CN100514777C - 半导体激光元件 - Google Patents

半导体激光元件 Download PDF

Info

Publication number
CN100514777C
CN100514777C CNB2007100960519A CN200710096051A CN100514777C CN 100514777 C CN100514777 C CN 100514777C CN B2007100960519 A CNB2007100960519 A CN B2007100960519A CN 200710096051 A CN200710096051 A CN 200710096051A CN 100514777 C CN100514777 C CN 100514777C
Authority
CN
China
Prior art keywords
semiconductor laser
layer
execution mode
spine
window zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007100960519A
Other languages
English (en)
Other versions
CN101043123A (zh
Inventor
高濑祯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN101043123A publication Critical patent/CN101043123A/zh
Application granted granted Critical
Publication of CN100514777C publication Critical patent/CN100514777C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • H01S2301/185Semiconductor lasers with special structural design for influencing the near- or far-field for reduction of Astigmatism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1014Tapered waveguide, e.g. spotsize converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/209Methods of obtaining the confinement using special etching techniques special etch stop layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
    • H01S5/2219Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties absorbing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
    • H01S5/222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties having a refractive index lower than that of the cladding layers or outer guiding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3421Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer structure of quantum wells to influence the near/far field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/3436Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on InGa(Al)P

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明可提供“kink”级不降低而高宽比低的半导体激光元件。该元件是一种脊形结构的半导体激光元件,在一种导电类型的半导体层和具有脊部的另一种导电类型的半导体层之间设置有活性层并且在其两端部具有非增益区域的窗区域,其中,在上述窗区域的上述脊部两侧具有由光吸收材料构成的埋入层。

