CN100342527C - 电源模块用基板 - Google Patents

电源模块用基板 Download PDF

Info

Publication number
CN100342527C
CN100342527C CNB2003101246890A CN200310124689A CN100342527C CN 100342527 C CN100342527 C CN 100342527C CN B2003101246890 A CNB2003101246890 A CN B2003101246890A CN 200310124689 A CN200310124689 A CN 200310124689A CN 100342527 C CN100342527 C CN 100342527C
Authority
CN
China
Prior art keywords
circuit layer
metal level
power module
substrate
module substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2003101246890A
Other languages
English (en)
Other versions
CN1512569A (zh
Inventor
长友义幸
根岸健
长濑敏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of CN1512569A publication Critical patent/CN1512569A/zh
Application granted granted Critical
Publication of CN100342527C publication Critical patent/CN100342527C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/8438Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/84399Material
    • H01L2224/844Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/84438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/84447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/045Carbides composed of metals from groups of the periodic table
    • H01L2924/046414th Group
    • H01L2924/04642SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050313th Group
    • H01L2924/05032AlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050414th Group
    • H01L2924/05042Si3N4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/053Oxides composed of metals from groups of the periodic table
    • H01L2924/054313th Group
    • H01L2924/05432Al2O3
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

提供一种同时满足对于温度循环具有长寿命和良好导电性的电源模块用基板。该基板包括绝缘基板(2)、在绝缘基板(2)的一个表面上层叠的电路层(3)、在绝缘基板(2)的另一个表面上层叠的金属层(4)、通过焊料(7)承载在电路层(3)上的半导体芯片(5)、以及与金属层(4)接合的散热体(6)。电路层(3)和金属层(4)由纯度为99.999%以上的铜构成。即使温度循环重复作用,内部应力也不会聚集,从而可以延长温度循环寿命。此外,电路层(3)和金属层(4)由导热性良好的铜构成,因此可以将来自半导体芯片(5)的热量通过向散热体(6)一侧传输而有效地释放到外部。

