CN100339918C - 固体电解电容器的制造方法 - Google Patents

固体电解电容器的制造方法 Download PDF

Info

Publication number
CN100339918C
CN100339918C CNB028024206A CN02802420A CN100339918C CN 100339918 C CN100339918 C CN 100339918C CN B028024206 A CNB028024206 A CN B028024206A CN 02802420 A CN02802420 A CN 02802420A CN 100339918 C CN100339918 C CN 100339918C
Authority
CN
China
Prior art keywords
hole
electrolytic capacitor
solid electrolytic
manufacture method
aluminium foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028024206A
Other languages
English (en)
Other versions
CN1465078A (zh
Inventor
三木勝政
御堂勇治
藤井達雄
中野慎
木村涼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1465078A publication Critical patent/CN1465078A/zh
Application granted granted Critical
Publication of CN100339918C publication Critical patent/CN100339918C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本发明提供高频特性优异、能够直接安装半导体元器件的固体电解电容器的制造方法。在铝箔20的单面形成抗蚀剂膜23之后,形成第一通孔24,然后在形成绝缘膜25将铝箔20的另一面及第一通孔内覆盖之后,除去抗蚀剂膜23,将铝箔20粗化之后形成电介质层27,在填入第一通孔24的绝缘膜25的内部形成第二通孔36,在该第二通孔内形成通孔电极28之后,在上述电介质层27的表面形成固体电解质层29,再形成集电体层30,然后在形成开口部分37之后,在该部分形成第一连接端31,在通孔电极28的露出面形成第二连接端32。

