CN100467611C - 多肽的纯化 - Google Patents

多肽的纯化 Download PDF

Info

Publication number
CN100467611C
CN100467611C CNB2004800063965A CN200480006396A CN100467611C CN 100467611 C CN100467611 C CN 100467611C CN B2004800063965 A CNB2004800063965 A CN B2004800063965A CN 200480006396 A CN200480006396 A CN 200480006396A CN 100467611 C CN100467611 C CN 100467611C
Authority
CN
China
Prior art keywords
polypeptide
antibody
rivanol
homogenate
nutrient solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800063965A
Other languages
English (en)
Other versions
CN1759186A (zh
Inventor
菲利普·M·莱斯特
约瑟芬·珀森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of CN1759186A publication Critical patent/CN1759186A/zh
Application granted granted Critical
Publication of CN100467611C publication Critical patent/CN100467611C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明描述了一种从微生物发酵液或匀浆物中纯化在其中生成并溶解的目标异源多肽的方法。本方法包括了在培养液或匀浆物中加入一种有效量的乳酸6,9-二氨基-2-乙氧基吖啶(乳酸依沙吖啶),在大部分多肽保持可溶性的条件下沉淀宿主细胞中的杂质,并从培养液或匀浆中分离出目标多肽。也公开了含有乳酸依沙吖啶和多肽的培养液或匀浆物。

