AT223374B - Verfahren zur Herabsetzung des Molekulargewichtes von Polystyrol - Google Patents

Verfahren zur Herabsetzung des Molekulargewichtes von Polystyrol

Info

Publication number
AT223374B
AT223374B AT58558A AT58558A AT223374B AT 223374 B AT223374 B AT 223374B AT 58558 A AT58558 A AT 58558A AT 58558 A AT58558 A AT 58558A AT 223374 B AT223374 B AT 223374B
Authority
AT
Austria
Prior art keywords
sep
polystyrene
molecular weight
depolymerization
bis
Prior art date
Application number
AT58558A
Other languages
English (en)
Inventor
Guiseppe Guzzetta
Franco Sabbioni Giovanni
Battista Gechele
Original Assignee
Montedison Spa
Ziegler Karl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montedison Spa, Ziegler Karl filed Critical Montedison Spa
Application granted granted Critical
Publication of AT223374B publication Critical patent/AT223374B/de

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description


   <Desc/Clms Page number 1> 
 



  Verfahren zur Herabsetzung des Molekulargewichtes von Polystyrol 
Die vorliegende Erfindung bezieht sich auf die Behandlung von Polystyrolen von hohem Molekularge- wicht zur Herabsetzung ihres Molekulargewichtes, um ihre mechanischen und andern physikalischen
Eigenschaften sowie ihre Verarbeitbarkeit zu verbessern. 



   Styrolpolymere mit sehr hohen Molekulargewichten von z. B. einer Million oder mehreren Millionen sind so hart und   brüchig, dass Verformungsoperationen   schwierig und kompliziert sind. Es ist deshalb wün- schenswert, ihre Struktur zu modifizieren, indem man die vorhandenen sehr langen Molekülketten auf- spaltet. Zu diesem Zweck erweisen sich Prozesse, wie Pyrolyse und Mastizieren als sehr wenig wirksam. 



   Die Depolymerisation von Polystyrol ist, wie seine Polymerisation, ein Radikalprozess, weshalb bei der thermischen Behandlung bei hoher Temperatur die aus den aufgespalteten Ketten zunächst gebildeten freien Radikale dazu neigen, sich wieder zu vereinigen oder durch einen Kettenübertragungsmechanismus verzweigte und vernetzte Ketten zu bilden. Das Ergebnis dieser Wirkungen besteht in einer erheblichen Herabsetzung der Spaltungsgeschwindigkeit, oder die Spaltung kann bei einem Gleichgewichtsmolekulargewicht auch ganz aufhören, welches für praktische Zwecke zu hoch ist ; ausserdem treten unerwünschte
Veränderungen ein, welche sogar zur Bildung von unlöslichen Massen führen können. Schliesslich sind zur Erzielung einer erheblichen Depolymerisation sehr lange Zeiten erforderlich, und der Prozess ist nur schwer reproduzierbar. 



   Bessere Ergebnisse erzielt man durch mechanische Depolymerisation bei Zimmertemperatur, wo eine geringere Neigung für Kettenübertragungen besteht, da die Hitze eine Quelle der Aktivierungsenergie für Kettenübertragungen darstellt. 



   Zur Erzielung einer brauchbaren Reduktion des Molekulargewichtes ist jedoch eine ausserordentlich lange Mastizierungsdauer erforderlich oder der Apparat kann nur mit einer so geringen Polymermenge beschickt werden, dass die Ausbeute pro Stunde sehr niedrig ist. 



   Nach der USA-Patentschrift Nr. 2, 734, 894 ist es bereits bekannt, dass aromatische Peroxydeden thermischen Abbau von Polymeren begünstigen ; nach dieser Patentschrift sollen jedoch die aromatischen Peroxyde nicht zu einem geregelten Abbau des Polystyrols verwendet werden, da darin angeführt wird. dass Polystyrol, wenn es in Gegenwart eines aromatischen Peroxyds erhitzt wird, zu einem Polymer von sehr niedrigem Molekulargewicht mit sehr schlechten Eigenschaften   depolymedslert   wird. Mit andern Worten bedeutet dies, dass in dieser USA-Patentschrift geoffenbart wird,   dass mitHilfe von aromatischen   Peroxyden ein unkontrollierbarer Abbau des Polystyrols stattfindet, wobei minderwertige bzw. unbrauchbare Produkte erhalten werden. 