Description

固体电解电容器的制造方法
技术领域
本发明涉及各种电子设备使用的固体电解电容器的制造方法。
背景技术
近年来,随着电子设备的小型化和性能的提高,对于电子元器件的固体电解电容器(下面,称为SEC)要求小型、大容量、低ESR(等效串联电阻)及低ESL(等效串联电感)。关于大容量及低ESR的SEC,如USP5377073号及日本专利特开平11-274002号公报所示,已经知道有将电容器元件层叠的片状电容器。上述以往的SEC是将铝或钽等包括阀作用的金属箔或烧结体作为电极部分,在该金属箔或烧结体的表面形成电介质层,在其表面形成固体电解质层,在该固体电解质层的表面形成集电体层,再设置电极层,这样构成电容器元件。再将该电容器元件的电极部分及电极层分别与连接端连接,再设置外壳,使该连接端露出,这样构成SEC。
为了将以往的SEC与半导体元器件相同在电路基板上进行表面安装,必须通过外部端子连接。
因此,不仅从电极部分及电极层至连接端的导通路径,而且电路基板上的布线部分也对高频特性产生影响。
结果,ESL增大,很难改善高频特性。本发明的目的在于解决上述问题,提供能够与半导体元器件直接连接、实现低ESR及低ESL、高频特性优异的SEC制造方法。
发明内容
为了解决上述问题,本发明提供的SEC制造方法包括在铝箔的单面形成抗蚀剂膜的步骤、在所述铝箔的规定位置形成第一通孔的步骤、形成绝缘膜将所述铝箔的与所述抗蚀剂膜形成面的反面及所述第一通孔内覆盖的步骤、将除去了所述抗蚀剂膜的部分的所述铝箔进行粗化的步骤、在粗化的所述铝箔表面形成电介质层的步骤、在覆盖所述第一通孔的所述绝缘膜内形成第二通孔的步骤、在所述第二通孔内形成通孔电极的步骤之后在所述电介质层表面形成固体电解质层的步骤、在所述固体电解质层的表面形成集电体层的步骤、在所述绝缘膜形成开口部分的步骤、在所述开口部分形成第一连接端的步骤、以及在所述通孔电极的露出面形成第二连接端的步骤。
附图简单说明
图1表示本发明实施形态1的SEC的立体图。
图2表示本发明实施形态1的SEC的剖视图。
图3表示本发明实施形态1的SEC的主要部分放大剖视图。
图4表示本发明实施形态1的SEC中在铝箔上形成抗蚀剂膜的状态的剖视图。
图5表示本发明实施形态1的SEC中在铝箔上形成第一通孔的状态的剖视图。
图6表示本发明实施形态1的SEC中在铝箔上形成绝缘膜的状态的剖视图。
图7表示本发明实施形态1的SEC中除去抗蚀剂膜的状态的剖视图。
图8表示本发明实施形态1的SEC中在粗化的铝箔表面形成电介质层的状态的剖视图。
图9表示本发明实施形态1的SEC中在铝箔上形成第二通孔的状态的剖视图。
图10表示本发明实施形态1的SEC中在第二通孔内填入导电体的状态的剖视图。
图11表示本发明实施形态1的SEC中在电介质层上形成固体电解质层的状态的剖视图。
图12表示本发明实施形态1的SEC中形成集电体层的状态的剖视图。
图13表示本发明实施形态1的SEC中形成开口部分的状态的剖视图。
图14表示本发明实施形态1的SEC中形成第一连接端的状态的剖视图。
图15表示本发明实施形态1的SEC中形成连接凸点的状态的剖视图。
图16表示本发明实施形态2的SEC中在电介质层上形成固体电解质层的状态的剖视图。
图17表示本发明实施形态2的SEC中在铝箔上形成第二通孔的状态的剖视图。
图18表示本发明实施形态2的SEC中在第二通孔内填入导电体的状态的剖视图。
图19表示本发明实施形态2的SEC中形成集电体层的状态的剖视图。
图20表示本发明实施形态2的SEC中形成开口部分的状态的剖视图。
图21表示本发明实施形态2的SEC中形成第一连接端的状态的剖视图。
具体实施方式
下面用实施形态及附图说明本发明的固体电解电容器(SEC)的制造方法。另外,附图是示意图,不是正确表示各位置的尺寸关系。
(实施形态1)
在图2及图3中,铝箔20的单面一侧进行了粗化,在该粗化的铝箔20的表面形成电介质层27。再在其表面形成实际上是构成电极的固体电解质层29,与铝箔20一起包括电容器的功能。铝箔20进行粗化是为了扩大电极部分的表面积,增加SEC的电容量。
在上述固体电解质层29的表面设置容易将电极引到外部用的集电体层30。然后,该集电体层30通过通孔电极28与第二连接端32连接。上述通孔电极28是通过在第二通孔36的内部填入导电体而形成的,利用绝缘膜25使得与铝箔20加以电气绝缘。