Description

半导体激光元件
(本申请是在先中国申请No.200410061686.1的分案申请。)
技术领域
本发明涉及半导体激光元件,特别涉及用作信息记录用装置的光源的半导体激光元件。
背景技术
近年,由于数字信息化技术的进步,信息记录用光盘的记录密度日益增加,但同时为了提高光盘的信息记录速度,对作为信息记录装置的光源的半导体激光元件要求高功率化。可是,在使用上,比如,最好不要出现像“kink”(异常翘曲)等这样的电流和光输出之间的非线性,即使是输出高也不发生“kink”,换言之,需要“kink”级高的半导体激光元件。
另外,为了提高记录速度,有效的半导体激光元件是具有将从半导体激光元件发出的光引导到光盘的透镜系统和可获得高的光耦合效率的低高宽比特性(作为激光器的出射光的垂直扩展角FFPy和水平扩展角FFPx之比的FFFPy/FFPx小)的半导体激光元件。
这样,为了改善记录密度,需要“kink”级高的低高宽比的半导体激光元件。
专利文献1:日本专利特开平2-178988号公报。
不过,为了得到低的高宽比,存在减小FFPy和加大FFPx的方法,但是如果减小FFPy,则温度特性恶化,而加大FFPx,则存在“kink”级变低的问题。
所以,过去制作输出高而高宽比低的激光器是困难的。
比如,为了得到低高宽比,如果要加大FFPx,就必须加大对水平方向的光的约束,而加大光的约束,会产生由于空间烧孔造成载流子注入不均匀而发生“kink”。
发明内容
于是,本发明的目的在于提供一种具有即使是在加大FFPx时也可以抑制“kink”的发生的结构的半导体激光元件。
本发明的一种脊形结构的半导体激光元件,在一种导电类型的半导体层和具有脊部的另一种导电类型的半导体层之间设置有活性层并且在其两端部具有非增益区域的窗区域,其中,在上述窗区域的上述脊部两侧具有由光吸收材料构成的埋入层。
这样构成的本发明的半导体激光元件,可实现低高宽比而不会降低“kink”级。
附图说明
图1为与本发明的实施方式1的半导体激光二极管的谐振方向平行的剖面的剖面图。
图2(a)为实施方式1的半导体激光二极管的窗区域(沿着图1的A-A′线)的剖面图,而图2(b)为实施方式1的半导体激光二极管的增益区域(沿着图1的B-B′线)的剖面图。
图3为在实施方式1的半导体激光元件的制造方法中,在各半导体层生长之后的斜视图。
图4为在实施方式1的半导体激光元件的制造方法中,在对接触层进行刻蚀之后的斜视图。
图5为在实施方式1的半导体激光元件的制造方法中,在用来形成脊部的第一次刻蚀结束后的斜视图。
图6为在实施方式1的半导体激光元件的制造方法中,在用来形成脊部的第二次刻蚀结束后的斜视图。
图7(a)为实施方式1的变形例的半导体激光二极管的窗区域的剖面图,而图7(b)为实施方式1的变形例的半导体激光二极管的增益区域的剖面图。
图8为实施方式2的半导体激光二极管的斜视图。
图9(a)为实施方式3的半导体激光二极管的窗区域的剖面图,而图9(b)为实施方式3的半导体激光二极管的增益区域的剖面图。
图10为实施方式3的变形例的半导体激光二极管的窗区域的剖面图。
图11为实施方式4的变形例的半导体激光二极管的窗区域的剖面图。
图12(a)为实施方式6的半导体激光二极管的窗区域的剖面图,而图12(b)为实施方式6的半导体激光二极管的增益区域的剖面图。
图13为与本发明的实施方式7的半导体激光二极管的谐振方向平行的剖面的剖面图。
图14(a)为实施方式7的半导体激光二极管的窗区域的剖面图,而图14(b)为实施方式7的半导体激光二极管的增益区域的剖面图。
具体实施方式
下面参照附图对本发明的实施方式予以说明。
实施方式1.
本发明的实施方式1的半导体激光二极管,如图2(a)、(b)所示,是脊形的半导体激光二极管,在脊部9两侧的活性层3上,保留一部分上覆层来形成脊部9,在两端部中形成防止光学损伤用的作为非增益区域的窗区域11(图1)。
于是,在本实施方式1的半导体激光二极管中,其构成为使窗区域11的上覆保留层4a比增益区域10的上覆保留层4b薄。
在这样构成的实施方式1的半导体激光二极管中,困为可以使作为窗区域11的非增益区域的等效折射率差Δn11比增益区域10的等效折射率差Δn10大,由此可以使FFPx加大而得到低高宽比。
另一方面,由于为了加大等效折射率差Δn11,将上覆保留层4a做得薄的窗区域11是没有增益或增益小的非增益区域,即使是光约束强,“kink”级也不会下降。
因此,实施方式1的半导体激光元件不会降低“kink”级并且可以实现低高宽比。
因而,下面参照图3对本发明的实施方式1的半导体激光元件的制造方法予以说明。
在本制造方法中,首先,在半导体衬底1上,按照以下顺序外延生长下覆层2、多量子阱活性层3、第1上覆保留层41、刻蚀阻挡层ESL1、第2上覆保留层42、刻蚀阻挡层ESL2、上覆层43及接触层6(图3)。
另外,在表1中举出构成DVD用的660nm半导体激光二极管时的衬底及半导体层材料的例子。
表1
 
半导体衬底1 n型GaAs衬底
下覆层2 n型(Al<sub>0.7</sub>Ga<sub>0.3</sub>)<sub>0.5</sub>In<sub>0.49</sub>P
多量子阱活性层3 由未掺杂的Ga<sub>0.44</sub>In<sub>0.56</sub>P阱层和未掺杂的(Al<sub>0.5</sub>Ga<sub>0.5</sub>)<sub>0.51</sub>In<sub>0.49</sub>P势垒层组成的活性层
上覆层 p型(Al<sub>0.7</sub>Ga<sub>0.3</sub>)<sub>0.51</sub>In<sub>0.49</sub>P层
接触层6 p型GaAs层
表1中,上覆层表示第1上覆保留层41、第2上覆保留层42及上覆层43。
另外,作为刻蚀阻挡层ESL1及刻蚀阻挡层ESL2,比如,可使用p型Al0.3Ga0.7As层。
另外,作为另一个例子,在表2中举出构成CD用的780nm半导体激光二极管时的例子。
表2
 