Description

多肽的纯化
技术领域
本发明涉及从微生物发酵液或匀浆物中纯化目标多肽。更具体地,向培养液或匀浆物中引入沉淀剂以有效除去诸如蛋白质、DNA和细胞碎片。
背景技术
今天,重组技术的出现使得可以在合适的转化宿主细胞中产生高水平的蛋白。因此用快速、高浓度(robust)、高效率的纯化方法回收重组蛋白的需求不断增加。通常地,通过用基因工程手段将含有目标蛋白的基因的重组质粒插入哺乳动物、昆虫、真菌以及细菌等细胞系,培养细胞,可以产生目标蛋白。由于所用的细胞系为活的生物体,必须供给它们复合生长培养基,其中包含糖、氨基酸以及生长因子,通常由动物血清制剂提供。从供给细胞的化合物的混合物中以及从细胞自己的副产物中,将目标蛋白纯化到足以用作人类治疗剂的纯度,这成为极大的挑战。
从细胞碎片纯化蛋白的过程最初依赖于蛋白表达的位置。某些蛋白可以从细胞中直接分泌到周围的培养基中;其它蛋白则在胞内生产。对于在哺乳动物细胞中产生的多肽,纯化策略比在其它形式的宿主细胞中简单得多。由于哺乳动物细胞可将多肽输出体外,多肽可以从培养基中收集,在培养基中它们以相对纯净的形式存在。然而,如果多肽是在非哺乳动物细胞中产生,例如微生物,比如真菌或者大肠杆菌,多肽就从细胞内或在细胞间质空间回收(Kipriyanov and Little,Molecular Biotechnology12:173-201(1999);Skerra and Pluckthun,Science240:1038-1040(1988))。因此,需要通过细胞裂解等提取方式将蛋白从胞内释放到胞外培养基中。这样的破碎可以将胞内全部内容物质变为匀浆,而且附加生成了由于尺度太小难于去除的亚细胞的碎片,这些物质通常以差速离心或过滤的方式除去。
细胞裂解一般应用机械破碎技术如匀浆或珠磨来完成。当目标蛋白大部分被有效地释放,这些技术显示出一些缺点(Engler,Protein Purification Process Engineering,Harrison eds.,37-55(1994))。在处理过程中时常出现的升温可能会导致蛋白的失活,而且处理后的悬浮液中含有光谱的杂质蛋白、核酸和多糖。核酸和多糖会增加溶液的粘度,潜在地增加了后续离心、错流过滤或者层析的复杂度。这些杂质与目标蛋白的复杂结合会使纯化过程更加繁复而且导致更加难以接受的低产量的结果。
如上所述,释放胞内蛋白的更多可选择的方法推动了下游的处理过程,已报道有一些技术可使细胞具有通透性和/或提取胞内蛋白。这些方法包括应用溶剂、洗涤剂、离液剂、抗体、酶以及螯合剂来增强细胞的渗透性和/或提高提取率。也有报道称,将某些化合物如甘氨酸在培养时加入发酵培养基,可以提高特定的胞内酶的释放。最后,诸如冻融处理或渗压休克等技术可以释放胞内的一部分蛋白。
然而,这些技术并不能针对所有胞内的微生物蛋白进行有效地应用,而且对于大规模的工艺过程这些技术都有应用上的限制和/或其它缺点。举例来说,当使用溶剂如甲苯和氯仿等来提高胞内蛋白的释放时,这些物质都是有毒且致癌的(Windholtz et al.,The Merck Index 10th Edition:300 and1364(1983))。离子型洗涤剂如SDS,常常不可逆地使分离出的蛋白变性,虽然非离子洗涤剂一般不会使蛋白变性,但回收的蛋白常常与洗涤剂微胶团结合,这样就要求增加处理步骤以收获无洗涤剂的蛋白。离液剂如脲和盐酸胍,会在蛋白内容物全部释放所要求的浓度下使蛋白变性,而且它们的有效性可能只限于培养的生长期。溶菌酶的使用为蛋白释放提供了相对温和的方法,但它又由于相对较高的成本和后续仍需要从酶试剂中纯化目标蛋白而受到限制。另外,螯合剂常常用于有效增强其它提高通透性的技术如应用溶菌酶或甲苯提取,但要忍受宿主非特异性蛋白释放的缺点。
其它释放蛋白的方法也有缺点。比如:应用渗压休克时,将细胞重悬于高渗透压的培养基进行回收,然后置于低渗透压的缓冲液中,这就要求相对其它可选择的提取方法增加处理步骤(Moir et al.,Separation Processes in Biotechnology,Asenjo eds:67-94(1990))或者需要在低温下处理大量液体。这使得此方法对于大规模提取时是不具吸引力的。
虽然经多次循环以及附加的处理要求导致产率相对较低,但冻融处理也可以释放胞内蛋白。另外,细胞糊状物的冷冻与其它可选择的提取方法相比增加了价值不菲的处理需求。
最后,在发酵时加入试剂如甘氨酸可以提高蛋白向胞外培养基中的释放(Aristidou et al.,Biotechnology Letters 15:331-336(1993))。当一些胞内蛋白被部分释放后,此法就要求发酵、释放策略以及后续从可能很复杂的胞外培养液中分离目标蛋白过程的直接耦联。
一旦目标多肽从宿主细胞中释放出来后,要求将它与其它的细胞组分分离。不幸地,大多数的提取方法,如细胞裂解,不仅可能将蛋白暴露给宿主细胞的蛋白酶进行降解,而且使蛋白与提取后的悬浮液中其它组分的分离更加困难。举例来说,DNA、RNA、磷脂和脂多糖(LPS)等带负电荷的分子的存在,常常需要应用离子交换层析(Sassenfeld,TIBTECH8:88-93(1990);Spears,Biotechnology,vol.3--Bioprocessing,Rehm eds:40-51(1993))和/或硫酸鱼精蛋白(Kelley et al.,Bioseparation1:333-349(1991);Scopes,Protein Purification Principles and Practice,2nd edition,Cantor eds.,pp.21-71(1987))、硫酸链霉素(Wang et al.,eds,Fermentation and Enzyme Technology:253-256(1979))、聚乙烯亚胺(PEI)(Kelley et al.,出处同上;Sassenfeld,出处同上;Cumming et al.,Bioseparation6:17-23(1996);Jendrisak,The use of polyethyleneimine in protein purification.Protein purification:micro to macro,ed.Alan R.,Liss,Inc,75-97(1987);Salt et al.,Enzyme and Microbial Technology17:107-113(1995))等聚阳离子沉淀和/或用聚乙二醇(PEG)/磷酸或PEG/葡聚糖(Kelley et al.,出处同上,Strandberg et al.,Process Biochemistry 26:225-234(1991))等不互溶的高分子系统进行双水相萃取。
或者,可以通过加入硫酸铵或氯化铵等中性盐(Wheelwright,Protein Purification:Design and Scale up of Downstream Processing:87-98(1991);Englard et al.,Methods in Enzymology Volume 182,Deutscher eds.:285-300(1990))和/或PEG或硫酸葡聚糖等高分子(Wang et al.,出处同上;Wheelwright,出处同上)将目标蛋白从非蛋白的多阴离子杂质中沉淀出来。这里,目标蛋白带有正电荷,因此它倾向于和带负电荷的分子结合,使蛋白的纯化事实上是不可能实现的。
典型地,研究者们已经应用了上述的初始分离步骤来分离目标蛋白和讨厌的聚阴离子。不幸地,每一个初始纯化方法都有严重的缺陷,尤其当其应用于生产药物试剂的时候。比如说,在微生物溶解产物中发现的大量非蛋白聚阴离子杂质易于使阴离子交换层析树脂的结合能力减弱。另外,再生操作常常由于聚阴离子与树脂的强力结合而失效(Spears,出处同上)。最终,目标蛋白结合的低离子强度条件对于破坏聚阴离子-蛋白相互作用是无效的,导致很差的分离效果(Scopes,Protein Purification PrinciplesandPractice,3rd edition,Cantor eds.,p.171(1994))。当关注到蛋白酶和病毒杂质时,制备硫酸鱼精蛋白是令人苦恼的。而且,应用这种试剂会产生不需要的蛋白沉淀(Scopes,蛋白Purification Principles and Practice,2nd edition,Cantor eds.,21-71(1987))。
在药物蛋白的生产过程中,基于有关抗生素用作生产试剂的一般理解,硫酸链霉素是通常不会采用的(Scawen et al.,Handbook of EnzymeBiotechnology 2nd edition,Wiseman eds.:15-53(1985))。PEI制剂经常被乙烯亚胺单体量的变动所污染,因为其单体是一种可能的治癌物质(Scawen et al.,出处同上)。PEI也易于与许多层析树脂不可逆地结合而限制树脂的有效性,所以,大量的层析树脂都可以应用在PEI步骤之后的纯化步骤。总的来说,双水相萃取系统常常需要而又难于预测一种经验方法,用它来确定将目标蛋白转入适宜水相的条件(Kelley et al.,出处同上)。
目标蛋白的特殊沉淀技术常常导致沉淀中非蛋白杂质的截留而使分离失效(Scopes,出处同上;Wheelwright,出处同上)。
描述蛋白回收和纯化的专利中的实例包括如下:
美国专利5,665,866公开了一种可溶并正确折叠和组装的抗体获取方法。为了促进可溶性并正确折叠和组装的抗体的后续分离,充分去除其它与抗体相关的物质,该方法包括一个在操作过程中的某一时刻将操作温度从34℃升高到60℃的步骤。
美国专利5,760,189公开了一种通过向溶液中加入螯合剂从大肠杆菌中将一种类似硫氧还蛋白的融合蛋白包括带负电荷的非蛋白物质释放到溶液中,并通过向溶液中添加二价阳离子/乙醇溶液以形成第一个含有蛋白的可溶性级分和第一个含有多余杂质的不溶性级分,从而将带负电荷的非蛋白物质从溶液中沉淀的方法。任意地,在加入螯合剂之前的温度要比加入螯合剂之后低得多。二价阳离子包括,例如镁、锰和钙单独或者组合加入。
美国专利5,714,583公开了一种在溶液中纯化IX因子的方法,包括应用一种阴离子交换树脂处理含有IX因子的溶液,用电导率小于从树脂上洗脱IX因子所需电导率的溶液洗涤阴离子交换树脂,用第一种洗脱剂洗脱阴离子交换树脂形成第一种洗脱液,将洗脱液用肝素或类肝素(例如:基质带负电荷的)树脂处理,应用第二种洗脱剂洗脱肝素或类肝素树脂形成第二种洗脱液,用羟基磷灰石树脂处理第二种洗脱液,而后用第三种洗脱剂洗脱羟基磷灰石树脂以形成含有纯化的IX因子的第三种洗脱液。
美国专利6,322,997公开了一种回收多肽的方法,包括用一种可与多肽相结合或者可对多肽进行修饰的试剂处理一种含有多肽的混合物,此时试剂被固定化在固相上,然后将混合物通过一个所带电荷与混合物中的试剂所带电荷相反的过滤器,以便从混合物中除去滤出的试剂。
美国专利6,214,984公开了将低pH疏水相互作用层析(LPHIC)用于抗体纯化的方法。具体地,该专利提供了一种纯化抗体去除杂质的方法,包括将含有抗体和杂质的混合物在疏水相互作用层析柱上上样、用一种pH大约2.5-4.5的的缓冲液将抗体从柱上洗脱。通常,上样到柱上的混合物与洗脱缓冲液具有一样的pH值
美国专利6,121,428提供了一种回收多肽的方法,包括用一种可与多肽相结合或者可对多肽进行修饰的试剂处理一种含有多肽的混合物,此时试剂被固定化在固相上,然后将混合物通过一个所带电荷与混合物中的试剂所带电荷相反的过滤器,以便从混合物中除去滤出的试剂。
美国专利5,641,870提供了一种纯化抗体的方法,其中对含有抗体和杂质的混合物在低盐浓度的条件下进行LPHIC。将抗体从柱上洗脱到不与它结合的级分。在提取步,冷冻的细胞颗粒在室温下重悬于pH值6.0、含有5mM EDTA和预溶于乙醇的20mM 4,4′-DTP的20mM MES缓冲液中(1kg细胞颗粒溶于3升缓冲液)。重悬细胞在Mantin Gaulin匀浆器中5500-6500PSI条件下的双通道中进行细胞破碎。匀浆物以聚乙烯亚胺(PEI)调至0.25%(v/v)并以相同体积的28℃纯水稀释,将稀释后的匀浆物进行离心,抗体片断出现在上清液中。
在历史上,已从人血清和血浆中纯化出免疫球蛋白G(IgG)(Putnam,ed.,The Plasma Protein,vol.1(Academic Press,1975))。纯化方法常常包含一步或多步沉淀过程。最常使用的用于沉淀IgG的沉淀方法是Cohn分馏法(Cohn etal.,J.Amer.Chem.Soc.,72:465(1950)),然而其它沉淀技术已有报道(Niederauer and Glatz,Advances in Biochemical Engineering Biotechnology,v.47(Springer-Verlag Berlin Heidelberg,1992);Steinberg and Hershberger,Biochim.et Biophys.Acta,342:195-206(1974))。应用乳酸6,9-二氨基-2-乙氧吖啶(USAN命名,本文也称乳酸依沙吖啶(ethacridine lactate),还可以称ETHODINTM或RIVANOLTM)-一种多芳基的阳离子染料,从血浆中纯化IgG的先驱工作是由Horsjsi和Smetana,Acta Med.Scand.,155:65(1956)报道的。其后的十年产生的大量出版物都表明了乳酸6,9-二氨基-2-乙氧吖啶具有从生物物质如血浆和培养基中,纯化IgG和其它蛋白的能力(Miller,Nature,184:450(1959);Steinbuch和Niewiarowski,Nature,186:87(1960);Neurath和Brunner,Experientia,25:668(1969))。应用乳酸依沙吖啶从其它来源回收抗体和其它蛋白已经有所报道,参见Tchernov et al.,J.Biotechnol.,69:69-73(1999);SU 944580,1982-07-28公开;Franek和Dolnikova,Biotech-Forum-Eur,7:468-470(1990);EP 250288,1987-12-23公开;DE3604947,1987-08-20公开;Rothwell et al.,Anal.Biochem.,149:197-201(1985);Lutsik和Antonyuk,Biokhimiya,47:1710-1715(1982);和Aizenman etal.,Mikrobiol-Zh.,44:69-72(1982)。
从微生物中回收多肽的第一步常常涉及去除细胞和细胞碎片等固体物质,重要的是认识到,需要从经过培养的培养基(conditioned medium)所含能与目标产物发生特定相互作用的组分中分离目标产物。当目标蛋白带正电荷时,它倾向于与任何存在的带负电荷的分子相结合,因此用传统方法纯化蛋白是十分困难的。在这一步骤中,附加从微生物的粗提物如大肠杆菌匀浆物中去除可溶性的杂质蛋白的处理可以简化后续的层析步骤。这样的附加操作尤其对于工业规模的生产具有价值,可以降低层析柱尺寸并节约生产时间。
发明简述
本发明涉及权利要求所述的纯化方法。
具体地,一方面,本发明提供了从产生并溶有目标异源多肽的微生物发酵液或匀浆物中纯化该多肽的方法,包括在使多肽的主要部分保持可溶的条件下,向培养液或匀浆物中加入有效量的乳酸6,9-二氨基-2-乙氧吖啶(乳酸依沙吖啶)溶液,以沉淀宿主细胞杂质,并从培养液或匀浆物中分离目标多肽。
另一方面,本发明提供了一种微生物细胞的发酵液或匀浆物,其包含乳酸依沙吖啶和相对于所述细胞而言异源的多肽。
加入乳酸依沙吖啶作为沉淀剂,可意外地导致明显去除宿主细胞碎片,包括宿主蛋白。在此过程中,大多数的宿主蛋白与细胞碎片一起回收在沉淀中,而多肽则回收在澄清的上清中。应用乳酸依沙吖啶时,澄清提取物的纯度增加,这导致层析柱所需的层析介质或树脂的体积减小,因此可减小后续纯化所需的规模。它还导致取消一些层析步骤,可以节约处理时间和成本。另外,本文所述方法也可产生稳定的原料并可在中性pH操作。
附图说明
图1为抗CD18F(ab’)2(-亮氨酸拉链)质粒pS1130(单启动子)和pxCD18-7T3(双启动子)的构建示意图。
图2显示了双启动子构建体pxCD18-7T3中插入的核酸序列(定名为抗-CD18-7T3.DNA;SEQ ID NO:1)。
图3A和3B显示由构建体pxCD18-7T3中的两个翻译单元编码的氨基酸序列(SEQ ID NOS:2和3)(合并定名为抗-CD18-7T3.蛋白),分别定名为STII+抗-CD18轻链(图3A)和STII+抗-CD18重链(图3B)。N端STII分泌信号序列用下划线标出。
图4为抗组织因子IgG1质粒paTF130(phoA/phoA启动子)和pxTF-7T3FL(phoA/tacII-启动子)的示意图。
图5显示了phoA/tacII-启动子构建体pxTF-7T3FL中插入的核酸序列(定名为抗-TF-7T3FL.DNA;SEQ ID NO:4)
图6A和6B显示了由构建体pxTF-7T3FL中的两个翻译单元编码的氨基酸序列(SEQ ID NOS:5和6)(合并定名为抗-TF-7T3FL.蛋白),它们分别定名为STII+抗-TF轻链(图6A)和STII+抗-TF重链(图6B)。N端STII分泌信号序列用下划线标出。
图7显示了乳酸依沙吖啶的化学结构。
图8A-8C显示三种上清液经乳酸依沙吖啶沉淀后的非还原性SDS-PAGE考马斯亮蓝染色凝胶分析。沉淀在如每条泳道所示的不同pH值进行,标有X的泳道是不同大肠杆菌匀浆物的澄清上清,即抗-CD18F(ab’)2、抗-TF F(ab’)2和全长抗-TF(分别见图8A、8B和8C)。匀浆物以0.8%的乳酸依沙吖啶溶液稀释4倍,即用于每个试验中的乳酸依沙吖啶终浓度为0.6%。所有样品加载到凝胶之前补足体积,因此如果回收率为100%,条带的强度应该与提取物(X)相当。箭头所示为产物条带。
图9A-9C显示上清液经乳酸依沙吖啶沉淀后的非还原性SDS-PAGE考马斯亮蓝染色凝胶分析。沉淀在如每条泳道所示的乳酸依沙吖啶不同浓度进行,标有X的泳道是不同大肠杆菌匀浆物的澄清上清,即抗-CD18F(ab’)2、抗-TF F(ab’)2和全长抗-TF(分别见图9A、9B和9C)。抗-CD18F(ab’)2、抗-TFF(ab’)2和全长抗-TF的pH值分别为8.5、7.5、6.0。样品的电导率为3.2±0.2mS/cm。所有样品加载到凝胶之前补足体积,因此如果回收率为100%,条带的强度应该与提取物(X)相当。箭头所示为产物条带。
图10A和10B显示两种上清液分别经水或乳酸依沙吖啶稀释后的非还原性SDS-PAGE考马斯亮蓝染色凝胶分析。在不同电导率水平进行沉淀。用含有抗-CD18F(ab’)2的大肠杆菌匀浆物进行此项研究。以水(图10A)或者0.8%的乳酸依沙吖啶溶液,即用于每个试验中的乳酸依沙吖啶终浓度为0.6%(图10B)将匀浆物稀释4倍,将pH值调节到8.3。将NaCl以0-400mM范围内的不同浓度(如图所示)加入样品中来改变电导率。箭头所示为产物条带。
图11显示了在逐步升高的NaCl浓度中乳酸依沙吖啶的溶解度图。在检测可溶性乳酸依沙吖啶浓度之前,样品在室温温育3小时。空心符号的表示1.2%乳酸依沙吖啶溶液而实心符号则表示0.6%的溶液。实线表示pH值为6.0的0.6%的乳酸依沙吖啶溶液,虚线表示pH值为6的1.2%的乳酸依沙吖啶溶液,点线表示pH值为9的0.6%的乳酸依沙吖啶溶液,加点虚线表示pH值为9的1.2%的乳酸依沙吖啶溶液。
图12A-12C显示三种上清液经乳酸依沙吖啶沉淀后的非还原性SDS-PAGE考马斯亮蓝染色凝胶分析。在提高的温度进行沉淀,标有X的泳道是不同大肠杆菌匀浆物,即抗-CD18(F(ab’)2)、抗-TF(F(ab’)2)和全长抗-TF的澄清上清(分别如图12A、12B和12C)。将匀浆物稀释4倍,使乳酸依沙吖啶的终浓度为0.6%,分别将抗-CD18(F(ab’)2)、抗-TF(F(ab’)2)和全长抗-TF的pH调节到8.5、7.5和6.0。温度和温育时间如图所示,箭头所示为产物条带。
图13显示了三种不同上清液的浊度与时间的函数关系。实心圆圈(4℃)或空心圆圈(21℃)表示用0.6%乳酸依沙吖啶处理的抗-CD18匀浆物的上清,实心方块(4℃)或空心方块(21℃)表示以0.2%PEI处理的样品。实心三角(4℃)或空心三角(21℃)表示浓缩前用水稀释的抗-CD18澄清匀浆物中回收的上清。在所有的情况下,抗-CD18匀浆物都被稀释4倍且pH值为7.2。
发明详述
定义
“微生物发酵液或匀浆物(homogenate)”是指微生物(包括酵母、真菌、以及原核生物如细菌)经过培养(不管使用的是什么培养容器,例如,摇瓶或发酵罐)、并消耗营养所获得的培养液(broth),糊状物(paste),或提取物(extract),优选为重新悬浮的形式。优选地,所述培养液或匀浆物来自酵母或原核生物。更优选,所述培养液或匀浆物来自细菌。本文中优选匀浆物。在一些情况下,当溶液的电导率(conductivity)很高时,优选收获细胞并将它们重新悬浮,但在其它情况下,优选直接使用从发酵罐中获得的匀浆物。培养液或匀浆物的组分包括细胞碎片,宿主细胞蛋白,DNA,RNA等。因此,在这里,添加乳酸盐(lactate)导致选择性沉淀宿主细胞蛋白等,从而提供比不使用乳酸盐时更强的纯化能力。
“在使多肽的主要部分保持可溶状态的条件下”是指,将乳酸依沙吖啶(ethacridine lactate)添加到培养液或匀浆物中,添加量、添加时的温度以及电导率水平应使得能防止目标多肽的主要部分从培养液或匀浆物中沉淀出来。优选这类条件防止多肽的约60%以上的部分沉淀,更优选约70%以上,还更优选约75%以上,还更优选约80%以上,还更优选约85%以上,还更优选约85%以上,还更优选约90%,以上,还更优选约95%以上。这一溶解度可以通过合适的试验测量,所述试验例如RP-HPLC,亲和层析,ELISA,RIA,以及SDS-PAGE与高效亲和层析(HPAC)联用。对试验的选择取决于诸如所用宿主细胞类型和所药产生的多肽等因素。
“细菌”在本文中指真细菌(eubacteria)和古细菌(archaebacteria)。优选真细菌,包括革兰氏阳性菌和革兰氏阴性菌。更优选革兰氏阴性菌。优选类型之一是肠杆菌科(Enterobacteriaceae)。属于肠杆菌科的细菌的实例包括埃希氏菌属(Escherichia),肠杆菌属(Enterobacter),欧文氏菌属(Erwinia),克雷伯氏菌属(Klebsiella),变形菌属(Proteus),沙门氏菌属(Salmonella),沙雷氏菌属(Serratia)和志贺氏菌属(Shigella)。其它适合的细菌包括固氮菌属(Azotobacter),假单胞菌属(Pseudomonas),根瘤菌属(Rhizobia),透明颤菌属(Vitreoscilla),和副球菌属(Paracoccus)。本文优选大肠杆菌(E.coli)。合适的大肠杆菌宿主包括大肠杆菌W3110(ATCC27,325),大肠杆菌294(ATCC31,446),大肠杆菌B和大肠杆菌X1776(ATCC31,537)。这些实例都是举例说明,并非限制,优选W3110。也可以使用上述任一种细菌的突变细胞。当然,选择合适的细菌必需考虑复制子在细菌细胞中复制的能力。例如,当用pBR322,pBR325,pACYC177,或pKN410等已知质粒供应复制子时,大肠杆菌、沙雷氏菌或沙门氏菌物种是合适的宿主。详见下文关于合适的细菌宿主细胞的实例。
“细胞”,“细胞系”,“菌株”以及“细胞培养物”在本文中可以互换使用,它们都包括其后代。因此,“转化体”和“转化细胞”包括原代细胞及其衍生的培养物,而不考虑转移的次数。还应理解,由于有意或无意的突变,所有后代在DNA含量方面不一定完全相同。在最初的转化细胞中筛选出的、具有相同功能或生物活性的突变后代也包括在内。不管命名有不同,其内容可以清楚显示其含义。
“多肽”在本文中一般指,来自任何细胞来源、具有10个以上氨基酸的肽和蛋白。“异源”多肽是指相对于所用的宿主细胞而言外来的多肽,如大肠杆菌产生的人蛋白。异源多肽可以是原核多肽或真核多肽,优选真核多肽,更优选哺乳动物的多肽,最优选人的多肽。优选是重组产生的多肽,或重组的多肽。
多肽产生于并溶于发酵液或匀浆物中,是指它产生在这样的发酵液或匀浆物中,并且已经是产物中的可溶性级分,或者是经离液剂(chaotrope)(例如,尿素或胍)或去污剂(如十二烷基硫酸钠(SDS))等溶解剂处理或与之接触而成不溶性级分或形式或相,经或未经还原剂(如二硫苏糖醇或beta-巯基乙醇)处理以助溶解。“可溶的(Soluble)”“增溶的(solubilized)”“增溶(solubilization)”“溶于(dissolved)”或“溶解(dissolution)”在本文中是指,多肽离心后在上清中而不是在固体级分中。沉淀或溶解度可以通过,例如上述合适的试验来确定。
