BE1008323A3 - Procede pour la preparation de particules preparees a sec, particules preparees a sec ainsi obtenues et compositions pharmaceutiques contenant de telles particules. - Google Patents

Procede pour la preparation de particules preparees a sec, particules preparees a sec ainsi obtenues et compositions pharmaceutiques contenant de telles particules. Download PDF

Info

Publication number
BE1008323A3
BE1008323A3 BE9400480A BE9400480A BE1008323A3 BE 1008323 A3 BE1008323 A3 BE 1008323A3 BE 9400480 A BE9400480 A BE 9400480A BE 9400480 A BE9400480 A BE 9400480A BE 1008323 A3 BE1008323 A3 BE 1008323A3
Authority
BE
Belgium
Prior art keywords
biocompatible polymer
particles
support phase
stirring
active principle
Prior art date
Application number
BE9400480A
Other languages
English (en)
Inventor
Jean-Marc Ruiz
Original Assignee
Sod Conseils Rech Applic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sod Conseils Rech Applic filed Critical Sod Conseils Rech Applic
Application granted granted Critical
Publication of BE1008323A3 publication Critical patent/BE1008323A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Materials For Medical Uses (AREA)

Abstract

L'invention concerne un procédé pour la préparation de particules préparées à sec, de forme substantiellement sphéroïdale et consistant en un principe actif incorporé dans un polymère biocompatible de haut point de fusion, ledit procédé comprenant le mélange, sous agitation, dudit polymère biocompatible et dudit principe actif, dans une phase support visqueuse homogène non-miscible, ledit principe actif et ledit polymère biocompatible étant insolubles dans ladite phase support visqueuse homogène, puis le maintient de l'agitation, jusqu'à la formation de microbilles de polymère biocompatible et la complète incorporation du principe actif à l'intérieur, la température de mise en oeuvre du procédé étant au-dessus de la température de transition vitreuse du polymère biocompatible, enfin, la récupération des billes ainsi obtenues. L'invention concerne aussi les particules préparées à sec ainsi obtenues et des compositions pharmaceutiques contenant de telles particules.

Description


   <Desc/Clms Page number 1> 
 



   Procédé pour la préparation de particules préparées à sec. particules préparées à sec ainsi obtenues et compositions pharmaceutiques contenant de telles particules 
 EMI1.1 
 L'invention concerne un procédé pour la préparation de particules préparées à sec, comprenant un principe actif associé à un polymère biocompatible. L'invention concerne également les particules préparées à sec ainsi obtenues et des compositions pharmaceutiques les contenant Dans cette description. le terme"principe actif est utilisé pour désigner n'importe quelle substance thérapeutique active ou mélange pouvant être avantageusement administrés à l'homme ou aux autres animaux pour diagnostiquer, soigner, réduire, traiter ou prévenir la maladie. Le terme"polymère"est utilisé pour englober les homopolymères, les copolymères ou une combinaison de ceux-ci.

   Enfin, les"particules préparées à sec" doivent être considérées comme des particules préparées selon un procédé dans lequel aucun constituant desdites particules ne doit être dissous dans un quelconque solvant qui serait à éliminer avant la récupération desdites particules. 



  Les particules ou les microparticules comprenant un ou plusieurs principes actifs, les procédés pour leur préparation et leur utilisation dans des compositions pharmaceutiques sont bien connus. Lorsque la préparation de telles microparticules nécessite la mise en suspension ou la dissolution d'un polymère dans un solvant. les microcapsules ainsi obtenues renferment. généralement, des traces (au moins) des solvants mis en oeuvre dans leur obtention : ceci peut constituer un obstacle pour certains usages thérapeutiques. 



  Lorsque la préparation de telles microparticules nécessite l'extrusion et/ou le broyage, cela implique la formation de particules dont les surfaces externes sont irrégulières ; la présence d'un principe actif sur les surfaces externes et l'irrégularité desdites surfaces ne permettent pas le contrôle précis de la hauteur du pic de libération initiale dans le cas de microparticules destinées à libérer une quantité efficace de principe actif sur une période prédéterminée. 



  Quelques procédés de préparation de particules sans l'utilisation d'un solvant et de techniques d'extrusion et/ou de broyages sont connus. Par exemple, dans la demande de 

 <Desc/Clms Page number 2> 

 brevet   W092/21326.   le procédé comprend la conversion. par chauffage, du mélange d'un produit pharmaceutique et de polymères biocompatibles en une phase liquide intermédiaire, puis ladite phase liquide est versée dans une matrice temporaire constituée de cristaux ; la phase liquide est convertie, par refroidissement, en phase solide, puis la matrice est supprimée de la phase solide par lavage. La phase solide se trouve ainsi sous une forme comprenant des empreintes de la structure cristalline de la matrice temporaire. 



  Par conséquent, les particules ainsi obtenues ont une surface externe irrégulière et sont, de toute évidence,   non-sphéroïdales.   ne présentant aucune des caractéristiques requises pour un contrôle précis de la libération. 



  Un autre procédé, appelé encapsulation par fusion chaude. a été étudié et décrit (voir, par exemple, E. Mathiowitz et R. Langer, Journal of Controlled Release, 5 (1987)   13-22) ;   le procédé comprend le mélange d'un produit pharmaceutique et d'un polymère fondu, puis la mise en suspension dudit mélange dans un solvant non-miscible du polymère et du produit pharmaceutique sélectionnés. Après stabilisation de l'émulsion ainsi obtenue. le mélange est refroidi jusqu'à la solidification du produit final souhaité.

   Cependant. selon ce procédé, le polymère utilisé est uniquement un polymère avec un bas point de fusion, c. à. d. 70-80  C ou moins ou. si un polymère avec un haut point de fusion est employé, ledit polymère doit être associé à un plastifiant afin d'abaisser le point de fusion jusqu'à une température permettant la conduite dudit procédé. Ainsi, il est impossible d'obtenir des particules comprenant seulement le produit pharmaceutique et un polymère pur de haut point de fusion ; et la transposition d'un tel procédé à une température élevée de mise en oeuvre dans le but, par exemple, d'utiliser ledit procédé avec un polymère pur de haut point de fusion, conduit au collage des constituants et. éventuellement, à la dégradation du produit pharmaceutique.