半导体衬底1 n型GaAs衬底
下覆层2 n型Al<sub>0.48</sub>Ga<sub>0.52</sub>As
多量子阱活性层3 由未掺杂的Al<sub>0.11</sub>Ga<sub>0.89</sub>As阱层和未掺杂的Al<sub>0.34</sub>Ga<sub>0.66</sub>As势垒层组成的活性层
上覆层 p型Al<sub>0.48</sub>Ga<sub>0.52</sub>As层
接触层6 p型GaAs层
表2中,上覆层表示第1上覆保留层41、第2上覆保留层42及上覆层43。
在可以构成此表1及表2所示的GaAs衬底的材料中,可使用Si、质子、Zn作为形成窗区域11的杂质。
另外,表1及表2所示的p型及n型的极性也可以反过来。
另外,表1及表2所示的内容是具体材料的示例,本申请并不限定于这些材料。
在外延生长后,对用来构成窗区域的区域A的部分,借助离子注入或扩散等方法使杂质穿过活性层进行掺杂。由此,经过掺杂的活性层的带隙变大,形成不吸收光的窗区域11。此窗区域11是不吸收光并且对光无增益作用的非增益区域。
另外,窗区域11是在从端面算起的5μm~50μm的部分,或更一般是20μm~30μm的部分上形成。
之后,对形成窗区域11的区域A的接触层6全部或一部分进行刻蚀(图4)。
于是,形成用来形成脊部的保护膜R1,对保护膜R1的两侧进行干法刻蚀。此时,可设定刻蚀条件为在区域A中将第2上覆保留层42刻蚀一部分,而在用来形成增益区域的区域B中将上覆层43刻蚀一部分。
就是说,在本制造方法中,在脊部两侧的区域A和区域B之间形成与借助对利用图4所说明的区域A的接触层6进行刻蚀而形成的区域A和区域B之间的台阶相等的台阶。
之后,借助湿法刻蚀,将第2上覆保留层42及上覆层43的露出部分去掉。在此湿法刻蚀中,对区域A刻蚀到刻蚀阻挡层ESL1,对区域B刻蚀到刻蚀阻挡层ESL2(图6)。
在这种制造方法中,通过适当设定第1上覆保留层41、第2上覆保留层42及上覆层43的厚度,可以很容易并且重复性良好地形成所希望厚度的窗区域11的上覆保留层4a及增益区域10的上覆保留层4b。
在以上的实施方式1的半导体激光元件中,说明的是脊部9的两侧未埋入半导体的结构,但本发明并不限定于此,也可应用于脊部9的两侧,如图7所示,借助电流阻止层21埋入的结构的激光元件。此外,图7(a)为窗区域的剖面图,而图7(b)为增益区域的剖面图。
实施方式2
本发明的实施方式2的半导体激光元件,除了与实施方式1有以下几点不同之外,与实施方式1的结构相同(图8)。
另外,在图8中,对于与实施方式1相同的部件赋予同样的符号。
不同点1
在实施方式2的半导体激光二极管中,在脊部的两侧的活性层之上,从窗区域11起到增益区域10之上形成同一厚度的上覆保留层4c。
不同点2
只在增益区域10的脊部两侧形成电流阻止层(埋入层)21。
在这样构成的实施方式2的半导体激光二极管中也可以使作为非增益区域(窗区域)的脊部和脊部两侧之间的等效折射率差Δn11比增益区域10的脊部和脊部两侧的等效折射率差Δn10大。
由此,由于即使是在本实施方式2中,也可以使FFPx加大而得到低高宽比,等效折射率差Δn11大的窗部是非增益区域,所以即使是光约束强,“kink”级也不会降低。
由此,利用实施方式2的半导体激光元件,可以获得与实施方式1同样的作用效果。
实施方式3
本发明的实施方式3的半导体激光元件,除了在窗区域11的脊部两侧形成折射率比在增益区域10的脊部两侧埋入的电流阻止层21的折射率小的半导体组成的埋入层21a之外,与实施方式2的结构相同(图9(a)、(b))。
另外,在图9中,对于与实施方式1相同的部件赋予同样的符号。
在这样构成的实施方式3的半导体激光二极管中也可以使作为非增益区域(窗区域)的脊部和脊部两侧之间的等效折射率差Δn11比增益区域10的脊部和脊部两侧的等效折射率差Δn10大。
由此,由于即使是在本实施方式3中,也可以使FFPx加大而得到低高宽比,等效折射率差Δn11大的窗部是非增益区域,所以即使是光约束强,“kink”级也不会降低。
由此,利用实施方式3的半导体激光元件,可以获得与实施方式1及2同样的作用效果。