哺乳动物多肽的实例包括下列分子,例如肾素;生长因子,包括人生长因子和牛生长因子;生长激素释放因子;甲状旁腺素;甲状腺刺激素;脂蛋白;α-1-抗胰蛋白酶;胰岛素A-链;胰岛素B-链;前胰岛素;血小板生成素;卵泡刺激素;降钙素;黄体生成素;胰高血糖素;凝血因子如凝血因子VIIIC,凝血因子IX,组织因子(TF),和von Willebrands因子;抗-凝血因子,如蛋白C;心房利钠因子(atrial naturietic factor);肺表面活性物质;纤溶酶原激活剂,例如尿激酶或人尿或组织型纤溶酶原激活剂(t-PA)及其变体如RETEVASETM和TNKASETM;蛙皮素(bombesin);凝血酶;造血生长因子;肿瘤坏死因子-α和-β;抗ErbB2结构域抗体如2C4(WO 01/00245;杂交瘤ATCC HB-12697),其与ErbB2胞外结构域中的区域(例如,ErbB2的约残基22-584(含)所示区域中的任何一或多个残基)结合,脑啡肽酶;血清白蛋白,例如人血清白蛋白;Muellerian抑制物质;松弛素A链;松弛素B链;前松弛素;小鼠绒毛膜促性腺激素相关肽;微生物蛋白,例如β-内酰胺酶;DNase;抑制素;激活素;血管内皮生长因子(VEGF);激素或生长因子的受体;整联蛋白;蛋白A或D;类风湿因子;神经营养因子,例如脑衍生神经营养因子(BDNF),神经营养蛋白-3、-4、-5或6(NT-3、NT-4、NT-5或NT-6)或神经生长因;心营养蛋白(cardiotrophin)(心脏肥大因子)如心营养蛋白-1(CT-1);血小板衍生生长因子(PDGF);成纤维细胞生长因子,例如aFGF和bFGF;表皮生长因子(EGF);转化生长因子(TGF),例如TGF-α和TGF-β,包括TGF-β1、TGF-β2、TGF-β3、TGF-β4或TGF-β5;胰岛素样生长因子I和II(IGF-I和IGF-II);des(1-3)-IGF-I(脑IGF-I),胰岛素样生长因子结合蛋白;CD蛋白,例如CD3、CD4、CD8和CD19;促红细胞生成素;骨诱导因子;免疫毒素;骨形态发生(morphogenetic)蛋白(BMP);干扰素,例如干扰素-α、-β和γ;血清白蛋白,例如人血清白蛋白(HSA)或牛血清白蛋白(BSA);集落刺激因子(CSF),例如M-CSF、GM-CSF和G-CSF;白细胞介素(IL),例如IL-1到IL-10;抗-HER-2抗体;Apo2配体;超氧化物歧化酶;T细胞受体;表面膜蛋白;衰变(decay)加速因子;病毒抗原,例如AIDS包膜的一部分;转运蛋白;归巢受体;粘着素(adderssin);调节蛋白;抗体;以及上述任何多肽的片段。
本文优选的多肽包括人血清白蛋白(HSA),2C4,组织因子,抗-组织因子,抗-CD20,抗-HER-2,遗传调节蛋白(heregulin),抗-IgE,抗-CD11a,抗-CD18,VEGF及其受体和抗体如rhuFab V2和AVASTINTM,生长激素及其变体,如hGH,生殖激素受体,生长激素释放蛋白(GHRP),LIV-1(EP1,263,780),TRAIL,肿瘤坏死因子(TNF)及其抗体,TNF受体和相关抗体,TNF-受体-IgG,TNF受体相关因子(TRAF)及其抑制因子,凝血因子VIII,凝血因子VIII B结构域,干扰素如干扰素-γ,转化生长因子(TGF)如TGF-β,抗-TGF如抗-TGF-β,活化素,抑制素,抗-活化素,抗-抑制素,组织-纤溶酶原激活剂及其变体如t-PA,RETEPLASETM和TNKase,抗-Fas抗体,Apo-2配体;Apo-2配体抑制剂;Apo-2受体,Apo-3,凋亡因子,Ced-4,DcR3,死亡受体和激动剂抗体(DR4,DR5),淋巴毒素(LT),促乳素(prolactin),促乳素受体,SOB蛋白,WISP(wnt-诱导的经选择的蛋白),神经毒素(neurotoxin)-3(NT-3),神经生长因子(NGF)和抗-NGF,DNase,肝炎病毒抗原,单纯疱疹病毒抗原,leptin,胰岛素-样生长因子(IGFs)如IGF-1和IGF-2及其结合蛋白和受体如IGFBP-1-IGFBP-6,胰岛素,成纤维细胞生长因子(FGF)如FGF-17,Toll蛋白,TIE配体,CD40和抗-CD40,免疫粘附素,枯草杆菌蛋白酶,肝细胞生长因子(HGF),血小板生成素(TPO),白细胞介素如IL-2,IL-12,IL-17,IL-22,IL-8,IL-9,及其抗体,以及前列腺特异性癌抗原(PSCA)。
结合HER2的抗体的实例包括4D5,7C2,7F3和2C4,及其人源化变体,包括huMAb4D5-1,huMAb4D5-2,huMAb4D5-3,huMAb4D5-4,huMAb4D5-5,huMAb4D5-6,huMAb4D5-7和huMAb4D5-8,参见美国专利5,821,337的表3;以及人源化2C4突变体编号560,561,562,568,569,570,571,574,或56869,参见WO01/00245。7C2、7F3及其人源化变体参见WO98/17797。
结合CD20抗原的抗体的实例包括:“C2B8”,现称为“Rituximab”
Figure C200480006396D0015164847QIETU
(美国专利5,736,137);钇-[90]-标记的2B8鼠抗体“Y2B8"(美国专利5,736,137);鼠IgG2a“B1”,可以用131I标记,产生“131I-B1”抗体(BEXXARTM)(美国专利5,595,721);鼠单克隆抗体“1F5"(Pressetal.,Blood69(2):584-591(1987));“嵌合2H7"抗体(美国专利5,677,180);以及单克隆抗体L27,G28-2,93-1B3,B-C1或NU-B2,它们可以从International LeukocyteTyping Workshop(Valentine et al.,In:Leukocyte Typing III(McMichael,Ed.,p.440,Oxford University Press(1987))获得。
更优选的多肽是2C4,抗-组织因子,抗-CD20,抗-HER-2,遗传调节蛋白,抗-IgE,抗-CD11a,抗-CD18,抗-VEGF如rhuFab V2,hGH,GHRP,LIV-1,TRAIL,抗TNF、TNF受体及其相关抗体的抗体,TRAF抑制剂,TNF-受体-IgG,凝血因子VIII,凝血因子VIIIB结构域,干扰素-γ,TGF-β和抗-TGF-β,活化素,抑制素,抗-活化素,抗-抑制素,t-PA,TNKase,抗-Fas抗体,Apo-2配体;Apo-2配体抑制剂;Apo-2受体,Apo-3,DcR3,死亡受体和激动剂抗体(DR4,DR5),淋巴毒素(LT),促乳素,促乳素受体,WISP,抗-NGF,NGF,NT-3,抗-IL-8,抗-IL-9.IL-17,IL-22,DNase,GHRP,肝炎病毒抗原,单纯疱疹病毒抗原,leptin,IGF-1和IGFBP1-6,胰岛素,FGF-17,Toll蛋白,TIE配体,CD40,免疫粘附素,枯草杆菌蛋白酶,HGF,和TPO。
还更优选的多肽是2C4,抗-组织因子,抗-CD20,抗-HER-2,抗-IgE,抗-CD11a,抗-CD18,抗-VEGF如rhuFab V2,hGH,LIV-1,TRAIL,抗TNF和TNF受体和相关抗体的抗体,TNF-受体-IgG,凝血因子VIII,凝血因子VIIIB结构域,干扰素-γ,TGF-β,活化素,抑制素,抗-活化素,抗-抑制素,t-PA,TNKase,Apo-2配体;Apo-2配体抑制剂;Apo-2受体,Apo-3,DcR3,死亡受体和激动剂抗体(DR4,DR5),WISP,TRAF抑制剂,抗-NGF,NGF,NT-3,抗-IL-8,抗-IL-9,IL-17,IL-22,抗-TGFs,DNase,GHRP,肝炎病毒抗原,单纯疱疹病毒抗原,leptin,IGF-1和IGFBP1-6,胰岛素,FGF-17,Toll蛋白,TIE配体,抗-CD40,HGF,和TPO。
特别优选的多肽是重组多肽,更优选抗体,包括单克隆抗体和人源化抗体抗体。这种抗体可以是全长抗体或抗体片段。更优选,这些抗体是人的抗体或人源化抗体,包括,例如特别优选的多肽2C4,抗-组织因子Fab’2及其全长分子,抗-CD20,抗-HER-2,抗-IgE,抗-CD11a,抗-CD18Fab’2及其全长分子,抗-VEGF全长分子和rhuFab V2,LIV-1,DR4,DR5,和TRAIL。
还更优选,抗体是抗-IgE,抗-CD18,抗-VEGF,抗-组织因子,2C4,抗-Her-2,抗-CD20,抗-CD40,或抗-CD11a抗体。包含在多肽定义中的抗体片段优选包含轻链,更优选包含K轻链。这类优选片段包括,例如Fab,Fab’,F(ab’)2,或F(ab’)2-亮氨酸拉链(LZ)融合体,最优选F(ab’)2。最优选的抗体是抗-CD18F(ab’)2,抗-组织因子F(ab’)2,全长抗-组织因子抗体,以及抗-VEGF抗体。
本文术语“抗体”是指最广义上的抗体,具体包括完整(intact)单克隆抗体,多克隆抗体,由至少两个完整抗体形成的多特异性抗体(如双特异性抗体),以及抗体片段,只要它们显示所需生物学活性即可。
本文术语“单克隆抗体”是指,来自基本上同质的抗体群的抗体,即除了可能少量存在的天然突变以外,该抗体群中的各个抗体均相同。单克隆抗体具有高度特异性,直接针对单个抗原位点。而且,与包括针对不同决定簇(表位)的多个不同抗体的多克隆抗体制剂相反,每种单克隆抗体直接针对抗原上的单个表位。单克隆抗体除了它们在特异性方面的优势以外,优势还包括它们的合成不会污染其它抗体。修饰词“单克隆”表明该抗体的特点,即,它来自基本均一的抗体群,不解释为需通过任何特殊方法产生该抗体。例如,根据本发明应用的单克隆抗体可通过由Koehler et al.,Nature256:495(1975)首先描述的杂交瘤法进行制备,或者可通过重组DNA法进行制备(例如见美国专利4,816,567)。“单克隆抗体”还可利用例如Clackson et al.,Nature352:624-628(1991)和Marks et al.,J.Mol.Biol.222:581-597(1991)所述技术从噬菌体抗体库中分离。
本文中单克隆抗体具体包括“嵌合”抗体,其重链和/或轻链的一部分与源自具体物种或属于具体抗体种类或亚类的抗体的相应序列相同或同源,但所述链的剩余部分与源自另一个物种或属于另一个抗体种类或亚类的抗体的相应序列相同或同源,单克隆抗体还包括这类抗体的片段,只要它们显示所需的生物学活性(美国专利4,816,567;Morrison et al.,Proc.Natl. Acad.Sci.USA81:6851-6855(1984))。本文的目标嵌合抗体包括“灵长类化(primatized)”抗体,其包含源于非人灵长类可变区的抗原结合序列(如OldWorld Monkey,Ape等)和人的恒定区序列。
“抗体片段”包含完整抗体的一部分,优选包含其抗原结合部分或可变区部分。抗体片段的实例包括Fab、Fab’、F(ab’)2和Fv片段;二价抗体(diabodies);线性抗体;单链抗体分子;和由多个抗体片段形成的多特异性抗体。
“完整(intact)”抗体包含与抗原结合的可变区以及轻链恒定区(CL)和重链恒定区CH1,CH2和CH3。恒定区可以是天然序列恒定区(例如,人天然序列恒定区)或其氨基酸序列变体。优选,完整抗体具有一或多种效应功能。
抗体“效应功能”是指可归于抗体Fc区(天然序列Fc区或具有氨基酸序列变异的Fc区)的那些生物学活性。抗体“效应功能”的实例包括:C1q结合;补体依赖性细胞毒活性;Fc受体结合;抗体依赖性细胞介导的细胞毒活性(ADCC);胞吞作用;细胞表面受体(例如B细胞受体,BCR)下调等。
完整抗体根据其重链恒定区的氨基酸序列可分为不同的“类”。主要有5类免疫球蛋白:IgA、IgD、IgE、IgG和IgM,它们分别具有被称为α、δ、ε、γ和μ的重链,其中的α和γ还可以根据其CH序列和功能的更小差异进一步分成亚类,例如人类表达以下亚类:IgG1、IgG2、IgG3、IgG4、IgA1和IgA2。不同类免疫球蛋白的亚单位结构和三维构型是众所周知的。
“抗体依赖性细胞介导的细胞毒活性”和“ADCC”是指由细胞介导的反应,其中表达Fc受体(FcR)的非特异性细胞毒细胞(例如自然杀伤(NK)细胞,中性粒细胞和巨噬细胞)识别结合在靶细胞上的抗体,随后引起该靶细胞裂解。介导ADCC作用的主要细胞NK细胞仅表达FcRIII,而单核细胞则表达FcRI、FcRII和FcRIII。关于造血细胞上FcR表达的总结见Ravetch andKinet,Annu.Rev.Immunol.,9:457-92(1991),464页,表3。为了评价目标分子的ADCC活性,可进行体外ADCC试验,例如美国专利5,500,362或5,821,337中所述。用于这类试验的有效效应细胞包括外周血单核细胞(PBMC)和自然杀伤(NK)细胞。或者(或另外),可在体内,例如在Clynes et al.Proc.Natl.Acad.S ci.USA95:652-656(1998)所述的动物模型中,评估目标分子的ADCC活性。
“人类效应细胞”是表达一或多种FcR并执行效应功能的白细胞。优选,所述细胞至少表达Fc RIII并执行ADCC效应功能。介导ADCC作用的人类白细胞的实例包括外周血单核细胞(PBMC),自然杀伤(NK)细胞,单核细胞,细胞毒T细胞和中性粒细胞;优选PBMC和NK细胞。所述效应细胞可从其天然来源中分离,例如从本文所述血液或PBMC中分离。
“天然抗体”通常是约150,000道尔顿的异四聚体糖蛋白,其由两条相同的轻(L)链和两条相同的重(H)链组成。每条轻链通过一个共价二硫键与重链相连,而不同免疫球蛋白同种型的重链具有不同数目的二硫键。每条重链和轻链还有规则间隔的链内二硫键。每条重链的一端有可变区(VH),其后是多个恒定区。每条轻链的一端有可变区(VL),另一端有恒定区。轻链的恒定区与重链的第一个恒定区相对,轻链的可变区与重链的可变区相对。人们相信有一些氨基酸残基在轻链和重链的可变区之间形成界面。
术语“可变”是指可变区一些部分的序列在不同抗体之间有很大差异,它们可在各个具体抗体针对其具体抗原的结合和特异性方面发挥作用。然而,该变异性并非均匀分布于抗体的整个可变区。它集中于轻链和重链可变区中三个称为超变区的节段中。可变区中更高度保守的部分称为框架区(FR)。天然重链和轻链的可变区各包括4个FR,主要采取β折叠构型,由三个超变区相连,形成环状连接,在一些情况下可形成所述β折叠结构的一部分。每条链的超变区通过FR区紧密相连,彼此十分靠近,并且与其它链的超变区一起形成抗体的抗原结合位点(见Kabat et al.,Sequences of蛋白 of Immunological Interest,5th Ed.Public Health Service,National Institutes ofHealth,Bethesda,MD.(1991))。恒定区不直接参与抗体与抗原的结合,但是表现出各种效应功能,例如参与抗体的抗体依赖性细胞毒性作用(ADCC)。
本文中术语“超变区”是指抗体上负责与抗原结合的氨基酸残基。超变区一般包含来自“互补决定区”或“CDR”的氨基酸残基(例如,轻链可变区中的残基24-34(L1),50-56(L2)和89-97(L3),重链可变区中的31-35(H1),50-65(H2)和95-102(H3);Kabat等,Sequence of proteins of Immunological Interest,第5版Public Health Service,National Institutes ofHealth,Bethesda,MD.(1991)),和/或来自“超变环”的那些残基(例如,轻链可变区中的残基26-32(L1),50-52(L2)和91-96(L3),重链可变区中的残基26-32(H1),53-55(H2)和96-101(H3);Chothia和Lesk,J.Mol.Biol.196:901-917(1987))。“框架区”或“FR”残基是那些可变区残基而不是本文定义的超变区残基。
用木瓜蛋白酶消化抗体可产生两个相同的各带有单个抗原结合位点的抗原结合片段(称为“Fab”片段)和残余的“Fc”片段,Fc片段的名称反应了其易于结晶的能力。经胃蛋白酶处理可产生具有两个抗原结合位点并仍然能与抗原交联的F(ab’)2片段。
“Fv”是含有完整的抗原-识别和抗原-结合位点的最小抗体片段。此区由一个重链可变区与一个轻链可变区紧密地非共价连接形成的二聚体组成。在这个构型中,每个可变区的三个超变区相互作用,在VH-VL二聚体表面限定抗原结合位点。这六个超变区共同赋予抗体以抗原结合特异性。然而,即使是单个可变区(或Fv上仅含有三个抗原特异性超变区的一半)也具有识别和结合抗原的能力,尽管与完整的结合位点相比其亲和力较低。
Fab段还包括轻链恒定区和重链的第一个恒定区(CH1)。Fab’片段区别于Fab片段之处在于,Fab’在重链CH1区的羧基末端多出数个残基,包括抗体铰链区的一个或多个半胱氨酸。Fab’-SH在本文中是指恒定区半胱氨酸残基带有至少一个游离巯基的那些Fab’。F(ab,)2抗体片段最初产生为Fab’片段对的形式,在它们之间具有铰链区半胱氨酸。抗体片段的其它化学偶联是众所周知的。
脊椎动物任何物种的抗体的“轻链”,可依据其恒定区氨基酸序列而归为两种完全不同类型(称为κ和λ)中的一种。
“单链Fv”或“scFv”抗体片段包含抗体的VH和VL结构域,且这些结构域存在于单个多肽链上。优选,Fv多肽在VH和VL结构域之间还包含多肽接头,它能使scFv形成抗原结合所需的结构。关于scFv的综述见Plückthun in The Pharmacology of Monoclonal Antibodies,vol.113,Rosenburgand Moore eds.(Springer-Verlag,New York,1994),pp.269-315。抗-ErbB2抗体scFv片段可参见WO93/16185;美国专利5,571,894;美国专利5,587,458。
术语“二价抗体(diabodies)”是指具有两个抗原结合位点的小分子抗体片段,这些片段在同一条多肽链(VH-VL)中含有相连的重链可变区(VH)和轻链可变区(VL)。利用一种太短以至于不能使同一条链上的两个结构域配对的接头,可以迫使这些结构域与另一条链上的互补结构域配对,并形成两个抗原结合位点。二价抗体的详细说明参见,如EP 404,097;WO 93/11161;以及Hollinger et al.,Proc.Natl.Acad.Sci.USA90:6444-6448(1993)。
“人源化”非人(例如啮齿类)抗体是包含非人免疫球蛋白的最小序列的嵌合抗体。大多数场合,人源化抗体是人免疫球蛋白(受体抗体),但其中受体的超变区残基被具有所需特异性、亲和力以及能力的小鼠、大鼠、家兔或非人灵长类等非人源物种抗体(供体抗体)的超变区残基所取代。在一些实例中,人免疫球蛋白的一些框架区(FR)残基由相应的非人类残基所取代。而且,人源化抗体可包括在受体抗体或供体抗体中未发现的残基。这些修饰旨在进一步细化(refine)抗体性能。一般而言,人源化抗体基本上包括至少一个(通常包括两个)可变区的全部,其中超变环的全部或基本上全部对应于非人免疫球蛋白的相应部分,而FR的全部或基本上全部是人免疫球蛋白的序列。人源化抗体还任选包括免疫球蛋白恒定区(Fc)的至少一部分,通常为人的免疫球蛋白恒定区的至少一部分。详见Jones et al.,Nature321:522-525(1986);Riechmann et al.,Nature332:323-329(1988);Presta,Curr.Op.Struct. Biol.2:593-596(1992)。
“分离的”抗体,是指从其天然环境的组分中鉴定和分离和/或回收的抗体。其天然环境中的杂质组分是可以干扰该抗体的诊断或治疗应用的物质,可包括酶,激素,及其它蛋白性或非蛋白性溶质。在优选的实施方案中,抗体经过纯化可以达到以下程度:(1)按Lowry法测定,达到抗体重量的95%以上,最优选重量的99%以上,(2)足以经转杯式测序仪(spinning cupsequenator)测出N-末端氨基酸序列或内部氨基酸序列的至少15个残基,或者(3)经过还原或非-还原条件下的SDS-PAGE和考马斯蓝或优选银染色测出为均质。分离的抗体包括重组细胞中的原位抗体,因为该抗体的天然环境中的至少一种组分不存在。但是通常,分离的抗体通过至少一步纯化步骤制得。
“亮氨酸拉链”是一种肽(常常约20-40个氨基酸长),其具有数个重复氨基酸,其中每第7个氨基酸是亮氨酸。这种亮氨酸拉链序列形成两性α-螺旋,其中的亮氨酸排列在疏水侧以便形成二聚体。本文中亮氨酸拉链的实例包括,Fos-Jun亮氨酸拉链(O′Shea et al.,Science245:646(1989)),其可用于形成异二聚体(例如,双特异性抗体);来自酵母的GCN4亮氨酸拉链(Landschulz et al.,Science240:1759-1764(1988)),其可用于形成同二聚体(例如,单特异性抗体);以及在其它DNA-结合蛋白(如C/EBP和c-myc,及其中任一种的变体)中发现的亮氨酸拉链。
术语“控制序列”是指在具体宿主生物中表达可操作相连的编码序列所必需的DNA序列。适宜于细菌的控制序列包括启动子,任选还有操纵子序列,和核糖体结合位点。
当核酸与另一核酸序列产生功能上的关联时,该核酸与所述另一核酸序列“可操作相连”。例如,前序列或分泌前导序列被表达为参与多肽分泌的前蛋白时,编码前序列或分泌前导序列的DNA与编码该多肽的DNA是可操作相连的;启动子影响编码序列的转录时,所述启动子与该编码序列是可操作相连的;或核糖体结合位点处在促进翻译的位置时,它与编码序列是可操作相连的。通常,“可操作相连”是指相连的DNA是邻接的,而且,在分泌前导序列的情况中,是邻接并处在同一个阅读框中的。连接可通过在便利的限制性位点进行连接来完成。如果不存在这类位点,可根据常规实践使用合成的寡核苷酸衔接子或接头。
术语多肽的“回收”一般是指,从产生该多肽的细胞获得不含细胞的该多肽。
“宿主细胞杂质(Host cell impurities)”是指,发酵液或匀浆物中污染的宿主蛋白和其它生物分子杂质如DNA和细胞碎片。
实施本发明的模式
本发明一方面提供了从微生物发酵液或匀浆物中纯化该多肽的方法,所述发酵液或匀浆物中产生并溶有所需异源多肽。所述多肽可以是产生在可溶性级分中,或者可以是不溶的(例如,产生在不溶性级分、相或形式中)并因此经过接触或处理使所述多肽溶解。如果产生的多肽为不溶状态,它通过暴露于增溶剂(如上述)或与之接触(例如,将这类试剂添加到含有不溶性多肽的级分中)而溶解,然后再添加乳酸依沙吖啶。优选所述多肽已经在可溶性级分中。本文所述方法涉及向发酵液或匀浆物中添加有效量的乳酸依沙吖啶溶液,以便使该发酵液或匀浆物中所含的宿主细胞杂质沉淀。所述添加是在使所述多肽的主要部分维持可溶状态的条件下进行。接着,将所需多肽从发酵液或匀浆物(包括细胞碎片,宿主蛋白,DNA,RNA等)中分离出来。
由于被乳酸依沙吖啶沉淀的大多数宿主蛋白带负电而目标多肽表面带正电,优选目标多肽具有比宿主细胞杂质中所含宿主蛋白的平均pI更高的pI,以便目标多肽可以回收到上清中,与沉淀的宿主蛋白脱离。所述平均pI可以通过对宿主蛋白进行双向(2-D)凝胶分析来确定,例如,在这类分析中,pI为约7.5-5.0,则平均值为6.25。或者,等电聚焦(即双向凝胶分析中的第一向)、层析聚焦、计算氨基酸组成的方法都可以单独用于确定平均pI。更优选的多肽是具有至少约7的pI值的多肽,优选pI值至少约7-10。
所用的优选多肽如上所述。
所用乳酸依沙吖啶的浓度取决于,例如溶液中大多数宿主细胞杂质表面的负电荷量。因此,乳酸依沙吖啶至少取决于溶液中DNA和宿主蛋白浓度等宿主细胞杂质量。匀浆物中宿主蛋白和DNA的浓度越高,乳酸依沙吖啶的需要量越高。因此,可以与乳酸依沙吖啶形成复合物并因此沉淀的带负电的组分越多,达到最大沉淀所需的乳酸依沙吖啶量越大。乳酸依沙吖啶的优选浓度一般高于约0.1%重量/体积。更优选乳酸依沙吖啶浓度约0.1-5%,还更优选约0.4-5%,最优选约0.6-5%重量/体积。
一般而言,沉淀时溶液的电导率越低,使所述多肽从细胞碎片和DNA中沉淀出来的效率越高。电导率可以通过,例如,匀浆物或发酵液中的含盐量来控制,或者通过用水或其它合适的溶剂稀释匀浆物或发酵液来控制。优选发酵液或匀浆物添加乳酸依沙吖啶后的电导率小于约16毫姆欧(milliSiemens,mS),更优选约1-15mS,还更优选约1-10mS,最优选约1-5mS。
沉淀期间溶液的电导率至少部分取决于其中的盐类型。卤化物(如氯化物或溴化物)不是所述盐的优选阴离子,但如果它们确实存在,优选其在溶液中的浓度,在添加乳酸依沙吖啶之前低于约100mM,在添加乳酸依沙吖啶之后低于约50mM。本文所用盐的一些实例包括缓冲盐,TRIS,MES,MOPS,乙酸盐,和柠檬酸盐。盐浓度必须不高于使乳酸依沙吖啶沉淀的量。实际量主要取决于盐的类型和盐与乳酸依沙吖啶之间的化学计算量,底线是该化学计算量的最小值(low end),即所述最小值意味着相对于乳酸依沙吖啶而言更多的盐。
发酵液或匀浆物添加乳酸依沙吖啶之后的pH取决于,例如,多肽的pI,多肽表面负电荷量,溶液中宿主细胞杂质量,以及乳酸依沙吖啶浓度。pH优选不高于多肽的pI。一般情况下,pH为约4-10;但为了使宿主细胞杂质有效沉淀,优选发酵液或匀浆物添加乳酸依沙吖啶之后的pH不大于约9(因为乳酸依沙吖啶在该pH值以上荷电量减少),优选的范围为约4-9。更优选发酵液或匀浆物添加乳酸依沙吖啶之后的pH为约5-9,还更优选为约6-9。多肽表面的负电荷越多,pH值在上述范围内越低,优选所述多肽的pH范围为约6-7。
发酵液或匀浆物添加乳酸依沙吖啶之后,可以任选在升高的温度保温一段时间。是否升高温度和保温多长时间取决于很多因素,包括,目标多肽的类型,目标多肽在该阶段暴露于升高的温度时如果发生改变,是什么改变,等等。例如,纯化抗-组织因子F(ab’)2时,优选升高的温度,而纯化全长抗体时,优选不加热(have no heat)或温度不高于约25℃。在考虑这些因素的前提下,发酵液或匀浆物添加乳酸依沙吖啶之后的温度一般在约室温-约70℃,更优选在约室温-约65℃维持约1-60分钟。在必须升高温度的情况下,优选在约50-65℃维持约1-60分钟。
另一方面,本发明提供了一种物质组合物,它是从微生物细胞获得的、包含乳酸依沙吖啶和异源多肽的发酵液或匀浆物。优选地,所述多肽溶于所述发酵液或匀浆物。发酵液或匀浆物的细胞、多肽、浓度和条件如上所述。所述多肽的溶解程度可以用合适的试验(例如,上述的试验)确定。以常规方式应用培养参数并进行多肽生产,如下述方法。
A.核酸及其修饰的选择
本文所述多肽,例如抗体,可以从任何来源产生(例如通过对完整抗体进行肽裂解而产生),但优选重组制备。编码目标多肽的核酸适于为任何来源的RNA,cDNA或基因组DNA,只要其编码此目标多肽即可。筛选在微生物宿主中表达异源多肽(包括其变体)的合适核酸的方法是众所周知的。筛选合适的核酸以便在微生物细胞培养中制备非-抗体多肽的方法也是本领域已知的。
如果要产生单克隆抗体,那么,编码单克隆抗体的DNA可用常规方法(如,利用能与编码鼠抗体重链和轻链的基因特异结合的寡核苷酸探针)很容易地分离和测序。杂交瘤细胞是这类DNA的优选来源。DNA分离后,可将其置于表达载体中,然后用此表达载体转化本文的微生物宿主细胞,以便在重组宿主细胞中合成单克隆抗体。编码抗体的DNA在细菌中重组表达的综述包括Skerra et al.,Curr.Opinion in Immunol.5:256-262(1993)和Plückthun,Immunol.Revs.130:151-188(1992)。
使非-人抗体人源化的方法是本领域已知的。优选人源化抗体具有一或多个从非人来源导入的氨基酸残基。这些非人氨基酸残基常称为“引进的(import)”残基,它们通常来自“引进的”可变区。人源化过程基本可以按照Winter及其同事(Jones et al.,Nature321:522-525(1986);Riechmann et al.,Nature332:323-327(1988);Verhoeyen et al.,Science239:1534-1536(1988))所述,用超变区序列取代人类抗体的相应序列来进行。相应地,此种“人源化”抗体是嵌合抗体(美国专利4,816,567),其中完整人类可变区的很少一部分被非人物种的相应序列取代。实践中,人源化抗体通常是人的抗体,其中一些超变区残基且可能有部分FR残基被啮齿类抗体中类似位点的残基取代。
选择可用于制备人源化抗体的人类可变区(重链和轻链),对降低抗原性非常重要。根据所谓“最适应(best-fit)”方法,针对已知人类可变区序列的整个文库筛选啮齿类抗体可变区序列。将与啮齿类的序列最相似的人类序列作为人源化抗体的人框架区(FR)(Sims et al.,J.Immunol.151:2296(1993);Chothia et al.,J.Mol.Biol.196:901(1987))。另一种方法采用具有人类轻链或重链特定亚型的所有人抗体的共有序列衍生特定框架区。相同的框架可用于数种不同的人源化抗体(Carter et al.,Proc.Natl.Acad.Sci.USA89:4285(1992);Prestaetal.,J.Immunol.151:2623(1993))。
更重要的是,将抗体人源化后仍保留对抗原的高亲和力和其它有利的生物特性。为达到此目的,在一种优选方法中,用亲本序列和人源化序列的三维模型,分析亲本序列和各种概念性人源化产物,以此制备人源化抗体。免疫球蛋白三维模型已有商品,是本领域技术人员所熟悉的。还有用于描述和展示所选的候选免疫球蛋白序列可能的三维构象的计算机程序。通过观察这些展示结果,可分析残基在候选免疫球蛋白序列的功能中可能发挥的作用,即分析能影响候选免疫球蛋白与其抗原结合的能力的残基。通过这种方法,可从受体和引进序列中选出FR残基并组合,从而得到所需抗体性质,如对靶抗原的亲和力增加。总之,超变区残基直接并且最主要涉及对抗原结合的影响。
本申请还涉及人源化抗体或亲和力成熟的抗体的各种形式。例如,所述人源化抗体或亲和力成熟的抗体可以是抗体片段,如Fab,其可任选与一个或多个靶向试剂偶联以制备免疫偶联物。或者,所述人源化抗体或亲和力成熟的抗体可以是完整的抗体,例如完整的IgG1抗体。
Fab′-SH片段可从大肠杆菌直接回收,并经化学偶联形成F(ab′)2片段(Carter et al.,Bio/Technology10:163-167(1992))。依据另一种方法,可直接从重组宿主细胞培养中分离F(ab′)2片段。其它产生抗体片段的技术对本领域技术人员是显而易见的。在其它实施方案中,所选抗体是单链Fv片段(scFv)(WO 93/16185;美国专利5,571,894和美国专利5,587,458)。抗体片段也可以是“线性化抗体”,举例如美国专利5,641,870所述。这类线性化抗体片段可以是单特异性或双特异性的。
双特异性抗体是具有针对至少两种不同抗原表位的结合特异性的抗体。双特异抗体实例可以与Dkk-1蛋白的两个不同抗原表位相结合。双特异性抗体可制备成全长抗体或抗体片段(如F(ab′)2双特异性抗体)。
根据另一种方法,可将具有所需结合特异性(抗体-抗原结合位点)的抗体可变区与免疫球蛋白恒定区序列融合。该融合优选与包含铰链区、CH2及CH3区的至少一部分的免疫球蛋白重链恒定区融合。优选使含有轻链结合所需位点的第一重链恒定区(CH1)出现在至少一种融合中。可将编码免疫球蛋白重链融合体的DNA,以及必要时,编码免疫球蛋白轻链的DNA插入不同表达载体,共转染至适当细菌宿主生物。这使得在使用三种非等比的多肽链进行构建的实施方案中,能非常灵活地调整三种多肽片段的相互比例,以获得最佳产量。但也可在至少两种多肽链以等比例表达而获得高产时或所述比例无特别意义时,将两种或所有三种多肽链的编码序列插入同一表达载体。
在该方法的一个优选实施方案中,所述双特异性抗体由一条臂上的带有第一种结合特异性的杂合免疫球蛋白重链和另一条臂上的杂合免疫球蛋白重链-轻链对(提供第二种结合特异性)构成。已发现这种不对称结构有利于从不必要的免疫球蛋白链混合群(combinations)中分离出所需双特异性化合物,因为只有该双特异性分子的一半上存在免疫球蛋白轻链,这使分离变得容易。此方法公开于WO94/04690。制备双特异性抗体的进一步细节,见例如Suresh et al.,Methods in Enzymology121:210(1986)。
根据美国专利5,731,168所述的另一种方法,可以改造一对抗体分子之间的界面,使得从重组细胞培养中收获的异二聚体的百分比最大。优选的界面包括抗体恒定区CH3结构域的至少一部分。在该方法中,源于第一种抗体分子界面上的一条或多条氨基酸小侧链被较大侧链(如酪氨酸或色氨酸)取代。与所述大侧链大小相同或相近的互补“沟”可通过将氨基酸大侧链用小侧链(如丙氨酸或苏氨酸)取代而在第二种抗体分子的界面上形成。此机制使得异二聚体的产量比同二聚体等其它不必要的终产物的高。
双特异性抗体包括交联抗体或“异源偶联的”抗体。例如,可使异源偶联物中的抗体之一与抗生物素蛋白偶联,使另一抗体与生物素偶联。已有观点认为,这类抗体可用于将免疫系统细胞导向不必要的细胞(美国专利4676980),和用于治疗HIV感染(WO91/00360,WO92/200373,EP03089)。异源偶联抗体可通过任何方便的交联方法制备。适当的交联制剂和多种交联技术为本领域已知,可参见美国专利4,676,980。
从抗体片段制备双特异性抗体的技术已在文献中描述。例如,双特异性抗体可利用化学连接制备。Brennan et al.,Science229:81(1985)中描述了将完整抗体经蛋白水解制备成F(ab′)2片段的方法。这些片段在二巯基复合剂亚砷酸钠存在时被还原,从而稳定相邻的二巯基,并阻止分子间形成二硫键。生成的Fab′片段之后被转化为硫代亚硝基苯甲酸(thionitrobenzoate)(TNB)衍生物。其中一种Fab′-TNB衍生物经巯基乙胺还原成Fab′-硫醇(thio),再与等摩尔量的另一种Fab′-TNB衍生物混合形成双特异性抗体。如此产生的双特异性抗体可作为酶的选择性固定所用的试剂。
另外,Fab′-SH片段可从大肠杆菌直接回收,并经化学偶联形成双特异抗体(Shalaby et al.,J.Exp.Med.175:217-225(1992))。
直接从重组细胞培养中制备并分离双特异性抗体片段的各种技术也已有描述。例如,可用亮氨酸拉链制备双特异性抗体(Kostelny et al.,J.Immunol.148:1547-1553(1992))。将来自Fos和Jun蛋白的亮氨酸拉链肽与两种不同抗体的Fab′部分通过基因融合而连接。使抗体同二聚体在铰链区被还原,形成单体,然后被再氧化形成抗体异二聚体。该方法也可用于制备抗体同二聚体。由Hollinger et al.,Proc.Natl.Acad.Sci.USA90:6444-6448(1993)描述的“二价抗体(diabody)”技术提供了另一种制备双特异性抗体片段的方法。所述片段中含有重链可变区(VH),其通过接头与轻链可变区(VL)相连,该接头非常短,使得同一链的两个结构域之间无法配对。因此,一个片段上的VH和VL结构域被迫与另一片段上的互补VL和VH结构域配对,从而形成两个抗原结合位点。另一种用单链Fv(sFv)二聚体来制备双特异性抗体的策略也有报道(Gruber et al.,J.Immunol.152:5368(1994))。
本发明还涉及二价以上的抗体。例如可制备三特异性抗体(Tutt et al.,J. Immunol.147:60(1991))。
编码多肽变体的核酸分子用本领域巳???知的各种方法制备。这些方法包括,但不限于,从天然来源分离(在存在天然氨基酸序列变体的情况下),或通过对早先制备的该多肽变体或非变体形式进行寡核苷酸介导的(或定点)诱变,PCR诱变或盒式诱变来制备。
优选修饰本发明抗体的效应功能,以便,例如,增强与Fc受体的结合。这可以通过在抗体Fc区引入一或多个氨基酸取代而获得。或者,或另外,可在Fc区引入半胱氨酸残基,使得在此区形成链间二硫键。
为了延长该抗体的血清半衰期,可在该抗体(尤其抗体片段)中掺入补救(salvage)受体结合表位,如美国专利5,739,277所述。本文中术语“补救受体结合表位”是指IgG分子(例如IgG1,IgG2,IgG3,或IgG4)Fc区中负责延长该IgG分子的体内血清半衰期的表位。
本发明还涉及抗体的其它修饰。例如,可以使抗体与多种非蛋白质聚合物中的一种,如聚乙二醇,聚丙二醇,聚氧化烯(polyoxyalkylene),或聚乙二醇与聚丙二醇的共聚物连接。
B.将核酸插入复制型载体
可以将异源核酸(如cDNA或基因组DNA)适当插入复制型载体中,以便在适宜启动子控制下在微生物中表达。许多载体可用于此目的,对合适的载体的选择主要取决于要被插入该载体的核酸的大小和要被该载体转化的具体宿主细胞。每种载体根据与其相容的具体宿主细胞而包含不同的组分。依具体的宿主种类不同,载体组分通常包括但不限于一或多个下述组分:信号序列,复制起点,一或多个标志基因,启动子和转录终止序列。
一般来说,包含复制子和源于与宿主细胞相容的物种的控制序列的质粒载体与微生物宿主联用。载体通常携带复制位点,以及能够在转化细胞中提供表型选择的标志序列。例如,大肠杆菌通常用pBR322转化,这是来源于大肠杆菌的质粒(参见例如,Bolivar et al.,Gene2:95(1977))。pBR322含有氨苄青霉素和四环素抗药性基因,并由此提供鉴定转化细胞的简便方法。pBR322质粒或其它细菌质粒或噬菌体也通常包含或在修饰后包含能被该宿主使用的启动子,以表达该选择标志基因。
(i)信号序列组分
编码本发明目标多肽的DNA不仅可以直接表达,也可作为与另一多肽的融合来表达,所述另一多肽优选信号序列或在成熟多肽的N末端具有特异性裂解位点的其它多肽。通常,信号序列是载体的组分,或者是被插入载体中的多肽DNA的一部分。所选异源信号序列应当是被宿主细胞识别并加工(即被信号肽酶裂解)的一种序列。
对于不识别和加工天然或真核生物多肽信号序列的原核宿主细胞,信号序列则被选自,例如,下组的原核生物信号序列取代:lamB,ompF,碱性磷酸酶,青霉素酶,1pp或热稳定肠毒素II前导序列。为了进行酵母分泌,所述信号序列可以是,例如,酵母转化酶前导序列,α因子前导序列(包括糖酵母(Saccharomyces)和克鲁维酵母(Kluyveromyces)的α因子前导序列,后者参见美国专利5,010,182),或酸性磷酸酶前导序列,白色念珠菌葡萄糖淀粉酶前导序列(EP 362,179,1990-04-04公开),或1990-11-15公开的WO90/13646所描述的信号。
(ii)复制起点组分
表达载体包含能使该载体在一或多种所选宿主细胞中复制的核酸序列。在多种微生物中,这样的序列众所周知。来自质粒pBR322的复制起点适合于大多数革兰氏阴性细菌,如大肠杆菌。
(iii)选择基因组分
表达载体通常包含选择基因,也称为选择标志。该基因编码为生长在选择性培养基中的转化的宿主细胞的存活或生长所必需的蛋白质。未用包含选择基因的载体转化的宿主细胞将不能在所述培养基中存活。选择标志与本发明使用和定义的遗传标志不同。典型的选择基因编码具有以下性质的蛋白:(a)赋予对抗生素或其它毒素(如氨苄青霉素,新霉素,氨甲蝶呤或四环素)的抗性,(b)弥补并非由遗传标记造成的营养缺陷型缺陷,或(c)提供复合培养基不能供给的关键营养物,例如编码芽孢杆菌(Bacilli)D-丙氨酸消旋酶的基因。
选择方案的一个实例是利用药物阻滞(arrest)宿主细胞的生长。在这种情况下,那些被目标核酸成功转化的细胞产生能赋予药物抗性的多肽,从而在选择中存活。这种显性选择的实例使用药物新霉素(Southern et al.,J.Molec.Appl.Genet.1:327(1982)),霉酚酸(Mulliganetal.,Science,209:1422(1980))和潮霉素(Sugdenetal.,Mol.Cell.Biol.5:410-413(1985))。这三个实例利用在真核控制下的细菌基因,来传递对抗各自药物G418或新霉素(遗传霉素)、xgpt(霉酚酸)或潮霉素的抗性。
(iv)启动子组分
用于产生目标多肽的表达载体含有可被宿主生物识别并与编码目标多肽的核酸可操作相连的适宜启动子。适用于原核宿主的启动子包括,β-内酰胺酶和乳糖启动子系统(Changetal.,Nature275:615(1978);Goeddel et al.,Nature281:544(1979)),阿拉伯糖启动子系统(Guzman et al.,J.Bacteriol.174:7716-7728(1992)),碱性磷酸酶,色氨酸(trp)启动子系统(Goeddel,Nucleic Acids Res.8:4057(1980);EP 36,776),和杂合(hybrid)启动子如tac启动子(deBoer et al.,Proc.Natl.Acad.Sci.USA80:21-25(1983))。但其它巳知的细菌启动子也是适宜的。它们的核苷酸序列业已公开,因而技术人员可以利用连接子或衔接子(adaptor)提供任何所需限制酶位点,将这些核苷酸序列与编码目标多肽的DNA连接(Siebenlist et al.,Cell20:269(1980))。
用于细菌系统的启动子通常还含有Shine-Dalgarno(S.D.)序列,其与编码目标多肽的DNA可操作连接。该启动子可通过限制酶消化,与细菌来源的DNA脱离,并插入到含有所需DNA的载体中。
适用于酵母的启动子是本领域已知的。适用于酵母宿主的启动序列的实例包括下述酶的启动子:3-磷酸甘油酸激酶(Hitzeman et al.,J.Biol.Chem.255:2073(1980))或其它糖酵解酶(Hess et al.,J.Adv.Enzyme Reg.,7:149(1968);Holland,Biochemistry17:4900(1978)),如烯醇化酶,甘油醛-3-磷酸脱氢酶,己糖激酶,丙酮酸脱羧酶,磷酸果糖激酶,葡萄糖-6磷酸异构酶,3-磷酸甘油酸变位酶,丙酮酸激酶,磷酸丙糖异构酶,磷酸葡萄糖异构酶和葡萄糖激酶。
其它的酵母启动子,即那些另具有由生长条件控制转录的优点的诱导型启动子,是下述基因的启动子区:醇脱氢酶2、异细胞色素C(isocytochromeC)、酸性磷酸酶、与氮代谢相关的降解酶、金属硫蛋白、甘油醛-3-磷酸脱氢酶,以及负责麦芽糖和半乳糖利用的酶。在EP73,657中进一步描述了适用于酵母表达的载体和启动子。
(v)构建并分析载体
包含上述所列一或多个组分的适宜载体可使用标准连接技术构建。分离的质粒或DNA片段按所需形式裂解,剪裁(tailored)和再连接,以产生所需质粒。
为了分析证实所构建质粒中的正确序列,用连接混合物转化大肠杆菌K12株294(ATCC 31,446)或其它菌株,并用相应的氨苄青霉素或四环素抗性选择出成功的转化体。制备来自转化体的质粒,通过限制性内切核酸酶消化进行分析,和/或用Sanger et al.,Proc.Natl.Acad.Sci.USA74:5463-5467(1977)或Messing et al.,Nucleic Acids Res.9:309(1981)的方法,或用Maxam et al.,Methods in Enzymology65:499(1980)的方法测序。
C.选择并转化宿主细胞
克隆或表达本文所述载体中的DNA的适宜宿主细胞可以是任何微生物细胞,包括原核生物和真菌的细胞,包括酵母。适于此目的的原核生物包括上述定义的细菌,优选真细菌,如革兰氏阴性或革兰氏阳性细菌。例如肠杆菌科,如埃希氏菌属(例如,大肠杆菌),肠杆菌属,欧文氏菌属,克雷伯氏菌属,变形菌属,沙门氏菌属(如鼠伤寒沙门氏菌(Salmonellatyphimurium)),沙雷氏菌属(如粘质沙雷氏菌(Serratia marcescans))和志贺菌氏属等,以及芽孢杆菌属(Bacilli)如枯草芽孢杆菌(B.subtilis)和地衣芽孢杆菌(B.licheniformis)(例如1989年4月12日出版的DD 266,710中所述地衣芽孢杆菌41P)等,假单胞菌属如铜绿菌假单胞菌(P.aeruginosa),及链霉菌属(Streptomyces)。优选的大肠杆菌克隆宿主是大肠杆菌294(ATCC 31,446),但其它菌株,如大肠杆菌B,大肠杆菌X1776(ATCC 31,537)和大肠杆菌W3110(ATCC 27,325)也是合适的。这些实例是用于说明,并非限制。上述任一种菌株的突变细胞也可用作起始宿主,它们通过进一步突变,可以包含至少本文所需的最少基因型(minimum genotype)。
大肠杆菌菌株W3110是优选的亲本大肠杆菌宿主,因为它是重组DNA产物发酵的通用宿主。用作亲本宿主的起始大肠杆菌宿主实例以及它们的基因型,包括于下表中:
还优选在产生36F8株的过程中的中间物,即27B4(美国专利5,304,472)和35E7(一种比27B4生长好的自发、温度-耐受性菌落分离物)。另一种适宜的菌株是具有突变的周质蛋白酶的大肠杆菌菌株,见1990年8月7日授权的美国专利4,946,783。
上述菌株可以通过亲本菌株的染色体整合或其它技术来生产,包括以下实施例中所述的技术。
全长抗体可以按照2002-08-08公开的WO 02/061090所述,在大肠杆菌中制备。
除了原核生物,真核微生物如丝状真菌或酵母也是适合于编码多肽的载体的表达宿主。酿酒酵母(Saccharomyces cerevisiae)是最常用的低等真核宿主微生物。其它包括,粟酒裂殖酵母(Schizosaccharomyces pombe)(Beachand Nurse,Nature290:140(1981);EP 139,383,1985-05-02公开);克鲁维酵母属(Kluyveromyces)宿主(美国专利4,943,529;Fleer et al.,Bio/Technology9:968-975(1991)),例如乳克鲁维酵母(K.lactis)(MW98-8C,CBS683,CBS4574;Louvencourt et al.,J.Bacteriol.,737(1983))、脆壁克鲁维酵母(K.fragilis)(ATCC 12,424)、保加利亚克鲁维酵母(K.bulgaricus)(ATCC 16,045)、威克曼氏克鲁维酵母(K.wickeramii)(ATCC 24,178)、K.waltii(ATCC 56,500)、果蝇克鲁维酵母(K.drosophilarum)(ATCC 36,906;Van den Berg et al.,Bio/Technology8:135(1990))、耐热克鲁维酵母(K.thermotolerans)和马克斯克鲁维氏酵母(K.marxianus)等;西洋蓍霉(yarrowia)(EP 402,226);巴斯德毕赤酵母(pichia pastoris)(EP 183,070;Sreekrishna et al.,J.Basic Microbiol.28:265-278(1988));念珠菌属(Candida);Trichoderma reesia(EP 244,234);粗糙链孢霉(Neurospora crassa)(Case et al.,Proc.Natl.Acad.Sci.USA76:5259-5263(1979));许旺氏酵母属(schwanniomyces)如西方许旺氏酵母(schwanniomyces occidentalis)(EP 394,538,1990-10-31公开)等;和丝状真菌,例如链孢霉属(Neurospora)、青霉属(Penicillium)、Tolypocladium(WO91/00357,1991-01-10公开)以及曲霉属宿主如构巢曲霉(A.nidulans)(Ballance et al.,Biochem.Biophys.Res.Commun.112:284-289(1983);Tilburn et al.,Gene26:205-221(1983);Yelton et al.,Proc.Natl.Acad.Sci. USA81:1470-1474(1984))和黑曲霉(A.niger)(Kelly and Hynes,EMBO J.4:475-479(1985))。甲基营养型酵母(Methylotropic yeast)也适于本发明,包括但不限于,能在甲醇上生长的选自以下属的酵母:汉逊氏酵母属(Hansenula),念珠菌属,克勒克氏酵母属(Kloeckera),毕赤酵母属,糖酵母属(Saccharomyces),球拟酵母属(Torulopsis),和红酵母属(Rhodotorula)。这类酵母的具体实例可以参见C.Anthony,The Biochemistry of Methylotrophs,269(1982)。
编码所述多肽的核酸被插入宿主细胞中。优选地,这可以通过用上述表达载体转化宿主细胞、并在为了诱导各种启动子而酌情改良的常规营养培养基上培养而完成。
根据所用的宿主细胞的不同,使用适合于所述细胞的标准技术进行转化。Sambrook et al.,Molecular CloningA Laboratory Manual(New York:ColdSpring Harbor Laboratory Press,1989)中1.82节所述的使用氯化钙进行的钙处理,通常用于原核细胞或包含细胞壁实体屏障的其它细胞。另一转化方法利用聚乙二醇/DMSO,如Chungand Miller,Nucleic Acids Res.16:3580(1988)所述。向酵母中转化通常按照Van Solingen et al.,J.Bact.130:946(1977)和Hsiao et al.,Proc.Natl.Acad.Sci.(USA)76:3829(1979)所述方法进行。然而,也可使用将DNA引入细胞的其它方法,例如核显微注射、电穿孔、细菌原生质体与完整细胞或聚阳离子如聚凝胺(polybrene)、聚鸟氨酸融合。
D.培养宿主细胞
用于制备本发明多肽的原核细胞在本领域已知的适于培养所选宿主细胞的培养基中培养,所述培养基包括Sambrook等出处同上所一般性描述的培养基。适用于细菌的培养基包括,但不限于,AP5培养基,营养肉汤(nutrient broth),Luria-Bertani(LB)肉汤,Neidhardt′s基本培养基,以及C.R.A.P.基本或完全培养基,外加必需的营养添加物。在一个优选实施方案中,培养基还包含一种选择制剂,它是基于表达载体的构建而选出的,可以选择性允许含有该表达载体的原核细胞生长。例如,在培养基中添加氨苄青霉素,使表达氨苄青霉素抗性基因的细胞生长。除了碳源,氮源,和无机磷酸盐源以外,还可以包括适当浓度的任何必需添加物,它们可以单独加入,或者与另一种添加物或培养基组合成混合物再加入,如复合氮源。还可选在培养基中包含一或多种还原剂,所述还原剂选自谷胱甘肽,半胱氨酸,胱胺,硫代乙醇酸(thioglycollate),二硫赤藓醇和二硫苏糖醇。
合适的培养基的实例可以参见美国专利5,304,472和5,342,763。C.R.A.P.磷酸盐-限制型培养基组成如下:3.57g(NH4)2(SO4),0.71g柠檬酸钠-2H2O,1.07g KCl,5.36g Yeast Extract(certified),5.36g HycaseSFTM-Sheffield,pH用KOH调至7.3,qs用SQ H2O调至872ml,高压灭菌;冷却至55℃,添加110ml 1M MOPS pH 7.3,11ml 50%葡萄糖,7ml 1M MgSO4)。然后,可以在诱导培养基中添加50ug/ml羧苄青霉素。
原核宿主细胞在适当温度中培养。例如,大肠杆菌优选在约20℃-约39℃,更优选约25℃-约37℃,甚至更优选约30℃生长。
使用碱性磷酸酶启动子时,用于产生本发明目标多肽的大肠杆菌细胞在适宜培养基中培养,在所述适宜培养基中,碱性磷酸酶启动子可以被部分或完全诱导,总体如Sambrook等(出处同上)所述。培养需求决不在缺乏无机磷酸盐或磷酸盐饥饿水平的情况下发生。首先,培养基所含无机磷酸盐的量超出诱导蛋白质合成的水平并足以使细菌生长。随着细胞生长和利用磷酸盐,其降低培养基中的磷酸盐水平,从而导致诱导多肽合成。
如果启动子是诱导型启动子,那么,为了使诱导发生,通常用高细胞密度方法将细胞培养至一定光密度(如A550约200),以此启动诱导(例如,通过添加诱导物,通过耗竭培养基组分等),从而诱导编码目标多肽的基因表达。
还可以包括适当浓度的、本领域已知的任何必需添加物,它们可以单独加入,或者与另一种添加物或培养基组合成混合物再加入,如复合氮源。培养基的pH可以是在约5-9的范围内的任何pH,这主要取决于宿主生物。对于大肠杆菌,pH优选约6.8-约7.4,更优选约7.0。
一种用于培养酵母的选择性培养基是缺乏尿素的合成性完全葡萄糖琼脂(SCD-Ura),可以按照Kaiser et al.,Methods in Yeast Genetics(Cold SpringHarbor Press,Cold Spring Harbor,NY,1994),p.208-210所述来制备。
E.检测表达
基因表达可以直接在样品中测定,例如用常规Southern印迹法,用于定量mRNA转录的Northern印迹法(Thomas,Proc.Natl.Acad.Sci.USA77:5201-5205(1980)),斑点印迹(DNA分析)或原位杂交,它们使用基于多肽序列适当标记的探针。可以使用各种标记物,最常见的是放射性同位素,尤其是32p。然而,也可使用其它技术,例如使用生物素-修饰的核苷酸以便引入到多核苷酸中。生物素在以后作为与抗生物素蛋白或用各式各样标记物(如放射性核素,荧光体,酶等)标记的抗体相结合的位点。或者,使用试验(assays)或凝胶(gels)检测蛋白质。
F.纯化多肽
使用重组技术时,本文所述多肽可产生在细胞内,或在周质空间中。如果所述多肽是产生在细胞内,首先要通过例如离心或超滤作用除去颗粒状残渣(为宿主细胞或裂解的细胞,是例如匀浆后的细胞),从而产生发酵液或匀浆物。
然后,根据本发明,上述细胞杂质通过用乳酸依沙吖啶在上述条件下沉淀,而从匀浆物或发酵液中除去,所得混合物经过处理,获得可溶性目标多肽。
从发酵液或匀浆物中分离目标多肽可以用任何合适的手段完整,包括本领域已知的离心和过滤等手段。优选,用离心或切向流过滤的方法进行分离,例如使用约300kD-1微的滤膜。
在将多肽从发酵液或匀浆物中分离后,可以用任何已知手段,包括层析或超滤/渗滤等过滤或切向流过滤,进行纯化。具体地,以下方法单独或联合可以作为适当纯化方法的实例,但具体用什么方法取决于多肽的类型:固相金属亲和层析(IMAC),水性两相分离(ATPS),免疫亲和柱或离子交换柱分级分离;乙醇沉淀;反相HPLC;疏水相互作用层析(HIC);硅层析;离子交换树脂如S-SEPHAROSETM和DEAE层析;层析聚焦;SDS-PAGE;硫酸铵沉淀;超滤/渗滤,切向流过滤,凝胶过滤,使用例如SEPHADEXTMG-75。
例如,作为总体蛋白回收方法的一部分,可以使多肽暴露于与该多肽结合或修饰该多肽的固相试剂。如此一来,可以对多肽进行亲和层析,其中与该多肽特异性结合的固相试剂(如抗体)捕获抗原,而杂质则流过层析柱。然后通过改变条件,使多肽不再与固相试剂结合,而将多肽从层析柱上洗脱下来。固相试剂也可以是酶,如修饰该多肽的酶(Sahni et al.,Anal. Biochem.,193:178-185(1991);Voyksner et al.,Anal.Biochem.188:72-81(1990))。
另一种纯化方法是过滤。为了使微细颗粒大小的污染物从流体中过滤出,可以使用各种多孔滤膜介质,使被污染的组合物流过该滤膜,污染物被该滤膜截留。污染物的滞留可以通过机械应变(mechanical straining)或动电颗粒(electrokinetic particle)捕获和吸附来发生。在机械应变中,当颗粒尝试通过比它小的孔时被物理捕获。在动电捕获机制中,颗粒在多孔滤膜内与表面碰撞,由于短-范围吸引力而被滞留在该表面。为了实现动电捕获,可以用电荷-变更系统改变滤膜表面的电荷特性(参见例如WO 90/11814)。例如,当需要除去的污染物是阴离子时,可以用阳离子电荷变更剂改变该滤膜的电荷特性,使污染物滞留在该滤膜上。
单克隆抗体可以通过常规抗体纯化方法与沉淀剂适当分离,所述方法例如凝胶过滤或电泳,透析,HIC,亲和层析,如蛋白-A SEPHAROSETM,蛋白-G、抗原-亲和或抗-IgG亲和层析,匀浆,在离心、沉淀之后过滤使之澄清(例如用硫酸铵、聚乙二醇或辛酸处理),离子交换层析,例如用羟基磷灰石等树脂,如陶瓷-羟基磷灰石和BIOGEL HTTM等含有磷酸钙的树脂,以及阴离子交换树脂,包括那些具有正电荷部分(处在中性pH)的树脂如二乙胺乙烷(diethylaminoethane,DEAE),聚1,2-亚乙基亚胺(polyethyleneimine,PEI),和季铵乙烷(quaternary aminoethane,QAE),例如Q-SEPHAROSEFAST FLOWTM树脂(Pharmacia),DEAE-SEPHAROSE FAST FLOWTM树脂,DEAE-TOYOPEARLTM树脂,QAE-TOYOPEARLTM树脂,POROS-QTM树脂,FRACTOGEL-DMAETM树脂,FRACTOGEL EMD-TMAETM树脂,MATREXCELLUFINE DEAETM等。分离和纯化抗体的方法还可以参见Antibodies:A Laboratory Manual";Harlow and Lane,eds.(Cold Spring Harbor Laboratories,New York:1988)。
在一个具体实施方案中,回收步骤包括将已溶解的多肽暴露于固相,该固相上固定了与该多肽结合或修饰该多肽的试剂。在一个实施方案中,所述固相被装载在柱中,并且被固定的试剂可以捕获所述多肽。在另一实施方案中,所述试剂对所述多肽进行化学修饰和/或物理修饰,并且所述试剂被固定在固相上,而该固相被装载在例如柱中,使组合物流经该柱。例如,所述多肽可以包含前体区,该区在回收过程中可以被固相试剂除去,例如,所述前体多肽可以是具有亮氨酸拉链二聚化区的抗体,在回收过程中,该亮氨酸拉链二聚化区被固定的胃蛋白酶除去。
在该实施方案中,可以再使含有所述多肽和沥滤剂(leached reagent)(以及任选一或多种其它污染物)的组合物流经滤膜,该滤膜在组合物的pH条件下带有与所述试剂的电荷相反的电荷,从而可以使沥滤剂与组合物脱离。滤膜可以带有正电荷,以除去在组合物pH条件下带负电荷的污染物如酸性蛋白酶,蛋白A,蛋白G或其它可以从亲和柱上沥滤而出的试剂。备选地,滤膜可以带负电,以便除去在组合物pH条件下带正电荷的污染物如碱性蛋白酶。优选地,流过滤膜的组合物中目标多肽的电荷特性,应使该多肽不被该滤膜显著滞留而是可以通过该滤膜。滤膜可以处于与之前步骤中被处理的洗脱物“在线(in line)”的位置(即,使洗脱物直接流过滤膜)。这可以通过在洗脱物被收集到汇集槽之前将滤膜与层析柱洗脱端口直接连接来实现。滤膜可以用这类滤膜常用的技术再生。
HIC也可以用于纯化抗体片段。参见如Inouye et al.,Protein Engineering,pp.6,8 and 1018-1019(1993);Inouye et al.,Animal Cell Technology:Basic & Applied Aspects5:609-616(1993);Inouye et al.,Journal of Biochemical and Biophysical Methods26:27-39(1993);Morimoto et al.,Journal of Biochemical and Biophysical Methods24:107-117(1992);and Rea et al.,Journal of Cell. Biochem.,Suppl.0,Abstract No.X1-206(17PartA),p.50(1993)。HIC柱通常包含碱性基质(base matrix)(如交联琼脂糖或合成性共聚物材料),疏水配体(如烷基或芳基)可以与之偶联。HIC层析柱商品目前有很多。实例包括但不限于:具有低或高取代的苯基SEPHAROSE 6 FAST FLOWTM层析柱(Pharmacia LKB Biotechnology,AB,Sweden);苯基SEPHAROSETM高效柱(Pharmacia LKB Biotechnology,AB,Sweden);辛基SEPHAROSETM高效柱(Pharmacia LKB Biotechnology,AB,Sweden);FRACTOGELTM EMD丙基或FRACTOGELTM EMD苯基层析柱(E.Merck,Germany);MACRO-PREPTM甲基或MACRO-PREPTM叔丁基支持物(Bio-Rad,California);WP HI-丙基(C3)TM柱(J.T.Baker,New Jersey);和TOYOPEARLTM醚、苯基或丁基柱(TosoHaas,PA)。
分批疏水层析基质(batch hydrophobic chromatography matrices)实例是本领域已知的,包括与以下支持基质相连的C18烷基链:如SEPHAROSETM,琼脂糖,或硅,例如丁基,苯基或辛基SEPHAROSETM,或者纤维素或polystyrene等聚合物。美国专利6,214,984描述了用低-pH疏水相互作用层析(LPHIC)纯化抗体和抗体片段。该方法尤其可用于纯化抗体片段,特别是从未正确折叠和/或经二硫键连接的污染抗体片段中,纯化出正确折叠并经二硫键连接的抗体片段(如Fab片段)。在进行LPHIC之前,优选使从细胞制备的抗体组合物经历至少一个纯化步骤,实例包括羟基磷灰石层析,凝胶电泳,透析和亲和层析。蛋白A是否适合作为亲和配体取决于抗体中任一种免疫球蛋白Fc区的种类和同种型。蛋白A可以用于纯化基于特定人类重链的抗体(Lindmark et al.,J.Immunol.Meth.62:1-13(1983))。蛋白G被建议用于所有小鼠同种型以及一种人类同种型(Guss et al.,EMBO J.5:1567-1575(1986))。亲和配体附着的基质最常见的是琼脂糖,也可以采用其它基质。机械稳定的基质例如控制孔径的玻璃(controlled pore glass)或聚(苯二乙烯)苯(poly(styrenedivinyl)benzene)与琼脂糖相比,其流速更快且处理时间更短。当抗体包含CH 3区时,可以用BAKERBOND ABXTM树脂(J.T.Baker,Phillipsburg,N.J.)进行纯化。其它蛋白纯化技术,例如离子交换柱分级分离,乙醇沉淀,反相HPLC,硅层析,肝素SEPHAROSETM层析,阴离子或阳离子交换树脂(例如聚天冬氨酸柱)层析,层析聚焦,SDS-PAGE,和硫酸铵沉淀也可以采用,这取决于所回收的抗体。
G.多肽的应用
如此回收的多肽可以配制在可药用载体中,用于各种诊断、治疗用途,或这类分子的其它已知用途。例如,本文所述抗体可以在免疫分析,如酶免疫分析中应用。
用本文所述方法纯化的多肽的治疗用途也包括在本发明中。例如,生长因子或激素可以用于根据需要促进生长,抗体可以用于重新引导(redirect)细胞毒活性(如,杀肿瘤细胞),作为疫苗佐剂,用于将溶栓剂运输到血块部位,用于将免疫毒素运送到肿瘤细胞,用于将酶活化的前体药物运送到目标位置(如肿瘤),用于治疗传染病,或用于将免疫复合物靶向细胞表面受体。
多肽的治疗性配制剂如下制备并贮存:将具有所需纯度的多肽与任选的可药用载体、赋形剂或稳定剂(Remington′sPharmaceutical Sciences,16thedition,Osol,A.,Ed.,(1980))混合成冻干块(cake)或水溶液的形式。
可接受的载体、赋形剂、或稳定剂在所用剂量及浓度对受者无毒性,包括:缓冲剂例如磷酸盐,柠檬酸盐,及其它有机酸;抗氧化剂,包括抗坏血酸;低分子量多肽(少于约10个残基);蛋白如血清白蛋白,明胶或免疫球蛋白;亲水聚合物如聚乙烯吡咯烷酮;氨基酸如甘氨酸,谷氨酰胺、天冬酰胺、精氨酸或赖氨酸;单糖,二糖及其它糖包括葡萄糖、甘露糖、或糊精;螯合剂如EDTA;糖醇如甘露糖醇或山梨糖醇;成盐反离子,如钠;和/或非离子表面活性剂如TWEENTM,PLURONICSTM或聚乙二醇(PEG)。
所述多肽也可容纳在微胶囊中,或容纳在胶体性质的药物运送系统(如脂质体,白蛋白小球体,微乳剂,纳米颗粒及纳米胶囊)中,或者容纳在大乳剂(macroemulsions)中,所述微胶囊可以通过诸如凝聚(coacervation)技术或界面聚合作用来制备,例子分别有羟甲基纤维素或明胶微胶囊和聚-(异丁烯酸甲酯)微胶囊。这些技术见Remington′s Pharmaceutical Sciences,出处同上。
用于体内给药的多肽必须是无菌的。这可以通过在冻干和重建之前或之后,经除菌滤膜过滤而轻易实现。抗体通常以冻干形式或溶液形式保存。
治疗性多肽组合物通常放置在带有无菌存取口的容器中,例如该容器可以是静脉点滴袋(intravenous solution bag)或带有能通过皮下注射针穿刺的塞子的小瓶。
多肽给药途径可以按照已知方法,例如通过静脉内、腹腔(intraperitoneal)内、脑内、肌肉内、眼内、动脉内、或损伤内途径,或通过下文所述缓释系统,进行注射或输注。多肽通过持续输注给药或作为集合药团(bolus)进行注射。
缓释制剂的适当实例包括含有所述多肽的固态疏水聚合物的半通透性基质,所述基质为具有一定形状的制品,如膜或微胶囊。缓释基质实例包括,聚酯、水凝胶(如Langer et al.,J.Biomed.Mater.Res.15:167-277(1981)and Langer,Chem.Tech.12:98-105(1982)所述的聚(2-羟基乙基-异丁烯酸酯)或聚(乙烯醇)、聚交酯(美国专利3,773,919,EP 58,481)、L-谷氨酸与γ乙基-L-谷氨酸的共聚物(Sidman et al.,Biopolymers22:547-556(1983))、不可降解的乙烯乙酸乙酯(Langer et al.,出处同上)、可降解的乳酸-羟基乙酸共聚物如LUPRON DEPOTTM(由乳酸-羟基乙酸共聚物和亮氨酰脯氨酸(leuprolide)乙酸酯组成的可注射的微球体),以及聚D-(-)-3-羟基丁酸(EP 133,988)。
聚合物如乙烯-乙酸乙酯和乳酸-羟基乙酸能持续释放分子100天以上,而一些水凝胶释放蛋白的时间却较短。例如,当胶囊化抗体长时间停留在体内时,它们可能由于暴露在37℃潮湿环境中而变性或聚集,导致损失生物活性,且免疫原性可能会改变。可以根据相关机理来设计使抗体稳定的合理策略。例如,如果发现聚集的机理是通过硫-二硫键互换而形组分子间S-S键,则可通过修饰巯基残基、从酸性溶液中冻干、控制湿度、采用合适的添加剂、和开发特异性聚合物基质组合物来实现稳定。
缓释多肽组合物还可以包括被脂质体包裹的多肽。含抗体的脂质体可通过原本已知的方法制备:DE 3,218,121;Epstein et al.,Proc.Natl.Acad.Sci. USA82:3688-3692(1985);Hwang et al.,Proc.Natl.Acad.Sci.USA77:4030-4034(1980);EP 52,322;EP 36,676;EP 88,046;EP 143,949;EP 142,641;日本专利申请83-118008;美国专利4,485,045和4,544,545;以及EP 102,324。一般而言,脂质体具有小(约200-800埃)单层形式,其中的脂质含量大于约30mol.%胆固醇,这一选定的比例根据用多肽进行最有效治疗的需求进行调整。
用于治疗的多肽有效量取决于,例如治疗目的、给药途径、以及患者的情况。相应地,医生(therapist)必须根据获得最有益治疗效果的需要,滴定剂量和调整给药途径。通常的日剂量可以是约1μg/kg至高达10mg/kg或更多,这取决于上述因素。一般地,临床医师会给药多肽直至剂量达到获得所需效果的水平。该治疗的进展很容易通过常规试验来监控。
本发明通过参考以下实施例可以更全面地理解。但它们不应被理解为限制本发明的范围。本文引用的所有文献和专利都引入作为参考。
实施例1
材料和方法
A.质粒、转化、发酵
1.制备rhuFab’2(xCD18)
a.质粒构建
设计对照质粒pS1130用于抗-CD18F(ab’)2的双顺反子表达,且它是在Carter et al.,Bio/Technology10:163-167(1992)所述载体的基础上构建的。此设计将轻链和带有C末端亮氨酸拉链的重链片段的基因的转录置于一个单phoA启动子的控制之下。转录结束于重链-亮氨酸拉链编码序列下游的λt0转录终止子(Scholtissek和Grosse,Nucleic Acids Res.15(7):3185(1987))。热稳定的肠毒素II信号序列(STII)位于每一条链的编码序列之前,并且指导多肽分泌到细胞周质中(Lee et al,Infect.Immun.42:264-268(1983);Picken etal.,Infect.Immun.42:269-275(1983))。亮氨酸拉链附着在重链片段的C末端,用于促进两个Fab’臂的二聚化。
双启动子质粒pxCD18-7T3包含两个分离的翻译单元,从时间上将轻链转录与重链转录分开。轻链与在pS1130中一样,仍然受到phoA启动子的调控。然而,在pxCD18-7T3中,轻链编码区后跟着一个λt0转录终止子。这个终止子的下游添加tacII启动子以调控重链片段/C末端亮氨酸拉链的转录(DeBoer et al.,Proc.Natl.Acad.Sci.USA80:21-25(1983))。第二个λt0转录终止子跟在这个编码序列的后面。STII信号序列的沉默密码子变体用于指导两条链的分泌(Simmons和Yansura,Nature Biotechnology14:629-634(1996))。
图1中显示了单启动子对照质粒与双启动子质粒的比较。pxCD18-7T3的表达盒序列在图2中提供(SEQ ID NO:1),而两个翻译单元的氨基酸序列(SEQ ID NOS:2和3)分别如图3A(轻链)和3B(重链)所示。
b.发酵
发酵中应用的宿主菌株为大肠杆菌W3110的衍生菌,定名为59A7。59A7的完整基因型为W3110 ΔfhuA phoAΔE15 Δ(argF-lac)169 deoC degP41ilvG2096(Valr)Δprc sprW148R,59A7宿主细胞用pxCD18-7T3质粒转化,筛选出成功的转化体在培养基中生长。将另一质粒pMS421与pxCD18-7T3一起共转化。质粒pMS421是基于pSC101的质粒,它提供lacIq以增强tacII启动子的控制,而且还赋予壮观霉素和链霉素抗性。
对于每一轮10升发酵,单个含1.5mL培养物-10-15% DMSO液的小瓶在1-L摇瓶中解冻,所述摇瓶中含500mL LB培养基并添加0.5mL5mg/mL的四环素溶液和2.5mL1M的磷酸钠溶液。使该种子培养物在30℃生长约16小时,然后接种到10L的发酵罐。
发酵罐最初装有约6.5L培养基,该培养基中含有约4.4g葡萄糖、100mL1M硫酸镁、10mL痕量元素溶液(100mL盐酸、27g六水合氯化铁、8g七水合硫酸锌、7g六水合氯化钴、7g二水合钼酸钠、8g五水合硫酸铜、2g硼酸、5g一水合硫酸锰,终体积1L),20mL四环素溶液(在5mg/mL乙醇中),10mL FERMAX Adjuvant 27TM(或一些等效的消泡剂),1袋HCD盐(37.5g硫酸铵,19.5g磷酸氢二钾,9.75g二水合磷酸二氢钠,7.5g二水合柠檬酸钠,11.3g磷酸二氢钾)和200g NZ Amine A(一种蛋白水解物)。发酵在30℃、通气量10slpm、pH值7.0±0.2的条件下进行(尽管一些情况下会偶然出现超过此范围的偏差)。改变发酵罐的回压(back pressure)和搅拌速度,以操控发酵罐中的氧气传输速率,并由此控制细胞呼吸速率。
在将含有细胞的培养基从摇瓶接种到发酵罐中之后,采用基于计算机的算法向发酵罐中加入浓缩的葡萄糖溶液,使培养物在发酵罐中生长到高细胞密度。为了控制pH值,还向发酵罐中加入氢氧化铵(58%的溶液)和硫酸(24%的溶液)。一些情况下还要添加消泡剂以控制发泡。当培养液达到大约40 OD550时,再向发酵罐中加入100mL1M硫酸镁。另外,当培养液达到大约20 OD550时,以2.5mL/min的速率向发酵罐中加入浓缩盐(由大约10g硫酸铵、26g磷酸氢二钾,13g二水合磷酸二氢钠,2g二水合柠檬酸钠和15g磷酸二氢钾溶于1L水而组成),一直持续直到向发酵系统中加入大约1250mL为止。发酵通常持续72-80小时。
在发酵过程中,一旦发酵液中溶氧达到设定值,就根据溶氧探头的信号向其中添加浓缩的葡萄糖溶液以将溶液浓度控制在设定值。因此,在这个控制方案中,操纵影响发酵中氧气传输能力的发酵罐操作参数,如搅拌转速或回压等,可相应地操纵细胞的摄氧率或者代谢速率。
用质谱仪监测发酵废气的组成,它能计算发酵过程中的摄氧率和二氧化碳释放速率。
当培养液的细胞密度达到大约220 OD550时,搅拌转速经过约12小时从1000rpm的初始速率降为大约725rpm。当培养液的细胞密度达到220OD550的大约12小时以后,加入50mL 200mM的异丙基-β-D-硫代半乳吡喃糖苷(IPTG),用于诱导重链的合成。
2.制备抗组织因子F(ab’) 2
a.构建质粒
用与上述双启动子质粒pXCD18-7T3相似的方法,创建双启动子质粒pxTF7T3,将其用于在不同时间分别表达抗组织因子轻链和重链。来自质粒pMS421的lacI序列也被整合到pxTF7T3上,以创建新的双启动子质粒pJVG3IL。
b.发酵
这些发酵中采用的宿主菌株是大肠杆菌W3110的衍生菌株,定名为60H4。60H4的完整基因型为:W3110 ΔfhuAΔmanA phoAΔE15Δ(argF-lac)169 deoC2 degP41 ilvG2096(Valr)Δprc prc-suppressor。60H4宿主细胞用pJVG3IL转化,筛选出成功的转化体在培养基中生长。
发酵在与上述抗-CD18F(ab’)2相类似的条件下进行,其中主要的区别是发酵时间在大约72小时到114小时内变化,在培养液OD550达到220的大约4到12小时以后,用IPTG诱导重链。
3.产生全长抗-TF抗体
a.构建质粒
质粒pxTF-7T3FL的表达盒从5’到3’包括:(1)phoA启动子(Kikuchi etal.,NucleicAcids Res.,9(21):5671-5678(1981));(2)trp Shine-Dalgarno序列(Yanofsky et al.,NucleicAcids Res.9:6647-6668(1981));(3)STII信号序列的沉默密码子变体(TIR相对强度约为7)(Simmons和Yansura,Nature Biotechnology14:629-634(1996));(4)抗组织因子轻链的编码序列;(5)λt0终止子(Scholtissek和Grosse,Nucleic Acids Res.15:3185(1987));(6)tacII启动子((DeBoer et.al.,Proc.Natl.Acad.Sci.USA80:21-25(1983));(7)第二个trp Shine-Dalgarno;(8)STII信号序列的第二个沉默密码子变体(TIR相对强度约为3);(9)抗组织因子重链全长的编码序列;和(10)第二个λt0终止子。将该表达盒克隆到大肠杆菌质粒pBR322的框架中(Sutcliffe,Cold SpringHarbor Symp.Ouant.Biol.,43:77-90(1978))。
为此,质粒pxTF-7T3FL的设计允许通过两个不同的而不是两个相同的启动子来从时间上间隔每条链的表达。在此质粒中,轻链由phoA启动子控制,而重链的转录则由tacII启动子控制。如本领域已知的,phoA和tacII启动子是在完全不同的条件下被诱导的。图4中描述了单启动子质粒paTF130与pxTF-7T3FL的图示比较。图5中提供了pxTF-7T3FL表达盒的核酸序列(SEQ ID NO:4),而它编码的多肽序列(SEQ ID NOS:5和6)则分别由图6A(轻链)和6B(重链)提供。用pxTF-7T3FL和pJJ247共转化下述宿主细胞。pJJ247编码tacII启动子,该启动子驱动DsbA和DsbC两者的表达,其中DsbA先表达。pJJ247的构建在WO02/061090中描述。
b.发酵
为了小规模的表达,应用基因型为W3110 ΔfhuA(ΔtonA)ptr3 lacIq lacL8ΔompTΔ(nmpc-fepE)degP41的大肠杆菌菌株61D6作为宿主细胞。转化之后,挑取选出的转化体接种到添加50μg/L羧苄青霉素和50μg/L卡那霉素的5mL Luria-Bertani培养基中,在培养轮(culture wheel)中30℃过夜生长。应用如WO02/061090所述的培养基进行10L体积的发酵,基本的发酵条件也如WO02/061090所述,除去在发酵过程中进行下列的修改:在约40小时的时候加入300mL1M NaPO4,pH7.0,使浓度约为30mM。在约44小时的时候加入100mL200mM IPTG溶液,使浓度约为2mM。接种的80小时后收获发酵。
B.蛋白鉴定
采用来自Novex的系统,在4-12%线性丙烯酰胺梯度条件下进行单向SDS-PAGE凝胶电泳。具体地,应用的系统为
Figure C200480006396D00451
 NUPAGETM系统,由NUPAGETM Bis-TRIS-Pre-Cast Gels(用于低到中分子量的蛋白)组成。
C.化学试剂
沉淀剂是纯度为98%、来自Sigma(St.Louis,MO,USA)的乳酸依沙吖啶,乳酸依沙吖啶的分子量为361.4Da,所有其它的化学品为分析级。
D.沉淀
含有抗体和F(ab’)2的大肠杆菌物质应用Watts Fluidair Inc.的微流化器(microfluidizer)(型号B12-04DJC,Kittery,MN,USA)进行匀浆。细胞在4bar的压力下三次通过微流化器。为了避免蛋白的热降解,所述物质在每一次通过微流化器期间流经冰水浴。F(ab’)2匀浆物的总蛋白浓度为30mg/mL。重悬糊状物中得到的全长抗-TF匀浆物的总蛋白浓度为18mg/mL。抗TF糊状物在pH7.5的25mM TRIS-HCl缓冲液中重悬。
乳酸依沙吖啶沉淀剂溶于水,直到所需的终浓度(w/v)。
1.DH研究
沉淀实验在恒定为0.6%(w/v)的乳酸依沙吖啶浓度进行。制备一种0.8%的乳酸依沙吖啶溶液,并与大肠杆菌匀浆物以3:1的比例混合,举例来说,3mL的乳酸依沙吖啶与1mL大肠杆菌匀浆物混合。根据所需要的pH值,以HCl或NaOH调节pH值。
2.乳酸依沙吖啶浓度研究
匀浆物以乳酸依沙吖啶原液稀释4倍(即pH研究中的1:3),将pH值保持在每一种目标蛋白的设定值。对于抗-CD18,pH值为8.5,而对于抗-TF,pH值为7.5。在沉淀系统中乳酸依沙吖啶终浓度分别为0.15%、0.30%、0.45%、0.60%、0.75%和0.9%(w/v)。进行一组加入0%乳酸依沙吖啶的实验作为参照。
3.电导率/稀释研究
将各种浓度的NaCl加入到抗-CD18匀浆物中,以评估电导率对于蛋白沉淀的影响。研究的NaCl浓度为0、50、100、150、200和400mM。无乳酸依沙吖啶的参照系列也进行实验,以确定是否有蛋白由于盐浓度高而形成沉淀。在这个盐浓度峰的研究中pH为8.5,且抗-CD18匀浆物被稀释4倍。样品中的乳酸依沙吖啶浓度为0.6%,0%浓度的则用于参照实验。
为了改变样品的电导率,匀浆物以渐增量进行稀释,pH保持不变,对于抗-CD18和抗-TF,pH值分别为8.5和7.5。所有实验中乳酸依沙吖啶终浓度为0.6%(w/v)。匀浆物分别被稀释2、3、4、5、6和7倍。
4.温度研究
一些实验在升高的温度下进行。将大肠杆菌匀浆物稀释4倍,乳酸依沙吖啶的终浓度为0.6%。对于抗-CD18和抗-TF,pH值分别为8.5和7.5。样品在处于所需温度的恒温水浴中温育,即50、60和70℃。样品在升高的温度温育20-120分钟。一个16小时的长时间温育在50℃进行。
在将沉淀剂和大肠杆菌匀浆物混合在一起并调节pH值后,样品在振荡条件下温育30-60分钟。沉淀实验在4mL标度的玻璃管中进行。所有实验平行双份并得出平均值。
E.大肠杆菌蛋白实验
乳酸依沙吖啶与大多数常用的蛋白检测实验,例如Bradford、BCA、280nm分光光度吸收检测等发生相互作用。因此,采取通用的大肠杆菌蛋白ELISA方法检测总蛋白浓度。样品在含有鱼明胶(fish gelatin)的缓冲液(0.15M NaCl、0.1M NaPO4、0.1%鱼明胶、0.05% TWEEN 20TM、0.05%PROCLINTM 300)中稀释,以降低与抗大肠杆菌蛋白抗体的非特异性结合。包被抗体为山羊抗-Whole ECP,偶联抗体为与辣根过氧化物酶偶联的抗-抗体Whole ECP。应用Molecular Devices的SPECTRA MAX PLUSTM平板阅读器(plate reader)(Sunnyvale,CA,USA)监测405nm处的吸收。
F.蛋白G实验
为了检测回收的F(ab’)2和抗体的浓度,应用了蛋白G亲和层析实验。IMMUNO DETECTIONTM蛋白G柱购自PerSeptive Biosystems(Framingham,MA,USA)。该柱以磷酸盐缓冲液(PBS)进行平衡,并以PBS进行洗脱,该PBS已用HCl将pH调节到2.2。为了将乳酸依沙吖啶的干扰减到最低,样品在实验前在排阻旋转柱(
Figure C200480006396D00471
 6 Tris columns(Bio-Rad Laboratories,Hercules,CA,USA))中处理。旋转柱按说明书使用。将氯化四甲铵(TMAC)洗涤步骤(Fahrner et al.,Biotechnology和Genetic Engineering Reviews18:302-327(2001))引入层析方法,以减小样品中残留的乳酸依沙吖啶的任何干扰。实验应用购自Hewlett Packard(Mountain View,CA,USA)的HPLC(HR1090TM液相色谱仪)进行。样品以PBS稀释。应用纯化的蛋白(来自Genentech,Inc.)绘制每一种蛋白的标准曲线。
G.DNA测定
沉淀后上清中的DNA浓度应用购自Molecular Probes(Eugene,OR,USA)的Pico Green试剂盒进行测定。这是一个荧光实验,其中荧光试剂(Pico green)与双链DNA结合。Pico Green试剂在502nm激发,记录在523nm的发射。实验应用购自Molecular Devices(Sunnyvale,CA,USA)的荧光平板阅读器SPECTRA MAX GENINI XSTM进行。乳酸依沙吖啶与Pico Green实验发生相互作用,故在分析之前,沉淀剂要从溶液中除去。应用在G蛋白亲和层析实验部分所述的
Figure C200480006396D00481
 6 TRIS柱,除去样品中乳酸依沙吖啶。
H.SDS-PAGE
乳酸依沙吖啶沉淀后得到的上清液可以通过SDS-PAGE来进行分析。用购自Novex(San Diego,CA,USA)的非还原性4-12% NUPAGETM凝胶观察抗-CD18和抗-TF的纯化和回收。应用预制凝胶,电泳缓冲液为MOPS(预先配置的浓缩剂,购自Novex)。凝胶以COOMASSIE BRILLANT BLUER250TM经过过滤的溶液进行染色。对于每种澄清的大肠杆菌提取物来说,上清液是经体积补偿的。这样一来,如果能在经乳酸依沙吖啶沉淀后的上清液中得到100%的收率,大肠杆菌提取物中蛋白条带的强度应与样品中是一样的。因而,凝胶可以用于准确地指示沉淀后得到的纯化程度。
I.乳酸依沙吖啶溶解度
研究了0.6%和1.2%两种乳酸依沙吖啶溶液。每种溶液分两等份,pH分别调为6.0和9.0。为了在该系统中获得微弱的缓冲容量,将乳酸依沙吖啶溶于10mMTris-HCl缓冲液。使每一种乳酸依沙吖啶溶液暴露于递增量的NaCl:即0、50、100、150、200、300和600mM。样品温育3小时,然后在微量离心机(SORVALL MC12VTM,DuPont,Wilmington,DE,USA)中12000g离心20分钟。通过测定270nm处的吸收值,检测上清液中的乳酸依沙吖啶。应用的分光光度计为Hewlett Packard(Wilmington,DE)的HP8453UV-VISTM,现在它改称为Aligent Technologies(Palo Alto,CA)的AGILENT8453 UV-VISTM分光光度计。标准曲线可由已知乳酸依沙吖啶浓度的溶液得到。
J.浊度
为了测定上清的稳定性与时间和温度的函数关系,对浊度进行了监测。应用的浊度计来自HACH(型号2100N,Ames,Iowa,USA),样品在不稀释的条件下在室温进行测定。
用0.6%的乳酸依沙吖啶、0.2%PEI或者只用水处理抗-CD18匀浆物,在所有的三种样品中,抗-CD18匀浆物被稀释4倍,pH为7.2±0.2。在4000g离心1小时后,回收上清液,分成两等份。每种样品取一份在室温(21℃)温育,另一份则放置在4℃。
结果和讨论
DH的影响
乳酸依沙吖啶分子在大多数的pH区间是带有正电荷的(Miller,出处同上;Neurath和Brunner,出处同上;Franek,Methods in Enzymology,ed.Langone,J.J.,Van Vunakis,H.,121:631-638(1986))。然而,由于pH的变化影响多肽的电荷,而且多肽的pI与多肽暴露于乳酸依沙吖啶而沉淀时的pH值相关(Neurath和Brunner,出处同上),所以,研究了本发明方法中pH值对纯化程度的影响。
将分别含有抗-CD18 F(ab’)2、抗-TF F(ab’)2和全长抗-TF的匀浆物暴露于0.6%且pH覆盖4-10的乳酸依沙吖啶溶液。图8A-8C中分别表示出经乳酸依沙吖啶处理及离心后每种蛋白质的澄清相。
在表1中,研究了抗-TF的全长抗体和F(ab’)2。大肠杆菌匀浆物用0.8%(w/v)的乳酸依沙吖啶溶液以1:3的比例处理,即样品中乳酸依沙吖啶终浓度为0.6%。pH值分别以HCl和NaOH调节到所需的pH值。可以根据每种澄清的细胞匀浆物计算产率和纯化系数。回收的上清中的DNA浓度也在表中报道出来。
表1
以乳酸依沙吖啶处理时,pH对于αCD18和αTF的纯化和产率的影响
Figure C200480006396D00501
*值为1表示与未经乳酸依沙吖啶处理的系统得到的纯化效果相同。
可以发现,对于所有的三种蛋白,在pH 4-10的范围内,纯化程度和DNA浓度可以得到钟形曲线。在中等水平pH值范围,即pH5-9,可以得到大约5倍的纯化。在较高的pH,抗-CD18F(ab’)2、抗-TF抗体的全长和F(ab’)2形式的收率降低,且抗-TF抗体的全长和F(ab’)2形式比抗-CD18 F(ab’)2具有更强的pH依赖性。在pH4-10的范围,抗-CD18 F(ab’)2的产率从100%下降到85%;而抗-TF F(ab’)2的产率则从93%下降到18%。不限于任何一种理论,这可部分归因于抗-TF比抗-CD18具有更低的pI,如它们的pI分别为7.5和8.9,然而,这些数值是理论计算得到的pI数值。
抗-TF蛋白的全长形式比该蛋白的F(ab’)2形式有更强的pH依赖性。全长抗-TF蛋白的纯度在pH7时最高。在pH8以上,可以观察到明显的产率损失(图8C)。对于抗TF全长,pH7.0左右是优选的,可得到7.1倍的纯化和86%的产率。不限于任何一种理论,对于抗-TF比抗-CD18具有更大损失的一个可能的解释是,抗-TF在高于其pI的条件中温育时,比抗-CD18带有更多的表面负电荷。与此类似,不限于任何一种理论,更大的全长抗-TF可以比相应的F(ab’)2具有更多的表面负电荷,这样在pH值增加时,可以观察到显著较大的产率损失。
然而,除了细胞碎片和宿主蛋白之外的组分必须从目标多肽中去除。这些组分之一就是DNA。目标多肽中混有高DNA浓度的主要不利之处是溶液的粘度增加。这会给将来的下游操作带来不利影响。另外,如果应用阴离子交换柱作为第一个捕获柱,带负电荷的DNA会结合到树脂上,这样会降低柱子的蛋白容量。
由此,测定了以乳酸依沙吖啶沉淀后上清液中的DNA浓度。结果表明,乳酸依沙吖啶沉淀后上清液中的DNA浓度与在大肠杆菌匀浆物中得到的初始DNA浓度相比有了显著的降低。然而,当上清液中的pH值降低时,其中的DNA浓度会增加,即pH5.0时为0.1μg/mL,而pH4.0时为0.2μg/mL。不限于任何一种理论,这可能是由于在低pH值,DNA上的磷酸根所带的负电荷越来越少。在非常高的pH如pH10.0时,DNA浓度会显著地提高(0.3μg/mL),而蛋白纯度也会降低。不限于任何一种理论,这可部分归因于pH高于抗体和F(ab’)2的pI值的事实,然而这也可部分归因于在此pH乳酸依沙吖啶带电荷较少的事实。
乳酸依沙吖啶浓度的影响
大肠杆菌匀浆物与乳酸依沙吖啶溶液以1:3的比例混合,样品中的乳酸依沙吖啶浓度从0以0.15%的增量提高到0.9%(w/v)。在pH8.5、7.5和6.0,分别对抗-CD18、抗-TF F(ab’)2和全长抗体进行研究。
表2表明乳酸依沙吖啶浓度对于纯化和产率的影响。在表2中,研究了抗-TF全长抗体和F(ab’)2形式。大肠杆菌匀浆物以1:3的比例用不同浓度的乳酸依沙吖啶溶液处理,报道了样品中乳酸依沙吖啶的终浓度。抗-CD18、抗-TF(F(ab’)2)以及全长抗-TF的pH值分别为8.5、7.5和6.0。回收的上清液中的DNA浓度也在表中报道出来。
表2
递增浓度的乳酸依沙吖啶处理对于抗-CD18和抗-TF纯度和产率的影响
*值为1表示与未经乳酸依沙吖啶处理的系统得到的纯化效果相同。
研究显示,抗体纯度与乳酸依沙吖啶的浓度具有很强的相关性(图9A-9C和表2)。当乳酸依沙吖啶浓度高于约0.6%时,乳酸依沙吖啶浓度增加对于提高纯度的效果不显著。然而,在较低的乳酸依沙吖啶浓度,即当乳酸依沙吖啶不足量时,沉淀剂的每次微量加入都会导致F(ab’)2的纯化大大增强。
加入不同浓度乳酸依沙吖啶不会影响抗-CD18 F(ab’)2的产率。所有实验中,两种F(ab’)2的该步骤回收率大约为90%。然而,看起来F(ab’)2抗-CD18比抗-TF F(ab’)2更易获得定量的回收。不限于任何一种理论,这可以是因为pH研究中,抗-TF F(ab’)2比抗-CD18 F(ab’)2具有更多的表面负电荷。全长抗-TF在比相应的F(ab’)2蛋白更低的乳酸依沙吖啶浓度(分别为0.3%和0.6%)达到最大纯化。不限于任何一种理论,这可能是由于全长抗-TF匀浆物中的总蛋白浓度较低,即,全长抗-TF匀浆物中的总蛋白浓度为18mg/mL,而F(ab’)2抗-TF则为30mg/mL。全长抗-TF也可从重悬糊状物中得到,而F(ab’)2可直接从发酵罐中以发酵液的形式取出。因此,大肠杆菌培养液中的可溶性培养基组分在全长抗-TF的重悬液中不存在,这可在一定程度上解释所看到的差距,其不受任何一种理论限制。
上清液中的DNA浓度与蛋白纯化获得的数据具有强相关性。在加入0.6%或更高浓度的乳酸依沙吖啶时,没有在上清液中检测到DNA。当乳酸依沙吖啶浓度从0上升到0.6%时,上清液中的DNA浓度明显降低,即从78μg/mL减为0。
电导率的影响
乳酸依沙吖啶使蛋白沉淀,这可部分归因于该分子的电荷性质(Neurath和Brunner,出处同上),样品的电导率对于沉淀后抗体和F(ab’)2的纯度可以有影响。因此,如果样品具有高的盐浓度,即具有高电导率,盐可使蛋白被屏蔽,与乳酸依沙吖啶隔开,从而降低纯化效果。
对于抗-CD18匀浆物进行两套实验,以区分样品的蛋白浓度与电导率的影响。在两套实验系统中加入NaCl(0-400mM),一套实验中含有0.6%的乳酸依沙吖啶,而另一套实验中使用水。用含水的系统作参照,这样,如果NaCl能引起沉淀,这就可以与由乳酸依沙吖啶引起的沉淀进行区分。在不含乳酸依沙吖啶的系统,即水系统中,在0-400mM NaCl的浓度范围内,没有观察到蛋白沉淀(图10A)。含有乳酸依沙吖啶的实验表明,当电导率下降时,抗-CD18的纯化显著增强(图10B)。
不限于任何一种理论,抗-CD18在较低电导率改善纯化效果的一个原因可以是,带电荷的乳酸依沙吖啶在低盐浓度的屏蔽能力低。当在升高的盐浓度用PEI纯化蛋白时,发现类似的屏蔽效果(Jendrisak,出处同上)。然而,更重要的因素是,乳酸依沙吖啶在较高盐浓度的低溶解度(Miller,出处同上;Neurath and Brunner,出处同上;Franek,出处同上)。在提取系统中,当NaCl为100mM时,观察到乳酸依沙吖啶沉淀,当盐浓度升高以后,更多乳酸依沙吖啶被沉淀。因此,更少量的乳酸依沙吖啶溶于该系统中且能用于沉淀蛋白和其它生物分子。
研究乳酸依沙吖啶的溶解度与NaCl浓度的函数关系时,观察到pH依赖性(图11)。在pH6时,0.6%和1.2%的乳酸依沙吖啶溶液的溶解度没有明显的差别。在50mM NaCl时,两种溶液都可溶;而在100mM NaC时,两种溶液几乎彻底沉淀。在pH9的溶液中,当乳酸依沙吖啶所带电荷较少时,上述两种浓度的乳酸依沙吖啶的溶解度有明显差别。0.6%乳酸依沙吖啶溶液比更高浓度的乳酸依沙吖啶溶液在更低盐浓度中沉淀(图11)。已经表明,氯化物对于沉淀乳酸依沙吖啶特别有效(Franek,出处同上)。
实际上,沉淀实验的电导率可通过稀释系数确定。因此,用一组实验研究大肠杆菌匀浆物的稀释系数的影响。乳酸依沙吖啶总浓度保持0.6%(w/v)不变,但样品的电导率随稀释的增加而减小。结果如表3所示。在表3中,研究了抗-TF全长抗体和F(ab’)2形式。每个实验中乳酸依沙吖啶的浓度为0.6%(w/v)。抗-CD18、抗-TF F(ab’)2,和全长抗-TF的pH值分别为8.5、7.5、6.0。计算每种澄清的细胞匀浆物的产率和纯化系数。回收的上清液中的DNA浓度也在表中报道出来。
表3
大肠杆菌匀浆物不同量稀释对于抗-CD18和抗-TF的纯度和产率的影响
Figure C200480006396D00541
*值为1表示与未经乳酸依沙吖啶处理的系统得到的纯化效果相同。
结果表明,如果通过增加稀释降低电导率,F(ab’)2的纯化效果可得到增强。然而,在电导率为3.5mS或更低时,电导率的影响较小。对于本实施例中应用的大肠杆菌匀浆物,为了得到低于3.5mS的电导率,必须进行4倍的稀释。对于全长抗-TF抗体,稀释倍数可比F(ab’)2匀浆物的稍低。不限于任何一种理论,这可以是由于全长匀浆物中的蛋白浓度较低。而且,由于全长物质来自重悬糊状物,一些可能会影响沉淀的培养基组分已在乳酸依沙吖啶沉淀之前去除。
在这些实验中,蛋白浓度随稀释的增加(电导率的降低)而降低。这样,即使加入在乳酸依沙吖啶研究中被认为是过量浓度的0.6%乳酸依沙吖啶,仍然不能在低水平稀释的样品中最大量去除宿主蛋白和DNA。这是因为这些样品与在乳酸依沙吖啶浓度研究中操作的样品相比,匀浆物浓度(即总蛋白和DNA)有所增加。因此,蛋白、DNA以及其它组分的总浓度会影响所需的乳酸依沙吖啶的浓度或稀释倍数。抗-CD18F(ab’)2和全长形式及F(ab’)2形式的抗-TF的产率随电导率的下降而提高。
对DNA去除的效果也依赖于电导率。进行两倍稀释,即5.0mS时,在上清液中得到20.7μg/mL的高DNA浓度。然而,如果进行3倍的稀释,即4.0mS,浓度就会降到0.5μg/mL,在更高的稀释倍数检测不到DNA。正如较早前指出的,在此情况下,用于沉淀蛋白和DNA的乳酸依沙吖啶总量随稀释倍数的升高(即电导率的降低)而增加。这样,在此实施例中所见到的效果包括降低电导率和增加乳酸依沙吖啶用量两者。
温度的影响
在进行沉淀实验时,已知温度是个重要的因素。因而研究一些增高的温度与乳酸依沙吖啶的联合。还研究了在增高的温度对温育时间的影响。
当在增高的温度(即50-70℃)温育时,对于两种F(ab’)2蛋白的纯度有好的影响(图12A和12B)。温度越高,纯化效果越好。在70℃温育可以显著地增强F(ab’)2蛋白的纯度。在70℃将样品温育更长时间,即温育40分钟相比于温育20分钟,并没有提高F(ab,)2的纯度(图12A和12B),但观察到大约10%的产率损失。然而,当样品在超过70℃进行温育,却没有回收到F(ab’)2,这是由于F(ab’)2以及其它大肠杆菌蛋白的温度沉淀。
为了更精确研究温育时间的影响,进行了一个实验,其中,样品在50℃温育16小时和30分钟,结果表明,在此温度温育16小时的样品与温育30分钟的相比,纯化效果没有显著的提高。这说明温度沉淀是一种快速现象,它提示,快速加热到适当的温度比长时间的温育更适合。
全长抗TF也在增高的温度中进行研究。结果发现,在50℃温育15分钟与在室温温育相比,对于抗体的纯度略有积极影响,且回收的物质未发现损失(图12C)。然而,如果温度提高到60℃,几乎全部的抗-TF都被沉淀。这些数据说明,全长抗-TF在增高的温度比F(ab’)2抗-TF蛋白具有较低的稳定性。
由于温度提高会引起目标多肽的修饰,具体目标多肽在增高的温度的稳定性需要在实施前进行评估。
原料流(feed stream)的稳定性
重要的是,尽可能回收最清洁的原料流,然而原料流另一个重要的性质是它在长时间内的稳定性。因此,经乳酸依沙吖啶或PEI处理后上清液的稳定性与简单离心后上清液的稳定性进行了比较。每种上清液在两种温度,即室温(21℃)和4℃温育。稳定性通过测定各自样品的浊度进行监测。
图13显示三种不同上清液在一段时间内的浊度改变,这三种上清液分别为经乳酸依沙吖啶处理、经PEI处理和不经处理的澄清上清液。可以清楚地看到,聚电解质,即乳酸依沙吖啶和PEI,它们显著地降低上清液的浊度。在刚刚澄清之后,不经处理的澄清上清液的浊度为大约700NTU,而PEI处理的样品只有一半的浊度,即327NTU,而经乳酸依沙吖啶处理的上清,其浊度为1NTU。当监测经PEI处理的上清液的浊度时,无论是时间变化还是在不同温育温度都没有发现大的差异。对于仅仅经过离心的上清液来说,在开始的48小时,室温中的样品浊度有降低的趋势。然而,室温中的样品在72小时由于样品浊度过高而无法检测。乳酸依沙吖啶处理的上清液具有非常低的浊度,该浊度在4℃温育后并未显著提高。当样品在21℃温育时,浊度明显地增加,即在72小时内从1增加到100NTU。然而,100NTU仍然比另外两种刚刚澄清后的上清液中得到的浊度低。因此,可以得出这样的结论,用乳酸依沙吖啶在pH7处理后回收的上清液是稳定的原料流。
结论
乳酸依沙吖啶可以成功地用作沉淀剂,用于从培养液或匀浆物中初步回收异源多肽。当应用乳酸依沙吖啶作沉淀剂时,理想的目标多肽优选比普通的宿主蛋白具有较高pI,因此,大多数蛋白带有负电荷且被乳酸依沙吖啶沉淀,同时,目标蛋白带有正电荷,因此回收在上清液中。
用于沉淀的乳酸依沙吖啶的优选浓度高度依赖于培养基或匀浆物中宿主蛋白和DNA的浓度。培养基或匀浆物中蛋白和DNA的浓度越高,乳酸依沙吖啶的需要量越大。因此,能与乳酸依沙吖啶复合并由此沉淀的组分所带负电荷越多,用于沉淀的乳酸依沙吖啶的优选量越大。进行沉淀时,溶液的电导率越低,多肽的纯化效率越高。沉淀步骤可以在除去细胞碎片的同时,提供明显的多肽纯化效果和DNA去除效果。
为了有效沉淀宿主蛋白和DNA,pH值通常在大约4-10之间,优选不超过约pH 9,因为在此pH以上,分子所带电荷变少。在纯化多肽时,乳酸依沙吖啶应更优选在大约pH5-9的范围内应用。为了增强纯化的效果,可在增高的温度进行短时间的温育。然而,应测定具体目标多肽在增高的温度中的稳定性,以避免目标多肽沉淀。也必须对回收的目标多肽的质量进行研究,以证实目标多肽没有发生改变。

Claims (30)

1.从产生并溶有目标异源多肽的微生物发酵液或匀浆物中纯化该多肽的方法,包括在使多肽的主要部分保持可溶的条件下,向培养液或匀浆物中加入有效量的乳酸依沙吖啶溶液,以沉淀宿主细胞杂质,并从培养液或匀浆物中分离目标多肽,其中加入乳酸依沙吖啶后的培养液或匀浆物的温度为室温到70℃,其中加入乳酸依沙吖啶后的培养液或匀浆物的pH值不大于9,其中所述多肽的pI比宿主细胞杂质中所含宿主蛋白的平均pI更高,其中所述多肽是抗体。
2.权利要求1的方法,其中培养液或匀浆物来自酵母或原核生物。
3.权利要求1或2的方法,其中培养液或匀浆物来自细菌。
4.权利要求1-3之一的方法,其中培养液或匀浆物来自真细菌。
5.权利要求1-4之一的方法,其中培养液或匀浆物来自革兰氏阴性细菌。
6.权利要求1-5之一的方法,其中培养液或匀浆物来自大肠杆菌。
7.权利要求1-6之一的方法,其中多肽从匀浆物中分离。
8.权利要求1-7之一的方法,其中多肽的pI至少约为7。
9.权利要求1-8之一的方法,其中多肽是重组多肽。
10.权利要求1-9之一的方法,其中多肽是人源化抗体。
11.权利要求1-10之一的方法,其中多肽是全长抗体。
12.权利要求1-10之一的方法,其中多肽是抗体片段。
13.权利要求12的方法,其中多肽是含有轻链的抗体片段。
14.权利要求13的方法,其中多肽是含有K轻链的抗体片段。
15.权利要求12-14之一的方法,其中多肽是Fab、Fab’、F(ab’)2或F(ab’)2-亮氨酸拉链融合体。
16.权利要求12-15之一的方法,其中多肽是F(ab’)2
17.权利要求1-9之一的方法,其中多肽是抗-IgE、抗-CD18、抗-VEGF、抗-组织因子、2C4、抗-Her-2、抗-CD20、抗-CD40或抗-CD11a抗体或抗体片段。
18.权利要求1-9之一或权利要求17的方法,其中多肽是抗-CD18F(ab’)2、抗-组织因子F(ab’)2、全长抗-组织因子抗体或抗-VEGF抗体。
19.权利要求1-18之一的方法,其中乳酸依沙吖啶的浓度为0.1-5%重量/体积。
20.权利要求1-19之一的方法,其中乳酸依沙吖啶的浓度为0.4-5%重量/体积。
21.权利要求1-20之一的方法,其中乳酸依沙吖啶的浓度为0.6-5%重量/体积。
22.权利要求1-21之一的方法,其中加入乳酸依沙吖啶后的培养液或匀浆物的电导率为1-15mS。
23.权利要求1-22之一的方法,其中加入乳酸依沙吖啶后的培养液或匀浆物的pH值为5-9。
24.权利要求1-23之一的方法,其中加入乳酸依沙吖啶后的培养液或匀浆物的pH值为6-9。
25.权利要求1-24之一的方法,其中加入乳酸依沙吖啶后的培养液或匀浆物的温度为室温到65℃,维持1-60分钟。
26.权利要求1-25之一的方法,其中加入乳酸依沙吖啶后的培养液或匀浆物的温度为50℃到65℃,维持1-60分钟。
27.权利要求1-26之一的方法,其中分离通过离心或过滤进行。
28.权利要求1-27之一的方法,其中多肽从培养液或匀浆物中分离后,进一步通过层析或过滤进行纯化。
29.权利要求1-28之一的方法,其中在加入乳酸依沙吖啶之前,多肽产生在可溶级分中。
30.权利要求1-28之一的方法,其中在加入乳酸依沙吖啶之前,多肽是不可溶的,通过使其与增溶剂接触而溶解。
CNB2004800063965A 2003-01-09 2004-01-08 多肽的纯化 Expired - Fee Related CN100467611C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43941803P 2003-01-09 2003-01-09
US60/439,418 2003-01-09