   En outre, les microsphères ainsi obtenues possèdent une surface externe granuleuse et le faible point de fusion du polymère utilisé peut être un obstacle pour le stockage et la conservation desdites microsphères. 
 EMI2.1 
 



  Dans la description du brevet anglais No. 2246514. le procédé permet de transformer, au e moyen d'un traitement approprié dans un gel. des particules obtenues par des techniques conventionnelles bien connues dans le domaine pharmaceutique, extrusion et broyage, en particules d'une forme substantiellement sphéroïdale. tout en étant dépourvues de principe actif sur l'enveloppe externe. Les particules ainsi obtenues. fabriquées à sec et sans l'utilisation d'un quelconque solvant, sont appelées des microbilles ; ces particules. de forme substantiellement sphéroïdale et dépourvues de principe actif sur l'enveloppe externe, permettent la libération soutenue d'une quantité efficace de principe actif sur une période prédéterminée, avec un bon contrôle de la libération et de la hauteur du pic de 

 <Desc/Clms Page number 3> 

 libération initiale.

   Bien que ce procédé soit très satisfaisant. dans la mesure où les produits sont nettement améliorés comparés au produit de départ. ledit produit de départ a le désavantage d'une pureté inférieure, au regard du principe actif-tel qu'un peptidequi est   généralement   fragile à l'extrusion et au broyage ; de tels traitements sont, généralement, des étapes susceptibles d'affecter la pureté, qui est fréquemment abaissée d'environ 1 à 5   9é.   Etant donné le coût élevé des substances peptidiques et les éventuels inconvénients liés à la présence de produits de dégradation dans le produit pharmaceutique, ce point est d'importance. 



  De plus, lorsque de telles microbilles sont obtenues à partir de particules préparées par extrusion et broyage, le taux de charge de telles microbilles est généralement inférieur à   10   le procédé peut être utilisé pour l'obtention de microbilles avec un taux de charge supérieur à   10 9'0,   mais avec une perte substantielle du principe actif pendant la mise en oeuvre, et le procédé ne peut pas être utilisé pour l'obtention de microbilles ayant un taux de charge supérieur à 15   %.   en raison de la friabilité des produits résultant de l'extrusion. Aussi, dans certaines circonstances, il peut être souhaitable d'obtenir des particules avec un taux de charge supérieur à 15 %. 



  Selon l'invention, il est proposé un nouveau procédé pour la préparation de particules, dans lesquelles les inconvénients des techniques décrites dans les procédés précédents peuvent être évités. 



  En comparaison avec le procédé du brevet anglais ci-dessus mentionné, le procédé de la présente invention est réalisé sans utiliser de particules déjà fabriquées mais en utilisant. comme produits de départ, uniquement les constituants des microbilles et une phase support et. en ce qui concerne les techniques, uniquement le chauffage/refroidissement et   l'agitation   les techniques conventionnelles telles que le mélange à sec, l'extrusion et le broyage, ne sont plus nécessaires.

   Le procédé de l'invention peut être mis en oeuvre pour 
 EMI3.1 
 l'obtention de microbilles avec un taux de charge de 1. 5, 10, 15 9é ou plus. e Les particules obtenues selon la présente invention sont également de forme substantiellement sphéroïdale et dépourvues de principe actif sur l'enveloppe externe : elles peuvent également être appelées microbilles : elles ne sont obtenues par aucun procédé déjà connu de l'état de la technique   :   en outre, les particules de la présente invention sont préparées à sec et sans l'utilisation d'un quelconque solvant. 

 <Desc/Clms Page number 4> 

 



  L'invention concerne un procédé pour la préparation de particules préparées à sec, de forme substantiellement sphéroïdale et consistant en un principe actif incorporé dans un polymère biocompatible de haut point de fusion, ledit procédé comprenant :   - le mélange,   sous agitation, dudit polymère biocompatible et dudit principe actif, soit sous une forme solide, soit sous une forme liquide. et dans des proportions appropriées en relation avec la quantité de polymère biocompatible, dans une phase support liquide homogène non-miscible, ladite phase support ayant une viscosité comprise entre 3 000 et 15 000 mPa. s (à   250 C).

   ledit   principe actif et ledit polymère biocompatible étant, dans les conditions opératoires, insolubles dans ladite phase support liquide homogène, - puis le maintien de l'agitation, jusqu'à la formation de microbilles de polymère biocompatible et la complète incorporation du principe actif à l'intérieur, et ce jusqu'à la gamme de taille de microbilles voulues, la température de mise en oeuvre du procédé étant au-dessus de la température de transition vitreuse du polymère biocompatible, et - enfin la récupération des billes ainsi obtenues. 



  Selon l'invention, le procédé pour la préparation de particules fabriquées à sec peut comprendre la séquence d'étapes suivante : - mélanger, sous agitation, une phase contenant un polymère biocompatible de haut point de fusion, avec une phase support liquide homogène non-miscible, ladite phase support ayant une viscosité comprise entre 3   000 et 15000 mPa. s   (à 250   C),   et ledit polymère biocompatible étant insoluble dans ladite phase support. 



   - porter, sous agitation, avec les moyens de chauffage ou de refroidissement appropriés, le mélange ainsi obtenu à une température supérieure à la température de transition vitreuse du polymère biocompatible. 



   - maintenir l'agitation jusqu'à la formation de microbilles du polymère, dans la gamme de taille voulue. 



   - puis ajouter, sous agitation, à une température supérieure à la température de transition vitreuse du polymère biocompatible, un principe actif qui est insoluble dans la phase support liquide homogène, soit sous forme solide. soit sous forme liquide, et dans des proportions appropriées en relation avec la quantité de polymère biocompatible. 

 <Desc/Clms Page number 5> 

 



   - maintenir l'agitation pour permettre l'incorporation progressive du principe actif à l'intérieur des microbilles du polymère biocompatible jusqu'à l'absorption complète de ce dernier, puis stopper l'agitation et refroidir le mélange. 



   - enfin, après ajout de l'agent de lavage approprié, qui est un solvant ni du polymère biocompatible, ni du principe actif, récupérer les microbilles ainsi obtenues par filtration et tamisage et - optionnellement soumettre les particules à une étape de stérilisation. 



  Selon l'invention, le procédé pour la préparation de particules préparées à sec peut, alternativement, comprendre la séquence d'étapes suivante : - mélanger, sous agitation, une phase contenant un principe actif thermostable à la température de mise en oeuvre du procédé, avec une phase support liquide homogène non-miscible, ladite phase support ayant une viscosité comprise entre
3 000 et 15 000 mPa. s (à 25  C) et ledit principe actif étant insoluble dans ladite phase support. 



