CH581096A5 - N,N-disubstd carboxylic acid amides prodn. - by reaction of acid with amine and phosgene or carbamoyl chloride, gives prods suitable as pharmaceuticals and plant protection agents - Google Patents

N,N-disubstd carboxylic acid amides prodn. - by reaction of acid with amine and phosgene or carbamoyl chloride, gives prods suitable as pharmaceuticals and plant protection agents

Info

Publication number
CH581096A5
CH581096A5 CH1708473A CH1708473A CH581096A5 CH 581096 A5 CH581096 A5 CH 581096A5 CH 1708473 A CH1708473 A CH 1708473A CH 1708473 A CH1708473 A CH 1708473A CH 581096 A5 CH581096 A5 CH 581096A5
Authority
CH
Switzerland
Prior art keywords
acid
phosgene
general formula
carboxylic acid
phenyl
Prior art date
Application number
CH1708473A
Other languages
English (en)
Original Assignee
Eszakmagyar Vegyimuevek
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eszakmagyar Vegyimuevek filed Critical Eszakmagyar Vegyimuevek
Priority to CH1708473A priority Critical patent/CH581096A5/de
Publication of CH581096A5 publication Critical patent/CH581096A5/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description


  
 



   Gegenstand der Erfindung ist ein Verfahren zur Herstellung von N,N-disubstituierten Carbonsäureamiden der allgemeinen Formel I
EMI1.1     
 worin    Rl    eine gerade oder verzweigte, gegebenenfalls mit Halogen oder Phenyl substituierte aliphatische Gruppe mit 2-18 C-Atomen, Phenyl. Chlorphenyl, Dichlorphenyl, Nitrophenyl, Dinitrophenyl, sowie Trimethoxyphenyl, ferner einen sechsgliedrigen, ein Stickstoffatom enthaltenden, ungesättigten heterocyclischen Rest bedeutet und
R2 und R3 gleiche oder verschiedene, gerade oder verzweigte aliphatische Gruppen mit 1-4 C-Atomen oder Phenyl bedeuten, gemeinsam aber auch für einen ein Stickstoff- und ein Sauerstoffatom enthaltenden, sechsgliedrigen heterocyclischen Rest stehen können.



   Zu den Verbindungen der allgemeinen Formel I zählen ausserordentlich viele, wichtige Pflanzenschutz- und Arzneimittel. Die hierzu gehörigen Pflanzenschutzmittel zeichnen sich durch ihre sehr günstige selektiv-herbizide Wirkung aus.



  Unter den als Arzneimittel venvendbaren Stoffen der allgemeinen Formel I befinden sich Tranquillantien, ferner zur Behandlung der Arteriosclerose gut geeignete Stoffe sowie Anoleptica.



   Die Verbindungen der allgemeinen Formel I können als N,N-disubstituierte Carbonsäureamide, aber auch als acylierte Amine aufgefasst werden. Dementsprechend bestehen zu ihrer Herstellung zwei Hauptmöglichkeiten: Erstens das Acy   lieren von sekundären    Aminen und zweitens das Alkylieren von Carbonsäureamiden.



   Die in der Fachliteratur der organischen Chemie beschriebenen zahlreichen Möglichkeiten zur Acylierung von Aminen sind in HOUBEN-WEYL, Methoden der Organischen Chemie, 8, 118 (1952) zusammengefasst. Bekannt ist zum Beispiel das Acylieren mit Carbonsäureanhydriden oder Carbonsäureestern, wobei neben dem acylierten Amin Carbonsäure beziehungsweise Alkohol gebildet wird. Der Nachteil dieser Methode besteht darin, dass sie im allgemeinen nur für primäre Amine mit geringer Kohlenstoffatomzahl geeignet ist [A. Kaufmann: Ber. 42, 3480 (1909); H. Honecka: Soc. 99, 428 (1911)].



   Günstiger, mit höherer Ausbeute kann die Acylierung mit Carbonsäurechloriden vorgenommen werden. Diese Reaktion ist jedoch stark exotherm, und zur Steuerung der Acylierung muss die entstehende Reaktionswärme unbedingt entfernt werden. Des weiteren muss die entstehende Salzsäure gebunden werden, da diese ihrerseits mit dem als Ausgangsstoff dienenden Amin reagiert, was die Ausbeute der Umsetzung vermindert. Darüber hinaus ist die Herstellung und Reinigung von Carbonsäurechloriden grösserer Kettenlänge umständlich [Ch. E.   Gaspari:    Am. Soc. 27, 305 (1902); W. Weaver, W. M Whaley: Am. Soc. 69, 1144 (1947)].



   Im Fall primärer Amine und kurzkettiger Carbonsäuren gelingt die Acylierung der Amine bei hohen Temperaturen auch mit Carbonsäuren, indem das entstehende Wasser kontinuierlich entfernt wird, zum Beispiel durch Abdestillieren im azeotropen Gemisch mit Xylol. Diese Methode ist aber nur als Labormethode und auch nur für primäre Amine anwendbar, wobei als weitere Bedingung besteht, dass die Amine und die Carbonsäure unempfindlich gegen Wärme sein müssen. Das Acylieren primärer Amine mit Carbonsäuren in Gegenwart von Phosphortrichlorid wird unter anderem von M. Grimmel in J. Am. Soc. 68, 539 (1946) beschrieben. Bei dieser Reaktion bildet das Amin mit dem Phosphortrichlorid zuerst eine intermediäre Phosphorverbindung, aus welcher das durch die Carbonsäure acylierte Amin entsteht.



   Ferner ist die Acylierung mit Phosphoroxychlorid, Phosphorpentoxyd oder Tetramethylphosphit und Carbonsäure bekannt, bei der die Umsetzung über die Bildung des Phosphoresteramiden verläuft.