第一连接端31直接与铝箔20连接,第一连接端31与第二连接端32利用绝缘膜25电气绝缘膜。另外,为了在各连接端31及32直接与半导体元器件连接,分别设置连接凸点33及34。
如上所述,利用将第一连接端31及第二连接端32配置在同一平面的结构,能够将半导体元器件直接与SEC连接。通过这样,能够大幅度缩短元器件之间的布线,能够减少ESR及ESL。
再有,通过如图1所示那样配置连接端,相互的电流流向相反,因此产生的磁场互相抵消,得到能够减少ESL的效果。
图4~图15所示为SEC的制造步骤的剖视图。
在图4中,在铝箔20的单面形成抗蚀剂膜23。作为该抗蚀剂膜23,是采用感光性树脂或包括粘结性的有机薄膜的某一种材料。作为它们的形成方法,是采用例如浸渍、旋涂、丝网印刷、薄膜粘结法或喷涂法。这些方法都能够很容易而且高生产率地形成这些单面的抗蚀剂膜23。
另外,在采用感光性树脂时,其优点是涂布及固化容易,而采用有机薄膜时,其优点是能够简化工序,同时后面的单面抗蚀剂膜23的剥离也容易。然后,如图5所示,在铝箔20上形成第一通孔24。
第一通孔24利用激光加工法、冲孔加工法、钻孔加工法、电火花加工法等至少一种方法,能够在任意位置高精度形成。
接着,如图6所示,形成绝缘膜25,将铝箔20的与形成抗蚀剂膜23的面的反面及第一通孔内覆盖。该绝缘膜25的材料最好从环氧树脂、聚酰亚胺树脂、硅树脂、丙稀树脂及酚醛树脂中选用。上述材料的绝缘性、耐溶剂性及耐热性优异,而且与电极部分的铝箔20的附着性也很好。制造过程中不仅能保护铝箔20的表面以免受溶剂及酸等的浸蚀,而且还包括保护SEC以免受外部环境影响的效果。另外,为了形成上述绝缘膜25,采用浸渍、旋涂、丝网印刷、喷涂法及电沉积法中至少一种方法。无论哪一种方法都能够在铝箔20的表面容易而且均匀形成绝缘膜25。另外,在上述绝缘膜25的形成步骤之前,也可以对铝箔20的第一通孔24的边缘进行倒角加工。这是为了去掉形成第一通孔24时有可能产生的毛刺而进行的加工,包括的效果是提高了在铝箔20的另一面绝缘膜25的覆盖性,其结果可防止通孔电极28与铝箔20的短路。另外包括的效果是,提高了在铝箔20的一面在铝箔20的表面形成的电介质层27的覆盖性,其结果可防止固体电解质层29与铝箔20的短路。利用以上的效果,能够稳定SEC的特性,力图提高可靠性。
接着,如图7所示,利用浸渍在抗蚀剂去除剂中等方法,去掉铝箔20的单面抗蚀剂膜23。
再如图8所示,利用腐蚀将单面的去除抗蚀剂膜23的部分铝箔20的表面进行粗化,再该粗化的铝箔20的表面形成电介质层27。作为上述粗化的方法有腐蚀法,例如一面浸渍在酸溶液中,一面加上规定的电压,或者仅仅浸渍在酸溶液中进行。另外,电介质层的形成例如采用在己二酸铵水溶液或将硼酸与硼砂混合的水溶液等中将铝箔20进行阳极氧化的方法等进行。图9所示的状态是,在填入第一通孔24的绝缘膜25内,使上述绝缘膜25剩下覆盖第一通孔24的壁面的部分,这样形成第二通孔36。该第二通孔36利用激光加工法、冲孔加工法、钻孔加工法等某一种方法,能够在填入第一通孔的绝缘膜内高精度形成。然后,在第二通孔36的内部填入导电性粘结剂,利用进行固化的方法,形成通孔电极28,图10所示为这种状态。利用该制造方法,能够很容易形成通孔电极28。接着,在电介质层27的表面形成固体电解质层29,图11所示为这种形态。
该固体电解质层29采用导电性高分子、通过对硝酸锰进行热分解而形成的二氧化锰、将导电性高分子的粉末悬浮液涂布形成的涂膜、以及将导电性高分子水溶液涂布形成的涂膜中选择的至少一种构成,该导电性高分子是利用将吡咯、噻吩等复环单体用硫酸铁等氧化剂进行聚合的化学聚合生成的,或利用将铝箔20浸渍在杂环单体溶液中并加上电压进行聚合的电解聚合等生成的。
另外,也可以在电介质层的表面27形成二氧化锰后,形成利用上述各种方法得到的导电性高分子。
利用该方法,能够得到形成均匀而且致密的导电性高分子的效果。若采用上述这些材料及方法,由于在利用粗化形成的微细腐蚀坑内的电介质层27表面也能够形成固体电解质层29,因此能够有助于增加SEC的电容量。
另外,在固体电解质层29为有机材料的情况下,由于固体电解质层29富于柔软性,因此能够防止在制造过程中等产生的损伤及破坏。接着,图12所示为在固体电解质层29的表面形成集电体层30的状态。它是通过涂布碳微粒的悬浮液、导电性粘结剂及导电性涂布的至少一种方法形成。利用该制造方法,通过提高实质上的电极即固体电解质层29与外表的电极即集电体层30的附着性,包括有助于减少ESR及提高高频特性的效果。图13所示的状态是为了在铝箔20的另一面形成第一连接端31,在绝缘膜的部分利用激光加工法或研削法来形成开口部分37。