   - porter, sous agitation, avec les moyens de chauffage ou de refroidissement appropriés. le mélange ainsi obtenu à une température supérieure à la température de transition vitreuse du polymère biocompatible qui est ajouté à l'étape suivante, et - puis ajouter, sous agitation, à une température supérieure à la température de transition vitreuse du polymère biocompatible, le polymère biocompatible, dans des proportions appropriées en relation avec la quantité de principe actif, ledit polymère étant également insoluble dans la phase support liquide homogène, - maintenir l'agitation pour permettre la formation de microbilles de polymère biocompatible et l'incorporation progressive du principe actif à l'intérieur des microbilles du polymère biocompatible jusqu'à l'absorption complète de ce dernier, puis stopper l'agitation et refroidir le mélange. 



     - enfin.   après ajout de l'agent de lavage approprié, qui est un solvant ni du polymère biocompatible, ni du principe actif, récupérer les microbilles ainsi obtenues par filtration et tamisage et - optionnellement soumettre les particules à une étape de stérilisation. 



  Selon une autre alternative, le procédé de l'invention peut comprendre la séquence d'étapes suivante : - mélanger, sous agitation. une phase contenant un polymère biocompatible de haut point de fusion, un principe actif thermostable à la température de mise en oeuvre du procédé. dans des proportions appropriées en relation avec la quantité 

 <Desc/Clms Page number 6> 

 de polymère biocompatible. dans une phase support liquide homogène non-miscible, ladite phase support ayant une viscosité comprise entre 3 000 et   15 000 mPa.   s (à   250 C),   et ledit polymère biocompatible et ledit principe actif étant insolubles dans ladite phase support. 



   - porter. sous agitation, avec les moyens de chauffage ou de refroidissement appropriés. le mélange ainsi obtenu à une température supérieure à la température de transition vitreuse du polymère biocompatible. 



   - maintenir l'agitation pour permettre la formation des microbilles de polymère biocompatible et l'incorporation progressive du principe actif à l'intérieur des microbilles du polymère biocompatible jusqu'à l'absorption complète de ce dernier, puis stopper l'agitation et refroidir le mélange,   - enfin.   après ajout de l'agent de lavage approprié, qui est un solvant ni du polymère biocompatible, ni du principe actif, récupérer les microbilles ainsi obtenues par filtration et tamisage et - optionnellement soumettre les particules à une étape de stérilisation. 



  Bien évidemment, la température de mise en oeuvre du procédé doit être inférieure aux 
 EMI6.1 
 températures auxquelles l'un des constituants se dégrade. c L'invention concerne aussi des particules préparées à sec, obtenues selon la présente invention, lesdites particules se présentant sous une forme substantiellement sphéroïdale et consistant en un mélange d'un principe actif avec un polymère biocompatible de haut point de fusion. l'enveloppe externe desdites particules étant substantiellement dépourvue de principe actif. 



  Enfin, l'invention concerne des compositions pharmaceutiques contenant de telles particules. Les particules de l'invention, fabriquées à sec. peuvent être administrées par voie orale ou par injection. Pour une administration par injection, les particules doivent, de   préférence.   avoir une taille inférieure à 200   p. m.   Pour une administration par voie orale, lesdites particules ont. de préférence, une taille comprise entre 0, 8 et 5 mm. 



  La phase support peut contenir, au moins, un homo-ou co-polymère et sa composition peut contenir jusqu'à   100 % do   ce dernier. La phase support peut être de l'huile de silicone, de l'huile injectable telle que l'huile de sésame. de l'huile d'arachide ou de l'huile de castor, qui peuvent être épaissies par un agent épaississant approprié tel que le stéarate. 

 <Desc/Clms Page number 7> 

 
 EMI7.1 
 La phase support peut être un gel hydrophobe ou hydrophile. Lorsque le principe actif est hydrophile, le gel peut être. de préférence, hydrophobe comme, par exemple, de l'huile épaissie ; les microbilles peuvent être récupérées en lavant le mélange avec un agent de lavage hydrophobe approprié comme le myristate d'isopropyle, par exemple.

   Lorsque le principe actif est hydrophobe, le gel peut être, de préférence, hydrophile, comme, par exemple, un gel aqueux ; les microbilles peuvent être récupérées en lavant le mélange avec un agent de lavage hydrophile approprié comme, par exemple, de l'eau ou un mélange eau/éthanol. 



  Cependant, lorsque l'huile de silicone est utilisée, les caractères hydrophobe et hydrophile du principe actif n'ont aucune importance, en raison de l'insolubilité de la plupart des principes actifs dans une telle phase. 



  Le polymère biocompatible utilisé dans l'invention peut être un polymère de polysaccharide, de cellulose (par exemple, hydroxy méthyle cellulose, hydroxy propyl méthyle cellulose), du polyvinylpyrrolidone ou un polypeptide. Le polymère biocompatible utilisé peut être, alternativement, un polymère biocompatible et biodégradable, tel qu'un homopolymère ou un copolymère de E-caprolactone, une protéine dénaturée, des poly ortho esters ou du polyalkyl-cyanoacrylate. Le polymère biocompatible utilisé peut être, alternativement, un polymère biocompatible et biorésorbable tel qu'un homopolymère ou un copolymère de l'acide lactique et de l'acide glycolique.

   Par ailleurs, le polymère biocompatible utilisé est un polymère biocompatible de haut point de fusion ; ledit polymère peut être avantageusement un polymère biocompatible avec un point de fusion supérieur à 150  C. 



  Pour la préparation des microbilles destinées à libérer une quantité efficace du principe actif sur une période prédéterminée, le polymère biocompatible utilisé est. de préférence, un polymère biodégradable avec une température de transition vitreuse (ou Tg) comprise entre 25 et 2000 C et, de préférence, entre 35 et 150  C. Dans un mode de réalisation préféré, le polymère biocompatible peut être un polymère biorésorbable. 



  Selon l'invention, le principe actif peut se présenter sous forme solide ou liquide, à température ambiante. Dans ce cas, la forme liquide doit être comprise comme une forme liquide non-miscible dans la phase support. 



  Lors de la préparation, les principaux paramètres impliqués en ce qui concerne la taille des microbilles sont les conditions d'agitation, la température et la viscosité de la phase support. 

 <Desc/Clms Page number 8> 

 L'agitation peut être maintenue lors de l'augmentation de la température ou peut commencer lorsque la température a atteint une température supérieure à la température de transition vitreuse du polymère biocompatible. L'agitation peut être provoquée par des moyens variés tel qu'un homogénéisateur ou un générateur d'ultra-sons ; le générateur d'ultra-sons implique une agitation avec chauffage. 



  La taille des particules du polymère biocompatible utilisé comme produit de départ n'est pas d'une importance fondamentale et la taille des particules peut être, indifféremment, d'environ 300   gm   à environ 5 mm : dans tous les cas, la taille peut être réduite à la taille voulue, par une agitation et/ou un chauffage appropriés. Par exemple, des particules d'une taille de 5 mm peuvent être obtenues avec une faible agitation dans une phase support de viscosité élevée, alors que les particules d'une taille de 300   fim   peuvent être obtenues avec une agitation énergique dans une phase support de faible viscosité. 