   In der ungarischen Patentschrift Nr. 159 044 ist die Chloracylierung sekundärer Amine unter Verwendung von Chlorcarbonsäure und Phosphortrichlorid beschrieben.



   Bekannt, wenn auch für die Praxis weniger bedeutsam ist die Tatsache, dass Säureamide durch Hydrolyse von Carbonsäurenitrilen hergestellt werden können. [C. Engler: Ann., 149, 305 (1869)].



   Die zweite Hauptmethode zur Herstellung von N,Ndisubstituierten Carbonsäureamide ist nach der Fachliteratur die Alkylierung von Säureamiden. In diesem Falle wird zuerst aus der Carbonsäure mit Ammoniak das Carbonsäureamid hergestellt und dieses dann mit einem der bekannten Alkylierungsmittel (Alkylhalogenide, Dialkylsulfat, Kaliumalkylsulfat) behandelt (A. W. Titherley: Soc. 79, 393 [1901]).



  In manchen Fällen wird das Säureamid zuerst in einem inerten Lösungsmittel mit Natriumamid zum Natriumsalz umgesetzt und dieses dann alkyliert. Nach dieser Methode kann im ersten Schritt ein monosubstituiertes Säureamid hergestellt werden, welches erneut zum Natriumsalz umgesetzt und dieses alkyliert wird, wobei man das N,N-disubstituierte Säureamid erhält.



   Die Fachliteratur beschäftigt sich sehr eingehend mit den durch Phosgenieren in der Kälte aus primären Aminen herstellbaren Carbamoylchloriden, die bei der Herstellung der Isocyanate als Zwischenprodukte auftreten. Merkwürdigerweise sind jedoch über die Carbamoylchloride, die beim Phosgenieren von sekundären Aminen entstehen, sowie über die weiteren Reaktionen dieser Verbindungen kaum Veröffentlichungen zu finden.



   Nach W. Price (Soc. 125, 115 [1924]) bilden die mit sekundären Aminen hergestellten Carbamoylchloride mit Alkoholen zusammen Urethane. Bekannt ist ferner, dass sie mit Aminen zusammen Carbamide geben (HOUBEN-WEYL, 8, 118 [1952]).



   Bekannt ist schliesslich, dass die erwähnte Carbamoylchloride unter den Bedingungen der   Friedel-Crafts-Reaktion    in den gebräuchlichen Lösungsmitteln bei Temperaturen von 50 bis   800    C mit aromatischen Verbindungen unter Bildung von Carbonsäureamiden reagieren (HOUBEN-WEYL, 8, 380 [1952]).



   Es wurde nun gefunden, dass die N,N-disubstituierten Carbonsäureamide der allgemeinen Formel I
EMI1.2     
 worin
R1 eine gerade oder verzweigte, gegebenenfalls mit Halogen oder Phenyl substituierte aliphatische Gruppe mit 2-18 C-Atomen, Phenyl, Chlorphenyl, Dichlorphenyl, Nitrophenyl, Dinitrophenyl oder Trimethoxyphenyl, ferner einen sechsgliedrigen, ein Stickstoffatom enthaltenden, ungesättigten heterocyclischen Rest bedeutet und
R2 und R3 gleich oder verschieden sein können und eine gerade oder verzweigte aliphatische Gruppe mit 1-4 C-Atomen oder Phenyl bedeuten gemeinsam aber auch für einen ein Stickstoff- und ein Sauerstoffatom enthaltenden sechsgliedrigen heterocyclischen Rest stehen können, wesentlich  einfacher als in der Fachliteratur beschrieben und praktisch in einem Schritt hergestellt werden können,

   indem man eine Carbonsäure der allgemeinen Formel II
EMI2.1     
 mit einem sekundären Amin der allgemeinen Formel III
EMI2.2     
 zusammen mit zur Reaktion bringt. Die Reaktion geht innerhalb kurzer Zeit vor sich. Danach wird das Lösungsmittel durch Abdestillieren entfernt und das Reaktionsgemisch durch Vakuumdestillation aufgetrennt beziehungsweise das disubstituierte Säureamid durch Eingiessen des Reaktionsgemisches in Wasser ausgefällt und dann durch Filtrieren abgetrennt.



   Ferner wurde gefunden, dass die N,N-disubstituierten Säureamide der allgemeinen Formel I auch hergestellt werden können, indem man eine Carbonsäure der allgemeinen Formel   II    mit einem Carbamoylchlorid der allgemeinen Formel IV
EMI2.3     
 bei einer Temperatur von   100-300     C unter Abspaltung von Kohlendioxyd reagieren lässt und das erhaltene N,N-disubstituierte Carbonsäureamid aus dem Reaktionsgemisch isoliert.



   Die beiden Herstellungsvarianten erfordern die Einhaltung unterschiedlicher Temperaturbereiche. Die Reaktion mit einer Carbonsäure, einem sekundären Amin und Phosgen wird bei Temperaturen von 50 bis   1500    C, vorzugsweise bei 80 bis   100  C    ausgeführt, während die Umsetzung der Carbonsäure mit einem Carbamoylchlorid bei Temperaturen von 100 bis   300     C vorgenommen wird. Der Vorteil des erfindungsgemässen Verfahrens besteht darin, dass mit ihm aus leicht zugänglichen, gut handhabbaren Ausgangsstoffen in einem Schritt mit guter Ausbeute reine, N,N-disubstituierte Carbonsäureamide hergestellt werden können. Es ist als ausserordentlich günstig zu bezeichnen, dass mit dem erfindungsgemässen Verfahren ein breiter Kreis von disubstituierten Carbonsäureamiden hergestellt werden kann.