Publications (2)

Publication Number Publication Date
CN1759186A CN1759186A (zh) 2006-04-12
CN100467611C true CN100467611C (zh) 2009-03-11

Family

ID=33299572

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800063965A Expired - Fee Related CN100467611C (zh) 2003-01-09 2004-01-08 多肽的纯化

Country Status (18)

Country Link
US (2) US7169908B2 (zh)
EP (1) EP1581644B1 (zh)
JP (1) JP2006517415A (zh)
KR (1) KR20050095605A (zh)
CN (1) CN100467611C (zh)
AT (1) ATE364092T1 (zh)
AU (1) AU2004230670B2 (zh)
BR (1) BRPI0406470A (zh)
CA (1) CA2511946A1 (zh)
DE (1) DE602004006831T2 (zh)
DK (1) DK1581644T3 (zh)
ES (1) ES2287687T3 (zh)
MX (1) MXPA05007378A (zh)
NZ (1) NZ540895A (zh)
PL (1) PL377653A1 (zh)
RU (1) RU2337968C2 (zh)
WO (1) WO2004092393A1 (zh)
ZA (1) ZA200504990B (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896231B (zh) 1998-08-06 2012-09-05 山景药品公司 分离四聚体尿酸氧化酶的方法
EP1539798B1 (en) * 2002-09-06 2010-11-24 Genentech, Inc. Process for protein extraction
CA2604399A1 (en) 2005-04-11 2006-10-19 Savient Pharmaceuticals, Inc. Variant forms of urate oxidase and use thereof
US9534013B2 (en) * 2006-04-12 2017-01-03 Horizon Pharma Rheumatology Llc Purification of proteins with cationic surfactant
NZ568809A (en) 2005-12-22 2011-08-26 Genentech Inc Recovering and purification of VEGF proteins from prokaryotic cells using polyanionic agents
FR2902799B1 (fr) 2006-06-27 2012-10-26 Millipore Corp Procede et unite de preparation d'un echantillon pour l'analyse microbiologique d'un liquide
AR062069A1 (es) 2006-07-14 2008-10-15 Genentech Inc Replegado de proteinas recombinantes
WO2008140615A2 (en) * 2006-12-21 2008-11-20 Novozymes, Inc. Modified messenger rna stabilizing sequences for expressing genes in bacterial cells
US8569464B2 (en) 2006-12-21 2013-10-29 Emd Millipore Corporation Purification of proteins
US8163886B2 (en) * 2006-12-21 2012-04-24 Emd Millipore Corporation Purification of proteins
US8362217B2 (en) 2006-12-21 2013-01-29 Emd Millipore Corporation Purification of proteins
EP2120915B1 (en) * 2007-01-22 2011-09-28 Genentech, Inc. Polyelectrolyte precipitation and purification of antibodies
LT3597659T (lt) 2007-07-09 2023-05-10 Genentech, Inc. Disulfidinės jungties redukcijos prevencijos būdas gaminant polipeptidą rekombinantiniu būdu
US7887821B2 (en) * 2007-12-20 2011-02-15 Alk-Abello A/S Process for producing an allergen extract
WO2009151514A1 (en) 2008-06-11 2009-12-17 Millipore Corporation Stirred tank bioreactor
GB0818228D0 (en) * 2008-10-06 2008-11-12 Avecia Biolog Ltd Purification process
CA2739392A1 (en) * 2008-10-17 2010-04-22 Percivia Llc Clarification process
CN105037535A (zh) 2008-12-16 2015-11-11 Emd密理博公司 搅拌槽反应器及方法
EP3482768A1 (en) 2009-06-25 2019-05-15 Horizon Pharma Rheumatology LLC Methods and kits for predicting infusion reaction risk and antibody-mediated loss of response by monitoring serum uric acid during pegylated uricase therapy
MX2012008893A (es) * 2010-02-01 2013-02-27 Digna Biotech Sl Procedimiento para la produccion de interferon alfa 5.
RU2572230C2 (ru) * 2010-02-12 2015-12-27 Лабораториос Лети, С.Л. Способ получения экстракта аллергена
KR101555740B1 (ko) * 2010-03-10 2015-09-25 에프. 호프만-라 로슈 아게 면역글로불린 용액 정제 방법
JO3131B1 (ar) 2010-04-27 2017-09-20 Glaxosmithkline Llc مركبات كيميائية
EP3597671B1 (en) 2010-05-17 2022-09-21 EMD Millipore Corporation Stimulus responsive polymers for the purification of biomolecules
GB201012599D0 (en) 2010-07-27 2010-09-08 Ucb Pharma Sa Process for purifying proteins
DE102011001743A1 (de) * 2011-04-01 2012-10-04 Technische Universität Dortmund Verfahren zur Trennung/Reinigung von Biomolekühlen
WO2013055958A1 (en) 2011-10-11 2013-04-18 Genentech, Inc. Improved assembly of bispecific antibodies
CN102443055B (zh) * 2011-10-26 2017-07-28 浙江海正药业股份有限公司 一种重组人肿瘤坏死因子相关凋亡诱导配体的纯化工艺
SG11201407801VA (en) 2012-05-31 2014-12-30 Agency Science Tech & Res Methods for use of mixed multifunctional surfaces for reducing aggregate content in protein preparations
CN102701501A (zh) * 2012-06-26 2012-10-03 天津市津华盛生物科技有限公司 工业乳酸链球菌素废水综合利用的方法
CN105026418B (zh) * 2013-02-06 2019-01-11 新加坡科技研究局 蛋白质纯化方法
EP2961759A4 (en) * 2013-02-26 2016-09-28 Agency Science Tech & Res PROTEIN CLEANING IN THE PRESENCE OF NON-ORGANIC POLYMERS AND ELECTROPOSITIVE SURFACES
WO2014133459A1 (en) 2013-02-28 2014-09-04 Agency For Science, Technology And Research Chromatographic purification of antibodies from chromatin-deficient cell culture harvests
US10253063B2 (en) 2013-02-28 2019-04-09 Agency For Science, Technology And Research Protein purification in the presence of nonionic organic polymers at elevated conductivity
CA2911087A1 (en) * 2013-04-30 2014-11-06 Harish Shandilya Novel cloning, expression & purification method for the preparation of ranibizumab
CN106255698B (zh) 2014-04-30 2021-08-03 诺维信公司 用于减少发酵液的dna含量的方法
CN108333263A (zh) * 2017-01-20 2018-07-27 北京蛋白质组研究中心 一种尿蛋白制备方法及尿蛋白质组的检测方法
TW201927335A (zh) * 2017-10-02 2019-07-16 美商拜耳保健有限責任公司 防止雙硫鍵於細胞培養收集物中還原之方法
CN115925882A (zh) * 2017-12-22 2023-04-07 瑞泽恩制药公司 用于表征药物产品杂质的系统和方法
CN111363024A (zh) * 2018-12-26 2020-07-03 深圳翰宇药业股份有限公司 多肽的纯化方法
US20220228195A1 (en) * 2019-06-05 2022-07-21 Viome Life Science, Inc. Sample collection methods and devices
EP4136211A1 (en) 2020-04-15 2023-02-22 Genentech, Inc. Copper loss mitigation
CN112708566A (zh) * 2021-01-25 2021-04-27 西南林业大学 一种黑曲霉生产胞外多聚物的优化培养基及培养方法
CN114774500A (zh) * 2022-04-26 2022-07-22 成都蜀星饲料有限公司 多肽及制备方法、有机复合微量元素及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930953A (en) * 1973-02-17 1976-01-06 Behringwerke Aktiengesellschaft Glucose oxidase poor in catalase and process for obtaining it

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL34079A (en) * 1969-04-01 1973-02-28 Upjohn Co Purification of ypsilon-globulins
US3607857A (en) * 1970-03-03 1971-09-21 Upjohn Co Process of removing acrinol from gamma globulin using siliceous material such as silica gel
US3903254A (en) * 1971-07-23 1975-09-02 Upjohn Co Separation of erythrocyte stroma from lysing medium and hemoglobin with acrinol
JPS519035B2 (zh) * 1973-10-31 1976-03-23
SU944580A1 (ru) 1980-02-07 1982-07-23 Кировский научно-исследовательский институт переливания крови Способ получени поверхностного антигена гепатита В
AU571078B2 (en) * 1984-04-14 1988-03-31 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Purification of filamentous hemagglutinin
JPS60258127A (ja) * 1984-06-04 1985-12-20 Green Cross Corp:The B型肝炎ワクチンの製造方法
WO1986007093A1 (en) * 1985-05-29 1986-12-04 The Green Cross Corporation Process for preparing heterogenic protein
DE3581412D1 (de) * 1985-07-16 1991-02-21 Green Cross Corp Verfahren zur herstellung von heteroproteinen.
DE3604947A1 (de) 1986-02-17 1987-08-20 Biotest Pharma Gmbh Verfahren zur herstellung eines immunglobulinhaltigen praeparates und dessen verwendung zur prophylaxe und therapie von aids
FR2600078B1 (fr) 1986-06-12 1989-07-13 Merieux Inst Procede de preparation de facteur xiii a partir du placenta
DE3929504A1 (de) * 1989-09-06 1991-03-07 Behringwerke Ag Verfahren zur reinigung von plasminogen-aktivator-inhibitor 2 (pai-2)
DE4030264A1 (de) * 1990-09-25 1992-04-23 Hoechst Ag Verfahren zur herstellung gereinigter glycolipide durch membrantrennverfahren
GB9215540D0 (en) 1992-07-22 1992-09-02 Celltech Ltd Protein expression system
US5861263A (en) * 1992-10-20 1999-01-19 Universidad Autonoma De Nuevo Leon Preparation of preserved entamoeba histolytica antigens without enzymatic inhibitors and their use in immunological methods
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
US5760189A (en) 1995-06-02 1998-06-02 Genetics Institute, Inc. Protein recovery & purification methods
US5714583A (en) 1995-06-07 1998-02-03 Genetics Institute, Inc. Factor IX purification methods
EP0998486B2 (en) 1997-06-13 2012-02-01 Genentech, Inc. Protein recovery by chromatography followed by filtration upon a charged layer
JPH11341947A (ja) * 1998-06-02 1999-12-14 Yakult Honsha Co Ltd 発酵管理方法
US6156514A (en) * 1998-12-03 2000-12-05 Sunol Molecular Corporation Methods for making recombinant cells
ATE316097T1 (de) * 2000-01-20 2006-02-15 Univ Minnesota Peptide mit antibakterieller wirkung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930953A (en) * 1973-02-17 1976-01-06 Behringwerke Aktiengesellschaft Glucose oxidase poor in catalase and process for obtaining it

Also Published As

Publication number Publication date
AU2004230670B2 (en) 2010-11-25
ZA200504990B (en) 2006-08-30
CN1759186A (zh) 2006-04-12
RU2005125210A (ru) 2006-01-10
EP1581644B1 (en) 2007-06-06
US7579448B2 (en) 2009-08-25
KR20050095605A (ko) 2005-09-29
US20070077625A1 (en) 2007-04-05
DK1581644T3 (da) 2007-10-08
PL377653A1 (pl) 2006-02-06
CA2511946A1 (en) 2004-10-28
DE602004006831T2 (de) 2008-02-14
RU2337968C2 (ru) 2008-11-10
ES2287687T3 (es) 2007-12-16
AU2004230670A1 (en) 2004-10-28
US7169908B2 (en) 2007-01-30
ATE364092T1 (de) 2007-06-15
BRPI0406470A (pt) 2005-12-06
WO2004092393A1 (en) 2004-10-28
DE602004006831D1 (de) 2007-07-19
EP1581644A1 (en) 2005-10-05
US20050037456A1 (en) 2005-02-17
MXPA05007378A (es) 2005-11-23
NZ540895A (en) 2007-03-30
JP2006517415A (ja) 2006-07-27

Similar Documents

Publication Publication Date Title
CN100467611C (zh) 多肽的纯化
CN1260249C (zh) 用离子交换层析纯化蛋白质
CN101065402B (zh) 获得抗体的方法
RU2580020C2 (ru) Способ снижения гетерогенности антител и способ получения соответствующих антител
CN100513414C (zh) 进行抗体表达和装配的系统
JP2018127447A (ja) 標的化された/免疫調節性融合タンパク質およびそれを作製するための方法
CN108473558A (zh) Fkpa的纯化及其用于生产重组多肽的用途
KR20030057579A (ko) 박테리아 숙주 균주
CN107108692A (zh) 蛋白质制造
CN105121469A (zh) 用于增加蛋白质的焦谷氨酸形成的方法
KR20140051174A (ko) 배양 동안 락테이트의 축적을 감소시키는 방법 및 폴리펩타이드를 생산하는 방법
CN1954074A (zh) 多肽的制备方法
CN109219660A (zh) 使用谷氨酰胺合成酶基因内互补载体直接选择表达高水平异聚蛋白的细胞
CN1328605A (zh) 重组细胞的制备方法
CN104379596B (zh) 用于纯化重组恶性疟原虫环子孢子蛋白的方法
CN101842110A (zh) 重组转铁蛋白突变体
JP2022520550A (ja) 装飾された封入体及びその使用
CN103012590A (zh) 一种抗cd20单克隆抗体及其制备方法和用途
CA3002120A1 (en) Methods for modulating production profiles of recombinant proteins
Maharjan et al. Cell‐free protein synthesis system: A new frontier for sustainable biotechnology‐based products
JP2021536262A (ja) 連続細胞培養の方法
CA2969981A1 (en) A method for manufacturing a protein coupled to a peg molecule

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090311

Termination date: 20130108

CF01 Termination of patent right due to non-payment of annual fee