微球、聚丙烯酸微球中的一种或几种。
优选地,所述制备方法包括以下步骤:
步骤1,将氧化锡锑导电玻璃进行清洗;将含有聚苯乙烯的分散液和碳纳米管的分散液混合,经加热后,得到碳纳米管黏附于聚苯乙烯微球模板表面的混合分散液;
步骤2,将步骤1所述混合分散液滴至氧化锡锑导电玻璃表面,烘干后,黏附有碳纳米管的聚苯乙烯微球模板形成一层薄膜;
步骤3,使用电沉积法在步骤2所述薄膜中聚苯乙烯微球模板的缝隙中制备二氧化铅活性层;
步骤4,使用有机溶剂溶解法溶解聚苯乙烯微球模板获得二氧化铅-碳纳米管吸附性亚微米电化学反应器。
优选地,所述步骤1中混合分散液中聚苯乙烯和碳纳米管的质量比为(1~3):1。
优选地,所述步骤1中聚苯乙烯分散液和碳纳米管分散液的质量分数相同,且在区间0.1~1%范围内。
优选地,所述步骤1中聚苯乙烯和碳纳米管混合后加热温度为80~180℃,加热时间为10~60min。
优选地,所述步骤2中混合分散液在氧化锡锑导电玻璃表面的滴加量为0.1~1mL/cm 2
优选地,所述步骤2中烘干温度为40~80℃,烘干时间为0.5~2h。
优选地,所述步骤3中,电沉积电流为5~30mA/cm -2,电沉积时间为5~30min,温度为30~70℃。
优选地,所述步骤4中有机溶剂选自四氯乙烷、苯乙烯、异丙烷、苯、氯仿、二甲苯、甲苯、四氯化碳、甲乙酮中的一种。
本发明还提供一种上述的二氧化铅-碳纳米管吸附性亚微米电化学反应器在去除水中污染物的应用。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明的二氧化铅-碳纳米管吸附性亚微米电化学反应器由多层有序排列的亚微米级二氧化铅球状孔腔组成,每个孔腔之间互相连通,碳纳米管以“枝杈”状均匀交错分布在二氧化铅孔腔内部及孔壁上,碳纳米管不易脱落,电极稳定性好;亚微米级的二氧化铅孔腔极大地增加了电极的电化学活性面积,狭窄的孔腔尺寸能够有效提高羟基自由基在孔腔内的局部浓度;碳纳米管的引入能够为电极提供大量吸附位点,显著增强了电极表面对本体溶液中污染物的主动吸附作用,亚微米反应器内部的吸附-催化协同效应有效改善了传统平板二氧化铅电极催化效率低和扩散控制等问题,极大地提高了电极的电化学催化性能;同时,吸附在碳纳米管上的污染物阻碍了羟基自由基等活性氧化剂对碳纳米管的攻击,增强了吸附性电极 的寿命;
(2)本发明中采用将碳纳米管黏附在球状模板剂上,再将其沉降在基体上形成薄膜,再通过电沉积法在所述球状模板剂的缝隙中制备二氧化铅活性层,最后溶解模板制得所述二氧化铅-碳纳米管吸附性亚微米电化学反应器,能够确保碳纳米管部分或全部嵌入到二氧化铅活性层中,使二者结合更为牢固,保证电极反复使用时的稳定性;
(3)本发明通过控制球状模板剂与碳纳米管的比例,以及沉积二氧化铅的条件,能够使碳纳米管均匀且交错地嵌入于二氧化铅活性层,避免了碳纳米管过于致密导致的吸附能力下降的问题。
附图说明
图1是本发明实施例1中所得二氧化铅-碳纳米管吸附性亚微米电化学反应器的SEM图。
图2是(a)传统方法制备的二氧化铅电极和(b)本发明实施例1中所得二氧化铅-碳纳米管吸附性亚微米电化学反应器的孔径分布图。
图3是实施例1中制备的二氧化铅-碳纳米管吸附性亚微米电化学反应器(PbO 2submicroreactor)和对比例1A-1D中制备的CF-PbO 2、3D-PbO 2、CNTs/PbO 2和PbO 2-CNTs几种电极吸附阿魏酸的吸附平衡图。
图4是本发明实施例1中制备的二氧化铅-碳纳米管吸附性亚微米电化学反应器(PbO 2submicroreactor)和对比例1A-1D中制备的CF-PbO 2、3D-PbO 2、CNTs/PbO 2和PbO 2-CNTs几种电极对阿魏酸去除效率随时间变化图。
图5是本发明实施例1中制备的二氧化铅-碳纳米管吸附性亚微米电化学反应器(PbO 2submicroreactor)和对比例1D中制备的PbO 2-CNTs两种电极重复吸附阿魏酸的效果图。
图6是本发明实施例1中所得二氧化铅-碳纳米管吸附性亚微米电化学反应器(PbO 2submicroreactor)吸附双酚A、水杨酸、卡马西平的吸附平衡图。