  So kann die Carbonsäure eine gerade oder verzweigte Alkylcarbonsäure mit 2-18 C-Atomen sein, es können aber auch die Amide von Halogencarbonsäuren, Arylcarbonsäuren beziehungsweise im Arylteil substituierten Arylcarbonsäuren, ferner die heterocyclischen Carbonsäuren hergestellt werden. Der Kreis der als Ausgangsstoffe verwendbaren sekundären Amine ist gleichermassen umfangreich.



   Wird die Reaktion in Abwesenheit von Lösungsmittel durchgeführt, so besteht ein besonderer Vorteil der Reaktion darin, dass die gasförmigen Nebenprodukte aus dem disubstituierten Säureamid, welches ein fester Stoff ist, entweichen und daher ihre Entfernung keine besonderen Massnahmen erfordert.



   Das erfindungsgemässe Verfahren kann diskontinuierlich ausgeführt werden, es ist jedoch sein besonderer Vorteil, dass es in den in der Chemieindustrie gebräuchlichen Anlagen auch kontinuierlich ausgeführt werden kann. Die kontinuierliche Ausführung erfordert lediglich eine Füllkörperkolonne, einen Filmeindampfer, eine Ausfällvorrichtung und eine Zentrifuge.



   Das erfindungsgemässe Verfahren wird durch die folgenden Beispiele näher erläutert, ohne dass es jedoch auf diese beschränkt bliebe.



   Beispiel 1
In einen mit Rührer, Thermometer, Kühler, Gaseinleitungsrohr und Gasableitungsrohr ausgerüsteten Kolben von 500 ml Inhalt sind 13 g Dibutylamin und 25,6 g Palmitinsäure vorgelegt. Dieses Gemisch wird in 200 ml Xylol gelöst. Das Reaktionsgemisch wird auf   1300    C erhitzt, und innerhalb von ungefähr 30 Minuten werden 11 g Phosgen eingeleitet. Nach Beendigung des Gaseinleitens wird das überschüssige Phosgen durch Erhitzen entfernt. Danach wird das Reaktionsgemisch abgekühlt und mit 2 x 100 ml Wasser gewaschen. Die Phasen werden voneinander getrennt, die organische Phase wird über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Das zurückbleibende gelbliche Öl erstarrt beim Abkühlen zu weissen Kristallen. Es werden 27,5 g (75%) N,N Dibutyl-palmitinsäureamid erhalten, das bei   37     C schmilzt.



  Analyse:
Berechnet: N 3,83%
Gefunden: N 3,77%
Beispiel 2
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 25,6 g Palmitinsäure und 19,1 g N,N-Dibutyl-carbamoylchlorid vorgelegt. Das Reaktionsgemisch wird innerhalb von ungefähr 30 Minuten gleichmässig auf   1300    C erwärmt, wobei die Gasentwicklung einsetzt. Das Gemisch wird eine Stunde lang bei   130-160"    C gehalten. Nach dieser Zeit hört die Gasentwicklung auf. Die Schmelze wird in 100 ml kaltes Wasser eingegossen und mit 100 ml Benzol extrahiert. Die benzolische Phase wird über Natriumsulfat getrocknet und dann das Benzol im Vakuum abdestilliert. Das zurückbleibende gelbliche   Ö1    erstarrt beim Abkühlen zu weissen Kristallen. Man erhält 27,2 g (74,8%) N,N-Dibutyl-palmitinsäureamid, das bei   37     C schmilzt.



  Analyse:
Berechnet: N 3,83%
Gefunden: N 3,77%
Beispiel 3
In einen Kolben von 350 ml Inhalt, der wie im Beispiel 1 ausgerüstet ist, werden 13,5 g N-Isopropylanilin, 12,2 g Benzoesäure und 150 ml o-Dichlorbenzol vorgelegt. In das Gemisch werden bei   140-160     C innerhalb von ungefähr 30 Minuten 11 g Phosgen eingeleitet. Das überschüssige Phosgen wird durch Erwärmen entfernt, danach das Lösungsmittel im Vakuum abdestilliert und der Rückstand unter Rühren in 100 ml kaltes Wasser gegossen. Die sich abscheidenden Kristalle werden auf einer Glasfritte filtriert, mit 2 x 20 ml Wasser gewaschen und dann getrocknet. Man erhält 19,8 g (78%) N-Isopropyl-N-phenylbenzoesäureamid, das bei   55-56     C schmilzt.

 

  Analyse:
Berechnet: N 5,86%
Gefunden: N 5,98%
Beispiel 4
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 3,5 g Benzoesäure und 5 g N-Isopropyl-N-phenyl-carbamoylchlorid vorgelegt und innerhalb einer halben Stunde auf   140     C erwärmt, wobei die Gasentwicklung einsetzt. Das Reaktionsgemisch wird ungefähr eine Stunde lang bei 140 bis   1700    C gehalten. Nach dieser Zeit hört die Gasentwicklung auf. Die Schmelze wird unter   Rühren in 150 ml Wasser gegossen. Die sich abscheidenden Kristalle werden auf einer Glasfritte filtriert, zweimal mit je 20 ml Wasser gewaschen und dann getrocknet. Es werden 5,7 g (78%) N-Isopropyl-N-phenylbenzoesäureamid erhalten, das bei   55-56     C schmilzt.



  Analyse:
Berechnet: N 5,86%
Gefunden: N 5,98%
Beispiel 5
In einen Kolben von 1500 ml Inhalt, der wie im Beispiel 1 beschrieben ausgerüstet ist, werden 135 g N-Isopropylanilin, 98 g Monochloressigsäure und 500 ml Benzol eingebracht.



