AT222630B - Verfahren zur Gewinnung von Äthylen und bzw. oder Acetylen aus Spaltgas-gemischen - Google Patents

Verfahren zur Gewinnung von Äthylen und bzw. oder Acetylen aus Spaltgas-gemischen

Info

Publication number
AT222630B
AT222630B AT102261A AT102261A AT222630B AT 222630 B AT222630 B AT 222630B AT 102261 A AT102261 A AT 102261A AT 102261 A AT102261 A AT 102261A AT 222630 B AT222630 B AT 222630B
Authority
AT
Austria
Prior art keywords
sep
acetylene
ethylene
gas
liquid
Prior art date
Application number
AT102261A
Other languages
English (en)
Original Assignee
Knapsack Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knapsack Ag filed Critical Knapsack Ag
Application granted granted Critical
Publication of AT222630B publication Critical patent/AT222630B/de

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description


   <Desc/Clms Page number 1> 
 



  Verfahren zur Gewinnung von Äthylen und bzw. oder Acetylen aus Spaltgas- gemischen 
Die Erfindung betrifft ein Verfahren zur Gewinnung von Äthylen und bzw. oder Acetylen durch Abtrennung von höheren Kohlenwasserstoffen, insbesondere solchen mit mindestens 3 Kohlenstoffatomen aus   acetylen- undloder äthylenhaltigen   Gasen, die z. B. bei der thermischen Spaltung von flüssigen Kohlenwasserstoffen erhalten werden. 



   Es ist bekannt, aus den bei der thermischen Spaltung von flüssigen Kohlenwasserstoffen anfallenden   acetylen- und/oder äthylenhaltigen   Gasen höhere Kohlenwasserstoffe, vornehmlich Paraffine, Olefine, Benzole und höhere Acetylene wie z. B. Diacetylen, Methylacetylen, Monovinylacetylen u. dgl. durch fraktionierte Kondensation oder durch Absorption mit Hilfe eines geeigneten Lösungsmittels, wie z. B. Benzin, in Temperaturbereichen zwischen +30   C und-50   C abzutrennen. Als Absorptionsmittel kann hiebei der dem Spaltprozess zuzuführende Kohlenwasserstoff oder eine Fraktion davon benutzt werden. 



  Die im Absorptionsmittel gelösten Bestandteile des Spaltgases werden entweder isoliert oder wenn das Absorptionsmittel gleichzeitig als Einsatzkohlenwasserstoff für den Spaltprozess dient, der thermischen Spaltung zugeführt. 



   Die bekannten Verfahren sind zum Teil oder gemeinsam durch zahlreiche Nachteile gekennzeichnet, die eine gefahrenlose Durchführung der Verfahren nicht gewährleisten, oder deren Wirtschaftlichkeit wesentlich beeinträchtigen. So erfolgt bei den bekannten Verfahren die Abtrennung der genannten Verunreinigung oft sehr unvollständig, so dass ein stark verunreinigtes Endprodukt erhalten wird. Dieser Mangel kann nur durch Anwendung beträchtlicher Mengen Lösungsmittel in einem mehrstufigen Reinigungsverfahren beseitigt werden, wobei sich nicht vermeiden lässt, dass Lösungsmitteldämpfe entsprechend ihrem Dampfdruck in nachgeschaltete Vorrichtungsteile gelangen und sich hier störend auswirken bzw. mit erheblichem Aufwand entfernt werden müssen. 



   Das nach Beendigung des Reinigungsprozesses anfallende verunreinigte Lösungsmittel muss regeneriert werden, wozu ein apparativer und energetischer Aufwand notwendig ist, der mit zusätzlichen Investitionskosten verbunden und kostspielig ist. 



   Bei Verwendung des Einsatzkohlenwasserstoffes als Reinigungsmittel müssen die darin gelösten Verunreinigungen oft zunächst aufkonzentriert werden, wobei Anreicherungen der explosiven gasförmigen Bestandteile auftreten, die infolge erhöhten Partialdruckes zum spontanen Zerfall neigen und somit die Sicherheit des Verfahrens gefährden. Der Einsatzkohlenwasserstoff kann dann zusammen mit den aufkonzentrierten Verunreinigungen nach vorheriger Verdampfung, wie bereits erwähnt, direkt dem Spaltprozess zugeführt werden. Während des Verdampfungsvorganges besteht   für einen Teil der Verunreinigungen,   wie z. B. die höheren Acetylene, die Gefahr der Polymerisation, als deren Folge eine Verstopfung von Apparateteilen der Verdampfungsvorrichtung eintritt.