Description

电源模块用基板
技术领域
本发明涉及一种用于控制高电压、大电流的半导体装置的电源模块用基板,特别是,本发明涉及一种具有将来自半导体芯片的热量散去的散热体的电源模块用基板。
背景技术
作为已有的这种电源模块用基板,图2中示出了一种电源模块用基板11,其中在由AlN制成的绝缘基板12的一个表面上层叠由Al或Cu制成的电路层13,在其另一表面上层叠由Al或Cu制成的金属层14,半导体芯片15通过焊料17承载在电路层13上,散热体16通过焊料18、钎焊等与金属层14连接,在图3中也示出了一电源模块用基板21,其中在由AlN制成的绝缘基板22的一个表面上层叠由4N-Al(纯度为99.99%以上的铝)制成的电路层23,在其另一表面上层叠由4N-Al制成的金属层24,半导体芯片25通过焊料27承载在电路层23上,散热体26通过焊料28、钎焊等与金属层24连接,这两种基板11和21都是已知的。这样的电源模块用基板有很多种(例如参见专利文献1)。
在前述电源模块用基板11、21中,通过在例如冷却部件(图中未示出)上安装散热体16、26,将传递到散热体16、26上的来自半导体芯片15、25的热量借助冷却部件内的冷却水(或冷却空气)排放到外部。
专利文献1:特公平4-12554号公报(第1-3页、图1和图2)。
但是,利用如上所述构成的电源模块用基板11、21,在电路层13、23和金属层14、24由Cu构成的情况下,在进行-40~125℃的温度循环重复操作的情况下,通过重复10~100个循环左右电路层13、23和半导体芯片15、25之间的焊料17、27上产生裂纹,500个循环左右电路层13、23从绝缘基板12、22上剥离下来,但在电路层13、23和金属层14、24由Al构成的情况下,3000个循环左右电路层13、23和半导体芯片15、25之间的焊料17、27也不会产生裂纹。这是由于在重复进行温度循环的情况下,在电路层13、23和金属层14、24由Al构成时,内部应力不会聚集,而在由Cu构成的情况下内部应力聚集的缘故。因此,要延长温度循环寿命,就要获得内部应力不会聚集的结构。
另一方面,比较Al和Cu的导热率,Cu比Al更好,为了能够有效地向散热体16、26一侧传输来自半导体芯片15、25的热量并释放出去,最好利用导热性良好的Cu构成电路层13、23和金属层14、24,在使用Cu的情况下,由于存在所述内部应力聚集的问题,同时满足相对于温度循环的长寿命和良好的导热率是很困难的,只能牺牲其中一方。
发明内容
鉴于前述现有技术的问题,本发明的目的是提供一种电源模块用基板,可以延长相对于温度循环的寿命,同时获得良好的导热率,可将来自半导体芯片的热量向散热体一侧有效传输并释放出去。
为了解决上述问题,本发明采用以下措施。
即,本发明的技术方案1提供一种导热性多层基板,其特征在于,至少包括纯度为99.999%以上的Cu电路层和陶瓷层。
按照本发明的导热性多层基板,由于Cu电路层由99.999%以上的纯铜构成,即使进行温度循环重复操作,在Cu电路层中产生再结晶,消除了在Cu电路层内产生的内部应力,所以不易在陶瓷层和Cu电路层中产生裂纹等。
本发明的技术方案2提供一种导热性多层基板,其特征在于,包括纯度为99.999%以上的Cu电路层、在该Cu电路层的一个表面上设置的陶瓷层、以及在所述Cu电路层的另一表面上设置的高纯度金属层。
根据本发明的导热性多层基板,即使进行温度循环重复操作,也不易在Cu电路基板、陶瓷层和高纯度金属层上产生裂纹。
本发明的技术方案3的特征在于在技术方案2所述的导热性多层基板中,所述高纯度金属层是纯度为99.999%以上的Cu金属层。
根据本发明的导热性多层基板,即使进行温度循环重复操作,由于在Cu电路层和金属层中产生再结晶,从而无内部应力聚集,可以延长温度循环的寿命。
此外,金属层和Cu电路层均由纯度为99.999%以上的铜构成,因此导热率良好。
本发明的技术方案4提供一种电源模块用基板,包括绝缘基板、在该绝缘基板的一个表面上层叠的电路层、在该绝缘基板的另一表面上层叠的金属层、通过焊料承载在所述电路层上的半导体芯片、以及与所述金属层接合的散热体,所述电路层和金属层由纯度为99.999%以上的铜构成,在-40℃以上、150℃以下的温度范围内,所述电路层和所述金属层破裂时的延伸率为20%以上、30%以下。
根据本发明的电源模块用基板,由于电路层和金属层由纯度为99.999%以上的铜构成,所以在温度循环重复操作的情况下,通过再结晶消除了内部应力。因此,由于不存在内部应力聚集的问题,可以延长温度循环寿命。此外,由于电路层和金属层由铜构成,因此导热性良好。因此,可以将来自半导体芯片的热量向散热体一侧有效传输而释放出去。
本发明的技术方案5的特征在于在技术方案4所述的电源模块用基板中,所述散热体通过焊料、钎焊或扩散接合连接到所述金属层上。
根据本发明的电源模块用基板,由于电路层和金属层由纯度为99.999%以上的铜构成,所以在温度循环重复操作的情况下,通过再结晶消除了内部应力。因此,由于内部应力不会聚集,可延长温度循环寿命。此外,由于电路层和金属层由铜构成,因此导热率良好。因此,可以将来自半导体芯片的热量通过由铜构成的电路层、绝缘基板和由铜构成的金属层向散热体一侧有效传输而释放出去。
本发明的技术方案6的特征在于在技术方案4或5所述的电源模块用基板中,所述绝缘基板是由AlN、Al2O3、Si3N4或SiC构成。
根据本发明的电源模块用基板,由于电路层和金属层由纯度为99.999%以上的铜构成,所以在温度循环重复操作的情况下,通过再结晶消除了内部应力。因此,由于内部应力不会聚集,可延长温度循环的寿命。此外,由于电路层和金属层由铜构成,因此导热率良好。因此,可以将来自半导体芯片的热量通过由铜构成的电路层、由AlN、Al2O3、Si3N4或SiC构成的绝缘基板以及由铜构成的金属层向散热体一侧有效传输而释放出去。
本发明的技术方案7的特征在于在技术方案4-6中任一项所述的电源模块用基板中,所述电路层和所述金属层在100℃以下释放应力。
根据本发明的电源模块用基板,金属层和电路层难以加工硬化,可以防止焊料上产生裂纹,并且可以防止电路层从绝缘基板上剥离下来。
本发明的技术方案8的特征在于在技术方案4-6中任一项所述的电源模块用基板中,在-40℃以上、150℃以下的温度范围内,所述电路层和所述金属层破裂时的延伸率为20%以上、30%以下。