  Die Lösung wird auf   70-80     C erhitzt und innerhalb von zwei Stunden 110 g Phosgen eingeleitet, wobei auf gleichmässige Zuführung zu achten ist. Nach Beendigung des Gaseinleitens wird das Reaktionsgemisch noch eine Stunde lang bei   80"    C nachgerührt, danach wird der Phosgenüberschuss mittels Durchleiten trockener Luft entfernt. Das Benzol wird durch Destillation bei atmosphärischem Druck entfernt und der Rückstand in 800 ml Wasser gegossen. Die sich ausscheidenden Kristalle werden auf einer Glasfritte filtriert, zweimal mit je 150 ml Wasser gewaschen und dann getrocknet. Man erhält
172 g   (81%)    N-Isopropyl-N-phenyl-chloracetamid, das bei   71-76  C    schmilzt.



  Analyse:
Berechnet: Cl 16,74 N 6,61%
Gefunden: Cl 16,58 N 6,77%
Beispiel 6
In einen mit Rührer, Thermometer, Kühler, Gaseinleitungsrohr und Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 67,6 g N-Isopropylanilin und 46,8 g Monochloressigsäure zusammen geschmolzen. In die Schmelze werden bei   70-100     C 55 g Phosgen innerhalb einer Stunde eingeleitet. Danach wird das Reaktionsgemisch noch eine Stunde lang nachgerührt. Der Phosgenüberschuss wird durch Einleiten trockener Luft ausgetrieben und dann die Schmelze in 400 ml Wasser gegossen. Die ausgeschiedenen Kristalle werden abfiltriert, zweimal mit je 50 ml Wasser gewaschen und dann getrocknet. Man erhält 50 g (48%) N-Isopropyl-Nphenyl-chloracetamid, das bei   72"    C schmilzt. Das Filtrat wird alkalisch gemacht, wobei 33 g N-Isopropylamin zurückgewonnen werden.



  Analyse:
Berechnet: Cl 16,74 N   6,61%   
Gefunden: Cl 16,37 N 6,73%
Beispiel 7
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 9,88 g N-Isopropyl-N-phenylcarbamoylchlorid und 5,02 g Monochloressigsäure eingebracht. Das Reaktionsgemisch wird auf   1200    C erhitzt und unter Rühren bis zur Beendigung der Gasentwicklung eine Stunde lang bei dieser Temperatur gehalten. Danach wird die Schmelze in 100 ml Wasser gegossen. Die abgeschiedenen Kristalle werden abfiltriert, zweimal mit je 20 ml Wasser gewaschen und dann getrocknet. Man erhält 9,6 g (90,7%) N-Isopropyl-N-phenyl-chloracetamid, das bei   76,5      C schmilzt.



  Analyse:
Berechnet: Cl 16,74 N 6,61%
Gefunden: Cl 16,97 N 6,87%
Beispiel 8
In einen Kolben von 1000 ml Inhalt, der wie im Beispiel 1 beschrieben ausgerüstet ist, werden 32,6 g (43 ml) Dibutylamin, 23,4 g Monochloressigsäure und 400 ml Xylol eingebracht. Das Reaktionsgemisch wird auf   80-100     C erhitzt, danach werden innerhalb ungefähr einer Stunde 30 g Phosgen eingeleitet. Nach Beendigung des Gaseinleitens wird bei der gleichen Temperatur noch zwei Stunden lang nachgerührt.



  Danach wird der Phosgenüberschuss mittels Durchleiten trokkener Luft ausgetrieben und das Xylol abdestilliert. Das Produkt wird durch fraktionierte Vakuumdestillation gereinigt.



  Man erhält 45 g (87%) N,N-Dibutyl-chloracetamid. Kp.



     133  C/16    Torr.



  Analyse:
Berechnet: Cl 17,3 N 6,85%
Gefunden: Cl 17,42 N 6,78%
Beispiel 9
In einen Kolben von 350 ml Inhalt, der wie im Beispiel 1 beschrieben ausgerüstet ist, werden 13 g Dibutylamin, 21,1 g 3,5-Dinitrobenzoesäure und 150 ml Xylol eingebracht. Das Reaktionsgemisch wird auf   100-120     C erhitzt und dann innerhalb von 30 Minuten 11 g Phosgen eingeleitet. Nach dem Einleiten des Gases wird das Reaktionsgemisch unter Rühren bei der gleichen Temperatur noch 30 Minuten lang nachgerührt. Nach dem Abkühlen wird das als Nebenprodukt entstandene Aminsalz durch zweimaliges Ausschütteln mit je 100 ml Wasser ausgewaschen und dann das Lösungsmittel abdestilliert. Der Rückstand erstarrt beim Erkalten. Man erhält 24 g N,N-Dibutyl-3,5-dinitrobenzoesäureamid, das bei   61-62     C schmilzt. Die Ausbeute beträgt   74,5%.   



  Analyse:
Berechnet: N 13,0 %
Gefunden: N   12,71%   
Beispiel 10
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 9,58 g N,N-Dibutylcarbamoylchlorid und 10,6 g 3,5-Dinitrobenzoesäure eingewogen und dann das Gemisch auf   140-160     C erhitzt, wobei die Gasentwicklung einsetzt. Das Reaktionsgemisch wird bis zur Beendigung der Gasentwicklung, also ungefähr 90 Minuten lang bei der obigen Temperatur gehalten und nach dem Abkühlen unter Rühren in 100 ml Wasser gegossen. Danach wird mit 100 ml Benzol extrahiert und die von der wässrigen Phase abgetrennte organische Phase über Natriumsulfat getrocknet.



  Nach dem Abdestillieren des Benzols erhält man einen Rückstand, der nach kurzem Stehen erstarrt. Es werden 12 g (74%) N,N-Dibutyl-3,5-dinitrobenzoesäureamid erhalten, das bei   61-62  C    schmilzt.