  La viscosité de la phase support homogène peut être comprise entre 3 000 et 15 000 mPa. s (à   250   C). De préférence, la viscosité est comprise entre 5 000 et   12 000 mPa.   s (à   250 C) et,   plus préférentiellement, aux alentours de 10 000 mPa. s (à 250 C). 



  Selon la stabilité des composés et les différents paramètres impliqués, le procédé rapide d'incorporation du principe actif dans la matrice du polymère peut être réalisé à une température supérieure à 100  C et la stérilisation peut ainsi s'effectuer en même temps. 



  Evidemment, la matrice polymérique peut être préalablement stérilisée : lorsque la matrice est chauffée à une température au-dessus de la température de transition vitreuse du polymère, la stérilisation peut s'effectuer en même temps. Lorsque le gel est hydrophile, la pression est augmentée afin d'éviter la phase vapeur ; par exemple, le polymère, dans la phase support, peut être chauffé dans un autoclave à environ   1200   C pendant environ 20 minutes, puis refroidi à la température de mise en oeuvre. Dans tous les cas, les particules obtenues selon le procédé de l'invention peuvent être, si cela est nécessaire, stérilisées par n'importe quel moyen connu tel que, par exemple, la radiostérilisation. 



  Les exemples ci-après illustrent l'invention. 



    EXEMPLE L   Cet exemple montre que les particules de l'invention sont dépourvues de principe actif sur l'enveloppe extérieure homogène. 

 <Desc/Clms Page number 9> 

 



  Phase support : huile de silicone (y = 10 000 mPa. s à 25  C) Polymère biocompatible : Poly Lactide co Glycolide. appelé PLGA. 50/50 (gamme de poids moléculaire moyen = 40 000 à   50 000)   Principe actif fictif : colorant bleu hydrophile. c. à. d. Blue Patente V-Taille des particules :   10     0 m   Du PLGA 50/50 est ajouté dans un réacteur contenant 100 ml d'huile de silicone. Le mélange de PLGA est dispersé pendant 5 minutes sous agitation, à température ambiante. L'agitation est stoppée et le mélange est chauffé à   110 C.   On reprend l'agitation et le colorant bleu est ajouté.

   L'agitation est maintenue pendant 30 minutes à 125  C afin d'incorporer le principe actif fictif aux microbilles à sec ; l'agitation est stoppée et on laisse le mélange se refroidir toute une nuit dans un congélateur à 20  C. Le mélange est lavé avec du myristate d'isopropyle, filtré et séché pour récupérer les particules bleues. Pendant le lavage, aucune coloration n'est observée dans l'huile de silicone ou dans l'agent de lavage. 



  Les particules ainsi obtenues sont dispersées dans 200 ml d'eau, mais aucune coloration de l'eau n'est observée. Les particules sont dispersées dans du dichlorométhane et, ensuite, diluées dans de l'eau ; l'eau se colore en bleu. 



  EXEMPLE 2 Phase support : huile de silicone (y = 10 000 mPa. s à 25  C) Polymère biocompatible : PLGA   50/50.   broyé à 200   gm   Principe actif : pamoate de   D-Trp LHRH-Taille   des particules : 5 à 10   0 m   5 g de PLGA 50/50 sont ajoutés, sous agitation, dans un réacteur contenant 500 ml d'huile de silicone. Les particules de PLGA 50/50 sont dispersées dans l'huile et le mélange est chauffé à   80-100  C. 0. 175 g de   particules du peptide sont alors ajoutées, sous agitation. L'incorporation progressive des particules du peptide dans les particules du polymère et/ou sur la surface de ce dernier peut être observée. Le mélange est agité pendant 20 minutes à la même température, puis chauffé à   1250   C.

   L'agitation est alors stoppée et le mélange est refroidi à   250 C.   dilué dans 9 volumes de myristate d'isopropyle en tant qu'agent de lavage et filtré à 3 um pour obtenir   4.   5 g de particules. 

 <Desc/Clms Page number 10> 

 EXEMPLE 3 Phase support : huile de silicone (y = 5 000 mPa. s à 25  C) Polymère biocompatible : PLGA 50/50, broyé à 200   m   Principe actif : acétate de   D-Trp LHRH-Taille   des particules : 5 à 10   0 m.   



  5 g de PLGA 50/50 sont ajoutés, sous agitation, dans un réacteur contenant 500 ml d'huile de silicone. Les particules de PLGA 50/50 sont dispersées dans l'huile et le mélange est chauffé à 80-100  C. 0,170 g de particules du peptide sont alors ajoutées, sous agitation. L'incorporation progressive des particules du peptide dans les particules du polymère et/ou sur la surface de ce dernier peut être observée. Le mélange est agité pendant 20 minutes à la même température, puis chauffé à 125  C. L'agitation est alors stoppée et le mélange est refroidi à 25  C, dilué dans 9 volumes de myristate d'isopropyle en tant qu'agent de lavage et filtré à 3 im pour obtenir 4,8 g de particules. 



  EXEMPLE 4 Phase support : huile de silicone (y = 10 000 mPa. s à 25  C) Polymère biocompatible : PLGA   50/50,   broyé à 200 im Principe actif : pamoate de   somatuline-Taille   des particules : 5 à 10   gm   5 g de PLGA 50/50 sont ajoutés, sous agitation, dans un réacteur contenant 500 ml d'huile de silicone. Les particules de PLGA 50/50 sont dispersées dans l'huile et le mélange est chauffé à 100-120  C. 0. 980 g de particules du peptide sont alors ajoutées, sous agitation. L'incorporation progressive des particules du peptide dans les particules du polymère et/ou sur la surface de ce dernier peut être observée. Le mélange est agité pendant 30 minutes à la même température, puis chauffé à 130  C.

   L'agitation est alors stoppée et le mélange est refroidi à   250 C. dilué   dans 9 volumes de myristate d'isopropyle en tant qu'agent de lavage et filtré à 3 Am pour obtenir   5. 1 g de   particules. 



  EXEMPLE 5 Phase support : Polyvinylpyrrolidone (PVP) K 60 dans de l'eau (45   %   p/v) Polymère biocompatible : PLGA   50/50,   broyé à 200 im Principe actif : stéroïdes   (progestérone) - Taille   des particules : 5 à 10   (im   8 g de PLGA 50/50 sont ajoutés, sous agitation, dans un réacteur contenant 500 ml de gel de PVP. Les particules de PLGA 50/50 sont dispersées dans le gel et le mélange est chauffé à   950 C. 2. 44 g   de particules de progestérone sont alors ajoutées, sous agitation. 

 <Desc/Clms Page number 11> 

 



  L'incorporation progressive des particules de stéroïdes dans les particules du polymère   etjou   sur la surface de ce dernier peut être observée. Le mélange est agité pendant 30 minutes à la même température. L'agitation est alors stoppée et le mélange est refroidi à   250 C.   dilué dans 10 volumes d'eau en tant qu'agent de lavage et filtré à 8 um pour 
 EMI11.1 
 obtenir 9. 96 g de particules. 



  EXEMPLE 6 Phase support : huile de silicone (y = 10 000 mPa. s à 25  C) Polymère biocompatible : polymère de E-caprolactone. broyé à 200 lam Principe actif : pamoate de D-Trp LHRH-Taille des particules : 5 à 10 J. m 1 g du polymère est ajouté, sous agitation. dans un réacteur contenant 500 ml d'huile de silicone. Les particules du polymère sont dispersées dans l'huile et le mélange est chauffé à 80  C. 37 mg de particules du peptide sont alors ajoutées, sous agitation. 



  L'incorporation progressive des particules du peptide dans les particules du polymère et/ou sur la surface de ce dernier peut être observée. Le mélange est agité pendant 10 minutes à 110  C. L'agitation est alors stoppée et le mélange est refroidi à 25  C, dilué dans 9 volumes de myristate d'isopropyle en tant qu'agent de lavage et filtré à 3   gm   pour obtenir   0.   952   g   de particules. 



  EXEMPLE 7 Phase support : stéarate d'aluminium dans de l'huile de sésame (4 % p/v) Polymère biocompatible : PLGA   50/50.   broyé à 200   go   Principe actif : pamoate de   triptoréline-Taille   des particules : 5 à 10 Am 10 g de PLGA 50/50 sont ajoutés. sous agitation. dans un réacteur contenant 500 ml de stéarate d'aluminium dans de l'huile de sésame. Les particules de PLGA 50/50 sont dispersées dans le gel et le mélange est chauffé à   1200 C. 0.   638 g de particules du 
 EMI11.2 
 peptide sont alors ajoutées, sous agitation. à 100 mg d'ester d'acide gras de sorbitane. e L'incorporation progressive des particules du peptide dans les particules du polymère et/ou sur la surface de ce dernier peut être observée. Le mélange est agité pendant   20   minutes à 120  C.

   L'agitation est alors stoppée et le mélange est refroidi à 25  C. dilué dans 20 volumes d'éthanol en tant qu'agent de lavage et filtré à 8   gm   pour obtenir 9. 2 g de particules. 

 <Desc/Clms Page number 12> 

 



  EXEMPLE 8 Phase support : stéarate d'aluminium dans de l'huile de sésame (4 % p/v) Polymère biocompatible : Poly   E   caprolacton. broyé à 200   j. 1m   Principe actif : pamoate de   triptoréline-Taille   des particules : 5 à 10   j. 1m   10 g de poly E caprolactone sont ajoutés, sous agitation, dans un réacteur contenant 500 ml de stéarate d'aluminium dans de l'huile de sésame. Les particules de poly S caprolacton sont dispersées dans le gel et le mélange est chauffé à 120  C. 0, 638 g de particules du peptide sont alors ajoutées, sous agitation, à 100 mg d'ester d'acide gras de sorbitane. L'incorporation progressive des particules du peptide dans les particules du polymère et/ou sur la surface de ce dernier peut être observée. Le mélange est agité pendant 30 minutes à 1200 C.

   L'agitation est alors stoppée et le mélange est refroidi à 25  C, dilué dans 20 volumes d'éthanol en tant qu'agent de lavage et filtré à 8   j. 1m   pour obtenir 8. 7 g de particules. 



  EXEMPLE 9 Phase support : huile de silicone (y = 10 000 mPa. s à 25  C) Polymère biocompatible : PLGA 75/25, broyé à 200   Ilm   Principe actif : tiliquinol   (antibactérien)-Taille   des particules : 5 à 10 im 8 g de PLGA 75/25 et 1, 23 g de particules de tiliquinol sont ajoutés, sous agitation, dans un réacteur contenant 500 ml d'huile de silicone. Le mélange est chauffé à 80-100  C. La formation progressive des microbilles et l'incorporation des particules de tiliquinol dans lesdites microbilles peuvent être observées. Le mélange est agité pendant 30 minutes à la même température.

   L'agitation est alors stoppée et le mélange est refroidi à   250 C.   dilué dans 9 volumes de myristate d'isopropyle en tant qu'agent de lavage et filtré à 8   j. 1m   pour obtenir 8. 25 g de particules. 



  EXEMPLE 10 Phase support : stéarate d'aluminium dans de l'huile de sésame (4   %   p/v)   (y = 12500 mPa.   s à   25    C) Polymère biocompatible : PLGA 75/25, broyé à 200   fim   Principe actif : tiliquinol   (antihactérien)-Taille   des particules : 5 à   10) im   
 EMI12.1 
 2, 16 g de particules de tiliquinol sont ajoutés. sous agitation, dans un réacteur contenant e e 500 ml de stéarate d'aluminium dans de l'huile de sésame. Les particules de tiliquinol 

 <Desc/Clms Page number 13> 

 sont dispersées dans le gel et le mélange est chauffé à   1200 C. 10   g de PLGA 75/25 
 EMI13.1 
 sont alors ajoutés. sous agitation.

   La formation progressive des microbilles et e e l'incorporation des particules de tiliquinol dans lesdites microbilles peuvent être observées. Le mélange est agité pendant 25 minutes à la même température. L'agitation e e est alors stoppée et le mélange est refroidi à 25  C, dilué dans 20 volumes d'éthanol en tant qu'agent de lavage et filtré à 1 mm pour obtenir 11. 3 g de particules. e

Claims (16)

  1. REVENDICATIONS 1. Procédé pour la préparation de particules préparées à sec, de forme substantiellement sphéroïdale et consistant en un principe actif incorporé dans un polymère biocompatible de haut point de fusion, ledit procédé comprenant : - le mélange, sous agitation, dudit polymère biocompatible et dudit principe actif. soit sous une forme solide, soit sous une forme liquide, et dans des proportions appropriées en relation avec la quantité de polymère biocompatible, dans une phase support liquide homogène non-miscible, ladite phase support ayant une viscosité comprise entre 3 000 et 15 000 mPa.
    s (à 250 C), ledit principe actif et ledit polymère biocompatible étant, dans les conditions opératoires, insolubles dans ladite phase support liquide homogène, - puis le maintien de l'agitation, jusqu'à la formation de microbilles de polymère biocompatible et la complète incorporation du principe actif à l'intérieur, et ce jusqu'à la gamme de taille de microbilles voulues, la température de mise en oeuvre du procédé étant au-dessus de la température de transition vitreuse du polymère biocompatible. et - enfin la récupération des billes ainsi obtenues.
  2. 2. Procédé selon la revendication 1, qui comprend la séquence d'étapes suivante : - mélanger, sous agitation, une phase contenant un polymère biocompatible de haut point de fusion, avec une phase support liquide homogène non-miscible. ladite phase support ayant une viscosité comprise entre 3 000 et 15 000 mPa. s (à 25 C). et ledit polymère biocompatible étant insoluble dans ladite phase support.
    - porter, sous agitation, avec les moyens de chauffage ou de refroidissement appropriés, le mélange ainsi obtenu à une température supérieure à la température de transition vitreuse du polymère biocompatible.
    - maintenir l'agitation jusqu'à la formation de microbilles du polymère. dans la gamme de taille voulue, - puis ajouter, sous agitation, à une température supérieure à la température de transition vitreuse du polymère biocompatible, le principe actif qui est insoluble dans la phase support liquide homogène. soit sous forme solide, soit sous forme <Desc/Clms Page number 15> liquide, et dans des proportions appropriées en relation avec la quantité de polymère biocompatible.
    - maintenir l'agitation pour permettre l'incorporation progressive du principe actif à l'intérieur des microbilles du polymère biocompatible jusqu'à l'absorption complète de ce dernier, puis stopper l'agitation et refroidir le mélange.
    - enfin, après ajout de l'agent de lavage approprié, qui est un solvant ni du polymère biocompatible, ni du principe actif, récupérer les microbilles ainsi obtenues par filtration et tamisage et - optionnellement soumettre les particules à une étape de stérilisation.
  3. 3. Procédé selon la revendication 1. qui comprend la séquence d'étapes suivante : - mélanger, sous agitation, une phase contenant un principe actif thermostable à la température de mise en oeuvre du procédé, avec une phase support liquide homogène non-miscible, ladite phase support ayant une viscosité comprise entre 3 000 et 15 000 mPa. s (à 25 C) et ledit principe actif étant insoluble dans ladite phase support.
    - porter, sous agitation, avec les moyens de chauffage ou de refroidissement appropriés. le mélange ainsi obtenu à une température supérieure à la température de transition vitreuse du polymère biocompatible qui est ajouté à l'étape suivante, et - puis ajouter, sous agitation, à une température supérieure à la température de transition vitreuse du polymère biocompatible. le polymère biocompatible, dans des proportions appropriées en relation avec la quantité de principe actif, ledit polymère étant également insoluble dans la phase support liquide homogène, - maintenir l'agitation pour permettre la formation des microbilles de polymère biocompatible et l'incorporation progressive du principe actif à l'intérieur des microbilles du polymère biocompatible jusqu'à l'absorption complète de ce dernier, puis stopper l'agitation et refroidir le mélange.
    - enfin, après ajout de l'agent de lavage approprié, qui est un solvant ni du polymère biocompatible, ni du principe actif, récupérer les microbilles ainsi obtenues par filtration et tamisage et - optionnellement soumettre les particules à une étape de stérilisation.
  4. 4. Procédé selon la revendication 1. qui comprend la séquence d'étapes suivante : EMI15.1 - mélanger, sous agitation, une phase contenant un polymère biocompatible de e c haut point de fusion, un principe actif thermostable à la température de mise en oeuvre du procédé, dans des proportions appropriées en relation avec la quantité <Desc/Clms Page number 16> de polymère biocompatible, dans une phase support liquide homogène non-miscible, ladite phase support ayant une viscosité comprise entre 3 000 et 15 000 mPa. s (à 25 C). et ledit polymère biocompatible et ledit principe actif étant insolubles dans ladite phase support.
    - porter, sous agitation, avec les moyens de chauffage ou de refroidissement appropriés, le mélange ainsi obtenu à une température supérieure à la température de transition vitreuse du polymère biocompatible, - maintenir l'agitation pour permettre la formation des microbilles de polymère biocompatible et l'incorporation progressive du principe actif à l'intérieur des microbilles du polymère biocompatible jusqu'à l'absorption complète de ce dernier, puis stopper l'agitation et refroidir le mélange.
    - enfin. après ajout de l'agent de lavage approprié, qui est un solvant ni du polymère biocompatible, ni du principe actif, récupérer les microbilles ainsi obtenues par filtration et tamisage et - optionnellement soumettre les particules à une étape de stérilisation.
  5. 5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la viscosité de la phase support est comprise entre 5 000 et 12 000 mPa. s (à 25 C).
  6. 6. Procédé selon la revendication 5. caractérisé en ce que la viscosité de la phase support est d'environ 10 000 mPa. s (à 25 C).
  7. 7. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la phase support est un gel hydrophobe.
  8. 8. Procédé selon la revendication 7, caractérisé en ce que le gel hydrophobe est une huile épaissie.
  9. 9. Procédé selon l'une des revendications 1 à 4. caractérisé en ce que la phase support est un gel hydrophile.
  10. 10. Procédé selon la revendication 9. caractérisé en ce que le gel hydrophile est un gel aqueux.
  11. 11. Procédé selon l'une des revendications 1 à 4. caractérisé en ce que la phase support est de l'huile de silicone. <Desc/Clms Page number 17>
  12. 12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que le polymère biocompatible est un polymère biodégradable dont la température de transition vitreuse est comprise entre 25 et 2000 C.
  13. 13. Procédé selon l'une des revendications 1 à 12, dans lequel le polymère biocompatible est un polymère biodégradable avec un point de fusion supérieur à 1500 C.
  14. 14. Particules préparées à sec obtenues selon les procédés des revendications 1 à 13, lesdites particules étant de forme substantiellement sphéroïdale et consistant en un mélange d'un principe actif avec un polymère biocompatible de haut point de fusion, l'enveloppe extérieure desdites particules étant substantiellement dépourvue de principe actif.
  15. 15. Particules selon la revendication 14. lesdites particules étant destinées à libérer une quantité efficace de principe actif, sur une période prédéterminée. EMI17.1
  16. 16. Compositions thérapeutiques contenant des particules selon la revendication 14 ou 15, associées à un diluent ou excipient pharmaceutiquement acceptable pour le mode d'administration choisi.
BE9400480A 1993-05-15 1994-05-09 Procede pour la preparation de particules preparees a sec, particules preparees a sec ainsi obtenues et compositions pharmaceutiques contenant de telles particules. BE1008323A3 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB939310030A GB9310030D0 (en) 1993-05-15 1993-05-15 Dry processed particles and process for the preparation of the same

Publications (1)

Publication Number Publication Date
BE1008323A3 true BE1008323A3 (fr) 1996-04-02

Family

ID=10735537

Family Applications (1)

Application Number Title Priority Date Filing Date
BE9400480A BE1008323A3 (fr) 1993-05-15 1994-05-09 Procede pour la preparation de particules preparees a sec, particules preparees a sec ainsi obtenues et compositions pharmaceutiques contenant de telles particules.

Country Status (35)

Country Link
JP (1) JP3139913B2 (fr)
KR (1) KR100341261B1 (fr)
CN (1) CN1050534C (fr)
AT (1) AT406017B (fr)
AU (1) AU685094B2 (fr)
BE (1) BE1008323A3 (fr)
BR (1) BR9401968A (fr)
CA (1) CA2123481C (fr)
CH (1) CH688572A5 (fr)
DE (1) DE4416812C2 (fr)
DK (1) DK171454B1 (fr)
DZ (1) DZ1779A1 (fr)
ES (1) ES2097083B1 (fr)
FI (1) FI112915B (fr)
FR (1) FR2705232B1 (fr)
GB (2) GB9310030D0 (fr)
GR (1) GR1002034B (fr)
HK (1) HK1002831A1 (fr)
HU (1) HU220617B1 (fr)
IE (1) IE940392A1 (fr)
IN (1) IN182330B (fr)
IT (1) IT1269508B (fr)
LU (1) LU88482A1 (fr)
MA (1) MA23194A1 (fr)
NL (1) NL9400795A (fr)
NO (1) NO307403B1 (fr)
NZ (1) NZ260520A (fr)
OA (1) OA09939A (fr)
PL (1) PL175780B1 (fr)
PT (1) PT101518B (fr)
RU (1) RU2125869C1 (fr)
SE (1) SE519004C2 (fr)
SG (1) SG46631A1 (fr)
TN (1) TNSN94046A1 (fr)
ZA (1) ZA943316B (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SK74495A3 (en) * 1993-01-06 1997-01-08 Kinerton Ltd Ionic molecular conjugates of biodegradable polyesters with bioactive polypeptides and a method of preparation thereof
ATE381349T1 (de) * 1993-01-06 2008-01-15 Ipsen Mfg Ireland Ltd Bioabbaubare polyester zur herstellung ionischer molekularer konjugate mit bioaktiven polypeptiden
DE19604744A1 (de) 1996-02-09 1997-08-14 Henkel Kgaa Technische Di-/Triglyceridgemische
IE960308A1 (en) 1996-04-23 1997-11-05 Kinerton Ltd Sustained release ionic conjugate
DE19617137C1 (de) * 1996-04-29 1997-02-27 Henkel Kgaa Verwendung von Copolymerestern für die Herstellung von Mikrosphären
US5858531A (en) * 1996-10-24 1999-01-12 Bio Syntech Method for preparation of polymer microparticles free of organic solvent traces
US6867181B1 (en) 1997-06-02 2005-03-15 Societe De Conseils De Recherches Et D'applications Scientifiques, S.A.S. Ionic molecular conjugates of biodegradable polyesters and bioactive polypeptides
AU1375301A (en) 1999-11-15 2001-05-30 Bio Syntech Canada Inc Temperature-controlled and ph-dependant self-gelling biopolymeric aqueous solution
US6646083B2 (en) 2000-06-16 2003-11-11 Nippon Shokubai Co., Ltd. Crosslinked polymers containing tertiary amine and/or quaternary ammonium salt structures, processes for making and uses thereof
GB0705159D0 (en) * 2007-03-19 2007-04-25 Prosonix Ltd Process for making crystals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2070153A1 (fr) * 1969-10-23 1971-09-10 Du Pont
DE3916020A1 (de) * 1989-05-17 1990-11-22 Burkhard Wichert Retardierende mikropartikel aus bioabbaubaren polyestern
GB2246514A (en) * 1990-08-01 1992-02-05 Scras Sustained release particles preparation
WO1992021326A1 (fr) * 1991-05-27 1992-12-10 Medinvent Procede de fabrication de particules reproductibles

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE52535B1 (en) * 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
CH672887A5 (fr) * 1987-10-14 1990-01-15 Debiopharm Sa
AU2810189A (en) * 1987-10-30 1989-05-23 Stolle Research & Development Corporation Low residual solvent microspheres and microencapsulation process
KR0168849B1 (ko) * 1990-04-12 1999-01-15 요시또시 가즈오 피목 조성물 및 그의 제조방법
JP3116311B2 (ja) * 1990-06-13 2000-12-11 エーザイ株式会社 マイクロスフィアの製法
GB9016885D0 (en) * 1990-08-01 1990-09-12 Scras Sustained release pharmaceutical compositions
SE9003296L (sv) * 1990-10-16 1992-04-17 Kabi Pharmacia Ab Foerfarande foer att formulera laekemedel
CA2055522A1 (fr) * 1990-12-12 1992-06-13 Masako Andoh Microspheres a usage ophtalmique
GB9203689D0 (en) * 1992-02-20 1992-04-08 Euro Celtique Sa Pharmaceutical composition
EP0630234B1 (fr) * 1992-03-12 1997-06-11 Alkermes Controlled Therapeutics, Inc. Microspheres a liberation regulee contenant l'hormone adrenocorticotrope (acth)
SE9200858L (sv) * 1992-03-20 1993-09-21 Kabi Pharmacia Ab Metod för framställning av pellets med fördröjd frisättning
WO1993025221A1 (fr) * 1992-06-11 1993-12-23 Alkermes Controlled Therapeutics, Inc. Systeme d'apport de medicament sous forme d'erythropoietine
US5350584A (en) * 1992-06-26 1994-09-27 Merck & Co., Inc. Spheronization process using charged resins
JP2651320B2 (ja) * 1992-07-16 1997-09-10 田辺製薬株式会社 徐放性マイクロスフェア製剤の製造方法
FR2693905B1 (fr) * 1992-07-27 1994-09-02 Rhone Merieux Procédé de préparation de microsphères pour la libération prolongée de l'hormone LHRH et ses analogues, microsphères et formulations obtenues.
GB2273874A (en) * 1992-12-31 1994-07-06 Pertti Olavi Toermaelae Preparation of pharmaceuticals in a polymer matrix