   Um eine Unterbrechung des Reinigungsprozesses zu vermeiden, müssen deshalb die zur Verstopfung neigenden Verdampfer einmal doppelt erstellt und zum andern in kurzen Zeitabständen regelmässig gereinigt werden. 



   Nach dem Verfahren der deutschen Patentschrift Nr. 868208 ist es bekannt, Gasbestandteile, insbesondere Kohlenwasserstoffe aus Gasgemischen derart abzutrennen, dass man das unter Druck von einem Waschmittel absorbierte Gas in mehr als einer Stufe entspannt, wobei das in der zweiten und bzw. oder einer folgenden Entspannungsstufe freiwerdende Gas zunächst auf eine vorhergehende höhere Druckstufe verdichtet und mit dem bei dieser Druckstufe entgasten Waschmittel gewaschen wird. Hiebei werden die bei der jeweiligen Druckstufe schwerlöslichen Bestandteile aus dem Waschmittel verdrängt und somit eine stufenweise Trennung des Gasgemisches erzielt. 



   Sind nun in einem Waschmittel eine grössere Anzahl von Gasbestandteilen gelöst, so ist unter Umständen ein sehr hoher Anfangsdruck nötig, um eine ausreichende Zahl von Entspannungsstufen zu erhalten. Die Anwendung hoher Drücke ist jedoch bei einem acetylenhaltigen Gasgemisch infolge der Druckempfindlichkeit des Acetylens und seiner Derivate nicht empfehlenswert, so dass die bekannte Verfahrensweise zur Trennung eines acetylenhaltigen Gasgemisches nicht geeignet ist. 

 <Desc/Clms Page number 2> 

 



   Ein weiterer Nachteil dieses Verfahrens besteht in der mehrstufigen Arbeitsweise, wobei der in den ein- zelnen Stufen durch die Verdichtung des Gases bedingte Energieverbrauch die Wirtschaftlichkeit des
Verfahrens wesentlich einschränkt. 



   Es wurde nun gefunden, dass man aus dem bei der pyrolytischen Spaltung von flüssigen Kohlenwasser- ; stoffen anfallenden   acetylen-und/oder äthylenhaitigen   Rohgasgemisch die höheren Kohlenwasserstoffe, insbesondere solche mit mindestens drei Kohlenstoffatomen, wie z. B. Paraffine, Olefine, Benzole und höhere
Acetylene, unter Vermeidung der Nachteile der bekannten Verfahren dadurch abtrennen kann, dass man zunächst besagtes Rohgasgemisch mit einem Teilstrom des zur Spaltung bestimmten flüssigen Kohlenwas- serstoffs bei Temperaturen von   etwa -600 bis etwa -800 C   und Drücken von etwa 10 bis 20 ata wäscht, ) während der Hauptanteil des flüssigen Kohlenwasserstoffs nach Verdampfen und Überhitzen auf eine
Temperatur von etwa 400 bis 500   C bei Atmosphärendruck dem Spaltprozess unterworfen wird,

   wobei   ler   überhitzte Kohlenwasserstoff vor Eintritt in den Spaltprozess mit der mit höheren Kohlenwasser- stoffen verunreinigten und bis unterhalb des Siedepunktes vorgewärmten Waschflüssigkeit vereinigt wird. 



   Der als Waschflüssigkeit abgezweigte Teilstrom des Einsatzkohlenwasserstoffs, der etwa 30 bis etwa   : 60%   der Gesamtmenge des Einsatzkohlenwasserstoffs beträgt, wird in einem insbesondere einstufigen
Waschprozess im Gegenstrom zu dem   acetylen- und/oder äthylenhaltigen Rohgasgemisch   geführt, wobei oberhalb des Eintritts der auf   etwa -400 bis etwa -600 C   vorgekühlten Waschflüssigkeit in die Reini- gungsstufe eine   Kühl- bzw.   Kondensationszone aufrechterhalten wird, in welcher erhebliche Mengen von etwa zwischen 10% und etwa 30% des gasförmigen Acetylens, Äthylens und anderer kondensierbarer
Gase verflüssigt werden, die eine zusätzliche Erhöhung des Wascheffektes der eingesetzten Waschflüssig- keit bewirken. 