根据本发明的电源模块用基板,金属层和电路层难以加工硬化,可以防止焊料上产生裂纹,并且可以防止电路层从绝缘基板剥离下来。
结果是,在-40℃以上、150℃以下的温度范围内的延伸率小于20%的情况下,电路层和金属层容易发生加工硬化,在电路层和半导体芯片之间的焊料上恐怕会产生裂纹,此外,在-40℃到120℃的温度范围内的延伸率为大于30%的情况下,在电路层和焊料之间产生过大热应力,电路层和半导体芯片之间的焊料上产生裂纹,因而电路层从绝缘基板剥离下来。
本发明的技术方案9的特征在于在技术方案4-6中任一项所述的电源模块用基板中,所述电路层和所述金属层的厚度为0.04mm以上、1.0mm以下。
按照本发明的电源模块用基板,金属层和电路层难以加工硬化,可以防止焊料上产生裂纹,并且可防止电路层从绝缘基板剥离下来。
此外,在金属层和电路层的厚度小于0.04mm的情况下,不能减轻电路层在半导体芯片和绝缘基板之间产生的应力,恐怕会在焊料上产生裂纹,此外,在厚度大于1mm的情况下,电路层的强度很大,存在因温度循环重复操作而使绝缘基板破裂的危险。
本发明的技术方案10的特征在于在技术方案4-6中任一项所述的电源模块用基板中,所述电路层和所述金属层的导电率为99%IASC以上。
按照本发明的电源模块用基板,可以防止电路层从绝缘基板上剥离下来。
此外,IACS指的是国际标准软铜(International Annealed Copper Standard)。
本发明的技术方案11的特征在于在技术方案4-6中任一项所述的电源模块用基板中,所述电路层和所述金属层的结晶粒的平均粒径为1.0mm以上、30mm以下。
按照本发明的电源模块用基板,不会发生电路层和金属层弯曲等的情况,此外,可以防止电路层和金属层加工硬化。
此外,该技术方案中的平均粒径指的是电源模块制造之后的平均结晶粒径的平均值。
此外,在平均粒径小于1.0mm的情况下,金属层和电路层经过温度循环之后容易产生加工硬化,电路层和半导体芯片之间的焊料上易产生裂纹,此外,在平均粒径大于30mm的情况下,在金属层和电路层上将产生机械强度各向异性、弯曲等问题。
按照本发明的电源模块用基板,由于电路层和金属层由纯度为99.999%以上的铜构成,在温度循环重复操作的情况下,通过再结晶消除了内部应力。因此,内部应力不会聚集,大大延长了温度循环寿命。此外,电路层和金属层由导热性良好的铜构成,因此来自半导体芯片的热量可以通过向散热体一侧的有效传输而释放到外部。因此,可以提供同时满足相对于温度循环的长寿命和良好导热率的电源模块用基板。
附图说明
图1是表示根据本发明的电源模块用基板的一个实施例的示意剖面图。
图2是表示现有技术的电源模块用基板的一个例子的示意剖面图。
图3是表示现有技术的电源模块用基板的另一例子的示意剖面图。
具体实施方式
下面参照附图介绍本发明的实施例。
图1示出了本发明的电源模块用基板的一个实施例,这种电源模块用基板1包括绝缘基板2、在绝缘基板2的一个表面上层叠的电路层3、在绝缘基板2的另一表面上层叠的金属层4、承载在电路层3上的半导体芯片5、以及与金属层4接合的散热体6。
绝缘基板2例如由AlN、Al2O3、Si3N4或SiC等按希望的尺寸构成,在其上面和下面分别层叠接合电路层3和金属层4。
作为在绝缘基板2上层叠连接电路层3和金属层4的方法,有下列方法:在绝缘基板2和电路层3以及金属层4处于重叠状态下,对其施加0.5~2kgf/cm2(4.9×104-19.6×104Pa)的负载,在N2气氛中加热到1065℃的所谓DBC法(直接键合铜法);在绝缘基板2、电路层3和金属层4之间夹持Ag-Cu-Ti焊料箔的状态下,对其施加0.5~2kgf/cm2(4.9×104-19.6×104Pa)的负载,在真空中加热到800-900℃的所谓活性金属法等方法,可以根据用途选择适当的方法。
电路层3和金属层4由纯度为99.999%以上的铜(5N-Cu)构成。5N-Cu具有再结晶温度为RT(室温)~150℃的特性。因此,即使在-40~125℃的温度循环下重复使用,内部应力也不会聚集,并可抑制在温度循环的高温一侧的加工硬化。
电路层3和金属层4优选由纯度为99.9999%以上的铜(6N-Cu)构成。6N-Cu具有再结晶温度为RT(室温)~100℃的特性。因此,与5N-Cu一样,即使在-40~125℃的温度循环下重复使用,内部应力也不会聚集,从而抑制了在温度循环的高温一侧的加工硬化,与电路层和金属层由Al构成的情况相同,可以获得3000次循环以上的温度循环寿命。
形成用于将半导体芯片5承载在电路层3上的电路图形,在该电路层3的上部通过焊料7承载半导体芯片5。在金属层3的下面通过焊料8、钎焊、扩散焊接等方法一体地连接散热体6。
散热体6是例如用Al、Cu等高导热材料(导热率良好的材料)构成的散热体本体、与高碳素钢(Fe-C)等低热膨胀的材料多次接合而成的多层结构,安装在下部设置的冷却部件9上来使用,通过冷却部件9内的冷却水(或冷却空气)将传输到散热体6上的来自半导体芯片5的热量释放到外部。
根据如上所述构成的实施例的电源模块用基板1,由于电路层3和金属层4由纯度为99.999%以上的Cu(5N-Cu)构成,即使在-40~125℃的温度循环重复的条件下使用,也不会发生内部应力聚集,可以抑制在温度循环的高温侧的加工硬化。因此,像SiC、GaN等一样,可以使用在高温范围内操作的装置。
此外,在电路层3和金属层4由纯度为99.999%以上的铜(6N-Cu)构成的情况下,即使在-40~125℃的温度循环重复作用的条件下使用,内部应力也不会聚集,可以抑制在温度循环的高温侧的加工硬化。因此,可以使用在125℃以下操作的装置(Si半导体等)。
表1示出了现有技术的电源模块用基板与本发明的电源模块用基板的温度循环寿命的比较结果。其中,陶瓷表示绝缘基板,金属电路表示电路层和金属层,OFC表示无氧铜(Cu;99.9~99.99%)。从该表1可知,与现有技术的电源模块用基板相比,根据本发明的电源模块用基板延长了温度循环寿命。
表1
  陶瓷   金属电路   温度循环寿命
  尺寸(mm)   厚度(mm)   材质   尺寸(mm)   厚度(mm)   材质
  现有技术例子   30×30   0.635   AlN   28×28   0.3   OFC   520
  40×50   0.635   AlN   38×48   0.4   Al   5200