在以上的实施方式3中,是在窗区域11的脊部两侧形成折射率比电流阻止层21的折射率小的半导体组成的埋入层21a,但也可以在窗区域11的脊部两侧和增益区域10的脊部两侧形成由同样的半导体组成的埋入层,使在窗区域11的脊部两侧的载流子浓度高于增益区域两侧而成为高载流子浓度埋入层21b(图10)。
即使是采用这样的结构,也可以借助等离子体效应而降低高载流子浓度埋入层21b的折射率,获得与实施方式3同样的作用效果。
实施方式4
本发明的实施方式4的半导体激光元件,是在窗区域11的脊部两侧,利用比如由可以吸收激光器振荡光的GaAs组成的材料形成电流阻止层21c。
另外,增益区域10的构成,既可以与实施方式1一样,也可以与实施方式2一样(图11是假设与实施方式2一样而绘制的)。
在这样构成的实施方式4的半导体激光元件中,由于电流阻止层21c吸收光,可以使端面的光的水平方向的光斑尺寸减小。
由此,由于光的衍射现象可使水平方向的远场图形(FFPx)加大而实现低高宽比而不会使“kink”级降低。
实施方式5
本发明的实施方式5,是使窗区域11的上覆保留层4a形成为比增益区域10的上覆保留层4b薄的方法,是与在实施方式1中说明的方法不同的方法。
具体说,在本制造方法中,与在实施方式1中说明的方法不同之处是刻蚀阻挡层ESL2是多量子阱结构,并且不形成刻蚀阻挡层ESL1。就是说,在本方法中,第1上覆保留层41和第2上覆保留层42是连续地由同一材料形成的。
此处,作为多量子阱结构的刻蚀阻挡层ESL2,可以采用Ga0.58In0.42P阱层和(Al0.5Ga0.5)0.51In0.49P势垒层组成的多量子阱结构。
之后,与实施方式1一样,对用来构成窗区域的区域A的部分,借助离子注入或扩散等方法进行杂质掺杂。由此,窗区域的多量子阱结构的刻蚀阻挡层ESL2无序化而失去了刻蚀阻挡的功能。
经过这样的处理之后,在进行用来形成脊部的刻蚀时,在窗区域中,可越过刻蚀阻挡层ESL2实施刻蚀,而与此相对,在增益区域中,由于刻蚀阻挡层ESL2而阻止刻蚀。
由此,窗区域11的上覆保留层4a的厚度,可以很容易制作得比增益区域10的上覆保留层4b薄。
实施方式6
本发明的实施方式6,是一种不形成刻蚀阻挡层而制造实施方式1所示结构的元件的制造方法。
具体说,在实施方式6中,在通过刻蚀形成脊部9之际,在脊部两侧形成从窗区域11起到增益区域10之上形成同一厚度的上覆保留层4e。于是,在窗区域形成选择生长用的掩模,在增益区域10上的脊部两侧选择生长上覆保留层4f(图12(a)、(b))。
这样,就可以使增益区域10的上覆保留层4b的厚度增加一个选择生长的上覆保留层4f的厚度。
根据以上的实施方式6的制造方法,可以很容易制造实施方式1的结构的半导体激光元件。
实施方式7
本发明的实施方式7,是一种使窗区域11的上覆保留层4a形成为比增益区域10的上覆保留层4b薄的方法,是与在实施方式1、5、7中说明的方法不同的方法。
具体说,本制造方法是一种形成互相平行的2个沟槽30,将2个沟槽30之间作为脊部的半导体激光元件的制造方法,形成窗区域的区域A和形成增益区域的区域B之间的沟槽30的宽度可改变,从而可使窗区域11的上覆保留层4a形成为比增益区域10的上覆保留层4b薄(图13、图14(a)、(b))。
就是说,在本方法中,通过对脊部两侧进行刻蚀使用来形成窗部的区域A的沟槽31的宽度比形成增益区域的沟槽32的宽度窄。
更具体言之,是在接触层上形成抗蚀膜,在形成脊部的部分的两侧形成开口部,在半导体激光元件的端部的第1区域中的开口部的宽度宽,而在另一部分中的开口部的宽度窄。
于是,就可以通过掩模的开口部对接触层和上覆层进行刻蚀而去掉规定的深度。
这样一来,由于在宽度(刻蚀区)窄的沟槽31的部分中,刻蚀材料的供给速度与沟槽的宽度宽的部分相比较更快,在沟槽31的部分中,刻蚀进度快。由此,窗区域11的上覆保留层4a的厚度可以很容易制作得比增益区域10的上覆保留层4b薄。
如上所述,利用实施方式7的制造方法,可以制造“kink”级高而高宽比低的半导体激光元件。
如以上所详细说明的,因为本发明的半导体激光元件,在该窗区域的脊部和其两侧之间的等效折射率差,大于除去上述窗区域之外的增益区域中的上述脊部和其两侧之间的等效折射率差,所以可以使“kink”级不降低而获得低高宽比。