   Das in der verunreinigten Waschflüssigkeit gelöste Acetylen und Äthylen wird bei einer im Vergleich zur Absorptionstemperatur im Waschprozess erhöhten Temperatur von beispielsweise   etwa-40  C   durch Ausblasen mit einem Teil des die Reinigungsstufe verlassenden und nach Abtrennung von Acetylen und/oder Äthylen erhaltenen vorgewärmten Restgases abgetrieben. Das Austreiben des Acetylens und/ oder Äthylens aus der verunreinigten Waschflüssigkeit kann entweder in einer innerhalb der Reinigungs- stufe befindlichen Abtriebszone, die sich unterhalb des Eintritts des Rohgasgemisches in die Reinigungs- stufe befindet oder in einer eigenen Ausblasevorrichtung durchgeführt werden. 



   Um einen Teil der in der Waschflüssigkeit am leichtesten löslichen Komponenten des Rohgasgemisches, wie z. B. Diacetylen, Benzol, Phenylacetylen, die gleichzeitig auch zum Teil   am leichtesten polimerisieren,   schon vor dem Waschprozess abzutrennen, ist es vorteilhaft, jedoch nicht erforderlich, die der eigentlichen
Reinigungsstufe vorgeschalteten Kühlstufen zur Vorkühlung des Rohgasgemisches auf eine Temperatur von   etwa-60   C   gleichzeitig mit einem Teilstrom der abgezweigten Waschflüssigkeit zu beaufschlagen. 



   Die Menge des von der Waschflüssigkeit abgezweigten Teilstroms beträgt hiebei. bis etwa 10% bezogen auf die Menge des Waschkohlenwasserstoffs. Die Kühlung der einzelnen Kühlstufen kann entweder durch selbständige Kühlmittelkreisläufe oder mit Hilfe des die Reinigungsstufe verlassenden und nach Ab- trennung von Acetylen in bekannter Weise bei tiefen Temperaturen erhaltenen Restgases erfolgen. Die aus den   Kühlstufen   abfliessende verunreinigte Waschflüssigkeit wird mit dem Hauptanteil des Waschkohlen- wasserstoffes vor dessen Eintritt in die Abtriebszone vereinigt. 



   Das   erfindungsgemässe   Verfahren bietet gegenüber dem bekannten Verfahren den Vorteil, dass aus einem bei der thermischen Spaltung von flüssigen Kohlenwasserstoffen anfallenden   acetylen- und/oder     äthylenhaltigen   Gasgemisch sämtliche höheren Kohlenwasserstoffe in einem vorzugsweise einstufigen
Reinigungsprozess mit einer geringen Menge des zur thermischen Spaltung bestimmten Einsatzkohlenwasserstoffes, wie z. B. Benzin, vollkommen getrennt werden können, so dass der Hauptanteil des Einsatzkohlenwasserstoffes ohne Polymerisationsgefahr zunächst verdampft und überhitzt werden kann, um dann unmittelbar vor dem Spaltprozess die vorgewärmte verunreinigte Waschflüssigkeit aufzunehmen, zu verdampfen und der thermischen Spaltung zuzuführen.

   Das erfindungsgemässe Verfahren lässt sich als einstufiges Reinigungsverfahren mit geringem apparativem Aufwand durchführen, da im Gegensatz zu den bekannten Verfahren auf eine Regeneration des verunreinigten Lösungsmittels verzichtet wird. Indem weiterhin die verunreinigte Waschflüssigkeit mit dem Hauptanteil des zur Spaltung bestimmten flüssigen Kohlenwasserstoffs erst unmittelbar vor Eintritt in den Spaltprozess vereinigt wird, wird eine Verstopfung von Apparateteilen durch Polymerisationsprodukte vermieden.