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2070153A1 (fr) * 1969-10-23 1971-09-10 Du Pont
DE3916020A1 (de) * 1989-05-17 1990-11-22 Burkhard Wichert Retardierende mikropartikel aus bioabbaubaren polyestern
GB2246514A (en) * 1990-08-01 1992-02-05 Scras Sustained release particles preparation
WO1992021326A1 (fr) * 1991-05-27 1992-12-10 Medinvent Procede de fabrication de particules reproductibles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATHIOWITZ E. ET AL: "POLYANHYDRIDE MICROSPHERES AS DRUG CARRIERS . I. HOT-MELT ENCAPSULATION", J. OF CONTROLLED RELEASE, vol. 5, 1987, AMSTERDAM, pages 13 - 22 *
WICHERT B. ET AL: "A NEW METHOD FOR THE PREPARATION OF DRUG CONTAINING POLYLACTIC ACID MICROPARTICLES WITHOUT USING ORGANIC SOLVENTS", J. OF CONTROLLED RELEASE, vol. 14, no. 3, December 1990 (1990-12-01), AMSTERDAM, pages 269 - 283, XP000165640 *

Also Published As

Publication number Publication date
GB2277915B (en) 1997-10-29
GB9310030D0 (en) 1993-06-30
HK1002831A1 (en) 1998-09-18
RU2125869C1 (ru) 1999-02-10
IN182330B (fr) 1999-03-20
FI942222A (fi) 1994-11-16
JPH072652A (ja) 1995-01-06
FR2705232B1 (fr) 1995-08-25
SE9401557L (sv) 1994-11-16
HU9401412D0 (en) 1994-08-29
ITMI940931A1 (it) 1995-11-11
TNSN94046A1 (fr) 1995-04-25
IE940392A1 (en) 1994-11-16
ZA943316B (en) 1995-01-16
ATA98794A (de) 1999-06-15
OA09939A (fr) 1994-11-15
ITMI940931A0 (it) 1994-05-11
GR1002034B (en) 1995-10-31
GB9409565D0 (en) 1994-07-06
DE4416812C2 (de) 2003-02-06
DK54994A (da) 1994-11-16
AT406017B (de) 2000-01-25
FR2705232A1 (fr) 1994-11-25
IT1269508B (it) 1997-04-01
CH688572A5 (fr) 1997-11-28
DZ1779A1 (fr) 2002-02-17
FI942222A0 (fi) 1994-05-13
NO307403B1 (no) 2000-04-03
HU220617B1 (hu) 2002-03-28
DE4416812A1 (de) 1994-11-17
PT101518A (pt) 1995-03-01
ES2097083B1 (es) 1997-12-01
NL9400795A (nl) 1994-12-01
PL175780B1 (pl) 1999-02-26
NO941810L (no) 1994-11-16
SE519004C2 (sv) 2002-12-17
NZ260520A (en) 1994-12-22
HUT67599A (en) 1995-04-28
BR9401968A (pt) 1994-12-13
NO941810D0 (no) 1994-05-13
CN1104557A (zh) 1995-07-05
PT101518B (pt) 2000-12-29
AU6308494A (en) 1994-11-17
DK171454B1 (da) 1996-11-04
GB2277915A (en) 1994-11-16
AU685094B2 (en) 1998-01-15
FI112915B (fi) 2004-02-13
KR100341261B1 (ko) 2002-09-27
CN1050534C (zh) 2000-03-22
CA2123481A1 (fr) 1994-11-16
LU88482A1 (fr) 1994-12-01
SE9401557D0 (sv) 1994-05-05
CA2123481C (fr) 2005-01-11
MA23194A1 (fr) 1994-12-31
ES2097083A1 (es) 1997-03-16
SG46631A1 (en) 1998-02-20
JP3139913B2 (ja) 2001-03-05

Similar Documents

Publication Publication Date Title
EP0608207B1 (fr) Compositions pharmaceutiques contenant des nanocapsules
EP0585151B1 (fr) Procédé de préparation de microsphères pour la libération prolongée de l&#39;hormone LHRH et ses analogues, microsphères et formulations obtenues
BE1008323A3 (fr) Procede pour la preparation de particules preparees a sec, particules preparees a sec ainsi obtenues et compositions pharmaceutiques contenant de telles particules.
BE1006143A3 (fr) Sels de peptides avec des polyesters carboxytermines.
EP1450766B1 (fr) Microspheres biodegradables a liberation prolongee et leur procede de preparation
EP0804173B1 (fr) Microspheres biodegradables a liberation controlee et leur procede de preparation
EP0646001B1 (fr) Microspheres en polymere bioresorbable, exemptes de tensioactif, leur preparation et leur application comme medicament
LU87982A1 (fr) Procede de preparation de compositions a liberation prolongee et compositions ainsi obtenues
FR2484281A1 (fr) Procede de preparation de microspheres comportant un noyau solide et une matiere polymere
WO1999055309A1 (fr) Nouvelles microspheres a base de poly(methylidene malonate), leur procede de preparation et compositions pharmaceutiques les contenant
WO1994021371A1 (fr) Procede de preparation de particules renfermant un ingredient actif par extrusion et lyophilisation
CH654207A5 (fr) Procede de preparation de formes galeniques utiles notamment en therapeutique, dietetique, cosmetique et diagnostic.
WO2019076911A1 (fr) Procédé de préparation de capsules sensibles au ph ou au rayonnement uv et capsules obtenues
KR101831417B1 (ko) 자발적 공극 폐쇄 기능성을 갖는 고분자 미립구 및 이의 제조방법
KR102383448B1 (ko) 락트산 또는 글리콜산을 포함하는 미립구형 서방출 제제 및 그의 제조방법
FR2756736A1 (fr) Compositions pharmaceutiques contenant des derives de n-sulfonyl indoline
EP1830811A2 (fr) Procede de preparation d&#39;une composition pharmaceutique solide a liberation prolongee et controlee par traitement sous hautes pressions
EP0542855B1 (fr) Microcapsules a paroi mixte d&#39;atelocollagene et de polyholosides coagulee par un cation bivalent
FR2702375A1 (fr) Microcapsules à libération progressive, leur procédé de préparation et compositions pharmaceutiques ou vétérinaires les contenant.
WO2018056019A1 (fr) Procédé de production d&#39;un médicament à libération prolongée, et médicament à libération prolongée
FR2830448A1 (fr) Microspheres biodegradables a liberation prolongee et leur procede de preparation
EP0900564A1 (fr) Comprimé antiseptique vaginal à action prolongée

Legal Events

Date Code Title Description
RE Patent lapsed

Effective date: 20100531