  Analyse:
Berechnet: N 13,0 %
Gefunden: N   12,71%   
Beispiel 11
In einen Kolben von 1000 ml Inhalt, der auf die im Beispiel 1 beschriebene Weise ausgerüstet ist, werden 11,0 g 3,4,5-Trimethoxybenzoesäure und 350 ml Xylol eingebracht.



  Das Gemisch wird auf   80"    C erwärmt und 5,0 g Morpholin in 50 ml Xylol zugegeben. Bei der gleichen Temperatur werden 5,0 g Phosgen eingeleitet, danach wird das Reaktionsgemisch noch eine Stunde lang nachgerührt. Das überschüssige Phosgen wird mit trockener Luft ausgetrieben. Die hellgelbe Lösung wird im Vakuum auf 30-40 ml eingedampft und dann unter Rühren in 50 ml Petroläther gegossen. Nach 5-10 Minuten werden die abgeschiedenen Kristalle auf einer Glasfritte abfiltriert, zweimal mit Petroläther gewaschen und dann gctrocknet. Man erhält 12,2 g   (83 %)    N-(3,4,5-Trimeth   oxybenzoyl)-tetrahydro-1,4-oxazin, das bei 113  C schmilzt.   



  Analyse:
Berechnet: N 4,98%
Gefunden: N 4,92%  
Beispiel 12
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 500 ml Inhalt werden 16,0 g Morpholincarbamoylchlorid und 22,5 g 3,4,5-Trimethoxybenzoesäure eingewogen.



  Das Gemisch wird auf   120-140     C erhitzt und 90 Minuten lang bei dieser Temperatur gehalten. Nach Beendigung der Gasentwicklung werden 100 ml Wasser zugegeben und 10-15 Minuten lang am Rückfluss gekocht. Danach wird das Reaktionsgemisch durch ein Faltenfilter filtriert und das Filtrat auf   50 C    abgekühlt. Die ausgeschiedenen Kristalle werden auf einer Glasfritte abfiltriert und getrocknet. Man erhält 23,0 g   (82%) N-(3 ,4,5-Trimethoxybenzoyl)-tetrahydro-l,4-oxazin,    das bei   116"    C schmilzt.



  Analyse:
Berechnet: N 4,98%
Gefunden: N 4,94%
Beispiel 13
In einen auf die im Beispiel 1 beschriebene Weise ausgerüsteten Kolben von 350 ml Inhalt werden 17 g Diphenylamin, 9,5 g Monochloressigsäure und 150 ml Xylol eingebracht. Das Reaktionsgemisch wird auf   120-130     C erhitzt und bei dieser Temperatur werden innerhalb einer Stunde 11 g Phosgen eingeleitet. Der Phosgenüberschuss wird mit trockener Luft ausgetrieben, das Xylol wird durch Destillation entfernt und die Schmelze in 100 ml Wasser gegossen. Die Kristalle werden abfiltriert, zweimal mit je 20 ml Wasser gewaschen und dann getrocknet. Man erhält 19,3 g N,N-Di   phenyl-chloracetamid, das bei 115-118" C schmilzt. Die Aus-    beute beträgt 94,7%.



  Analyse:
Berechnet: Cl 14,42 N 5,71%
Gefunden: Cl 14,63 N   5,68Nc   
Beispiel 14
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 4,62 g N,N-Diphenylcarbamoylchlorid und 2,3 g Monochloressigsäure eingebracht. Das Gemisch wird auf   120-130     C erhitzt und bis zur Beendigung der Gasentwicklung bei dieser Temperatur gehalten, was ungefähr eine Stunde in Anspruch nimmt. Danach wird die Schmelze in 50 ml Wasser gegossen. Die sich abscheidende kristalline Substanz wird abfiltriert, zweimal mit je 10 ml Wasser gewaschen und dann getrocknet. Man erhält 4,65 g (94,7%) N,N-Diphenyl-chloracetamid, das bei   115-118  C    schmilzt.



  Analyse:
Berechnet: Cl 14,42 N 5,71%
Gefunden: Cl 14,63 N 5,68%
Beispiel 15
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 500 ml Inhalt werden 19,8 g N-Isopropyl-N-phenylcarbamoylchlorid und 25,6 g Palmitinsäure eingebracht. Das Gemisch wird auf   140     C erwärmt und dann 90 Minuten lang bei einer Temperatur von   140-180     C gehalten. Nach Beendigung der Gasentwicklung wird auf   20     C abgekühlt, mit 20 ml Äther versetzt und das ausgeschiedene kristalline Aminsalz durch Filtrieren entfernt. Die ätherische Lösung wird im Vakuum eingedampft und der Rückstand in 50 ml Eiswasser gegossen. Das Produkt wird abfiltriert und getrocknet. Man erhält 31 g   (84%)    N-Isopropyl-N-phenyl-palmitinsäureamid, das bei   31"    C schmilzt.



  Analyse:
Berechnet: N 3,75%
Gefunden: N 3,68%
Beispiel 16
In einen mit einem Gasableitungsrohr versehenen Kolben von 350 ml Inhalt werden 19,1 g N,N-Dibutyl-carbamoyl chlorid und 12,2 g Benzoesäure eingebracht. Das Reaktions gemisch wird auf   110     C erwärmt, wobei die Gasentwicklung einsetzt, die bei einer Temperatur von   110-1300    C ungefähr
90 Minuten lang dauert. Danach wird das Reaktionsgemisch in 100 ml Wasser gegossen und mit 100 ml Benzol extrahiert.



  Die benzolische Phase wird von der wässrigen Phase abgetrennt und über Natriumsulfat getrocknet. Das Lösungsmittel wird abdestilliert und das erhaltene Produkt durch fraktionierte Vakuumdestillation gereinigt. Man erhält 18,0 g N,N Dibutyl-benzoesäureamid, das entspricht einer Ausbeute von
77,5 %. Das Produkt ist ein farbloses   Öl,    dessen Siedepunkt bei 14 Torr   144"    C beträgt.