利用这些方法能够高效形成开口部分,包括有助于提高生产率的效果。接着,图14所示为在上述开口部分37设置第一连接端31的状态。
该第一连接端31的形成是为了与其它元器件很好连接,与铝箔20连接。
作为第一连接端31的形成方法,最好采用涂布导电性粘结剂、电镀及化学镀等方法。
在涂布导电性粘结剂的情况下,由于涂布及固化容易,因此能够提高生产率。另外,在进行电镀及化学镀的情况下,由于用绝缘膜25覆盖开口部分37及通孔电极28的露出部分以外的部分,因此利用绝缘带等覆盖保护通孔电极28的露出部分及集电体层30的反面侧整个表面,通过这样能够在开口部分37均匀而且简便地同时形成第一连接端31。另外,为了与半导体元器件很好连接,根据需要,也可以利用电镀及化学镀等方法,在通孔电极28的露出部分形成第二连接端32。在形成第二连接端32时,通过利用上述绝缘带仅覆盖保护集电体层30的反面侧整个表面,能够同时形成第一连接端31及第二连接端32。图15所示的状态是在图14的第一连接端31及第二连接端32上,形成由焊料、金、锡或银等中至少一种材料构成的第一连接凸点33及第二连接凸点34。另外,也可以不设置第二连接端32,直接形成第二连接凸点。
由于连接端处于同一平面上,因此能够与半导体元器件直接连接。根据上述的制造方法,能够很容易提供实现低ESR及低ESL、高频特性优异的SEC。
(实施形态2)
图16所示的状态是在如实施形态1的如图8中所示的粗化的铝箔20表面形成电介质层27之后,在其表面形成固体电解质层29。
该固体电解质层29利用与实施形态1相同的方法形成。与实施形态1的不同点在于,这时不形成通孔电极28,通过这样有以下的优点。即由于通孔电极28作为材料是采用导电性粘结剂,因此有可能受到有固体电解质层29形成时使用的溶剂等产生的溶胀、溶解及剥离等影响。
因此造成的结果是,导电性粘结剂的选择范围受到限制。
但是,如本实施形态2所示,在形成固体电解质层29之后形成通孔电极28的制造方法中,由于不需要考虑上述溶剂等的影响,因此能够拓宽导电性粘结剂的选择范围。然后,如图17所示,利用激光加工法、冲孔加工法、钻孔加工法及电火花加工法等形成第二通孔36。然后,如图18所示,利用在第二通孔36的内部填入导电性粘结剂并固化的方法,形成通孔电极28。
图19所示为固体电解质层29的表面形成集电体层30的状态。图19与实施形态1的图12的不同点在于,图12的通孔电极28与固体电解质层29连接,与此不同的是,上述图19的通孔电极28除了与固体电解质层29连接之外,还与集电体层30连接。
通过这样,包括能够进一步减少ESR、提高高频特性的效果。然后,利用与实施形态1相同的工艺方法,如图20及图21所示,能够得到设置开口部分37并在该开口部分37形成第一连接端31的SEC。
本发明制造方法的特点是将腐蚀前的铝箔20作为制造的原材料,可举出有以下的优点。即在形成第一通孔24之后除去铝箔20的单面抗蚀剂膜23的步骤中,根据本发明,作为抗蚀剂除去剂不仅可以用有机溶剂,也可以使用酸及碱性溶液。在作为原材料是采用粗化的铝箔20并除去单面抗蚀剂膜23时,在采用酸或碱性溶液的情况下,不仅单面抗蚀剂膜23溶解,而且粗化的铝箔20的表面也溶解,使SEC的电容量降低,这样的可能性是很大的。
但是,在本发明的制造方法中,由于在单面的抗蚀剂膜23除去后进行腐蚀,因此这种担心完全没有,在选择抗蚀剂除去剂时,能够拓宽选择的范围。
另外,在采用上述实施形态2的制造方法时,能够拓宽选择导电性粘结剂时的选择范围。
如上所述,本发明由于工艺设计的自由度大,因此能够容易制造SEC。采用本发明制造的SEC有以下的特征。即第一连接端与第二连接端配置在同一平面上,作为半导体元器件的电源,能够直接与半导体连接,高频特性也优异。
再有,由于电介质采用有机材料,因此富于柔软性,也能够安装在以往难以使用的承受弯曲压力那样的电路或基板等上,同时也便于埋入基板中,因此非常有利于设备的小型化。
工业上的实用性
如上所述,本发明由于工艺设计的自由度大,因此能够容易而且高精度制造SEC,另外能够实现高生产率,因此其工业价值大。