  30×15   0.635   AlN   28×13   0.6   Al   3100
  50×50   0.635   Al2O3   48×48   0.3   OFC   1320
  70×35   0.32   Al2O3   68×33   0.3   OFC   510
  60×35   0.32   Al2O3   58×33   0.4   Al   2900
  30×30   0.635   Si3N4   28×28   0.3   OFC   2800
  30×20   0.32   Si3N4   28×18   0.6   Al   3500
  50×40   0.32   Si3N4   48×38   0.4   Al   3800
  本发明的产品   30×30   0.635   AlN   28×28   0.3   6N-Cu   5200
  40×50   0.635   AlN   38×48   0.4   6N-Cu   5210
  30×15   0.635   AlN   28×13   0.6   6N-Cu   6200
  50×50   0.635   Al2O3   48×48   0.3   6N-Cu   5800
  70×35   0.32   Al2O3   68×33   0.3   6N-Cu   4800
  60×35   0.32   Al2O3   58×33   0.4   6N-Cu   3520
  30×30   0.635   Si3N4   28×28   0.3   6N-Cu   8250
  30×20   0.32   Si3N4   28×18   0.6   6N-Cu   5630
  50×40   0.32   Si3N4   48×38   0.4   6N-Cu   7520
下面说明本发明的第二实施例。本实施例在结构上与图1的结构相同,因此仅改变符号进行说明。
按照本实施例,电路层3a和金属层4a由在100℃以下进行应力释放的Cu(5N-Cu)构成。这里,所谓应力释放,指的是再结晶之前在结晶内产生的点缺陷消减、错位再排列等。
为此,由于容易产生缺陷的消灭、错位再排列等,电路层3a和金属层4b不容易产生内部应力聚集。
亦即,即使电路层3a和金属层4b在-40℃以上、125℃以下范围的温度下温度循环重复,由于在100℃以下发生缺陷消减、错位再排列等,恢复无应变的状态,在加工硬度方面,硬度变化小。
因此,减轻了电路层3a、半导体芯片5和绝缘基2之间产生的应力。
此外,可以防止焊料7上产生裂纹。
表2示出了温度循环(-40℃~125℃×15分钟,3000次循环)后的硬度变化与绝缘电路基板的不良率之间的关系(不良:陶瓷基板裂开,Cu电路层和陶瓷基板剥离)。使Cu(2N、3N、4N、5N、6N)的纯度变化,做成硬度变化不同的样品。
从表2清楚看出,在硬度变化为30%以上的情况下,产生绝缘基板破裂、电路层和绝缘基板的剥离等问题。
表2
 Cu纯度  不良率 硬度变化
 2N  100% 42%
 3N  83% 39%
 4N  26% 30%
 5N  0% 24%
 6N  0% 22%
此外,通过下列表3清楚看出,在通过应力释放进行错位消减的情况下,不会发生绝缘基板2破裂、电路层3a和绝缘基板2剥离等问题。
下面说明本发明的第三实施例。本实施例的结构与图1中所示的结构相同,因此仅改变符号进行说明。
按照本实施例,电路层3b和金属层4b由在-40℃以上、150℃以下的温度范围内破裂时延伸率的范围为20%以上、30%以下且纯度为99.999%以上的Cu形成。
这里,电路层3b和金属层4b由上述铜形成,即使在-40℃到125℃的温度循环下重复使用,电路层3b和金属层4b也不易发生加工硬化问题。
为此,按照本实施例,与第一实施例一样,可以抑制在温度循环的高温侧的加工硬化,与SiC、GaN等那样,可以用于在高温范围内操作的装置。
而且,从表3看出,根据在-40℃到150℃进行的张力试验结果,在延伸率为20%以上、30%以下的情况下,不会发生绝缘基板2破裂、电路层3a和绝缘基板2剥离等情况。
下面介绍本发明的第四实施例。本实施例的结构与图1中所示结构相同,因此仅改变符号进行说明。
本实施例中,电路层3c和金属层4c由纯度为99.999%以上的纯铜形成,因此电路层3c和金属层4c的厚度可以形成为0.04mm以上、1.0mm以下。
由于电路层3c和金属层4c的厚度形成为0.04mm以上、1.0mm以下,因此即使在-40~125℃的温度循环下重复使用,内部应力也不会聚集,可以抑制在温度循环的高温侧产生加工硬化,可以获得3000次循环以上的温度循环寿命。
特别是,在绝缘基板2由AlN或Al2O3构成的情况下,可以获得长的温度循环寿命。
下面说明本发明的第四实施例。本实施例的结构与图1中所示的结构相同,因此仅改变符号进行说明。
按照本实施例,电路层3d和金属层4d由纯度为99.999%以上的纯铜中,导电率为99%IASC以上的纯铜构成。
从表3看出,在N=5或N=6的纯铜中导电率为99%IASC以上的纯铜的情况下,不会发生陶瓷基板破裂、或Cu电路和陶瓷基板剥离等情况。
下面说明本发明的第五实施例。本实施例的结构与图1中所示的结构相同,因此仅改变符号进行说明。
按照本实施例,电路层3e和金属层4e是由99.999%以上的纯铜中平均结晶粒径为1.0mm以上、30mm以下的纯铜形成。
在结晶粒径为1.0mm以上、30mm以下的情况下,由于对电路层3e和金属层4e不易共同加工硬化,而且不易受焊料7、8的影响,所以陶瓷基板不会破裂,不会发生电路层3e和金属层4e剥离等。
为此,即使在-40℃到125℃的温度循环中,也可以获得3000次循环以上的温度循环寿命。
表3示出了切割这种绝缘基板的Cu电路部分(利用20%的NaOH刻蚀液除去残余部分的陶瓷)、对不良率、错位数量的减少、导电率、平均粒径以及延伸率进行测定的结果。
对于延伸率,以Cu电路的厚度为0.3mm,拉伸速度为0.5mm/min实施。
对于错位数,测定在100℃的热处理后的错位数是否减少。在观测中,用TEM观察绝缘电路基板的Cu材料的部分,以N=3测定错位数,对于该平均错位数,在100℃下对绝缘电路基板热处理3小时之后,检测到测定的平均错位数减少。
导电率用与国际标准软铜(IACS)的导电性的比来表示。
平均结晶粒径是在100℃热处理后的结晶粒径的平均值。
针对各个试验项目,不良率用于判断是否发生陶瓷基板的破裂、Cu电路和陶瓷基板的剥离等。
从该结果看出,在N=5或N=6的纯铜中,在延伸率为20%以上、30%以下的情况下,不会发生陶瓷基板的破裂、Cu电路和陶瓷基板剥离等。
此外,在N=5或N=6的纯铜中,在平均结晶粒径的平均值为1.0mm以上的情况下,不会发生陶瓷基板破裂、Cu电路和陶瓷基板剥离等现象。
此外,在N=5或N=6的纯铜中,在导电率为99IASC以上的纯铜的情况下,不会发生陶瓷基板破裂、Cu电路和陶瓷基板剥离等现象。
此外,在N=5和N=6的纯铜中,对于在100℃下热处理3小时之后产生错位数减少的纯铜,不会发生陶瓷基板的破裂、Cu电路和陶瓷基板剥离等现象。
表3
 Cu纯度  不良率  错位数的减少 导电率(20℃)  平均结晶粒径  延伸率
 -40℃ RT 80℃ 150℃
 2N  100% 95  0.1mm  13% 12% 11% 12%
 3N  83% 96  0.2mm  16% 15% 15% 13%
 4N  26% 98  0.5mm  17% 15% 13% 12%
 5N  0%  有 99  1.9mm  22% 21% 23% 22%
 6N  0%  有 99  3.8mm  28% 22% 22% 23%
表4记载了对纯铜A(N=5,真空退火材料,厚度为0.3mm)、纯铜B(N=3,真空退火材料,厚度为0.3mm)和铝(真空退火材料,厚度为0.4mm)进行拉伸试验的结果。
从该结果看出,纯铜A在-40℃到150℃下延伸率为20%以上、30%以下。
表4
      ①纯铜A 真空退火材料 厚度0.3
样品  ②纯铜B 真空退火材料 厚度0.3
      ③铝 真空退火材料 厚度0.4
  标号   截面积(mm2)   耐力   实际负载(N)  拉伸负载(N/mm2)   延伸GL=0   切断位置   试验温度(℃)
  负载(N)  应力(N/mm2)   实际延伸(mm) (%)
  A材(Cu)   A-1   3.85   180  47   529  137   13.7 27   B   -40
  A-2   3.85   164  43   583  151   14.8 30   B   -40
  A-3   3.85   149  39   458  119   10.7 21   A   RT
  A-4   3.85   167  43   457  119   11.0 22   B   RT
  A-5   3.85   134  35   480  125   12.0 24   B   80
  A-6   3.85   185  48   427  111   9.1 18   C   80
  A-7   3.85   155  40   409  106   9.0 18   C   150
  A-8   3.85   159  41   375  97   10.8 22   C   150
  B材(Cu)   B-1   3.93   184  47   698  178   8.8 18   C   -40
  B-2   3.93   199  51   671  171   8.2 16   C   -40
  B-3   3.93   169  43   584  149   7.4 15   C   RT
  B-4   3.93   179  46   579  147   7.2 14   C   RT
  B-5   3.93   161  41   519  132   6.7 13   C   80
  B-6   3.93   177  45   517  132   6.4 13   C   80
  B-7   3.93   167  42   454  116   5.9 12   C   150
  B-8   3.93   160  41   454  116   5.8 12   C   150
  I材   C-1   5.08   123  24   199  39   16.0 32   B   -40
  C-2   5.08   118  23   188  37   12.2 24   C   -40
  C-3   5.08   120  24   158  31   10.4 21   C   RT
  C-4   5.08   89  18   174  34   7.8 16   C   RT
  C-5   5.08   103  20   117  23   13.4 27   B   80
  C-6   5.08   83  16   130  26   14.1 28   B   80
  C-7   5.08   72  14   88  17   12.5 25   A   150
  C-8   5.08   73  14   108  21   17.0 34   C   150
试验片:12.5W×50GL
应变量规:KFH-5-120-Cl-16 BIM3 Cu用两面贴付
KFH-5-120-Cl-23 BIM3 Al用两面贴付
粘接剂:EP-34B
十字头速度:耐力至0.5mm/min耐力以后5mm/min
根据本发明的电源模块用基板,由于电路层和金属层由纯度为99.999%以上的铜构成,因此在温度循环重复作用的情况下,通过再结晶可消减内部应力。因此,内部应力不会聚集,可以显著延长温度循环寿命。此外,电路层和金属层由导热性良好的铜构成,因此可以将来自半导体芯片的热量通过向散热体一侧有效传输而释放。因此,可以提供同时满足温度循环的长寿命和良好导热性的电源模块用基板,并确认了其产业上的可利用性。
根据本发明的电源模块用基板,电路层和金属层由纯度为99.999%以上的纯铜构成,因此在温度循环重复作用的情况下,通过再结晶消除内部应力。因此,内部应力不会聚集,显著延长了温度循环寿命。此外,电路层和金属层由导热性良好的铜构成,因此可以将来自半导体芯片的热量通过向散热体一侧有效传输而释放到外面。因此,可以提供同时满足温度循环的长寿命和良好导热性的电源模块用基板。

Claims (14)

1、一种电源模块用基板,包括绝缘基板、在该绝缘基板的一个表面上层叠的电路层、在该绝缘基板的另一表面上层叠的金属层、通过焊料承载在所述电路层上的半导体芯片、以及与所述金属层接合的散热体,所述电路层和金属层由纯度为99.999%以上的铜构成,在-40℃以上、150℃以下的温度范围内,所述电路层和所述金属层破裂时的延伸率为20%以上、30%以下。
2、根据权利要求1所述的电源模块用基板,其特征在于,所述散热体通过焊料、钎焊或扩散接合连接到所述金属层上。
3、根据权利要求1所述的电源模块用基板,其特征在于,所述绝缘基板由AlN、Al2O3、Si3N4或SiC构成。
4、根据权利要求2所述的电源模块用基板,其特征在于,所述绝缘基板由AlN、Al2O3、Si3N4或SiC构成。
5、根据权利要求1-4中任一项所述的电源模块用基板,其特征在于,所述电路层和所述金属层在100℃下在24小时内释放应力。
6、根据权利要求1-4中任一项所述的电源模块用基板,其特征在于,所述电路层和所述金属层的厚度为0.04mm以上、1.0mm以下。
7、根据权利要求1-4中任一项所述的电源模块用基板,其特征在于,所述电路层和所述金属层的导电率为99%IASC以上。
8、一种电源模块用基板,包括绝缘基板、在该绝缘基板的一个表面上层叠的电路层、在该绝缘基板的另一表面上层叠的金属层、通过焊料承载在所述电路层上的半导体芯片、以及与所述金属层接合的散热体,所述电路层和金属层由纯度为99.999%以上的铜构成,所述电路层和所述金属层的结晶粒的平均粒径为1.0mm以上、30mm以下。
9、根据权利要求8所述的电源模块用基板,其特征在于,所述散热体通过焊料、钎焊或扩散接合连接到所述金属层上。
10、根据权利要求8所述的电源模块用基板,其特征在于,所述绝缘基板由AlN、Al2O3、Si3N4或SiC构成。
11、根据权利要求9所述的电源模块用基板,其特征在于,所述绝缘基板由AlN、Al2O3、Si3N4或SiC构成。
12、根据权利要求8-11中任一项所述的电源模块用基板,其特征在于,所述电路层和所述金属层在100℃下在24小时内释放应力。
13、根据权利要求8-11中任一项所述的电源模块用基板,其特征在于,所述电路层和所述金属层的厚度为0.04mm以上、1.0mm以下。
14、根据权利要求8-11中任一项所述的电源模块用基板,其特征在于,所述电路层和所述金属层的导电率为99%IASC以上。
CNB2003101246890A 2002-12-27 2003-12-25 电源模块用基板 Expired - Lifetime CN100342527C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002380401 2002-12-27
JP380401/02 2002-12-27
JP380401/2002 2002-12-27
JP397839/03 2003-11-27
JP2003397839A JP4206915B2 (ja) 2002-12-27 2003-11-27 パワーモジュール用基板
JP397839/2003 2003-11-27