  Analyse:
Berechnet: N 6,0 %
Gefunden: N 5,95%
Beispiel 17
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 350 ml Inhalt werden 15 g Morpholin-carbamoylchlorid und 12,5 g Benzoesäure eingebracht. Das Reaktionsgemisch wird auf   150-160     C erhitzt. Nach einer halben Stunde ist die Gasentwicklung beendet. Die Schmelze wird in 50 ml Wasser gegossen und dann mit 50 ml Benzol extrahiert. Die Phasen werden getrennt und die organische Phase über Natriumsulfat getrocknet. Durch fraktionierte Vakuumdestillation werden 17 g   (89%)    N-Benzoyl-tetrahydro-1,4-oxazin erhalten. Das Produkt ist ein farbloses Öl mit dem Siedepunkt (13 Torr)   178-182" C.   



  Analyse:
Berechnet: N   8,5%   
Gefunden: N 8,5%
Beispiel 18
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 500 ml Inhalt werden 24,6 g Nikotinsäure und 28,5 g N,N-Diäthylcarbamoylchlorid eingebracht. Das Reaktionsgemisch wird auf   190-220     C erhitzt und bei dieser Tempratur ungefähr 20-30 Minuten, bis zum Ende der Gasentwicklung, gehalten. Die braune Schmelze wird durch Vakuumdestillation aufgetrennt. Die bei 10 Torr und   155-160  C    übergehende Fraktion wird aufgefangen. Man erhält 31,0 g Nikotinsäurediäthylamid, was einer Ausbeute von   87,5 %    entspricht.



  Analyse:
Berechnet: N 15,7%
Gefunden: N 15,3%
Beispiel 19
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 100 ml Inhalt werden 1,25 g Diphenylessigsäure und 1,0 g Dimethyl-carbamoylchlorid eingebracht. Das Reaktionsgemisch wird auf   120-140     C erhitzt und eine halbe Stunde bei dieser Temperatur gehalten. Danach wird die auf   80"    C gekühlte Schmelze in 20 ml Wasser gegossen. Die ausgeschiedenen Kristalle werden abfiltriert, mit wenig Wasser gewaschen und dann getrocknet. Man erhält 1,4 g (100%) 1,1-Diphenyl-N,N-dimethyl-acetamid, das bei   128-129     C schmilzt.

 

  Analyse:
Berechnet: N   5,85%   
Gefunden: N 5,96%
Beispiel 20
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 31,3 g 2-Chlorbenzoesäure und 27,1 g Diäthylcarbamoylchlorid eingebracht. Das Reaktions  gemisch wird auf   130-140     C erwärmt und 45 Minuten lang bei dieser Temperatur gehalten. Das gekühlte Gemisch wird in 200 ml Wasser gegossen und dann mit 100 ml Benzol extrahiert. Die benzolische Phase wird über Natriumsulfat getrocknet und dann das Benzol durch Abdestillieren im Vakuum entfernt. Man erhält 38 g (90,5%) 2-Chlorbenzoesäurediäthylamid in Form eines gelblichbraunen Öles.



  Analyse:
Berechnet: N 6,65 Cl 16,8 %
Gefunden: N 6,41 Cl   16,21Wc   
Beispiel 21
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 31,3 g 4-Chlorbenzoesäure und 27,1 g Diäthylcarbamoylchlorid eingebracht und das Gemisch auf dem Ölbad 30 Minuten lang auf   140-160     C erhitzt. Nach dem Abkühlen wird das Reaktionsgemisch in ungefähr 200 ml Wasser gegossen und dann mit 1000 ml Petroläther extrahiert.



  Aus der organischen Phase wird der Petroläther im Vakuum abdestilliert. Man erhält 32 g   (76,5asc)    4-Chlorbenzoesäure diäthylamid in Form eines gelben Öles.



  Analyse:
Berechnet: N 6,65 Cl   16,8%   
Gefunden: N 6,35 Cl   16,6%   
Beispiel 22
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 19,1 g 3,4-Dichlorbenzoesäure und 13,5 g Diäthylcarbamoylchlorid eingebracht. Das Gemisch wird auf dem Ölbad auf   140-160     C erhitzt und 30 Minuten lang bei dieser Temperatur gehalten. Nach dem Abkühlen wird das Reaktionsgemisch in 100 ml Wasser gegossen und dann mit 50 ml Petroläther extrahiert. Die organische Phase wird getrocknet und das Lösungsmittel entfernt. Man erhält 22 g   (89,5Nc)    3,4-Dichlorbenzoesäure-diäthylamid in Form eines orangefarbenen Öles.



  Analyse:
Berechnet: N 5,70 Cl   28,8in   
Gefunden: N 5,41 Cl   28,4SZc   
Beispiel 23
In einen mit einem Gasableitungsrohr ausgerüsteten Kol ben von 250 ml Inhalt werden 19,1 g 3,4-Dichlorbenzoesäure und 19,1 g Diisobutylcarbamoylchlorid eingebracht. Das Ge misch wird auf   140     C erhitzt und 30 Minuten lang bei 160 bis    180 C gehalten. Nach dem Abkühlen wird die Schmelze in   
100 ml Wasser gegossen. Die abgeschiedenen Kristalle werden auf einer Glasfritte abfiltriert, zweimal mit je 20 ml Wasser gewaschen und dann getrocknet. Das rohe Produkt wird aus
Petroläther umkristallisiert. Man erhält 25 g 3,4-Dichlor benzoesäure-diisobutylamid, welches bei   74-76     C schmilzt.



  Die Ausbeute beträgt 83,5%.