Claims (17)

1.一种固体电解电容器的制造方法,其特征在于,包括下述步骤:
在铝箔的单面形成抗蚀剂膜的步骤、
在所述铝箔的规定位置形成第一通孔的步骤、
形成绝缘膜将所述铝箔的与所述抗蚀剂膜形成面的反面及所述第一通孔内覆盖的步骤、
将除去了所述抗蚀剂膜的部分的所述铝箔进行粗化的步骤、
在粗化的所述铝箔表面形成电介质层的步骤、
在覆盖所述第一通孔的所述绝缘膜内形成第二通孔的步骤、
在所述第二通孔内形成通孔电极的步骤之后,在所述电介质层表面形成固体电解质层的步骤、
在所述固体电解质层的表面形成集电体层的步骤、
在所述绝缘膜形成开口部分的步骤、
在所述开口部分形成第一连接端的步骤、以及
在所述通孔电极的露出面形成第二连接端的步骤。
2.一种固体电解电容器的制造方法,其特征在于,包括下述步骤:
在铝箔的单面形成抗蚀剂膜的步骤、
在所述铝箔的规定位置形成第一通孔的步骤、
形成绝缘膜将所述铝箔的与所述抗蚀剂膜形成面的反面及所述第一通孔内覆盖的步骤、
将除去了所述抗蚀剂膜的部分的所述铝箔进行粗化的步骤、
在所述粗化的所述铝箔的表面形成电介质层的步骤、
在所述电介质层的表面形成固体电解质层的步骤之后,在所述绝缘膜内形成第二通孔,并在所述第二通孔内形成通孔电极的步骤、
在所述固体电解质层的表面形成集电体层的步骤、
在所述绝缘膜形成开口部分的步骤、
在所述开口部分形成第一连接端的步骤、以及
在所述通孔电极的露出面形成第二连接端的步骤。
3.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
所述第一通孔形成方法是激光加工法、冲孔加工法、钻孔加工法及电火花加工法中的至少一种方法。
4.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
所述第二通孔形成方法是激光加工法、冲孔加工法及钻孔加工法中的至少一种方法。
5.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
在所述第一通孔的边缘倒角加工之后,形成所述绝缘膜。
6.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
所述绝缘膜是环氧树脂、聚酰亚胺树脂、硅树脂、丙稀树脂及酚醛树脂中的至少一种材料。
7.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
所述绝缘膜的形成方法是浸渍、旋涂、丝网印刷、喷涂法及电沉积法中的至少一种方法。
8.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
所述抗蚀剂膜是感光性树脂或包括粘结性的有机薄膜中的至少一种材料。
9.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
所述抗蚀剂膜的形成方法是浸渍、旋涂、丝网印刷、薄膜粘结法、喷涂法及电沉积法中的至少一种方法。
10.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
所述通孔电极的形成采用填入导电性粘结剂后固化的方法。
11.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
构成所述第一及所述第二连接端的材料是导电性粘结剂。
12.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
形成所述第一及所述第二连接端的方法是电镀及化学镀的至少一种方法。
13.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
构成所述固体电解质层的材料是包含π电子共轭高分子及除此以外的导电性高分子的至少一种的组成物。
14.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
形成所述固体电解质层的方法是将杂环单体用氧化剂进行聚合的化学聚合、将杂环单体通过加上电压进行聚合的电解聚合、导电性高分子的粉末悬浮液涂布、导电性高分子水溶液涂布及硝酸锰热分解中的至少一种方法。
15.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
形成所述固体电解质层的方法是在利用硝酸锰热分解形成二氧化锰之后,将杂环单体用氧化剂进行聚合的化学聚合、将杂环单体通过加上电压进行聚合的电解聚合、导电性高分子的粉末悬浮液涂布及导电性高分子水溶液涂布中的至少一种方法进行。
16.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
形成所述开口部分的方法是激光加工法及研削法中的至少一种方法。
17.如权利要求1或2所述的固体电解电容器的制造方法,其特征在于,
所述集电体的材料是碳微粒的悬浮液、导电性粘结剂及导电性涂料中的至少一种材料。
CNB028024206A 2001-07-17 2002-07-16 固体电解电容器的制造方法 Expired - Fee Related CN100339918C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001216351 2001-07-17
JP216351/01 2001-07-17
JP216351/2001 2001-07-17
PCT/JP2002/007218 WO2003009320A1 (fr) 2001-07-17 2002-07-16 Procede de production d'un condensateur electrolytique solide