Publications (2)

Publication Number Publication Date
CN1512569A CN1512569A (zh) 2004-07-14
CN100342527C true CN100342527C (zh) 2007-10-10

Family

ID=32473756

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101246890A Expired - Lifetime CN100342527C (zh) 2002-12-27 2003-12-25 电源模块用基板

Country Status (4)

Country Link
US (1) US20040188828A1 (zh)
EP (1) EP1434265B1 (zh)
JP (1) JP4206915B2 (zh)
CN (1) CN100342527C (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7454417B2 (en) 2003-09-12 2008-11-18 Google Inc. Methods and systems for improving a search ranking using population information
JP4722514B2 (ja) * 2005-03-16 2011-07-13 三菱電機株式会社 半導体装置および該半導体装置用絶縁基板
WO2007037306A1 (ja) * 2005-09-28 2007-04-05 Ngk Insulators, Ltd. ヒートシンクモジュール及びその製造方法
JP2007335663A (ja) * 2006-06-15 2007-12-27 Toyota Motor Corp 半導体モジュール
KR100798474B1 (ko) 2006-11-22 2008-01-28 한국표준과학연구원 전도성 도핑층과 금속층을 갖는 반도체 칩
JP4964009B2 (ja) * 2007-04-17 2012-06-27 株式会社豊田中央研究所 パワー半導体モジュール
US8502257B2 (en) * 2009-11-05 2013-08-06 Visera Technologies Company Limited Light-emitting diode package
JP5392272B2 (ja) * 2011-01-13 2014-01-22 株式会社豊田自動織機 両面基板、半導体装置、半導体装置の製造方法
JP2013229579A (ja) * 2012-03-30 2013-11-07 Mitsubishi Materials Corp パワーモジュール用基板、ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP2014112732A (ja) * 2012-03-30 2014-06-19 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP6111764B2 (ja) * 2013-03-18 2017-04-12 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP5672324B2 (ja) 2013-03-18 2015-02-18 三菱マテリアル株式会社 接合体の製造方法及びパワーモジュール用基板の製造方法
JP6079505B2 (ja) * 2013-08-26 2017-02-15 三菱マテリアル株式会社 接合体及びパワーモジュール用基板
CN103716980B (zh) * 2013-12-30 2017-12-05 陈文� 一种电源模块用正极氧化膜印刷基板
EP3210956B1 (de) * 2016-02-26 2018-04-11 Heraeus Deutschland GmbH & Co. KG Kupfer-keramik-verbund
HUE053117T2 (hu) * 2016-02-26 2021-06-28 Heraeus Deutschland Gmbh & Co Kg Réz-kerámia kompozitok
DE102016203112B4 (de) * 2016-02-26 2019-08-29 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
HUE053549T2 (hu) * 2016-02-26 2021-07-28 Heraeus Deutschland Gmbh & Co Kg Réz-kerámia kompozit
JPWO2019167942A1 (ja) 2018-02-27 2020-04-16 三菱マテリアル株式会社 絶縁回路基板
JP6614256B2 (ja) 2018-03-02 2019-12-04 三菱マテリアル株式会社 絶縁回路基板
PL3768654T3 (pl) * 2018-03-20 2022-07-25 Aurubis Stolberg Gmbh & Co. Kg Podłoże miedziano-ceramiczne
CN112349663B (zh) * 2020-10-16 2022-09-16 正海集团有限公司 用于功率半导体模块的双层散热结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2063334U (zh) * 1989-09-04 1990-10-03 南开大学 金属印制板
CN1152371A (zh) * 1995-07-21 1997-06-18 株式会社东芝 陶瓷电路基板
US5981085A (en) * 1996-03-21 1999-11-09 The Furukawa Electric Co., Inc. Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
TW461043B (en) * 1997-07-16 2001-10-21 Mitsubishi Electric Corp Manufacturing method for semiconductor device and the semiconductor device
CN1376020A (zh) * 2001-03-15 2002-10-23 张成邦 一种陶瓷金属化基板的制造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183016B1 (en) * 1984-10-03 1989-09-20 Sumitomo Electric Industries Limited Material for a semiconductor device and process for its manufacture
JPH0767003B2 (ja) * 1988-07-22 1995-07-19 日立電線株式会社 銅・有機絶縁膜配線板の製造方法
JP2590255B2 (ja) * 1989-03-07 1997-03-12 株式会社神戸製鋼所 セラミックスとの接合性の良い銅材
JP2725390B2 (ja) * 1989-07-28 1998-03-11 日立電線株式会社 銅配線セラミック基板および製造方法
JP2508848B2 (ja) * 1989-07-28 1996-06-19 日立電線株式会社 銅配線セラミック基板の製造方法
US6400573B1 (en) * 1993-02-09 2002-06-04 Texas Instruments Incorporated Multi-chip integrated circuit module
US6310185B1 (en) * 1994-03-08 2001-10-30 Memorial Sloan Kettering Cancer Center Recombinant human anti-Lewis Y antibodies
US6300167B1 (en) * 1994-12-12 2001-10-09 Motorola, Inc. Semiconductor device with flame sprayed heat spreading layer and method
JP3245329B2 (ja) * 1995-06-19 2002-01-15 京セラ株式会社 半導体素子収納用パッケージ
KR100245971B1 (ko) * 1995-11-30 2000-03-02 포만 제프리 엘 중합접착제를 금속에 접착시키기 위한 접착력 촉진층을 이용하는 히트싱크어셈블리 및 그 제조방법
JPH09306954A (ja) * 1996-05-20 1997-11-28 Hitachi Ltd 半導体装置及びその実装方法並びに実装構造体
TW353220B (en) * 1996-08-20 1999-02-21 Toshiba Corp Silicon nitride circuit board and semiconductor module
US6033787A (en) * 1996-08-22 2000-03-07 Mitsubishi Materials Corporation Ceramic circuit board with heat sink
US5881944A (en) * 1997-04-30 1999-03-16 International Business Machines Corporation Multi-layer solder seal band for semiconductor substrates
US6455930B1 (en) * 1999-12-13 2002-09-24 Lamina Ceramics, Inc. Integrated heat sinking packages using low temperature co-fired ceramic metal circuit board technology
WO2001048820A1 (fr) * 1999-12-24 2001-07-05 Fujitsu Limited Dispositif en semi-conducteur comportant une puce nue de semi-conducteur montee par soudage par billes, et element de carte a condensateur en couche mince pour puce nue de semi-conducteur montee par soudage par billes
JP2002098454A (ja) * 2000-07-21 2002-04-05 Mitsubishi Materials Corp 液冷ヒートシンク及びその製造方法
EP1315205A4 (en) * 2000-08-09 2009-04-01 Mitsubishi Materials Corp POWER MODULE AND POWER MODULE WITH COOLING BODY
JP2002129313A (ja) * 2000-10-20 2002-05-09 Nikko Materials Co Ltd パーティクル発生の少ない高純度銅スパッタリングターゲット
KR100565139B1 (ko) * 2001-02-22 2006-03-30 니뽄 가이시 가부시키가이샤 전자 회로용 부재 및 그 제조 방법과 전자 부품
ES2717849T3 (es) * 2001-03-08 2019-06-25 Alstom Transp Tech Sustrato para circuito electrónico de potencia y módulo electrónico de potencia que utiliza dicho sustrato
US6667548B2 (en) * 2001-04-06 2003-12-23 Intel Corporation Diamond heat spreading and cooling technique for integrated circuits
US6651736B2 (en) * 2001-06-28 2003-11-25 Intel Corporation Short carbon fiber enhanced thermal grease
US6519154B1 (en) * 2001-08-17 2003-02-11 Intel Corporation Thermal bus design to cool a microelectronic die
ATE552717T1 (de) * 2002-04-19 2012-04-15 Mitsubishi Materials Corp Leiterplatte, prozess zu ihrer herstellung und stromversorgungsmodul