  Analyse:
Berechnet: N 4,68 Cl 23,6 %
Gefunden: N 4,78 Cl 24,07%
Beispiel 24
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 15,5 g 2-Chlorbenzoesäure und
19,1 g Diisobutylcarbamoylchlorid eingebracht. Das Gemisch wird geschmolzen und eine halbe Stunde lang bei   140-160     C gehalten. Nach dem Abkühlen wird das Reaktionsgemisch in
100 ml Wasser gegossen und dann mit 50 ml Petroläther extrahiert. Die organische Phase wird getrocknet und das Lösungsmittel im Vakuum abdestilliert. Man erhält 22,5 g   (85,5sec)    2-Chlorbenzoesäure-diisobutylamid in Form eines dunkelroten Öles.



  Analyse:
Berechnet: N 5,30 Cl   13,35Nc   
Gefunden: N 5,41 Cl 12,94%
Beispiel 25
In einen mit einem Gasableitungsrohr versehenen Kolben von 250 ml Inhalt werden 19,1 g 3,4-Dichlorbenzoesäure und 19,1 g Di-sec.-butylcarbamoylchlorid eingebracht. Das Gemisch wird auf   1200    C erwärmt und bei einer Temperatur von   120-130     C 30 Minuten lang gehalten. Nach Beendigung der   Gasentwicklungwird    das Reaktionsgemisch in ungefähr 100 ml Wasser gegossen, wobei sich das 3,4-Dichlorbenzoesäure-disec.-butylamid in fester Form abscheidet. Das Produkt wird auf einer Glasfritte abfiltriert, zweimal mit je 20 ml Wasser gewaschen und dann getrocknet. Man erhält 24 g Produkt.



  Ausbeute   80etc.    Schmelzpunkt:   176-180"C.   



  Analyse:
Berechnet: N 4,68 Cl 23,6 %
Gefunden: N 4,45 Cl 24,07%
Beispiel 26
Als Reaktor wird eine mit Raschig-Ringen gefüllte, mit einem Heizmantel versehene Glaskolonne von 400 mm Länge und 27 mm innerem Durchmesser verwendet. Die Kolonne hat am oberen Ende einen   Rückflusskühler    und eine Flüssigkeitszuleitung, unter der Füllung eine Gaszuleitung. Die Füllkörperkolonne ist über eine Flüssigkeitssperre mit einem kontinuierlich arbeitenden Laboratoriumsfilmeindampfer verbunden, der zur Kondensierung und Rückgewinnung des Lösungsmittels mit einem Rückfluss- und einem absteigenden Kühler ausgerüstet ist. Die unten aus dem Filmeindampfer austretende Schmelze gelangt in ein gläsernes Ausfällgefäss von 2000 ml Inhalt, welches mit Rührer und kontinuierlicher Wasserzuleitung ausgerüstet ist, und von dort in die kontinuierlich arbeitende Zentrifuge.



   In die auf   80"    C vorgewärmte Füllkörperkolonne der auf die beschriebene Weise zusammengestellten Apparatur werden pro Stunde 105 g Monochloressigsäure, 135 g N-Isopropylanilin in 400 ml Benzol und am Boden der Kolonne 110 g Phosgen eingeleitet. Mit dem bei   1200    C arbeitenden Laborfilmeindampfer wird das Benzol aus dem Reaktionsgemisch abdestilliert. Aus dem Filmeindampfer gelangt die Schmelze in das Ausfällgefäss, wo sich das kristalline Produkt in Wasser von   20-25     C abscheidet. Durch Zentrifugieren, Waschen, erneutes Abtrennen und Trocknen werden pro Stunde 170 g (85%) N-Isopropyl-N-phenyl-chloracetamid erhalten, das bei   72"    C schmilzt.



  Analyse:
Berechnet: N 6,61 Cl 16,72%
Gefunden: N 6,41 Cl 16,60%
Beispiel 27
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 25,6 g N-(2-Methyl-6-äthyl)phenyl-N-äthoxymethyl-carbamoylchlorid und 10 g Monochloressigsäure vorgelegt, auf   1200    C erhitzt und 30 Minuten lang bei   120-140     C gehalten. Nach Beendigung der Gasentwicklung wird das Reaktionsgemisch auf 50 ml Wasser gegossen und mit 50 ml Benzol extrahiert. Die benzolische Phase wird abgetrennt und eingedampft. Man erhält 22 g (82%) N    (2-Methyl-6-äthyl)-phenyl-N-äthoxymethyl-chloracetamid    in Form eines dunkelgelben Öles.

 

  Analyse:
Berechnet: N 5,2 Cl 13,3 %
Gefunden: N 5,03 Cl 12,97%  
Beispiel 28
In einen mit einem Gasableitungsrohr ausgerüsteten Kolben von 250 ml Inhalt werden 29,8 g N-(2,6-Diäthyl)-phenyl N-butoxymethyl-carbamoylchlorid und 10 g Monochloressigsäure vorgelegt, auf   1200    C erhitzt und 30-40 Minuten lang bei   120-140     C gehalten. Das Reaktionsgemisch wird auf die im Beispiel 27 beschriebene Weise aufgearbeitet. Man erhält 25 g (80,5 %)   N-(2,6-Diäthyl)-phenyl-N-butoxymethyl-chlor-    acetamid in Form eines dunkelbraunen Öles.