Publications (2)

Publication Number Publication Date
CN1465078A CN1465078A (zh) 2003-12-31
CN100339918C true CN100339918C (zh) 2007-09-26

Family

ID=19050837

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028024206A Expired - Fee Related CN100339918C (zh) 2001-07-17 2002-07-16 固体电解电容器的制造方法

Country Status (5)

Country Link
US (1) US6852137B2 (zh)
EP (1) EP1408521A4 (zh)
JP (1) JP3982496B2 (zh)
CN (1) CN100339918C (zh)
WO (1) WO2003009320A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095928A2 (en) * 2002-05-10 2003-11-20 Lewis Karl R Monolithic rail platform and bolt assemblies for a firearm
JP4019837B2 (ja) * 2002-07-19 2007-12-12 松下電器産業株式会社 固体電解コンデンサ及びその製造方法
US7016180B2 (en) * 2003-12-26 2006-03-21 Tdk Corporation Capacitor
US6870728B1 (en) * 2004-01-29 2005-03-22 Tdk Corporation Electrolytic capacitor
JP4341676B2 (ja) * 2004-07-15 2009-10-07 パナソニック株式会社 コンデンサ
TWI270901B (en) * 2005-09-16 2007-01-11 Ctech Technology Corp Solid capacitor and fabrication method thereof
JP4478695B2 (ja) * 2007-03-19 2010-06-09 ニチコン株式会社 固体電解コンデンサ素子およびそれを備えた固体電解コンデンサ
JP4743896B2 (ja) * 2007-04-19 2011-08-10 Necトーキン株式会社 固体電解コンデンサ
JP4931776B2 (ja) * 2007-11-21 2012-05-16 三洋電機株式会社 固体電解コンデンサ
US8470680B2 (en) 2008-07-28 2013-06-25 Kemet Electronics Corporation Substrate with embedded patterned capacitance
KR20100110613A (ko) * 2009-04-03 2010-10-13 삼성전자주식회사 반도체 장치 및 그 제조방법
US9013893B2 (en) 2010-12-29 2015-04-21 Industrial Technology Research Institute Embedded capacitor module
TWI405322B (zh) 2010-12-29 2013-08-11 Ind Tech Res Inst 內藏電容基板模組
TWI483352B (zh) 2012-03-12 2015-05-01 Ind Tech Res Inst 固態電解電容基板模組及包括該固態電解電容基板模組的電路板
WO2017145700A1 (ja) * 2016-02-23 2017-08-31 株式会社村田製作所 コンデンサ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237773A (zh) * 1998-05-22 1999-12-08 松下电器产业株式会社 电解电容器及其制造方法
JP2000049054A (ja) * 1998-05-22 2000-02-18 Matsushita Electric Ind Co Ltd 電解コンデンサおよびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845171B2 (ja) * 1976-01-30 1983-10-07 日本電気株式会社 固体電解コンデンサの製造方法
JPH02137311A (ja) * 1988-11-18 1990-05-25 Marcon Electron Co Ltd 固体電解コンデンサ
JPH02301118A (ja) * 1989-05-15 1990-12-13 Nippon Chemicon Corp 固体電解コンデンサの製造方法
JPH05205984A (ja) 1992-01-27 1993-08-13 Nec Corp 積層型固体電解コンデンサ
JP3351224B2 (ja) * 1996-01-31 2002-11-25 日立エーアイシー株式会社 電解コンデンサ
JPH11274002A (ja) 1998-03-25 1999-10-08 Nichicon Corp チップ型積層固体電解コンデンサ
US6275729B1 (en) * 1998-10-02 2001-08-14 Cardiac Pacemakers, Inc. Smaller electrolytic capacitors for implantable defibrillators
JP4479050B2 (ja) * 2000-04-20 2010-06-09 パナソニック株式会社 固体電解コンデンサ
JP4432207B2 (ja) * 2000-05-25 2010-03-17 パナソニック株式会社 コンデンサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237773A (zh) * 1998-05-22 1999-12-08 松下电器产业株式会社 电解电容器及其制造方法
JP2000049054A (ja) * 1998-05-22 2000-02-18 Matsushita Electric Ind Co Ltd 電解コンデンサおよびその製造方法