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2063334U (zh) * 1989-09-04 1990-10-03 南开大学 金属印制板
CN1152371A (zh) * 1995-07-21 1997-06-18 株式会社东芝 陶瓷电路基板
US5981085A (en) * 1996-03-21 1999-11-09 The Furukawa Electric Co., Inc. Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
TW461043B (en) * 1997-07-16 2001-10-21 Mitsubishi Electric Corp Manufacturing method for semiconductor device and the semiconductor device
CN1376020A (zh) * 2001-03-15 2002-10-23 张成邦 一种陶瓷金属化基板的制造方法

Also Published As

Publication number Publication date
CN1512569A (zh) 2004-07-14
JP2004221547A (ja) 2004-08-05
EP1434265A1 (en) 2004-06-30
JP4206915B2 (ja) 2009-01-14
US20040188828A1 (en) 2004-09-30
EP1434265B1 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
CN100342527C (zh) 电源模块用基板
CN1305807C (zh) 包含通过烧结原料形成的烧结体的制品及其制备方法
CN1143382C (zh) 绝缘衬底、其制作方法及具有绝缘衬底的模块半导体器件
KR102504621B1 (ko) 세라믹스 회로 기판 및 그것을 사용한 모듈
CN1815720A (zh) 半导体器件及其制造方法
TWI581342B (zh) 功率模組
CN1497711A (zh) 铝-陶瓷组合构件
JPWO2010092923A1 (ja) アルミニウム−黒鉛複合体からなる基板、それを用いた放熱部品及びled発光部材
WO2011149065A1 (ja) 回路基板およびこれを用いた電子装置
CN101981692B (zh) 绝缘基板及其制造方法
CN101061580A (zh) 绝缘电路基板及带冷却槽部的绝缘电路基板
JP2006100640A (ja) セラミックス回路基板及びこれを用いたパワー半導体モジュール
JP5046086B2 (ja) セラミックス基板、これを用いたセラミックス回路基板及び半導体モジュール
JP2009088330A (ja) 半導体モジュール
CN1502463A (zh) 金属/陶瓷粘合制品
CN106489198B (zh) 具有Ag基底层的功率模块用基板及功率模块
JP5630695B2 (ja) 窒化珪素回路基板およびその製造方法
JP2006245436A (ja) 窒化珪素配線基板およびこれを用いた半導体モジュール
JP2008306107A (ja) パワーモジュール用基板並びにパワーモジュール
JP5039070B2 (ja) 半導体装置
KR20090111071A (ko) 반도체 패키지용 기판 및 이를 이용한 반도체 패키지
CN1882217A (zh) 等离子体处理装置
KR101498130B1 (ko) 두께 방향으로 우수한 열전도 특성을 갖는 기판을 구비한 발광소자의 제조방법
KR101816983B1 (ko) 세라믹 회로기판 및 이의 제조방법
JP5082972B2 (ja) パワーモジュール用基板の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20071010