Claims (1)

1.一种脊形结构的半导体激光元件,在一种导电类型的半导体层和具有脊部的另一种导电类型的半导体层之间设置有活性层并且在其两端部具有非增益区域的窗区域,
其中,仅在上述窗区域中的上述脊部两侧具有由光吸收材料构成的埋入层。
CNB2007100960519A 2003-06-26 2004-06-24 半导体激光元件 Expired - Fee Related CN100514777C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003182401A JP4472278B2 (ja) 2003-06-26 2003-06-26 半導体レーザ素子
JP182401/2003 2003-06-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100616861A Division CN100346544C (zh) 2003-06-26 2004-06-24 半导体激光元件

Publications (2)

Publication Number Publication Date
CN101043123A CN101043123A (zh) 2007-09-26
CN100514777C true CN100514777C (zh) 2009-07-15

Family

ID=33535260

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2007100960519A Expired - Fee Related CN100514777C (zh) 2003-06-26 2004-06-24 半导体激光元件
CNB2004100616861A Expired - Fee Related CN100346544C (zh) 2003-06-26 2004-06-24 半导体激光元件

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB2004100616861A Expired - Fee Related CN100346544C (zh) 2003-06-26 2004-06-24 半导体激光元件

Country Status (6)

Country Link
US (4) US20040264520A1 (zh)
JP (1) JP4472278B2 (zh)
KR (1) KR100653322B1 (zh)
CN (2) CN100514777C (zh)
DE (1) DE102004029423A1 (zh)
TW (1) TWI244248B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4472278B2 (ja) * 2003-06-26 2010-06-02 三菱電機株式会社 半導体レーザ素子
JP4751024B2 (ja) * 2004-01-16 2011-08-17 シャープ株式会社 半導体レーザおよびその製造方法
JP2006269759A (ja) * 2005-03-24 2006-10-05 Sharp Corp 窓構造半導体レーザ装置およびその製造方法
JP2007012851A (ja) * 2005-06-30 2007-01-18 Victor Co Of Japan Ltd 半導体レーザ素子の製造方法
JP4712460B2 (ja) * 2005-07-11 2011-06-29 パナソニック株式会社 半導体発光素子及びその製造方法
JP2007095758A (ja) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd 半導体レーザ
JP2007194390A (ja) * 2006-01-19 2007-08-02 Eudyna Devices Inc 半導体発光装置の製造方法
JP2009200478A (ja) * 2008-01-21 2009-09-03 Sanyo Electric Co Ltd 半導体レーザ素子およびその製造方法
JP4992742B2 (ja) * 2008-01-29 2012-08-08 三菱電機株式会社 半導体レーザ
JP2009283605A (ja) * 2008-05-21 2009-12-03 Mitsubishi Electric Corp 半導体レーザ
JP2010027935A (ja) * 2008-07-23 2010-02-04 Sony Corp 半導体レーザ、光ディスク装置および光ピックアップ
JP2010141229A (ja) * 2008-12-15 2010-06-24 Sony Corp 半導体レーザの製造方法
CN103956647A (zh) * 2014-05-16 2014-07-30 深圳清华大学研究院 半导体激光芯片及其制造方法
JP2017050318A (ja) 2015-08-31 2017-03-09 ルネサスエレクトロニクス株式会社 半導体装置
DE102016113071A1 (de) 2016-07-15 2018-01-18 Osram Opto Semiconductors Gmbh Halbleiterlaserdiode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151913A (en) * 1990-01-09 1992-09-29 Nec Corporation Semiconductor laser
US5825797A (en) * 1996-04-10 1998-10-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