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同;本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
如本文所使用,术语“约”用于提供与给定术语、度量或值相关联的灵活性和不精确性。本领域技术人员可以容易地确定具体变量的灵活性程度。
浓度、量和其他数值数据可以在本文中以范围格式呈现。应当理解,这样的范围格式仅 是为了方便和简洁而使用,并且应当灵活地解释为不仅包括明确叙述为范围极限的数值,而且还包括涵盖在所述范围内的所有单独的数值或子范围,就如同每个数值和子范围都被明确叙述一样。例如,约1至约4.5的数值范围应当被解释为不仅包括明确叙述的1至约4.5的极限值,而且还包括单独的数字(诸如2、3、4)和子范围(诸如1至3、2至4等)。相同的原理适用于仅叙述一个数值的范围,诸如“小于约4.5”,应当将其解释为包括所有上述的值和范围。此外,无论所描述的范围或特征的广度如何,都应当适用这种解释。
下面结合具体实施例对本发明进一步进行描述。
实施例1
将氧化锡锑导电玻璃切割成尺寸5*5cm,用丙酮、乙醇和水洗净;将质量分数为0.25%的直径为0.6μm聚苯乙烯微球分散液与质量分数为0.25%的碳纳米管分散液按质量比2:1混合,混合后在80℃水浴中加热,保持1h;将2.5mL的混合分散液滴加在洗净后的氧化锡锑导电玻璃上,然后将样品置于40℃烘箱中烘干,在氧化锡锑导电玻璃表面形成一层由黏附有碳纳米管的聚苯乙烯微球薄膜。以制得样品作为阳极,相同大小不锈钢作为阴极,控制两电极间距0.5cm,开启磁力搅拌器搅拌,在电沉积液中进行阳极恒流电沉积。其中,电沉积液为含有0.5mol/L硝酸铅和0.2mol/L硝酸的水溶液,电流密度为5mAcm -2,电沉积时间为30min,控制温度为55℃,然后取出阳极,用去离子水冲洗,浸泡在甲苯溶液中8h,溶解聚苯乙烯微球,取出样品冲洗、烘干后制得二氧化铅-碳纳米管吸附性亚微米电化学反应器。
图1是本实施例中所得二氧化铅-碳纳米管吸附性亚微米电化学反应器的SEM图。图中可以看出溶解聚苯乙烯微球后,二氧化铅-碳纳米管复合活性层可以保持完整类反蛋白石结构,且可以看出骨架中碳纳米管与二氧化铅复合良好,形成类似于石棉的结构,而骨架边缘则呈毛刺状,提高了碳纳米管的暴露程度,极大增加了电极的吸附量和比表面积,有利于污染物在电极催化表面的吸附。
对比例1A——传统平板二氧化铅电极(CF-PbO 2)
根据A.Ansari,D.Nematollahi,A comprehensive study on the electrocatalytic degradation,electrochemical behavior and degradation mechanism of malachite green using electrodeposited nanostructured beta-PbO 2electrodes,Water Res,144(2018)462-473.制备出了传统平板二氧化铅电极(CF-PbO 2)。具体步骤如下:将氧化锡锑导电玻璃切割成尺寸5*5cm,用丙酮、乙醇和水洗净;已处理后的导电玻璃作为阳极,相同大小不锈钢作为阴极,控制两电极间距0.5cm,开启磁力搅拌器搅拌,在电沉积液中进行阳极恒流电沉积。其中,电沉积液为含有0.5mol/L硝酸铅和0.2mol/L硝酸的水溶液,电流密度为5mAcm -2,电沉积时间为30min,控制温度为55℃,然后取出阳极,用去离子水冲洗,取出样品冲洗、烘干后制得传统平板二氧化铅电极。
对比例1B——三维有序多孔二氧化铅电极(3D-PbO 2)
根据Liu S,Wang Y,Zhou X,et al.Improved degradation of the aqueous flutriafol using a nanostructure macroporous PbO 2as reactive electrochemical membrane[J].Electrochimica Acta,2017,253:357-367.制备出了三维有序多孔二氧化铅电极(3D-PbO 2)。具体步骤如下:将氧化锡锑导电玻璃切割成尺寸5*5cm,用丙酮、乙醇和水洗净;将2.5mL的质量分数为0.17%的直径为0.6μm聚苯乙烯微球分散液滴加在洗净后的氧化锡锑导电玻璃上,然后将样品置于40℃烘箱中烘干,在氧化锡锑导电玻璃表面形成一层聚苯乙烯微球薄膜。以制得样品作为阳极,相同大小不锈钢作为阴极,控制两电极间距0.5cm,开启磁力搅拌器搅拌,在电沉积液中进行阳极恒流电沉积。其中,电沉积液为含有0.5mol/L硝酸铅和0.2mol/L硝酸的水溶液,电流密度为5mAcm -2,电沉积时间为30min,控制温度为55℃,然后取出阳极,用去离子水冲洗,浸泡在甲苯溶液中8h,溶解聚苯乙烯微球,取出样品冲洗、烘干后制得三维有序多孔二氧化铅电极。
对比例1C——碳纳米管/二氧化铅复合型电极(CNTs/PbO 2)
碳纳米管/二氧化铅复合型电极(CNTs/PbO 2)具体制备步骤如下:将氧化锡锑导电玻璃切割成尺寸5*5cm,用丙酮、乙醇和水洗净;将2.5mL的0.08%碳纳米管分散液滴加在洗净后的氧化锡锑导电玻璃上,然后将样品置于40℃烘箱中烘干,在氧化锡锑导电玻璃表面形成一层碳纳米管薄膜。以制得样品作为阳极,相同大小不锈钢作为阴极,控制两电极间距0.5cm,开启磁力搅拌器搅拌,在电沉积液中进行阳极恒流电沉积。其中,电沉积液为含有0.5mol/L硝酸铅和0.2mol/L硝酸的水溶液,电流密度为5mAcm -2,电沉积时间为30min,控制温度为55℃,然后取出阳极,用去离子水冲洗,制得碳纳米管/二氧化铅复合型电极。
对比例1D——二氧化铅-碳纳米管吸附性电极(PbO 2-CNTs)
根据Zhou X,Liu S,Xu A,et al.A multi-walled carbon nanotube electrode based on porous Graphite-RuO 2in electrochemical filter for pyrrole degradation[J].Chemical Engineering Journal,2017,330:956-964.制备出了二氧化铅-碳纳米管吸附性电极(PbO 2-CNTs)。具体制备步骤如下:将氧化锡锑导电玻璃切割成尺寸5*5cm,用丙酮、乙醇和水洗净;以处理后的导电玻璃作为阳极,相同大小不锈钢作为阴极,控制两电极间距0.5cm,开启磁力搅拌器搅拌,在电沉积液中进行阳极恒流电沉积。其中,电沉积液为含有0.5mol/L硝酸铅和0.2mol/L硝酸的水溶液,电流密度为5mAcm -2,电沉积时间为30min,控制温度为55℃,然后取出阳极,用去离子水冲洗。将2.5mL的0.08%碳纳米管分散液(含0.5%聚丙烯腈黏合剂)滴加在制备好的样品上,然后将样品置于60℃烘箱中烘干,制得二氧化铅-碳纳米管吸附性电极。
表1为实施例1中所得的二氧化铅-碳纳米管吸附性亚微米电化学反应器(PbO 2 submicroreactor)和对比例1A-1D中所得CF-PbO 2、3D-PbO 2、CNTs/PbO 2和PbO 2-CNTs通过BET测试所获得的比表面积值。
表1实施例1与对比例1A-1D的样品比表面积
Figure PCTCN2020112922-appb-000001
从表1数值中可以看出,对比例1A中没有引入碳纳米管和聚苯乙烯模板时,CF-PbO 2的比表面积很小,仅有0.89m 2/g。当仅引入聚苯乙烯模板而产生三维有序多孔后,对比例1B中3D-PbO 2的比表面积大大提升至36.51m 2/g。对比例1C中,当仅引入碳纳米管时,碳纳米管/二氧化铅复合型电极(CNTs/PbO 2)的比表面积被提升至2.96m 2/g,因为大部分可用于贡献比表面积的碳纳米管被二氧化铅覆盖,导致比表面积仍较小;对比例1D中,通过简单地将碳纳米管黏合至二氧化铅电极表面,二氧化铅-碳纳米管吸附性电极(PbO 2-CNTs)的比表面积被提升至79.62m 2/g,虽然电极的比表面积大大提升,但是只将碳纳米管通过简单黏合至电极表面,这种方法制备所得电极寿命短,表面黏附的碳纳米管容易脱落。而在实施例1中,当同时以聚苯乙烯模板引入多孔结构和碳纳米管时,其比表面积达到了76.56m 2/g,可以看出虽然部分碳纳米管被二氧化铅覆盖,但由于模板的保护,使得比表面积依然保持着较高的数值。同时因为孔腔壁由碳纳米管和二氧化铅复合组成,电极的寿命得到了延长,还防止了碳纳米管脱落。
图2是(a)对比例1A电极CF-PbO 2和(b)本发明实施例1中所得二氧化铅-碳纳米管吸附性亚微米电化学反应器的孔径分布图。图中可以看出所得二氧化铅-碳纳米管吸附性亚微米电化学反应器拥有更多的微孔和介孔,这些有利于提升电极的比表面积。
实施例2
比较实施例1中制备的二氧化铅-碳纳米管吸附性亚微米电化学反应器和对比例1A-1D中制备的CF-PbO 2、3D-PbO 2、CNTs/PbO 2和PbO 2-CNTs几种电极对阿魏酸的吸附效果。
具体方法为:配制浓度为40mg/L的阿魏酸模拟废水各300mL,将所制备的电极和不锈钢板分别作为阳极和阴极。阳极的尺寸为5cm*5cm,几何表面积为25cm 2,厚度为0.1cm,阴极的几何尺寸与阳极一致,用钛丝分别与电源的正负极连接。对阿魏酸进行吸附,比较几种电极对阿魏酸的吸附性能。
图3是实施例1中制备的二氧化铅-碳纳米管吸附性亚微米电化学反应器和对比例1A-1D中制备的CF-PbO 2、3D-PbO 2、CNTs/PbO 2和PbO 2-CNTs几种电极吸附阿魏酸的吸附平衡图。从图中可看出,在120min之内,当没有引入碳纳米管时,CF-PbO 2和3D-PbO 2吸附量很小,在引入碳纳米管后,CNTs/PbO 2的吸附量依然很小,因为碳纳米管几乎全部被二氧化铅覆盖。 而二氧化铅-碳纳米管吸附性亚微米电化学反应器和PbO 2-CNTs依靠纯吸附作用在50min左右就将阿魏酸溶液浓度由40mg/L降低16mg/L以下,说明本发明实施例1中所得二氧化铅-碳纳米管吸附性亚微米电化学反应器中碳纳米管并没有受到二氧化铅覆盖的影响,吸附作用依然较为明显。
实施例3
配制浓度为40mg/L的阿魏酸模拟废水各300mL,各加入0.05M Na 2SO 4作为电解质,分别将实施例1中制备的二氧化铅-碳纳米管吸附性亚微米电化学反应器和对比例1A-1D中制备的CF-PbO 2、3D-PbO 2、CNTs/PbO 2和PbO 2-CNTs几种电极作为阳极,不锈钢作为阴极,对阿魏酸进行降解,控制电流密度20mA/cm 2,比较两种电极对阿魏酸的降解性能。
图4是本发明实施例1中制备的二氧化铅-碳纳米管吸附性亚微米电化学反应器和对比例1A-1D中制备的CF-PbO 2、3D-PbO 2、CNTs/PbO 2和PbO 2-CNTs几种电极对阿魏酸去除效率随时间变化图。从图中可看出,电解1h后,二氧化铅-碳纳米管吸附性亚微米电化学反应器具有更好的电催化性能,阿魏酸几乎被完全去除,而相比之下,CF-PbO 2、3D-PbO 2、CNTs/PbO 2和PbO 2-CNTs的去除率分别为45%,75%,60%和80%,值得说明的是,虽然PbO 2-CNTs的比表面积比实施例1中制备的二氧化铅-碳纳米管吸附性亚微米电化学反应器还要大,但是随着电解时间的延长,PbO 2-CNTs中的碳纳米管不断脱落,导致其对阿魏酸的去除率收到限制。
实施例4
配制浓度为40mg/L的阿魏酸模拟废水各300mL,各加入0.05M Na 2SO 4作为电解质,在电流密度20mA/cm 2下重复使用二氧化铅-碳纳米管吸附性亚微米电化学反应器降解阿魏酸10次考察电极吸附层的原位解吸能力。
图5是本发明实施例1中制备的二氧化铅-碳纳米管吸附性亚微米电化学反应器和对比例1D中制备的PbO 2-CNTs两种电极重复吸附阿魏酸的效果图。可以看出重复使用10次后,PbO 2-CNTs的吸附效果下降明显,在第3次时其吸附效果几乎为0,这可能是由于电解过程中碳纳米管脱落导致的。而二氧化铅-碳纳米管吸附性亚微米电化学反应器吸附效果在重复使用10次时却无明显下降,说明所制备的二氧化铅-碳纳米管吸附性亚微米电化学反应器能够有效吸附有机污染物并原位将其氧化。
实施例5
配制浓度为40mg/L的双酚A(Bisphenol-A)、水杨酸(Salicylic acid)、卡马西平(Carbamazepine)模拟废水各300mL,将二氧化铅-碳纳米管吸附性亚微米电化学反应器作为阳极,不锈钢作为阴极,分别对双酚A、水杨酸、卡马西平进行吸附,比较电极对多种污染物的吸附性能。
图6是本发明实施例1中所得二氧化铅-碳纳米管吸附性亚微米电化学反应器(PbO 2submicroreactor)吸附双酚A、水杨酸、卡马西平的吸附平衡图。从图中可看出,在60min之内,二氧化铅-碳纳米管吸附性亚微米电化学反应器依靠纯吸附作用就可将双酚A、水杨酸、卡马西平溶液浓度由40mg/L降至25mg/L,说明本发明实施例1中所得二氧化铅-碳纳米管吸附性亚微米电化学反应器对多种污染物都具有良好的吸附作用。
在一些实施例中,还采用0.3~10μm中除0.6μm以外其它尺寸的球形模板剂,以与实施例1中相同的方法制备得到具有不同孔腔尺寸的二氧化铅-碳纳米管吸附性亚微米电化学反应器。
在一些实施例中,以聚苯乙烯和碳纳米管的质量比为(1~3):1中除1:1以外的其它比例引入模板剂和碳纳米管,以与实施例1中相同的方法制备得到具有不同碳纳米管嵌入量的二氧化铅-碳纳米管吸附性亚微米电化学反应器。
在一些实施例中,采用质量分数在0.1~1%范围内的相同质量分数的聚苯乙烯分散液和碳纳米管分散液,以与实施例1中相同的方法制备得到不同密度孔腔和碳纳米管的二氧化铅-碳纳米管吸附性亚微米电化学反应器。
在一些实施例中,采用聚苯乙烯和碳纳米管混合后加热温度为80~180℃,加热时间为10~60min的方式,以与实施例1中相同的方法制备得到二氧化铅-碳纳米管吸附性亚微米电化学反应器。
在一些实施例中,采用聚苯乙烯和碳纳米管混合分散液在氧化锡锑导电玻璃表面的滴加量为0.1~1mL/cm 2的方法,以与实施例1中相同的方法制备得到二氧化铅-碳纳米管吸附性亚微米电化学反应器。
在一些实施例中,混合分散液滴加在洗净后的氧化锡锑导电玻璃上后烘干温度为40~80℃,烘干时间为0.5~2h,以与实施例1中相同的方法制备得到二氧化铅-碳纳米管吸附性亚微米电化学反应器。
在一些实施例中,制备二氧化铅活性层时,电沉积电流为5~30mA/cm -2,电沉积时间为5~30min,温度为30~70℃,以与实施例1中相同的方法制备得到二氧化铅-碳纳米管吸附性亚微米电化学反应器。
在一些实施例中,采用有机溶剂选自四氯乙烷、苯乙烯、异丙烷、苯、氯仿、二甲苯、甲苯、四氯化碳、甲乙酮中的一种去除聚苯乙烯微球模板,以与实施例1中相同的方法制备得到二氧化铅-碳纳米管吸附性亚微米电化学反应器。
以上内容是对本发明及其实施方式进行了示意性的描述,该描述没有限制性,实施例中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通 技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (10)

  1. 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器,其特征在于,所述亚微米电化学反应器由多层有序排列的亚微米级二氧化铅球状孔腔组成,孔腔之间互相连通,碳纳米管部分或全部嵌入在二氧化铅孔腔内部及孔壁上。
  2. 根据权利要求1所述的二氧化铅-碳纳米管吸附性亚微米电化学反应器,其特征在于,所述孔腔尺寸为0.3~10μm。
  3. 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器的制备方法,其特征在于,包括:首先采用黏附有碳纳米管的球状模板剂沉降在基体上形成薄膜,再通过电沉积法在所述球状模板剂的缝隙中制备二氧化铅活性层,最后溶解模板制得所述二氧化铅-碳纳米管吸附性亚微米电化学反应器。
  4. 根据权利要求3所述的二氧化铅-碳纳米管吸附性亚微米电化学反应器的制备方法,其特征在于,所述基体选自氧化锡锑导电玻璃、钛板、泡沫钛、泡沫镍、石墨板中的一种。
  5. 根据权利要求3所述的二氧化铅-碳纳米管吸附性亚微米电化学反应器的制备方法,其特征在于,所述球状模板剂选自聚苯乙烯微球、聚丙烯酸微球中的一种或几种。
  6. 根据权利要求3~5中任意一项所述的二氧化铅-碳纳米管吸附性亚微米电化学反应器的制备方法,其特征在于,所述制备方法包括以下步骤:
    步骤1,将聚苯乙烯的分散液和碳纳米管的分散液混合,经加热后,得到碳纳米管黏附于聚苯乙烯微球模板表面的混合分散液;
    步骤2,将步骤1所述混合分散液滴至氧化锡锑导电玻璃表面,烘干后,黏附有碳纳米管的聚苯乙烯微球模板形成一层薄膜;
    步骤3,使用电沉积法在步骤2所述薄膜中聚苯乙烯微球模板的缝隙中制备二氧化铅活性层;
    步骤4,使用有机溶剂溶解法溶解聚苯乙烯微球模板获得二氧化铅-碳纳米管吸附性亚微米电化学反应器。
  7. 根据权利要求6所述的二氧化铅-碳纳米管吸附性亚微米电化学反应器的制备方法,其特征在于,所述步骤1中混合分散液中聚苯乙烯和碳纳米管的质量比为(1~3):1;
    和/或所述步骤1中聚苯乙烯和碳纳米管混合后加热温度为80~180℃,加热时间为10~60min。
  8. 根据权利要求7所述的二氧化铅-碳纳米管吸附性亚微米电化学反应器的制备方法,其特征在于,所述步骤1中聚苯乙烯分散液和碳纳米管分散液的质量分数相同,且在区间0.1~1%范围内。
  9. 根据权利要求7所述的二氧化铅-碳纳米管吸附性亚微米电化学反应器的制备方法,其 特征在于,所述步骤2中混合分散液在氧化锡锑导电玻璃表面的滴加量为0.1~1mL/cm 2
    和/或所述步骤2中烘干温度为40~80℃,烘干时间为0.5~2h;
    和/或所述步骤3中电沉积电流为5~30mA/cm -2,电沉积时间5~30min,温度为30~70℃;
    和/或所述步骤4中有机溶剂选自四氯乙烷、苯乙烯、异丙烷、苯、氯仿、二甲苯、甲苯、四氯化碳或甲乙酮中的一种。
  10. 一种权利要求1或2所述的二氧化铅-碳纳米管吸附性亚微米电化学反应器在去除水中污染物的应用。
PCT/CN2020/112922 2020-03-31 2020-09-02 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用 WO2021196518A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/418,144 US20220332608A1 (en) 2020-03-31 2020-09-02 Lead dioxide-carbon nanotube adsorptive electrochemical submicroelectrode and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010244447.9A CN111362369B (zh) 2020-03-31 2020-03-31 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用
CN202010244447.9 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021196518A1 true WO2021196518A1 (zh) 2021-10-07

Family

ID=71203061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112922 WO2021196518A1 (zh) 2020-03-31 2020-09-02 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用

Country Status (3)

Country Link
US (1) US20220332608A1 (zh)
CN (1) CN111362369B (zh)
WO (1) WO2021196518A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362369B (zh) * 2020-03-31 2021-02-19 南京理工大学 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用
CN113651314A (zh) * 2021-09-08 2021-11-16 湖北中烟工业有限责任公司 一种高度定向排列碳纳米管透明薄膜的制备方法
CN114016065A (zh) * 2021-10-27 2022-02-08 西安泰金工业电化学技术有限公司 一种多孔钛基二氧化铅电极的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071867A (zh) * 2014-07-15 2014-10-01 哈尔滨工程大学 一种三维PbO2电催化电极的制备方法
CN105110425A (zh) * 2015-09-01 2015-12-02 上海应用技术学院 一种碳纳米管改性三维多孔钛基体二氧化铅电极的制备方法
US9413001B2 (en) * 2011-07-20 2016-08-09 Bar Ilan University Functionalized carbon nanotube composite
CN107302102A (zh) * 2017-05-19 2017-10-27 南京理工大学 一种三维有序多孔二氧化铅膜电极及其制备方法
CN110804750A (zh) * 2018-08-06 2020-02-18 南京理工大学 内嵌铜纳米颗粒的定向碳纳米管的电化学制备方法
CN111362369A (zh) * 2020-03-31 2020-07-03 南京理工大学 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932979B1 (ko) * 2007-11-28 2009-12-21 삼성에스디아이 주식회사 중공형 캡슐 구조체 및 이의 제조 방법
CN103833031B (zh) * 2014-02-28 2016-04-13 游学秋 三维连通弯曲石墨烯及其制备方法、电极、电容和锂电池
US10361423B2 (en) * 2016-01-18 2019-07-23 Grst International Limited Method of preparing battery electrodes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9413001B2 (en) * 2011-07-20 2016-08-09 Bar Ilan University Functionalized carbon nanotube composite
CN104071867A (zh) * 2014-07-15 2014-10-01 哈尔滨工程大学 一种三维PbO2电催化电极的制备方法
CN105110425A (zh) * 2015-09-01 2015-12-02 上海应用技术学院 一种碳纳米管改性三维多孔钛基体二氧化铅电极的制备方法
CN107302102A (zh) * 2017-05-19 2017-10-27 南京理工大学 一种三维有序多孔二氧化铅膜电极及其制备方法
CN110804750A (zh) * 2018-08-06 2020-02-18 南京理工大学 内嵌铜纳米颗粒的定向碳纳米管的电化学制备方法
CN111362369A (zh) * 2020-03-31 2020-07-03 南京理工大学 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用

Also Published As

Publication number Publication date
CN111362369A (zh) 2020-07-03
US20220332608A1 (en) 2022-10-20
CN111362369B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2021196518A1 (zh) 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用
Song et al. Preparation of Pd-Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation-reduction properties for chlorophenols
Xu et al. Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation
CN110783577A (zh) 一种铂镍钴合金@碳纳米管复合材料、其制备和应用
Hua et al. Pt nanoparticles supported on submicrometer-sized TiO2 spheres for effective methanol and ethanol oxidation
CN103539226B (zh) 一种去除多种难降解有机污染物的多维电极电催化装置
CN108675382B (zh) 一种基于TiO2纳米管光催化剂的集成催化系统及其降解处理方法
CN111115918B (zh) 电-过滤与电-多相臭氧催化同步的水处理装置和方法
JPH10153688A (ja) 放射性廃液流を処理するための方法
CN111252863B (zh) 用于强化去除有机污染物的Mn-MOF衍生碳改性电极及其制备方法
CN109860643A (zh) 一种芳香重氮盐表面修饰MXene负载铂的氧还原电催化剂及其制备方法
Zhang et al. The fabrication of Ti4O7 particle composite modified PbO2 coating electrode and its application in the electrochemical oxidation degradation of organic wastewater
CN107364934A (zh) 电催化还原复合电极、制备方法及其应用
CN113060803A (zh) 一种电催化处理再生水中痕量雌激素的系统及方法
CN113937310B (zh) 一种铂基催化剂及其制备方法和应用
JP2014229516A (ja) 燃料電池用触媒の製造方法
CN104671362A (zh) 去除水中溴酸盐的电极及其制备方法
Sun et al. High-performance three-dimensional SnO2–Sb electrode supported on titanium foam substrate prepared by solvothermal process
CN103682284B (zh) 用于锂离子电池阳极的复合材料及其制作方法
CN114540873B (zh) 一种钯/γ-二氧化锰/泡沫镍复合电极及其制备方法和应用
CN113745546B (zh) 一种具有动态SnO2-Sb催化层的膜电极、制备方法及应用
JP7466182B2 (ja) 電極とこの電極を用いた過酸化水素の製造方法
CN113233549A (zh) 一种纳米二氧化铅电极及其制备方法和应用
CN104779401B (zh) 一种纳米多孔金属薄膜镀金属元素的方法
CN105692593B (zh) 一种多孔石墨烯的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929538

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20929538

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2023)