   Gegenstand der vorliegenden Erfindung bildet nun ein Verfahren zur Herabsetzung des Molekulargewichtes von Polystyrol, welches dadurch gekennzeichnet ist, dass man festes Polystyrol in Gegenwart von 0, 1 bis 5%, bezogen auf das Gewicht des Polystyrols, eines Depolymerisation regelnden Mittels, das ein Kettenübertragungsmittel, ein   Gummiantioxydaticnsmittel   oder ein Initiator für Radikalpolymerisationen ist, einer geregelten mechanischen und/oder (mit Ausnahme eines Zusatzes von Peroxyden) thermischen 

 <Desc/Clms Page number 2> 

 
Depolymerisation aussetzt. 



   Es zeigte sich, dass durch dieses Verfahren eine rasche und kontrollierbare thermische Zersetzung erzielt werden kann, wobei keinerlei Neigung zur Bildung von verzweigten oder vernetzten Produkten be- steht, wodurch die Kristallinität des Polymers herabgesetzt würde. Das Verfahren ist ausserdem leicht reproduzierbar. Der Mechanismus des Verfahrens besteht vermutlich darin, dass aus dem die Depolymeri- sation kontrollierenden Mittel freie Radikale freigesetzt werden, welche das Bestreben haben, sich mit den bei der Spaltung der Ketten mit hohem Molekulargewicht gebildeten freien Polystyrolradikalen zu vereinigen, wodurch diese inaktiviert und an der Wiedervereinigung verhindert werden. 



   Beispiele für verwendbare Gummiantioxydationsmittel sind   : 2, 2. 4-Trimeth yl-1, 2-dihydrochinolin,     6-Äthoxy-2, 2, 4-trimethyl-1, 2-dihydrochinolin,   4,   4'-Thio-bis- (3-methyl-6-tert. butylphenol),   2,   2'-     - Methylen-bis- (4-methyl-ç-tert.   butylphenol), Hydrochinon-monobenzyläther, 2,5-Di-tert. butylhydro- chinon,   N, N'-Diphenyläthylendiamin, p, p'-Methylendianilin,   Laurylmercaptan, p- (p-Tolylsulfonyl- amid) -diphenylamin. 



   Die   genanntenAntioxydationsmittel sind, wie   andere Gummiantioxydationsmittel und allgemein alle
Antioxydationsmittel, welche gegen die Einwirkungen von Sauerstoff auf Elastomere und andere synthe- tische Harze einen stabilisierenden Einfluss ausüben, wirksam, indem sie kleine Mengen von Sauerstoff binden, welche manchmal in Begleitung der Makromoleküle von Polystyrol gefunden werden und welche die Reproduzierbarkeit der erzielten Ergebnisse verhindern könnten. 



   Die Kettenübertragungsmittel, welche an Stelle von   Gummiantioxydationsmitteln   benutzt werden können, wirken vermutlich ebenfalls in der Weise, dass sie freie Radikale liefern, welche die bei der
Spaltung der Polymerketten gebildeten freien Valenzen inaktivieren. 



   Die gleichen Substanzen, unter welchen Azo-Verbindungen und Mercaptane erwähnt seien, wirken auch als Initiatoren   inradikalischenPolymerisationsprozessen (s."Emulsion Polymerisation",   Borey Kolt- hoff, 1955,   Kapitel 4).   



   Wenn man das Verfahren durchführt, indem man das Polystyrol in Gegenwart des die Depolymerisa- tion kontrollierenden Mittels einer thermischen Depolymerisierung aussetzt, ist es vorteilhaft, das Poly- styrol auf eine Temperatur von über   200 C, z. B.   von etwa 250 C, zu erhitzen. Diese Temperatur eignet sich besonders zur Erzielung einer   beträchtlichen Depolymerisation in   einem leicht reproduzierbaren Prozess unter Verwendung sehr kleiner Mengen des die Depolymerisation kontrollierenden Mittels von   z. B. 0, 1   bis   50/0   mit Bezug auf das Gewicht des Polystyrols. Das Verfahren lässt sich kontinuierlich oder ansatzweise durchführen   nnter Verwendung von Reaktoren   mit oder   ohne Rührvorrichtungen.