  Analyse:
Berechnet: N 4,51 Cl 11,4%
Gefunden: N 4,39 Cl 10,9% 

Claims (1)

  1. PATENTANSPRUCH Verfahren zur Herstellung von N,N-disubstituierten Carbonsäureamiden der allgemeinen Formel I EMI6.1 worin R1 eine gerade oder verzweigte, gegebenenfalls mit Halogen oder Phenyl substituierte aliphatische Gruppe mit 2-18 C-Atomen, Phenyl, Chlorphenyl, Dichlorphenyl, Nitrophenyl, Dinitrophenyl oder Trimethoxyphenyl, ferner einen sechsgliedrigen, ein Stickstoffatom enthaltenden, ungesättigten heterocyclischen Rest bedeutet und R2 und R3 gleiche oder verschiedene, gerade oder verzweigte aliphatische Gruppen mit 1-4 C-Atomen oder Phenyl bedeuten, gemeinsam aber auch für einen ein Stickstoff- und ein Sauerstoffatom enthaltenden sechsgliedrigen heterocyclischen Rest stehen können, dadurch gekennzeichnet,
    dass man eine Carbonsäure der allgemeinen Formel II EMI6.2 a) mit einem sekundären Amin der allgemeinen Formel III EMI6.3 und mit Phosgen bei 50-150 C, vorzugsweise bei 80-100 C, gegebenenfalls in Anwesenheit eines inerten Lösungsmittels zur Reaktion bringt, oder b) mit einem Carbamoylchlorid der allgemeinen Formel IV EMI6.4 bei einer Temperatur von 100-300 C, vorzugsweise 110 bis 220 C unter Abspaltung von Kohlendioxyd reagieren lässt und das erhaltene N,N-disubstituierte Carbonsäureamid in an sich bekannter Weise aus dem Reaktionsgemisch isoliert.
    UNTERANSPRUCH Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass die Carbonsäure der allgemeinen Formel II mit einem sekundären Amin der allgemeinen Formel III und mit Phosgen bei 80-100 C in Anwesenheit eines inerten Lösungsmittels zur Reaktion gebracht wird.
CH1708473A 1973-12-03 1973-12-03 N,N-disubstd carboxylic acid amides prodn. - by reaction of acid with amine and phosgene or carbamoyl chloride, gives prods suitable as pharmaceuticals and plant protection agents CH581096A5 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH1708473A CH581096A5 (en) 1973-12-03 1973-12-03 N,N-disubstd carboxylic acid amides prodn. - by reaction of acid with amine and phosgene or carbamoyl chloride, gives prods suitable as pharmaceuticals and plant protection agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1708473A CH581096A5 (en) 1973-12-03 1973-12-03 N,N-disubstd carboxylic acid amides prodn. - by reaction of acid with amine and phosgene or carbamoyl chloride, gives prods suitable as pharmaceuticals and plant protection agents

Publications (1)

Publication Number Publication Date
CH581096A5 true CH581096A5 (en) 1976-10-29

Family

ID=4422636

Family Applications (1)

Application Number Title Priority Date Filing Date
CH1708473A CH581096A5 (en) 1973-12-03 1973-12-03 N,N-disubstd carboxylic acid amides prodn. - by reaction of acid with amine and phosgene or carbamoyl chloride, gives prods suitable as pharmaceuticals and plant protection agents

Country Status (1)

Country Link
CH (1) CH581096A5 (de)

Similar Documents

Publication Publication Date Title
CH649078A5 (de) Verfahren zur herstellung von n-mono- oder disubstituierten n-aryl-harnstoff-derivaten.
EP0016420B1 (de) Verfahren zur Herstellung von Thiazolidin-2-thionen
EP0087659A2 (de) Verfahren zur Herstellung von cyclischen N-Vinylacylaminen
DE2607294A1 (de) Verfahren zur herstellung von 2-amino-1-butanol
EP0057844B1 (de) Verfahren zur Herstellung von Polychlorbenzoylchloriden
DE2323956A1 (de) Substituierte naphthylanthranilsaeure
AT323123B (de) Verfahren zur herstellung von n,n-disubstituierten charbonsäureamiden
CH581096A5 (en) N,N-disubstd carboxylic acid amides prodn. - by reaction of acid with amine and phosgene or carbamoyl chloride, gives prods suitable as pharmaceuticals and plant protection agents
DE2206365A1 (de) N,N-Disubstituierte Carbaminsäurehalogenide
DD146948A5 (de) Verfahren zur herstellung weitgehend reiner pyrazolverbindungen
DE1770428A1 (de) Verfahren zur Herstellung von N-Carboxyanhydriden von Aminosaeuren
DE2361604C3 (de) Verfahren zur Herstellung von N1Ndisubstituierten Carbonsäureamiden
DE2854152C2 (de)
EP1127879A1 (de) Herstellung der 2-Oxo-1,3-dibenzyl-cis-4,5-imidazolidindicarbonsäure bzw. ihres Anhydrids
EP0449777B1 (de) Verfahren zur Herstellung von Hydroxyphenylpropionaten
EP0126934A2 (de) Verfahren zur Herstellung von 1,1-disubstituierten Thioharnstoffen
DE2336403A1 (de) Verfahren zur herstellung von isocyanaten
EP0156198B1 (de) Verfahren zur Herstellung von Isocyanaten
DE850297C (de) Verfahren zur Herstellung von Amidinsalzen
DE2429781C2 (de) Verfahren zur Herstellung von N,N-Bis-(2-cyanoäthyl)-amino-phenolen
DE1261855B (de) Verfahren zur Herstellung von reinem 2-N,N-Dimethylcarbamyl-3-methyl-pyrazolyl-(5)-N,N-dimethylcarbamat
DE2361604B2 (de) Verfahren zur Herstellung von N,Ndisubstituierten Carbonsäureamiden
EP0073871B1 (de) Verfahren zur Herstellung von N-substituierten N-Acetyl-2,6-dialkylanilinen
DE551777C (de) Verfahren zur Herstellung von nicht substituierten Carbaminsaeureestern disubstituierter Aminoalkohole
AT233173B (de) Verfahren zur Herstellung neuer Äther

Legal Events

Date Code Title Description
PL Patent ceased