CN1359179A (zh) * 2000-12-14 2002-07-17 三菱电机株式会社 半导体激光装置及其制造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115088A (en) * 1978-02-28 1979-09-07 Nec Corp Double hetero junction laser element of stripe type
JPS60202974A (ja) * 1983-10-18 1985-10-14 Kokusai Denshin Denwa Co Ltd <Kdd> 分布帰還形半導体レ−ザ
US4875216A (en) * 1987-11-30 1989-10-17 Xerox Corporation Buried waveguide window regions for improved performance semiconductor lasers and other opto-electronic applications
US5181218A (en) * 1988-12-14 1993-01-19 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor laser with non-absorbing mirror structure
JPH0656910B2 (ja) 1988-12-29 1994-07-27 シャープ株式会社 半導体レーザ素子及びその製造方法
US5022036A (en) * 1988-12-29 1991-06-04 Sharp Kabushiki Kaisha Semiconductor laser device
US4932032A (en) * 1989-08-03 1990-06-05 At&T Bell Laboratories Tapered semiconductor waveguides
JPH03131083A (ja) * 1989-10-17 1991-06-04 Mitsubishi Electric Corp 半導体レーザ装置の製造方法
JP2508409B2 (ja) * 1990-11-26 1996-06-19 三菱電機株式会社 半導体レ―ザ装置
JP3322512B2 (ja) * 1994-04-28 2002-09-09 三洋電機株式会社 半導体レーザ素子の設計方法
FR2736473B1 (fr) * 1995-07-06 1997-09-12 Boumedienne Mersali Dispositif laser a structure enterree pour circuit photonique integre et procede de fabrication
JP2000011417A (ja) * 1998-06-26 2000-01-14 Toshiba Corp 半導体レーザアレイ及びその製造方法、光集積ユニット、光ピックアップ並びに光ディスク駆動装置
JP2000174385A (ja) 1998-07-15 2000-06-23 Sony Corp 半導体レ―ザ
CN1251372C (zh) * 2000-06-08 2006-04-12 日亚化学工业株式会社 半导体激光元件及其制造方法
JP3775724B2 (ja) * 2000-09-13 2006-05-17 シャープ株式会社 半導体レーザ素子及びその製造方法
JP2002094176A (ja) * 2000-09-14 2002-03-29 Mitsubishi Electric Corp レーザ装置
EP1198042B1 (en) * 2000-10-12 2006-05-10 Fuji Photo Film Co., Ltd. Semiconductor laser device with a current non-injection region near a resonator end face, and fabrication method thereof
JP2002232082A (ja) * 2000-11-30 2002-08-16 Furukawa Electric Co Ltd:The 埋込型半導体レーザ素子の製造方法、及び埋込型半導体レーザ素子
JP2002261379A (ja) 2001-03-02 2002-09-13 Mitsubishi Electric Corp 半導体デバイスおよびそれを応用した光半導体デバイス
JP2003046196A (ja) * 2001-08-01 2003-02-14 Fuji Photo Film Co Ltd 半導体レーザおよびその作製方法
JP3911140B2 (ja) * 2001-09-05 2007-05-09 シャープ株式会社 半導体レーザの製造方法
JP5261857B2 (ja) * 2001-09-21 2013-08-14 日本電気株式会社 端面発光型半導体レーザおよび半導体レーザ・モジュール
JP4472278B2 (ja) * 2003-06-26 2010-06-02 三菱電機株式会社 半導体レーザ素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151913A (en) * 1990-01-09 1992-09-29 Nec Corporation Semiconductor laser
US5825797A (en) * 1996-04-10 1998-10-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
CN1359179A (zh) * 2000-12-14 2002-07-17 三菱电机株式会社 半导体激光装置及其制造方法

Also Published As

Publication number Publication date
CN100346544C (zh) 2007-10-31
US7561608B2 (en) 2009-07-14
JP2005019679A (ja) 2005-01-20
CN1578028A (zh) 2005-02-09
CN101043123A (zh) 2007-09-26
JP4472278B2 (ja) 2010-06-02
TWI244248B (en) 2005-11-21
US20080014670A1 (en) 2008-01-17
TW200501526A (en) 2005-01-01
DE102004029423A1 (de) 2005-02-17
US20070004072A1 (en) 2007-01-04
KR100653322B1 (ko) 2006-12-04
US20070002916A1 (en) 2007-01-04
KR20050001366A (ko) 2005-01-06
US20040264520A1 (en) 2004-12-30

Similar Documents

Publication Publication Date Title
CN100514777C (zh) 半导体激光元件
US5208183A (en) Method of making a semiconductor laser
CN1701476A (zh) 基于激光辐射较高模的光子带隙晶体调解过滤效应的半导体激光器及其制造方法
JP3080831B2 (ja) 多重量子井戸半導体レーザ
JP2005333129A (ja) 半導体レーザーダイオード
KR100632308B1 (ko) 이득결합 분포귀환형 반도체레이저장치 및 그의 제조방법
US20030043875A1 (en) Semiconductor laser and method of manufacturing the same
US20060187987A1 (en) Semiconductor laser diode
US6826216B2 (en) Semiconductor laser and method of production thereof
US20080095491A1 (en) Integrated Optical Wave Guide for Light Generated by a Bipolar Transistor
US6445723B1 (en) Laser source with submicron aperture
JP2001320132A (ja) 半導体レーザ素子アレイ及びその製造方法
JP2010199169A (ja) 半導体光素子
JP2000244059A (ja) 半導体レーザ装置
WO1989007832A1 (en) Semiconductor superlattice heterostructures fabrication methods, structures and devices
KR100584376B1 (ko) 산화 차단층들을 갖는 레이저 다이오드의 제작 방법
KR100590566B1 (ko) 레이저 다이오드 및 그 제조방법
JP4125937B2 (ja) 半導体レーザ装置及びその製造方法
KR100420795B1 (ko) 반도체양자점 광증폭기
JP2002223038A (ja) 半導体レーザ装置
KR100408531B1 (ko) GaN계 레이저 다이오드
KR100579407B1 (ko) 레이저 다이오드 및 그의 제조 방법
KR20070040131A (ko) 측면발광 레이저 다이오드 및 그 제조방법
KR100634517B1 (ko) 레이저 다이오드 및 그 제조방법
JPH0394490A (ja) 半導体レーザ素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090715

Termination date: 20120624