   Ausserdem wird bei Durchführung des   erfindungsgemässen   Verfahrens ein Gefahrenmoment bei Abtrennung des in der Waschflüssigkeit gelösten Acetylens dadurch vermieden, dass die in einem Wärmeaustauscher auf   etwa-40  C   vorgewärmte Waschflüssigkeit gleichzeitig von dem die Reinigungsstufe verlassenden und nach Abtrennung des Acetylens erhaltenen inerten Restgas durchströmt wird, wobei das in der Waschflüssigkeit gelöste Acetylen in verdünntem gefahrlosem Zustand ausgetrieben wird. 



   In der beigefügten Zeichnung ist ein Fliessschema zur   Durchführung   des   erfindungsgemässen   Verfahrens schematisch dargestellt, wobei jedoch das Verfahren nicht an diese beispielweise Darstellung gebunden ist. Zur Erläuterung des Fliessschemas soll nachfolgendes Beispiel dienen :

   
Beispiel :
Bei der Arbeitsweise nach dem Verfahrensschema werden stündlich 1000 Nm3 eines Rohgases von der Zusammensetzung   A   (vgl. nachstehend angegebene Tabelle), das bei der thermischen Spaltung von 

 <Desc/Clms Page number 3> 

   Benzin erhalten wird, unter einem Druck von 16 ata und bei einer Temperatur von +40  C, durch die Leitung 1 dem Kühler 2 zugeführt und in diesem im Wärmeaustausch gegen Rückgase aus der Gastrennanlage 3, die über die Leitung 4 in den Wärmetauscher 2 gelangen, vorgekühlt. Über die Leitung 5 gelangt das Rohgas in den Kühler 6, in dem es mittels verdampfenden Ammoniaks weitergekühlt wird und über die Leitung 7 in den mit verdampfenden Äthylen gekühlten Wärmeaustauscher 8, den es mit einer Temperatur von-65   C verlässt.

   Während das durch die Leitungen 1, 5 und 7 den Wärmetauschern 2, 6 und 8 zur Kühlung zugeführte Rohgas diese von unten nach oben durchströmt, wird das Rohgas mit jeweils 5 kg/h Benzin berieselt, wobei das Benzin über die Leitungen 19, 20 und 21 den Wärmetauschern zugeführt und in deren oberen Teil eingedüst wird. Die Berieselung dient lediglich zur Verdünnung von im Verlauf der Abkühlung des Rohgases anfallenden hochkonzentrierten Ausscheidungen von höher siedenden Bestandteilen wie z. B. Diacetylen. Die zur Berieselung des Rohgases in den Wärmeaustauschern 2, 6 und 8 notwendige Benzinmenge wird nach Vorkühlung im Kühler 22 aus der Leitung 18 abgezweigt, die ihrerseits stündlich mit einem Teilstrom von 165 kg/h aus der in der Leitung 16 fliessenden Gesamtmenge des zur thermischen Spaltung bestimmten Einsatzbenzins von 340 kg/h beaufschlagt wird. 



  Die Abläufe aus den Wärmeaustauschern 2, 6 und 8 werden über die Leitungen 25, 26 und 27 in den Abtriebsteil 34 der Waschkolonne 24 unterhalb des Gaseintrittes des vorgekühlten Rohgases eingeführt. 



  Das den Wärmeaustauscher 8 über Kopf verlassende und durch die Leitung 9 in den Absorptionsteil 23 der Waschkolonne 24 mit einer Temperatur von -650 C einströmende Rohgas wird im Gegenstrom mit 150 kg/h Benzin und zirka 30 kg verflüssigtem Acetylen und Äthylen ausgewaschen, wobei das Benzin mit Hilfe der Pumpe 17 über die Leitung 18 nach Vorkühlung in den Wärmeaustauschern 22 und 31 in den Absorptionsteil 23 eingeführt wird, während das flüssige Acetylen/Äthylen-Gemisch aus dem Kondensationsteil 32 der Waschkolonne 24 dem Absorptionsteil 23 zufliesst. Der Kondensationsteil 32 der Waschkolonne 24 wird mit etwa 30 kg/h flüssigem Äthylen beaufschlagt, welches der nachgeschalteten Gastrennanlage 3 entnommen und über die Leitung 40 dem Kondensationsteil 32 zugeführt wird.