Also Published As

Publication number Publication date
EP1408521A4 (en) 2007-04-04
US20030182781A1 (en) 2003-10-02
EP1408521A1 (en) 2004-04-14
JP3982496B2 (ja) 2007-09-26
CN1465078A (zh) 2003-12-31
WO2003009320A1 (fr) 2003-01-30
JPWO2003009320A1 (ja) 2004-11-11
US6852137B2 (en) 2005-02-08

Similar Documents

Publication Publication Date Title
CN100339918C (zh) 固体电解电容器的制造方法
CN1178243C (zh) 电容器
CN1366687A (zh) 固体电解电容器
CN100565737C (zh) 固体电解电容器及其制造方法
JP2006147606A (ja) シート状コンデンサとその製造方法
CN101471185B (zh) 漏电流小的固体电解电容器及其制造方法
CN1577662A (zh) 固体电解电容器及其制造方法
CN1222200C (zh) 电路微型组件
CN1499548A (zh) 固体电解电容器及其制造方法
CN1862727A (zh) 可易于降低esl的固体电解电容器
CN102438396A (zh) 阳极氧化散热基板及其制造方法
US7167357B2 (en) Surface mount MELF capacitor
JP4604403B2 (ja) 固体電解コンデンサの製造方法
CN100350525C (zh) 固体电解电容器的制造方法
CN1282207C (zh) 复合电子器件
CN1460274A (zh) 固体电解电容及其制造方法
JP2003068574A (ja) 固体電解コンデンサの製造方法
JP2003031438A (ja) 固体電解コンデンサの製造方法
JP2009253136A (ja) コンデンサ内蔵基板とその製造方法およびこれを用いた電子機器
JP2003007569A (ja) 固体電解コンデンサの製造方法
JP2003100564A (ja) 固体電解コンデンサの製造方法
JP2003017368A (ja) 固体電解コンデンサの製造方法
CN1617415A (zh) 过电流保护装置及其制作方法
JP2003115418A (ja) 固体電解コンデンサの製造方法
JP2006032586A (ja) 固体電解コンデンサの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee