CN100349725C - 一种制造被用来生产微型复制工具的切削工具组件的方法 - Google Patents
一种制造被用来生产微型复制工具的切削工具组件的方法 Download PDFInfo
- Publication number
- CN100349725C CN100349725C CNB03821198XA CN03821198A CN100349725C CN 100349725 C CN100349725 C CN 100349725C CN B03821198X A CNB03821198X A CN B03821198XA CN 03821198 A CN03821198 A CN 03821198A CN 100349725 C CN100349725 C CN 100349725C
- Authority
- CN
- China
- Prior art keywords
- diamond
- micro
- cutter assembly
- cutting
- pad
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B29/00—Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
- B23B29/24—Tool holders for a plurality of cutting tools, e.g. turrets
- B23B29/26—Tool holders in fixed position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B5/00—Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D79/00—Methods, machines, or devices not covered elsewhere, for working metal by removal of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2200/00—Details of cutting inserts
- B23B2200/16—Supporting or bottom surfaces
- B23B2200/163—Supporting or bottom surfaces discontinuous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2200/00—Details of cutting inserts
- B23B2200/16—Supporting or bottom surfaces
- B23B2200/167—Supporting or bottom surfaces with serrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/007—Forming single grooves or ribs, e.g. tear lines, weak spots
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49995—Shaping one-piece blank by removing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/303752—Process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/04—Processes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Milling, Broaching, Filing, Reaming, And Others (AREA)
Abstract
本发明涉及一种制造被用来生产微型复制工具的切削工具组件的方法,包括,限定微型复制工具的节距间隔;具有第一(17)和第二(18)金刚石尖端的第一和第二工具柄可定位在安装结构(14)中,使第一工具柄金刚石尖端切削位置处于离开第二工具柄金刚石尖端切削位置的限定的距离。限定的距离(y)可对应于节距间隔的整数(x),并且可精确到小于10微米的容差以内。利用该方法获得的切削工具组件可以减少与微型复制工具制造有关的生产成本和生产周期。
Description
技术领域
本发明涉及在制造微型复制结构中使用的微型复制工具的金刚石机械加工。
背景技术
金刚石加工技术可用来制造诸如微型复制工具等广泛品种的工件。微型复制工具一般使用在挤压工艺、注射模塑工艺、压纹工艺、铸造工艺之类,以制造微型复制结构。微型复制结构可包括光学薄膜、研磨薄膜、粘合薄膜、具有自配合轮廓的机械紧固件、或任何具有相对较小尺寸及微型复制特征的模塑或挤压零件,诸如尺寸小于大约1000微米者。
微型复制工具包括皮带、铸造滚筒、注塑模型、挤压或压纹工具等等。微型复制工具可以用金刚石加工工艺制造,其中采用切削工具组件切割凹槽或在微型复制工具中具有的其它特征。采用切削工具组件制造微型复制工具的过程成本很高并且花费时间。
发明内容
本发明的目的在于提供一种制造被用来生产微型复制工具的切削工具组件的方法,利用该方法获得的切削工具组件可以减少与微型复制工具制造有关的生产成本和生产周期。
为此,本发明提供了一种制造被用来生产微型复制工具的切削工具组件的方法,包括:限定微型复制工具的节距间隔;利用在安装结构中第一和第二工具柄的定位制造切削工具组件,使与第一工具柄相关的第一金刚石尖端切削位置为离开与第二工具柄相关的第二金刚石尖端的切削位置的限定的距离,该限定的距离对应于节距间隔的整数,其中该限定的距离精确到小于大约10微米容差以内。
本发明还指向包括多个金刚石的切削工具组件。具有多个金刚石的切削工具组件可用在制造微型复制工具或其它工件中。具体地说,切削工具组件的多个金刚石可用来对于组件制造一次切削行程中在微型复制工具上建立多条凹槽或其它特征。由于具备在一次切削行程中形成多个特征的能力,具有多个金刚石的切削工具组件可以减少生产时间和/或创造更加复杂的式样。
切削工具组件可包括安装结构和多个装在安装结构上的工具柄。各工具柄可限定用来作为切削工具组件切削尖端的尖端。工具柄的金刚石切削尖端可以精确地形成对应于在微型复制工具中要求制造的凹槽或特征。此外工具柄可精确地定位在安装结构中,使不同金刚石的尖端位置互相间隔离开一个或多个节距。相应地,切削工具组件的不同金刚石尖端可对应于在微型复制工具中要求制造的凹槽或特征并具有由金刚石尖端切削位置所限定的节距间隔。
通过利用在同一组件中多个金刚石切削尖端,微型复制工具的制造可以改进或简化。具体地说,可以用较少切削工具组件的切削行程在复制工具上切割出凹槽,这样可减少工具成本。例如,如果切削工具组件包括两个金刚石,在切削工具上需要切割凹槽的行程数目可以减少一半。
此外,在某些实施例中,不同金刚石尖端可以限定将要在微型复制工具上制造的不同特征。在那种情况,可以避免使用不同切削工具组件制造两个或多个物理上显著不同特征的需要,而可以用单独的组件代替在微型复制工具上制造两个或更多物理上明显不同的特征。这样的技术可改进微型复制工具的质量并且减少相关微型复制工具制造的时间和成本,这依次又可有效地减少相关微型复制结构最终制造成本。
这些和其它实施例附加细节将在以下附图和描述中提出。其它特征、目的和优点将从描述和附图和从权利要求中变得明显。
附图说明
图1为配置用于飞刀切削的多金刚石切削工具组件的顶视图;
图2为配置用于切入或螺纹切削的多金刚石切削工具组件的顶视图;
图3为配置用于飞刀切削的多金刚石切削工具组件一个实施例更加详细的顶视剖面图;
图4和5为配置用于切入或螺纹切削的多金刚石切削工具组件实施例更加详细的顶视剖面图;
图6为图5中阐明的实施例正视图;
图7为在制造微型复制工具中同时切削两个凹槽的多金刚石飞刀切削工具组件的概念化立体图;
图8为在制造微型复制工具中同时切削两个凹槽的多金刚石切入或螺纹切削工具组件的概念化立体图;
图9为多金刚石切入或螺纹切削工具组件另一顶视图;
图10为飞刀切削工具组件另一顶视图;
图11A-11C为阐明多金刚石切削工具组件切割工件上凹槽,和可以在工件上形成的最终凹槽及突出部分各种顶视剖面图;
图12A-12D为阐明多金刚石切削工具组件切割工件上凹槽,和可以在工件上形成的最终凹槽及突出部分附加顶视剖面图;
图13为可以在多金刚石切削工具组件上采用的金刚石立体图;
图14-27为阐明按照本发明各种实施例的切削工具组件附加的顶视剖面图。
具体实施方式
本发明指向包括多个金刚石的切削工具组件。切削工具组件可用来制造微型复制工具或其他工件。具体地说,切削工具组件可用来在微型复制工具的制造中用切削工具组件一个单独切削行程切割出多个凹槽或其它特征。如此,相关微型复制工具制造的切削时间可以减少,或者在给定的时间周期内可形成更加复杂的图案。这样,与微型复制结构相关的最终制造生产周期可以减少,并且生产过程可以简化。此外,在某些实施例中,不同的金刚石可限定在微型复制工具中需要制造的不同特征。在这样情况,可以避免采用显著不同的切削工具组件,而可以用一个单独多面切削工具组件代替在微型复制工具中制造两个或更多物理上显著不同特征。
切削工具组件可包括安装结构,和多个装在安装结构上的工具柄。各工具柄限定一个独特的金刚石尖端,而不同的尖端可对应于需要在微型复制工具上制造的不同凹槽或特征。切削工具组件可采取不同构形,依据其是否设计用于飞刀或切入或螺纹切削而定。
在工具柄上金刚石尖端可用研磨技术、磨削技术、或聚焦离子束铣削过程形成。也将描述金刚石尖端的各种形状和尺寸,这些可能在制造不同微型复制工具中有用。具体地说,聚焦离子束铣削过程可用来使金刚石尖端所要求形状在极端精度上完美无缺。
切削工具组件的不同工具柄可利用显微定位技术装在安装结构上。例如,该技术可以采用具有定位控制的工具显微镜。可采用显微镜识别和测量金刚石尖端之间互相位置,使工具柄可以正确地定位在安装结构上。可以设置定位反馈以便使金刚石尖端的位置量化,例如以数字读出、模拟读出、图形显示等形式。反馈可用来精确地在安装结构上定位不同的工具柄。一旦定位完成,工具柄可通过任何适当固定机构固定在安装结构上。这样,工具并可如此定位在安装结构上,使第一金刚石尖端的切削位置处于离开第二金刚石尖端切削位置一个限定的距离。该限定的距离可对应于节距间隔的整数,并且可以精确到小于大约10微米容差以内。
使用显微镜和定位反馈精确地使多工具柄定位在安装结构内可保证金刚石尖端互相放置在微型复制工具有效切削要求的容差范围以内。具体地说,定位在小于10微米的容差位置以内,并且更佳地可获得小于1微米以内。此外,像在此描述一样,利用工具显微镜可以使金刚石尖端位置互相放置达到在0.5微米精度的容差范围以内。对于有效地制造可以用来制造广泛品种的微型复制结构(诸如微型复制光学薄膜、微型复制机械紧固件、微型复制研磨薄膜、微型复制粘合薄膜之类)的微型复制工具而言,这样的精度是必要的。
在组件中制造具有多金刚石的切削工具组件可通过减少需要在微型复制工具上制造凹槽切削行程数目而可改进和简化微型复制工具的制造。这样的简化可有效地减少与微型复制结构最终制造相关的成本。
图1为包括装在安装结构14上的两个工具柄12和13的切削工具组件10。切削工具组件10配置成为用于飞刀切削,其中组件10围绕轴线15旋转。例如,组件10可装在驱动轴16上,该轴被机械(未示)马达驱动旋转组件10。安装结构14可包括夹持具有金刚石尖端的工具柄12及13的构造。柄12、13可用金属或复合材料形成,而金刚石可通过基本上永久固定机构固定在柄12、13上。此外,安装结构14可包括能够固定在驱动轴上的特征。
为使金刚石固定在工具柄上并从而限定金刚石尖端17、18,可以采用基本上永久固定机构诸如铜焊、锡焊、类似环氧树脂等粘合剂之类。带有金刚石尖端的工具柄12、13然后可通过诸如一个或多个螺栓、夹钳或止头螺钉等临时固定机构装在安装结构14上。可替代地,可以采用基本上永久固定机构诸如铜焊、锡焊、类似环氧树脂等粘合剂之类使工具柄固定在安装结构14上。任何情况下,使用工具显微镜和定位反馈能够保证工具柄12及13定位在安装结构内,使金刚石尖端17、18互相以微型复制工具有效制造所需要的精度定位。安装结构14可具有容许切削工具组件10插入金刚石加工机械的形状。再说,金刚石加工机械可以是配置成为用于飞刀切削的金刚石车床,其中切削工具组件通过驱动轴围绕轴线旋转。
各工具柄12及13的金刚石尖端17及18各自限定一个单独的切削机构,它限定在被制造的微型复制工具上的诸如凹糟的工件独特特征的制造。在图1中阐明的实施例中,切削工具组件10包括两个工具柄12、13,各具有一个金刚石尖端17及18,虽然按照本发明原理可以采用附加的带有金刚石尖端的工具柄。此外,以下描述的原理可延伸到采用限定每一金刚石多于一个切削尖端的金刚石。
如图1所阐明,工具柄12及13如此定位在安装结构14上,使工具柄12的尖端17切削位置处于从工具柄13的尖端18位置限定的距离。具体地说,限定位置可对应于节距间隔的整数。一般说来,名词“节距”本文中涉及在工件上需要制造两相邻特征之间的距离。如图1所示,距离Y=X*(节距),式中X为整数。距离Y有时也称作节距,例如切削工具组件10的节距,虽然为清晰起见这样的术语一般在本文中避免。换言之,除非另有规定,名词“节距”当在此使用时保留作为在工件上需要制造的两相邻特征之间的距离。当整数选择为一时,距离Y将等于工件上各特征的距离。
工具柄12及13如此定位在安装结构14上,使工具柄12的金刚石尖端17切削位置为从工具柄13的金刚石尖端18切削位置节距间隔的整数。更具体地说,金刚石尖端17、18可以互相定位在小于10微米的容差位置以内,或小于1微米以内,以致达到0.5微米精度级的容差。这样的精度设置对于用来制造诸如微型复制光学薄膜、微型复制机械紧固件、微型复制研磨薄膜、微型复制粘合薄膜之类的微型复制结构的微型复制工具有效制造是合适的。依据需要制造微型复制工具的尺寸,节距间隔可小于大约5000微米,小于大约1000微米,小于大约500微米,小于大约200微米,小于大约100微米,小于大约50微米,小于大约10微米,小于大约5微米,小于大约1微米,和接近金刚石尖端17、18间隔0.5微米的容差。
图2为配置用于切入或螺纹切削的多金刚石切削工具组件的顶视图。在切入切削中,在移动到其它位置切割各种凹槽或特征之前,切削工具组件20在限定的位置上切入运动中工件中一定的时间间隔。螺纹切削相似于切入切削。不过在螺纹切削中,切削工具组件20较长时期地放入运动中的工件中以便切割长螺纹凹槽。切削工具组件20也可用来划线或划直线,此时切削工具组件20非常缓慢地移动通过工件。
如同图1中的组件10,图2的切削工具组件20包括固定在安装结构24内的多个工具柄22及23。为固定金刚石在工具柄22、23上并从而限定金刚石尖端28、29,可以采用诸如铜焊、锡焊、诸如环氧树脂之类的粘合剂等等基本上永久性固定机构。带有金刚石尖端28、29的工具柄22、23然后可以通过诸如一个或多个螺栓、夹钳或止头螺钉等临时固定机构装在安装结构24上。可替代地,可以采用基本上永久固定机构诸如铜焊、锡焊、类似环氧树脂等粘合剂之类使工具柄22、23固定在安装结构24上。
采用带有定位反馈的工具显微镜可保证工具柄22及23的金刚石尖端28、29以微型复制工具有效加工所需要的精度定位在安装结构24内。安装结构24可具有容许切削工具组件20插入配置用于切入切削、螺纹切削、划线或划直线的金刚石加工机械。
图3为配置用于飞刀切削多金刚石切削工具组件的一个实施例更加详细的顶视剖面图。图4和5为配置用于切入或螺纹切削的多金刚石切削工具组件实施例更加详细的顶视剖面图。图6为图5中阐明的实施例正视图。在每一情况中,安装结构14、24A、24B可包括一个或多个接受各自工具柄的区域35A、35B、35C、35D(合称为区域35)。区域35可少许大于各自的工具柄以便保证工具柄可在区域内活动而在工具柄固定在位置上以前正确地使金刚石尖端定位。如果需要可以在区域35内设置一个或多个隔块41(图4)。
为使工具柄12、13或22、23定位在各自安装结构14、24、24A或24B内,可以采用工具显微镜。例如从明尼苏达州Fryer的Company of Edina商业上可买到的尼康工具制造商的显微镜包括用于测量工具柄金刚石切削尖端互相之间微型距离的控制刻度盘。此外可以设置位置反馈并且用Quadra Chex 2000数字读出器量化,该读出器可从新罕布什尔州曼彻斯特的Metronics Inc.商业上买到,以便保证变量Y限定在微型复制工具有效制造需要的精度范围内。使用尼康工具制造商的显微镜和Quadra Chex 2000数字读出器可测量在安装结构内工具柄的精确对准情况,使相关工具柄的金刚石尖端互相定位在0.5微米精度级的容差内。
具体地说,达到金刚石尖端的对准程度在小于10微米的容差内,和更佳地小于1微米,对于制造可以用来制造光学薄膜、机械紧固件、研磨薄膜、粘合薄膜之类有效的微型复制工具是适合的。该微型定位在横向和垂直方向均可达到,使金刚石尖端正确地横向互相定位而限定要求的节距,并且垂直地互相定位而保证对于各尖端要求的切削高度。横向和垂直定位均可达到在这里描述的容差以内。一旦利用数字读出器在工具显微镜下正确地定位,工具柄可以通过一个或多个螺栓、夹钳或止头螺钉固定在安装结构上。可替代地,可以采用诸如铜焊、锡焊、类似环氧树脂等粘合剂之类固定机构。
图7和8为在制造微型复制工具72A(图7)或72B(图8)过程中用来同时切削两个凹槽的多金刚石切削工具组件10和20的概念化立体图。在图7和8的例子中,各微型复制工具72包括铸造滚筒,虽然诸如铸造皮带、注塑模型、挤压或压纹工具或其它工件的微型复制工具也可以用切削工具组件10或切削工具组件20制造。如图7所示,切削工具组件10可固定在驱动轴16上,该轴附着在马达(未示)上而使切削工具组件10围绕轴线旋转。切削工具组件10也可相对于微型复制工具72A在横向运动(如箭头所示)。与此同时,切削工具组件72A可围绕轴线旋转。当切削工具组件10被转动时,金刚石尖端18和17以交替方式切入微型复制工具72A。相应地,在切削工具组件10的单独一次切削行程中沿微型复制工具72A形成两条凹槽。
如图8中所示,切削工具组件20可固定在金刚石加工机械74上,这样使切削工具组件20相对于微型复制工具72B定位,并且移动切削工具组件20,例如横向地(如箭头所示)相对于微型复制工具72B。与此同时,微型复制工具72B围绕轴线旋转。金刚石加工机械74可配置成为移动切削工具组件20通过切入或螺纹切削技术进入旋转的微型复制工具72B以便在微型复制工具72B上切割凹槽。可替代地,金刚石加工机械74可配置成为用于划线或划直线,其中切削工具组件20非常缓慢地移动通过工件。在任何情况下,可以在工件上切割凹槽和形成突出部分。例如,在挤压过程中,所形成的凹槽和突出部分可限定使用微型复制工具72A(图7)或72B(图8)制造微型复制结构的最终形状。可替代地,形成的凹槽和突出部分可通过在不是微型复制工具的工件中材料的移动而形成特征。此外,可在切削工具组件20和接受切削工具组件的机械74之间采用快速工具伺服系统。例如,快速工具伺服系统可使切削工具组件20振动以便在微型复制工具72B中制造特殊微型结构。
由于切削工具组件10、20提供多个工具柄,并因此即多个金刚石尖端,只需要较少的切削工具组件的行程在微型复制工具上切割凹槽。这可以减少生产成本和加速与微型复制工具制造相关的生产周期。有些情况制造一个工件有时需要几个小时,如果不是几天。在切削工具组件10、20中综合两个或更多的金刚石切削尖端以便同时切割凹槽可以减少生产周期到那些时间的几分之一。
例如,如果切削工具组件包括两个各限定一个金刚石切削尖端的工具柄(如图7和8所示),需要在微型复制工具72中切割凹槽的形成行程数目可减少到相对于包括一个单独工具柄组件的一半。附加的工具柄可以相似方式进一步增加效益。还有,可以在所有或一个金刚石上形成多个尖端,这样可以增加相似的生产率效益。减少制造微型复制工具72的相关成本依次可有效地减少与微型复制结构最终制造的相关成本。
工具柄12、13、或22、23的金刚石尖端也可有多种尺寸。尖端的尺寸可由图9所示一个或多个变数限定,包括切削高度(H)、切削宽度(W)和以上定义的变数(Y)。切削高度(H)限定金刚石在工件中可切割的最大深度,并且可以称作切削深度。切削宽度(W)可定义为平均切削宽度,或如图9所标识,尖端的最大切削宽度。变数(Y)涉及相邻尖端之间的距离,并定义为节距间隔的整数。另一用来定义切削尖端尺寸的数量称作长宽比。长宽比为高度(H)对于宽度(W)之比。用聚焦离子束铣切过程制造的金刚石尖端可获得各种高度、宽度、节距和长宽比。
例如,高度(H)和/或宽度(W)可以形成为小于大约500微米,小于大约200微米,小于大约100微米,小于大约50微米,小于大约10微米,小于大约5微米,小于大约1.0微米。此外,变数Y可定义为小于大约5000微米,小于大约1000微米,小于大约500微米,小于大约100微米,小于大约50微米,小于大约10微米,小于大约5微米,小于大约.0微米,并可接近大约0.5微米容差。在某些情况,如可在图10(和图5和6)中看到,距离Y可小于工具柄的宽度,和甚至小于相关金刚石尖端切削宽度。
长宽比可以限定为大于大约1∶5,大于大约1∶2,大于大约1∶1,大于大约2∶1,或大于大约5∶1。较大或较小的长宽比可以用聚焦离子束铣削获得。不同的形状和尺寸对于各种应用有利。
聚焦离子束铣削涉及一种加工过程,其中离子,诸如镓离子,加速趋向金刚石以便铣去金刚石中的原子(有时称作烧蚀)。镓离子的加速可以逐个地从金刚石除去原子。采用水蒸汽的蒸汽增强技术也可改善聚焦离子束铣削过程。一种适当的聚焦离子束铣床是Micron型9500,商业上可从俄勒冈州波特兰的FEI Inc.买到。一般地说,聚焦离子束铣削可以用来制造对应于要求制造特征的精确尖端金刚石。可以提供制造一个或更多离子束铣削金刚石的离子束铣削服务的一个代表性供应商是北卡罗来纳州Rayleigh的Materials AnalyticalServices。
聚焦离子束铣削一般非常昂贵。因此,为减少相关多尖端金刚石制造的成本,最好把要求离子束铣削的金刚石尖端在金刚石尖端提交聚焦离子束铣削加工以前先初步加工处理。例如,较少花费的技术,诸如研磨或磨削可以用来除去金刚石尖端上相当大的部分。聚焦离子束铣削过程可保证获得以上列出的一个或更多的尺寸或特征。还有,通过在聚焦离子束铣削以前初步加工金刚石尖端,需要制造最终聚焦离子束铣削金刚石尖端的聚焦离子束铣削时间工作量可以减少。研磨涉及一种利用松散的研磨剂从金刚石除去材料的过程,而磨削涉及一种利用固定在介质或基底上的研磨剂除去材料的过程。
图11A-11C为阐明切削工具组件110切割工件112上凹槽的顶视剖面图。在图11A-11C的例子中,以上量化的距离(Y)将等于节距。换言之,以上定义的整数(X)将等于1,如此成为:
Y=(X)*(节距),
当X=1时,Y=节距。
具体地说,图11A为阐明多金刚石切削工具组件110切割工件112上第一组凹槽的顶视剖面图,而图11B为阐明多金刚石切削工具组件110切割工件112上第二组凹槽的顶视剖面图。图11C为阐明切削工具组件110在二次行程以后建成的工件顶视图。工件112可对应于如以上描述的微型复制工具,虽然本发明不一定局限于这一方面。一种相似的技术可用配置为飞刀切削的工具实行,其中Y=节距。
图12A-12D为阐明多金刚石切削工具组件120切割工件122上凹槽的顶视剖面图。在图12A-12D的例子中,以上定义的整数(X)将等于3,如此成为:
Y=(X)*(节距),
当X=3时,Y=3*节距。
具体地说,图12A为阐明切削工具组件120切割工件122上第一组凹槽的顶视剖面图,图12B为阐明切削工具组件120切割工件122上第二组凹槽的顶视剖面图,而图12C为阐明切削工具组件120切割工件122第三组凹槽的顶视剖面图。图12D为阐明切削工具组件120在三次行程以后建成的工件122顶视图。再说,工件122可对应于如以上描述的微型复制工具,虽然本发明不一定局限于这一方面。同样,一种相似的技术可用配置为飞刀切削的工具实行,其中Y=3*节距。
图13为可以固定在工具柄上而然后用在切削工具组件中的金刚石130的立体图。金刚石130可对应于以上描述的任何金刚石尖端17、18、27、28。如图13所示,金刚石130可限定由至少3个表面(S1-S3)所限定的切削尖端132。表面S1、S2及S3可由磨削或研磨技术制造,并且由聚焦离子束铣削技术加以完善。
图14-27为按照本发明各种实施例切削工具组件的顶视图。图14、16、18、20、22、24和26阐明配置用于切入切削、螺纹切削、划线或划直线的组件,而图15、17、19、21、23、25和27阐明配置用于飞刀切削的组件。通过图14-27的例子可见,在各工具柄的金刚石尖端可形成多种的形状和尺寸。
例如,如图14和15,工具柄141-144的金刚石尖端145-148可基本上限定矩形。如图16和17所示,工具柄161-164的金刚石尖端165-168可限定带有平顶的锥形。在这种情况,由金刚石尖端165-168所限定的侧壁可以如此逐渐变细,使金刚石尖端165-168可以限定具有平顶的金字塔形。由金刚石尖端165-168限定的侧壁可以形成相对于安装结构169、170的钝角。
如图18和19所示,工具柄181-184的金刚石尖端185-188限定底切的侧壁。换言之,由金刚石185-188限定的侧壁可形成相对于安装结构189-190表面的锐角。如图20-21所示,工具柄201及202(图20)和211及212(图21)的不同金刚石尖端203、204、205、206可限定不同的形状和尺寸。换言之,由第一工具柄201、211限定的第一金刚石尖端203、205的形状可基本上不同于由第二工具柄限定的第二金刚石尖端204、206的形状。这样的配置具体地对于制造光学薄膜有用。在这种情况,由第一工具柄201、211限定的金刚石尖端203、205可在光学薄膜中限定要求制造的第一特性,而由第二工具柄202、212限定的第二金刚石尖端204、206可在光学薄膜中限定要求制造的第二特性。采取各种其它形状的附加金刚石可以增加相似效益。例如,如图22和23所示,可以在安装结构224、234中定位3个或更多工具柄221、222、223(图22)、231、232、233(图23)以便限定3个或更多金刚石尖端同时在工具的一次单独的行程中切割凹槽。在其它用途中,如这里描述固定两个或更多金刚石,并然后用来切割同一凹槽,例如,在工具的随后行程中用不同金刚石制作更深的切割。换言之,在柄中的第一金刚石可切削较浅的凹槽,而在第二次行程中柄中的第二金刚石切削同一凹槽到更深的深度。也可以在这样的随后行程中切割其它形状。
如在图24-27中可以看到,工具柄241、242(图24);251、252(图25);261、262(图26);或271、272(图27)之一或二者可以形成为限定每金刚石为多个尖端的金刚石。具体地说,如图所示,工具柄242、252、261、262、271及272上形成多尖端金刚石。例如,如在待批和共同转让的标题为“带多尖端金刚石的金刚石工具”,Bryan等登记于2002年5月29日,美国专利申请No.10/159,925中所描述的多尖端离子束铣削金刚石可以按照本披露文件原理使用。美国专利申请No.10/159,925中整个内容综合在此作为参考。这些和其它金刚石的形成对于各种应用可能是合适的。相应地,本发明的这些和其它变化也在权利要求范围以内。
已经描述一些实施例。例如,多金刚石切削工具组件已经在金刚石加工机械使用中描述。不过,可以对以上描述的实施例进行各种变型而并不偏离以下权利要求的范围。例如,切削工具组件可以用来在其它类型的工件上切割凹槽或其它特征,例如不同于微型复制工具的工件。相应地,其它实际应用和实施例均在下列权利要求范围以内。
Claims (3)
1.一种制造被用来生产微型复制工具的切削工具组件的方法,其特征在于,包括:
限定微型复制工具的节距间隔;
利用在安装结构中第一和第二工具柄的定位制造切削工具组件,使与第一工具柄相关的第一金刚石尖端切削位置为离开与第二工具柄相关的第二金刚石尖端的切削位置的限定的距离,该限定的距离对应于所述节距间隔的整数,其中该限定的距离精确到小于大约10微米容差以内。
2.如权利要求1所述的方法,其特征在于,定位第一和第二工具柄的步骤包括在加工显微镜下响应于定位反馈来调整工具柄互相之间的位置。
3.如权利要求2所述的方法,其特征在于,限定的距离精确到小于大约1微米的容差以内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/241,247 US20040045419A1 (en) | 2002-09-10 | 2002-09-10 | Multi-diamond cutting tool assembly for creating microreplication tools |
US10/241,247 | 2002-09-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1681639A CN1681639A (zh) | 2005-10-12 |
CN100349725C true CN100349725C (zh) | 2007-11-21 |
Family
ID=31991148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB03821198XA Expired - Fee Related CN100349725C (zh) | 2002-09-10 | 2003-07-02 | 一种制造被用来生产微型复制工具的切削工具组件的方法 |
Country Status (9)
Country | Link |
---|---|
US (2) | US20040045419A1 (zh) |
EP (1) | EP1539463A1 (zh) |
JP (1) | JP5230896B2 (zh) |
KR (1) | KR101046810B1 (zh) |
CN (1) | CN100349725C (zh) |
AU (1) | AU2003256357A1 (zh) |
BR (1) | BR0313927A (zh) |
CA (1) | CA2495614A1 (zh) |
WO (1) | WO2004024421A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102458728A (zh) * | 2009-05-04 | 2012-05-16 | 3M创新有限公司 | 用于制造微复制工具的方法 |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7516536B2 (en) * | 1999-07-08 | 2009-04-14 | Toho Engineering Kabushiki Kaisha | Method of producing polishing pad |
JP4899375B2 (ja) * | 2005-08-08 | 2012-03-21 | コニカミノルタオプト株式会社 | 切削工具、加工装置、及び切削加工方法 |
US7445409B2 (en) * | 2005-10-19 | 2008-11-04 | 3M Innovative Properties Company | Cutting tool assembly including diamond cutting tips at half-pitch spacing for land feature creation |
US7757591B2 (en) * | 2005-10-19 | 2010-07-20 | 3M Innovative Properties Company | Aligned multi-diamond cutting tool assembly for creating microreplication tools |
US7350441B2 (en) * | 2005-11-15 | 2008-04-01 | 3M Innovative Properties Company | Cutting tool having variable movement at two simultaneously independent speeds in an x-direction into a work piece for making microstructures |
US7290471B2 (en) * | 2005-11-15 | 2007-11-06 | 3M Innovative Properties Company | Cutting tool having variable rotation about a y-direction transversely across a work piece for making microstructures |
US7293487B2 (en) * | 2005-11-15 | 2007-11-13 | 3M Innovative Properties Company | Cutting tool having variable and independent movement in an x-direction and a z-direction into and laterally along a work piece for making microstructures |
US7350442B2 (en) * | 2005-11-15 | 2008-04-01 | 3M Innovative Properties Company | Cutting tool having variable movement in a z-direction laterally along a work piece for making microstructures |
US7575152B2 (en) * | 2005-11-15 | 2009-08-18 | E2Interactive, Inc. | Temporary value card method and system |
US7328638B2 (en) * | 2005-12-27 | 2008-02-12 | 3M Innovative Properties Company | Cutting tool using interrupted cut fast tool servo |
JP4739108B2 (ja) * | 2006-04-27 | 2011-08-03 | 東芝機械株式会社 | 精密ロール旋盤 |
US7677146B2 (en) * | 2006-05-10 | 2010-03-16 | 3M Innovative Properties Company | Cutting tool using one or more machined tool tips in a continuous or interrupted cut fast tool servo |
JP4837448B2 (ja) * | 2006-06-14 | 2011-12-14 | 東芝機械株式会社 | 精密ロール旋盤 |
KR100983950B1 (ko) * | 2006-06-14 | 2010-09-27 | 도시바 기카이 가부시키가이샤 | 정밀 롤 선반 |
JP4786432B2 (ja) * | 2006-06-15 | 2011-10-05 | 東芝機械株式会社 | 精密ロール旋盤 |
EP1916060B1 (de) * | 2006-10-26 | 2009-05-06 | Satisloh AG | Maschine zur Bearbeitung von optischen Werkstücken, insbesondere von Kunststoff-Brillengläsern |
JP5254986B2 (ja) * | 2006-11-15 | 2013-08-07 | スリーエム イノベイティブ プロパティズ カンパニー | フレキソ印刷のための溶剤除去アシスト材料転写 |
CN101674942B (zh) | 2006-11-15 | 2012-01-25 | 3M创新有限公司 | 转移至基底期间固化的柔性版印刷 |
US7628100B2 (en) * | 2007-01-05 | 2009-12-08 | 3M Innovative Properties Company | Cutting tool using one or more machined tool tips with diffractive features in a continuous or interrupted cut fast tool servo |
TW200920521A (en) * | 2007-04-05 | 2009-05-16 | Toshiba Machine Co Ltd | Method and apparatus for machining surface of roll |
US9180524B2 (en) * | 2007-08-06 | 2015-11-10 | 3M Innovative Properties Company | Fly-cutting head, system and method, and tooling and sheeting produced therewith |
US20090041553A1 (en) * | 2007-08-06 | 2009-02-12 | 3M Innovative Properties Company | Fly-cutting system and method, and related tooling and articles |
US7669508B2 (en) * | 2007-10-29 | 2010-03-02 | 3M Innovative Properties Company | Cutting tool using one or more machined tool tips with diffractive features |
US20090147361A1 (en) * | 2007-12-07 | 2009-06-11 | 3M Innovative Properties Company | Microreplicated films having diffractive features on macro-scale features |
CN101981474A (zh) * | 2008-04-02 | 2011-02-23 | 3M创新有限公司 | 光导薄膜及其制备方法 |
CN102016656A (zh) * | 2008-04-02 | 2011-04-13 | 3M创新有限公司 | 用于制备具有叠加特征的光学膜的方法和系统 |
US8012329B2 (en) * | 2008-05-09 | 2011-09-06 | 3M Innovative Properties Company | Dimensional control in electroforms |
JP5355950B2 (ja) | 2008-07-17 | 2013-11-27 | 東芝機械株式会社 | V溝加工方法および装置 |
DE102008058452A1 (de) | 2008-08-05 | 2010-02-11 | Gühring Ohg | Verfahren und Werkzeug zur Erzeugung einer Oberfläche vorbestimmter Rauheit |
US20100271910A1 (en) * | 2009-04-24 | 2010-10-28 | Zine-Eddine Boutaghou | Method and apparatus for near field photopatterning and improved optical coupling efficiency |
WO2011081974A2 (en) | 2009-12-31 | 2011-07-07 | 3M Innovative Properties Company | Anti-reflective films with cross-linked silicone surfaces, methods of making and light absorbing devices using same |
SG185084A1 (en) | 2010-04-28 | 2012-12-28 | 3M Innovative Properties Co | Articles including nanosilica-based primers for polymer coatings and methods |
EP2563848B1 (en) | 2010-04-28 | 2020-08-26 | 3M Innovative Properties Company | Silicone-based material |
CN103154319B (zh) | 2010-10-06 | 2016-08-10 | 3M创新有限公司 | 具有基于纳米二氧化硅的涂层和阻挡层的抗反射制品 |
US8677984B2 (en) * | 2010-10-15 | 2014-03-25 | Adam Boyd | Method and apparatus for tile cutting |
SG190353A1 (en) | 2010-12-08 | 2013-06-28 | 3M Innovative Properties Co | Glass-like polymeric antireflective films, methods of making and light absorbing devices using same |
US20130258483A1 (en) | 2010-12-20 | 2013-10-03 | 3M Innovative Properties Company | Glass-like polymeric antireflective films coated with silica nanoparticles, methods of making and light absorbing devices using same |
TWI426965B (zh) * | 2011-06-13 | 2014-02-21 | Benq Materials Corp | 用於製造相位差薄膜之滾輪的製造方法 |
US8867001B2 (en) | 2011-06-13 | 2014-10-21 | Benq Materials Corp. | Patterned retardation film comprising relief-like stripe structures and sub micron grooves |
TWI453107B (zh) * | 2011-07-11 | 2014-09-21 | Benq Materials Corp | 用於製造相位差薄膜之滾輪的製造方法 |
TWI458623B (zh) * | 2011-07-26 | 2014-11-01 | Benq Materials Corp | 用於製造相位差薄膜之滾輪的製造方法 |
CN102500773A (zh) * | 2011-10-28 | 2012-06-20 | 苏州金牛精密机械有限公司 | 飞刀架 |
JP5871701B2 (ja) * | 2012-04-10 | 2016-03-01 | 株式会社神戸製鋼所 | 切削工具の製造方法 |
JP5905320B2 (ja) * | 2012-04-16 | 2016-04-20 | 東芝機械株式会社 | フライカットによるフィルム状ワークへの溝加工方法及び鏡面加工方法 |
US20140076115A1 (en) * | 2012-09-17 | 2014-03-20 | Homerun Holdings Corporation | Method and apparatus for cutting one or more grooves in a cylindrical element |
US9050669B2 (en) | 2012-10-04 | 2015-06-09 | Illinois Tool Works Inc. | Rapidly retractable tool support for a pipe machining apparatus |
CN102941443A (zh) * | 2012-11-05 | 2013-02-27 | 宁波镇明转轴有限公司 | 一种传动螺杆的制造方法 |
US9623484B2 (en) * | 2013-01-14 | 2017-04-18 | Illinois Tool Works Inc. | Pipe machining apparatuses and methods of operating the same |
CN103302321B (zh) * | 2013-05-29 | 2016-09-28 | 广州导新模具注塑有限公司 | 圆形菲涅尔花纹加工刀具组合装置、设备及加工工艺 |
US9636836B2 (en) | 2013-10-03 | 2017-05-02 | Illinois Tool Works Inc. | Pivotal tool support for a pipe machining apparatus |
DE102014117398B3 (de) * | 2014-11-27 | 2016-05-25 | Thielenhaus Technologies Gmbh | Verfahren zur Erzeugung von Riefen auf einer Nockenwelle |
US10065246B2 (en) | 2015-04-13 | 2018-09-04 | Illinois Tool Works Inc. | Laser line generator tool for a pipe machining apparatus |
WO2017027776A1 (en) | 2015-08-12 | 2017-02-16 | Illinois Tool Works Inc. | Crash resistant trip for a pipe for a machining apparatus |
JP7023624B2 (ja) * | 2017-06-21 | 2022-02-22 | デクセリアルズ株式会社 | 微細加工装置、制御装置、原盤の製造方法、及び原盤用基材の微細加工方法 |
JP7106774B2 (ja) * | 2017-06-21 | 2022-07-26 | デクセリアルズ株式会社 | 微細加工装置、微細加工ユニット、制御装置、原盤の製造方法、及び原盤用基材の微細加工方法 |
CN110434403A (zh) * | 2019-07-03 | 2019-11-12 | 福建夜光达科技股份有限公司 | 高效精密切削微细结构的多刀机构与使用方法及使用方法 |
CN117255958A (zh) | 2021-05-10 | 2023-12-19 | 3M创新有限公司 | 包括光控膜和菲涅耳透镜的光学系统 |
JP7132456B1 (ja) | 2022-02-08 | 2022-09-06 | デクセリアルズ株式会社 | 微細加工装置、微細加工ユニット、制御装置、原盤の製造方法、及び原盤用基材の微細加工方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1012452A (en) * | 1961-06-24 | 1965-12-08 | Saba Schwarzwalder App Bau Ans | A method for the manufacture of optical shields having a grooved profile for removing the lines in television pictures |
US3780409A (en) * | 1971-02-19 | 1973-12-25 | Fansteel Inc | Threading tool |
US3813970A (en) * | 1972-01-10 | 1974-06-04 | Ammco Tools Inc | Tool holder |
US3893356A (en) * | 1974-03-19 | 1975-07-08 | Frank Atzberger | Rotor cutter |
US4111083A (en) * | 1977-08-08 | 1978-09-05 | Carter Walter L | Tool holder |
EP0830846A1 (en) * | 1996-09-24 | 1998-03-25 | Xomed Surgical Products, Inc. | Powered handpiece and surgical blades and methods therefor |
CN1382553A (zh) * | 2001-04-26 | 2002-12-04 | 三菱综合材料株式会社 | 多刃刀片 |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1348115A (en) * | 1918-08-31 | 1920-07-27 | Leon G Buckwalter | Reversible-taper roughing-reamer |
FR967169A (fr) | 1948-05-18 | 1950-10-27 | Aiguille ou style pour phonographe d'une seule pièce, mais en deux parties de flexibilité et de rigidité différentes | |
DE885163C (de) | 1951-06-16 | 1953-08-03 | Blaupunkt Elektronik G M B H | Universal-Doppelnadeln fuer normale und Microrillen-Schallplatten |
US2738730A (en) * | 1952-07-01 | 1956-03-20 | Fairchild Camera Instr Co | Method for forming engraved image-reproducing plates |
BE551477A (zh) | 1955-12-30 | |||
CH359899A (fr) | 1959-07-24 | 1962-01-31 | Colomb Andre | Procédé de fabrication d'une aiguille en saphir pour machine parlante et aiguille obtenue par la mise en oeuvre de ce procédé |
GB906757A (en) * | 1961-07-19 | 1962-09-26 | Harold Chandler | Multi-diamond tools for use in dressing grinding wheels and the like |
US3680213A (en) * | 1969-02-03 | 1972-08-01 | Karl O Reichert | Method of grooving semiconductor wafer for the dividing thereof |
US4035690A (en) * | 1974-10-25 | 1977-07-12 | Raytheon Company | Plasma panel display device including spheroidal glass shells |
US4035590A (en) * | 1975-06-30 | 1977-07-12 | Rca Corporation | Apparatus for electromechanical recording of short wavelength modulation in a metal master |
US4044379A (en) * | 1975-06-30 | 1977-08-23 | Rca Corporation | Method and apparatus for electromechanical recording of short wavelength modulation in a metal master |
US4113267A (en) * | 1977-04-25 | 1978-09-12 | Pickering & Company, Inc. | Double stylus assembly for phonograph record stamper playback |
US4113266A (en) * | 1977-04-25 | 1978-09-12 | Pickering & Company, Inc. | Playback stylus for phonograph record stamper |
US4287689A (en) * | 1979-10-30 | 1981-09-08 | Rca Corporation | Method for improving the quality of low frequency output of a video disc pickup stylus |
JPS5788501A (en) * | 1980-11-25 | 1982-06-02 | Hitachi Ltd | Manufacture for video disc reproducing stylus |
US4355382A (en) * | 1980-12-24 | 1982-10-19 | Rca Corporation | Apparatus for sharpening a cutting stylus |
JPS58177543A (ja) * | 1982-04-09 | 1983-10-18 | Hitachi Ltd | ビデオディスク用再生針およびその製造方法 |
US4525751A (en) * | 1982-08-27 | 1985-06-25 | Rca Corporation | Disc record with tapered groove |
US4625751A (en) * | 1985-03-06 | 1986-12-02 | Deere & Company | Vehicle steering and auxiliary function hydraulic circuit |
JPS62102901A (ja) * | 1985-10-28 | 1987-05-13 | Toshiba Corp | 光学部品製作方法 |
JPS63154120A (ja) * | 1986-12-18 | 1988-06-27 | 松下電器産業株式会社 | 自動製パン機 |
DE3718262A1 (de) * | 1987-05-30 | 1988-12-08 | Werner Hermann Wera Werke | Schlagmesser-fraesmaschine |
WO1989004052A1 (en) | 1987-10-22 | 1989-05-05 | Oxford Instruments Limited | Exposing substrates to ion beams |
JPH04256501A (ja) * | 1991-02-01 | 1992-09-11 | Kobe Steel Ltd | 微小切り込み用切削装置 |
US6069080A (en) * | 1992-08-19 | 2000-05-30 | Rodel Holdings, Inc. | Fixed abrasive polishing system for the manufacture of semiconductor devices, memory disks and the like |
US5216843A (en) * | 1992-09-24 | 1993-06-08 | Intel Corporation | Polishing pad conditioning apparatus for wafer planarization process |
US5663802A (en) * | 1993-02-25 | 1997-09-02 | Ohio Electronic Engravers, Inc. | Method and apparatus for engraving using multiple engraving heads |
JPH07124813A (ja) * | 1993-10-28 | 1995-05-16 | Olympus Optical Co Ltd | フレネル形状の形成方法 |
US5555473A (en) * | 1995-02-21 | 1996-09-10 | Ohio Electronic Engravers, Inc. | Engraving system and method for helical or circumferential engraving |
US5958799A (en) * | 1995-04-13 | 1999-09-28 | North Carolina State University | Method for water vapor enhanced charged-particle-beam machining |
US5665656A (en) * | 1995-05-17 | 1997-09-09 | National Semiconductor Corporation | Method and apparatus for polishing a semiconductor substrate wafer |
US5814355A (en) * | 1996-04-30 | 1998-09-29 | Minnesota Mining And Manufacturing Company | Mold for producing glittering cube-corner retroreflective sheeting |
NL1004016C2 (nl) | 1996-09-12 | 1998-03-13 | Oce Tech Bv | Inktstraal-drukkop. |
US6216843B1 (en) * | 1997-06-05 | 2001-04-17 | Nippon Conlux Co., Ltd. | Apparatus for taking out information using magnetic sensor and carrying out test of article by using that information |
US6253442B1 (en) * | 1997-07-02 | 2001-07-03 | 3M Innovative Properties Company | Retroreflective cube corner sheeting mold and method for making the same |
US6077462A (en) * | 1998-02-20 | 2000-06-20 | 3M Innovative Properties Company | Method and apparatus for seamless microreplication using an expandable mold |
JPH11267902A (ja) * | 1998-03-23 | 1999-10-05 | Hiroshi Hashimoto | 超微細切刃付き工具及び超微細切刃付き加工具 |
US6433890B1 (en) * | 1998-09-24 | 2002-08-13 | Mdc Max Daetwyler Ag | System and method for improving printing of a leading edge of an image in a gravure printing process |
JP4221117B2 (ja) * | 1999-05-28 | 2009-02-12 | 大日本印刷株式会社 | 賦型シート用成形型の製造装置 |
JP3652182B2 (ja) * | 1999-09-24 | 2005-05-25 | キヤノン株式会社 | 回折格子の加工方法及び加工装置 |
IL138710A0 (en) | 1999-10-15 | 2001-10-31 | Newman Martin H | Atomically sharp edge cutting blades and method for making same |
US6325675B1 (en) * | 2000-01-14 | 2001-12-04 | Ilsco Corporation | Electrical-connector insulating cover having a hinged access cover |
US6461224B1 (en) * | 2000-03-31 | 2002-10-08 | Lam Research Corporation | Off-diameter method for preparing semiconductor wafers |
US6325575B1 (en) | 2000-05-08 | 2001-12-04 | Daimlerchrysler Corporation | Tool for machining multiple surfaces on a stationary workpiece |
JP2001322012A (ja) * | 2000-05-18 | 2001-11-20 | Canon Inc | 切削工具の取り付けホルダー及び切削工具の位置調整装置 |
US6500054B1 (en) * | 2000-06-08 | 2002-12-31 | International Business Machines Corporation | Chemical-mechanical polishing pad conditioner |
US6551176B1 (en) * | 2000-10-05 | 2003-04-22 | Applied Materials, Inc. | Pad conditioning disk |
JP3497492B2 (ja) * | 2001-11-02 | 2004-02-16 | 東邦エンジニアリング株式会社 | 半導体デバイス加工用硬質発泡樹脂溝付パッド及びそのパッド旋削溝加工用工具 |
US6620029B2 (en) * | 2002-01-30 | 2003-09-16 | International Business Machines Corporation | Apparatus and method for front side chemical mechanical planarization (CMP) of semiconductor workpieces |
-
2002
- 2002-09-10 US US10/241,247 patent/US20040045419A1/en not_active Abandoned
-
2003
- 2003-07-02 JP JP2004535413A patent/JP5230896B2/ja not_active Expired - Fee Related
- 2003-07-02 WO PCT/US2003/020785 patent/WO2004024421A1/en active Application Filing
- 2003-07-02 AU AU2003256357A patent/AU2003256357A1/en not_active Abandoned
- 2003-07-02 CN CNB03821198XA patent/CN100349725C/zh not_active Expired - Fee Related
- 2003-07-02 BR BR0313927A patent/BR0313927A/pt not_active IP Right Cessation
- 2003-07-02 KR KR1020057004003A patent/KR101046810B1/ko not_active IP Right Cessation
- 2003-07-02 CA CA 2495614 patent/CA2495614A1/en not_active Abandoned
- 2003-07-02 EP EP03795563A patent/EP1539463A1/en not_active Withdrawn
-
2006
- 2006-06-16 US US11/454,319 patent/US7510462B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1012452A (en) * | 1961-06-24 | 1965-12-08 | Saba Schwarzwalder App Bau Ans | A method for the manufacture of optical shields having a grooved profile for removing the lines in television pictures |
US3780409A (en) * | 1971-02-19 | 1973-12-25 | Fansteel Inc | Threading tool |
US3813970A (en) * | 1972-01-10 | 1974-06-04 | Ammco Tools Inc | Tool holder |
US3893356A (en) * | 1974-03-19 | 1975-07-08 | Frank Atzberger | Rotor cutter |
US4111083A (en) * | 1977-08-08 | 1978-09-05 | Carter Walter L | Tool holder |
EP0830846A1 (en) * | 1996-09-24 | 1998-03-25 | Xomed Surgical Products, Inc. | Powered handpiece and surgical blades and methods therefor |
CN1382553A (zh) * | 2001-04-26 | 2002-12-04 | 三菱综合材料株式会社 | 多刃刀片 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102458728A (zh) * | 2009-05-04 | 2012-05-16 | 3M创新有限公司 | 用于制造微复制工具的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1539463A1 (en) | 2005-06-15 |
WO2004024421A1 (en) | 2004-03-25 |
JP5230896B2 (ja) | 2013-07-10 |
KR20050042181A (ko) | 2005-05-04 |
US20040045419A1 (en) | 2004-03-11 |
US7510462B2 (en) | 2009-03-31 |
US20060234605A1 (en) | 2006-10-19 |
JP2005537944A (ja) | 2005-12-15 |
AU2003256357A1 (en) | 2004-04-30 |
CA2495614A1 (en) | 2004-03-25 |
KR101046810B1 (ko) | 2011-07-06 |
CN1681639A (zh) | 2005-10-12 |
BR0313927A (pt) | 2005-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100349725C (zh) | 一种制造被用来生产微型复制工具的切削工具组件的方法 | |
TWI385040B (zh) | 用於創造背緣特徵之於半螺距間隔處包含鑽石切割尖端的切割工具總成 | |
JP5833533B2 (ja) | 微細複製工具を作製するための整列マルチダイヤモンド切削工具組立体及び該切削工具組立体を作製する方法 | |
CN100548632C (zh) | 带有多末端金刚石的金刚石工具 | |
CN1903506A (zh) | 钻孔加工方法 | |
CN101804475A (zh) | 用于自动地处理长方体形工件的铣削方法和机械工具 | |
JP4328729B2 (ja) | 微細形状を有する被加工物の加工方法 | |
JP7317094B2 (ja) | 把持具の製造方法 | |
CN1486809A (zh) | 平板材料端面的切削加工装置及该装置用的正面铣削工具 | |
JPH0585287B2 (zh) | ||
EP4326484A1 (de) | Werkzeugmaschine, werkstückhalter, abstützeinheit und herstellverfahren | |
KR20030008980A (ko) | V-홈 절삭기와 거기에 이용되는 공구장착장치 및 그 것을이용한 도광판용 v-컷 렌즈 제조방법 | |
Baek et al. | A Study on the Grinding to Improve Profile Accuracy of Aspheric Lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071121 Termination date: 20180702 |
|
CF01 | Termination of patent right due to non-payment of annual fee |