   Unter den Apparate-Typen,   welche verwendet werden können, seien Öfen, Extruder und Mühlen erwähnt. Die Wahl des besonderen zu   verwendenden, depolymerisationskontrollierenden Mittels, die   Menge desselben und die Arbeitstemperatur hängen ab von der gewünschten Reduktion des Molekulargewichtes. Für jeden speziellen Fall lassen sich die erforderlichen Bedingungen durch einfachen Versuch ermitteln. 



   Ähnliche Ergebnisse wie bei der thermischen Spaltung lassen sich auch durch mechanische Spaltung in
Gegenwart   derdepolymerisationskontrollierendenMittel erzielen. Die Wirksamkeit   des depolymerisations- kontrollierenden Mittels bei dieser mechanischen Spaltung ist beträchtlich, doch verläuft der Prozess trotzdem wesentlich langsamer als bei der thermischen Spaltung. 



   Mit besonders guten Ergebnissen lässt sich das erfindungsgemässe Verfahren anwenden auf isotaktische Polystyrole, welche unter Verwendung stereospezifischer Katalysatoren hergestellt wurden. Mit Hilfe sol- cher Katalysatoren hergestellte Polymerisate besitzen im allgemeinen sehr hohe Molekulargewichte (in   der Grössenordnung von Millionen)   und haben deshalb sehr kleine Kristallisationsgeschwindigkeiten. Durch
Verminderung ihrer Molekulargewichte nach dem erfindungsgemässen Verfahren lässt sich eine grosse Skala vonpolymeren mit   niedrigreren Molekulargewichten herstellen, welche   im wesentlichen den gleichen Kristallinitätsgrad besitzen wie die Ausgangspolymere.

   Dergestalt lassen sich in einfacher und wirtschaftlicher Weise feste Styrolpolymere mit niedrigen Molekulargewichten herstellen, welche nichtsdestoweniger einen Kristallinitätsgrad besitzen, welcher demjenigen der bisher bekannten   isotaktischen   Polymere ähnlich ist. 



   In den nachfolgenden Beispielen beziehen sich alle Verhältnisangaben auf Gewichtsverhältnisse. 



   Be   ispiel l : Proben   aus einem pulverisierten, im wesentlichen isotaktischen Polystyrol mit einem Molekulargewicht von   etwa 1340000   wurden je mit einer der   in Tabelle l aufgeführtenSubstanzen homo-   gen vermischt, indem man das Pulver mit einer azetonischen Lösung der betreffenden Substanz   impräg-   nierte und dann bei Zimmertemperatur trocknete. 



   Gemischproben von 0, 5 g wurden in   Glasröhre   eingefüllt, welche dann evakuiert und verschlossen wurden. Diese Röhren wurden in einen Ofen gegeben, welcher auf einer Temperatur von 250   r     loc ge-   halten wurde, in welchem sie 45 Minuten lang verblieben. 

 <Desc/Clms Page number 3> 

 



  Die erzielten Ergebnisse sind in Tabelle 1 aufgeführt. 



   Tabelle 1 
Thermische Spaltung (bei 2500C) eines isotaktischen Polystyrols mit einem Molekulargewicht von 1340000. 
 EMI3.1 
 
<tb> 
<tb> 



  Zeit <SEP> zugesetzte <SEP> Substanz <SEP> Molekulargewicht
<tb> (Minuten) <SEP> %
<tb> 1340000
<tb> 45-800000
<tb> 45 <SEP> 4, <SEP> 4'-Thio-bis-(3-methyl-6tort. <SEP> butyl-phenol) <SEP> 0, <SEP> 2% <SEP> 90000
<tb> 
 
Die Molekulargewichte wurden aus der Grenzviskosität in Tetrahydronaphthalin bei 1000C berechnet auf Grund der Formel 
 EMI3.2 
 
M = Molekulargewicht. 



     Be is pi el 2 : Polystyrolproben   wie in Beispiel 1 wurden nach dem Verfahren gemäss Beispiel 1 vermischt mit je einer der in der nachfolgenden Tabelle aufgeführten Substanzen. Jedes der Gemische wurde 4 min lang unterDruck bei   900C gesintert. Das Produkt in   Form von Stücken wurde dann in einen Apparat zurMessung der Fliessgeschwindigkeiten von thermoplastischen Körpern und zur Bestimmung   des"Schmelz-   index" (ASTM D 1238-52T) gegeben. Der Schmelzindex wurde nach Spaltung innerhalb der Apparatur bei 2500C während 30 min bestimmt. Dieser Index hängt vom Molekulargewicht ab und ist um so   höher,   je geringer das Molekulargewicht ist. 



   Die erzielten Ergebnisse werden in Tabelle 2 aufgeführt. 



   Tabelle 2 
Thermische Spaltung eines isotaktischen Polystyrols mit einem Molekulargewicht von 1340000 bei 2500C während 30 min. 
 EMI3.3 
 
<tb> 
<tb> zugesetzte <SEP> Substanz <SEP> % <SEP> "Schmelzindex" <SEP> bei <SEP> 2500C <SEP> 
<tb> etwa <SEP> 0, <SEP> 1 <SEP> 
<tb> 4, <SEP> 4'-Thio-bis- <SEP> (3-methyl-6tert. <SEP> butyl-phenol) <SEP> 1 <SEP> 39
<tb> 4,4'-Thio-bis-(3-methyl-6tert. <SEP> butyl-phenol) <SEP> - <SEP> 
<tb> lauryl-mercaptan <SEP> 0, <SEP> 5+0, <SEP> 5 <SEP> 24
<tb> Lauryl-meicaptxn <SEP> 1, <SEP> 3
<tb> p- <SEP> (p-Tolyl-sulfonyl-amido)diphenylamin <SEP> 1 <SEP> 1, <SEP> 2 <SEP> 
<tb> 
 
Beispiel 3 : Das Polymer von Beispiel 1 wurde mit 1% 4,4'-Thio-bis-(3-methyl-6-tert, butylphenol) vermischt und nach Sintern wie in Beispiel 2 unter Verwendung einer Beschickung von nur 0,5 kg in den Apparat zur Bestimmung des Schmelzindex eingeführt. 



   Es wurde die Veränderung des Schmelzindex bei 2500C in Abhängigkeit von   derVerweilzuit   im Appa- 

 <Desc/Clms Page number 4> 

 rat bestimmt ; die Ergebnisse sind in Tabelle 3 aufgeführt. 



   Tabelle 3 
Thermische Spaltung eines isotaktischen Polystyrols mit einem Molekulargewicht von 1340000 bei 250 C in Gegenwart von   1%     4, 4'-Thio-bis- (3-methyl-6-tert. butylphenol).   
 EMI4.1 
 
<tb> 
<tb> 



  Zeit <SEP> (Minuten) <SEP> Schmelzindex <SEP> bei <SEP> 2500C
<tb> 0 <SEP> 0 <SEP> 
<tb> 15 <SEP> 0, <SEP> 9 <SEP> 
<tb> 45 <SEP> 1, <SEP> 8 <SEP> 
<tb> 75 <SEP> 29, <SEP> 0 <SEP> 
<tb> 105 <SEP> 31, <SEP> 7 <SEP> 
<tb> 135 <SEP> 33,0
<tb> 
 
Bei Veränderung des Prozentanteiles des Antioxydationsmittels und Durchführung der Spaltung während 30 nun wurden die in Tabelle 4 aufgeführten Ergebnisse erzielt. 



   Tabelle 4 : 
Thermische Spaltung von isotaktischem Polystyrol mit einem Molekulargewicht von 1340000 während 30 min bei 2500C in Gegenwart von unterschiedlichen Prozentanteilen 
 EMI4.2 
 
 EMI4.3 
 
<tb> 
<tb> 4, <SEP> 4'-Thio-bis-(3-methyl-6- <SEP> Schmelzindex
<tb> tert. <SEP> butyl-phenol) <SEP> % <SEP> 
<tb> 0 <SEP> 0, <SEP> 1 <SEP> 
<tb> 0, <SEP> 2 <SEP> 5
<tb> 0, <SEP> 5 <SEP> 31
<tb> 1 <SEP> 39
<tb> 2 <SEP> 98
<tb> 4 <SEP> 110 <SEP> 
<tb> 
 
Die Bestimmung des Schmelzindex erfolgte auf Grund der Normbestimmungen von ASTM D 1238-52T bei   250 C.   



   Beispiel 4 : Proben aus pulverisiertem im wesentlichen isotaktischem Polystyrol wurden in einem Pulvermischer mit 0, 5%   4, 4'-Thio-bis- (3-methyl-6-tert. butylphenol) vermischt.   



     Das erhaltene Pulverwurde in einenbei   einer mittleren Temperatur von   250 C   gehaltenen Schneckenextruder von 30 mm Durchmesser und 333 mm Länge gegeben. Die Verweilzeit des Polymers im Inneren des Extruders betrug 5 - 10 min. Man bestimmte das Molekulargewicht des stranggepressten Polymers. Die Ergebnisse sind in Tabelle 5 aufgeführt. 



   Tabelle 5 Thermische Spaltung von isotaktischem Polystyrol in einem Extruder bei   250 C.   
 EMI4.4 
 
<tb> 
<tb> 



  Anfangs- <SEP> 4,4'-Thio-bis-(3-methyl-6- <SEP> Umdr-min <SEP> EndMolekulargewicht <SEP> ten. <SEP> butyl-phenol) <SEP> To <SEP> Molekulargewicht
<tb> 1340000-20 <SEP> 900000 <SEP> 
<tb> 1340000 <SEP> 0,5 <SEP> 20 <SEP> 250000
<tb> 1100000 <SEP> 0, <SEP> 5 <SEP> 30 <SEP> 300000 <SEP> 
<tb> 
 

 <Desc/Clms Page number 5> 

 
Beispiel 5 : Proben des gleichen pulverisierten Polystyrols wie in Beispiel 1 wurden mit je einer der in der nachfolgenden Tabelle aufgeführten Substanzen nach dem Verfahren gemäss Beispiel 1 vermischt und dann in einer Porzellan-Kugelmühle bei Zimmertemperatur 24 Stunden lang ; vermahlen. 



   Die erzielten Ergebnisse sind in Tabelle 6 aufgeführt. 



   Tabelle 6 
Mechanische Spaltung von isotaktischem Polystyrol in einer Kugelmühle. 
 EMI5.1 
 
<tb> 
<tb> zugesetzte <SEP> Substanzen <SEP> % <SEP> Molekulàrgewicht
<tb> 1340000
<tb> 870000
<tb> Azo-bis-isobutyronitril <SEP> 580000
<tb> Benzoyl-peroxyd <SEP> 2 <SEP> 560000
<tb> 2, <SEP> 2' <SEP> -Methylen <SEP> - <SEP> bis- <SEP> (4-methyl <SEP> 
<tb> 6-tert. <SEP> butyl-phenol) <SEP> 2 <SEP> 450000
<tb> 4, <SEP> 4'-Thio-bis- <SEP> (3-methyl-6- <SEP> 
<tb> tert. <SEP> butyl-phenol) <SEP> 2 <SEP> 250000 <SEP> 
<tb> 
   PATENTANSPRÜCHE :    
1.

   Verfahren zur Herabsetzung des Molekulargewichtes von Polystyrol, dadurch gekennzeichnet, dass man festes Polystyrol in Gegenwart von 0, 1 bis   55to,   bezogen auf das Gewicht des Polystyrols, eines Depolymerisation regelnden Mittels, das ein   Kettenübertragungsmittel,   ein Gummiantioxydationsmittel oder ein Initiator für Radikalpolymerisationen ist, einer geregelten mechanischen und/oder (mit Ausnahme eines Zusatzes von Peroxyden) thermischen Depolymerisation aussetzt. 



   2. Verfahren nachAnspruch   1,   dadurch gekennzeichnet, dass man das Polystyrol einer mechanischen Depolymerisation bei Zimmertemperatur aussetzt.

Claims (1)

  1. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man Polystyrol einer thermischen oder thermischen und mechanischen Depolymerisation bei einer Temperatur über 2000C aussetzt.
    4. Verfahren nach den Ansprüchen l bis 3, dadurch gekennzeichnet, dass man als Mittel zum Regeln der Depolymerisation 4, 4'-Thio-bis- (3-methyl-6-tert. butylphenol), 2, 2'-Methylen -bis- (4-methyl-6- tert. butylphenol), p- (p-Tolyl-sulfonylamid)-diphenylamin, eine Azoverbindung oder ein Mercaptan verwendet.
AT58558A 1957-01-29 1958-01-28 Verfahren zur Herabsetzung des Molekulargewichtes von Polystyrol AT223374B (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT223374X 1957-01-29

Publications (1)

Publication Number Publication Date
AT223374B true AT223374B (de) 1962-09-10

Family

ID=11194862

Family Applications (1)

Application Number Title Priority Date Filing Date
AT58558A AT223374B (de) 1957-01-29 1958-01-28 Verfahren zur Herabsetzung des Molekulargewichtes von Polystyrol

Country Status (1)

Country Link
AT (1) AT223374B (de)

Similar Documents

Publication Publication Date Title
DE1081671B (de) Verfahren zur Herabsetzung des Molekulargewichts von Polystyrol
DE2147639B2 (de) Verfahren zur Herstellung eines maleinisierten Produktes
DE69401882T2 (de) Frei-radikalisch gehärteter Kautschuk
DE1770109C3 (de) Verfahren zur Herstellung von Blockcopolymeren der Form Poly- a methylstyrol/Polyburaniden/Poly- a - methylstyrol
DE2342486C2 (de) Verfahren zur Herstellung von Pfropfpolymerisaten
DE2416988A1 (de) Verfahren zur herstellung von vinylchloridharzmassen
AT223374B (de) Verfahren zur Herabsetzung des Molekulargewichtes von Polystyrol
DE2144273C3 (de) Verfahren zur Herstellung eines Pfropfpolymerisates und Verwendung desselben in Formmassen auf Polyvinylchlorid-Basis
DE1958117B2 (de) Verfahren zum herstellen von schlagfesten harzen
DE1720802C3 (de) Thermoplastisch-elastische Formmassen
EP0278027B1 (de) Thermoplastische Formmasse auf Basis von ABS
DE2804533A1 (de) Restmonomerarme mischpolymerisate des acrylnitirls, verfahren zu ihrer herstellung und verwendung zur herstellung orthopaedischer formkoerper
DE3615979C2 (de)
DE1154620B (de) Verfahren zum Vernetzen von Polyaethylenmassen
DD298114A5 (de) Verfahren zur herstellung eines vinylchlorid-butylacrylat-pfropfcopolymeren fuer die spritzgiessverarbeitung
DE714875C (de) Verfahren zur Herstellung von Kautschukvulkanisaten mit geschlossenen Zellen
AT208072B (de) Verfahren zur Herstellung eines vernetzten Polymers eines α-Olefins
AT205226B (de) Verfahren zur Vergütung von nach dem Niederdruckverfahren hergestellten Polymerisationsprodukten von Olefinen
DE1520190C (de) Verfahren zur Herstellung von Tetra fluorathylenpolymensaten
DE1912516A1 (de) Formmassen auf der Grundlage hitzehaertbarer Allylpolymerisate mit einem Zusatz von Metallverbindungen
AT263354B (de) Verfahren zur Herstellung von thermoplastischen Polymermaterialien
DE919430C (de) Verfahren zur Herstellung von Formkoerpern, insbesondere von Zahnersatz
DE1570845C (de) Verfahren zur Herstellung von Formkörpern aus Polyvinylchlorid
AT266441B (de) Formmassen
DE1494325A1 (de) Thermoplastische Masse zur Herstellung stabilisierter Formkoerper aus isotaktischem Polypropylen