   Aus der Waschkolonne 24 tritt durch die Leitung 33 das von Kohlenwasserstoffen mit mehr als 2 Kohlenstoffatomen einschliesslich Benzindampf freie Gasgemisch der Zusammensetzung B aus und wird in der nach bekanntem Verfahren arbeitenden Trennanlage 3 weiter zerlegt, wobei die einzelnen Gaskomponenten über die Leitung 45 abgezogen werden können. Das in der verunreinigten Waschflüssigkeit gelöste Acetylen wird im Abtriebsteil 34 der Waschkolonne 24 ausgetrieben. Zu diesem Zweck wird die Waschflüssigkeit aus dem Abtriebsteil 34 über die Leitungen 28 und 35 in den Verdampfer 36 geleitet, in welchem unter gleichzeitigem Einblasen von acetylenfreiem Restgas aus der Gastrennanlage 3 mit Hilfe des Gebläses 37 über die Leitungen 38 und 39 das Acetylen bei einer Temperatur von-40  C in verdünntem Zustand abgetrieben wird.

   Die von Acetylen befreite Waschflüssigkeit wird über die Leitung 28 zur Verdampfung der Mischkammer 29 zugeleitet. Die in Leitung 10 nach Abzweigu ig des genannten Teilstromes fliessende Restmenge von 175 kg/h des zur thermischen Spaltung bestimmten Einsatzbenzins wird mit Hilfe der Pumpe 42 über die Leitung 43 nach Vorwärmen in dem Erhitzer 11 dem Verdampfer 12 zugeführt und verdampft. Der über. die Leitung 44 nach Verlassen des Verdampfers 12 in den Überhitzer 13 eintretende Dampf wird in letzterem auf eine Temperatur von 450   C erhitzt. Der überhitzte Benzindampf wird über die Leitung 30 der Mischkammer 29 zugeleitet und bewirkt durch teilweise Wärmeabgabe, ohne dabei zu kondensieren, die Verdampfung der über die Leitung 28 in die Mischkammer 29 zufliessenden verunreinigten Waschflüssigkeit.

   Der die Mischkammer verlassende Benzindampf wird über die Leitung 41 der thermischen Spaltung zugeführt.   



  Tabelle 
 EMI3.1 
 
<tb> 
<tb> A <SEP> B
<tb> Wasserstoff <SEP> 70,0% <SEP> 69,0%
<tb> Methan...................................... <SEP> 7, <SEP> 0% <SEP> 6, <SEP> 9% <SEP> 
<tb> Acetylen <SEP> 15, <SEP> 0% <SEP> 14, <SEP> 8% <SEP> 
<tb> Äthylen <SEP> 6, <SEP> 0% <SEP> 8, <SEP> 2% <SEP> 
<tb> Methylacetylen................................ <SEP> 0, <SEP> 3% <SEP> - <SEP> 
<tb> Diacetylen <SEP> 0, <SEP> 3%- <SEP> 
<tb> Vinylacetylen <SEP> 0, <SEP> 2% <SEP> - <SEP> 
<tb> Restgase <SEP> R <SEP> 1, <SEP> 2% <SEP> 1, <SEP> 1% <SEP> 
<tb> 
   A   = Zusammensetzung des aus der Pyrolyse stammenden Rohgases. 



  B = Zusammensetzung des die Waschkolonne verlassenden Gasgemisches. 



    R =   Summe der Restgase.

Claims (1)

  1. EMI4.1
AT102261A 1960-04-23 1961-02-07 Verfahren zur Gewinnung von Äthylen und bzw. oder Acetylen aus Spaltgas-gemischen AT222630B (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE222630X 1960-04-23

Publications (1)

Publication Number Publication Date
AT222630B true AT222630B (de) 1962-08-10

Family

ID=5846336

Family Applications (1)

Application Number Title Priority Date Filing Date
AT102261A AT222630B (de) 1960-04-23 1961-02-07 Verfahren zur Gewinnung von Äthylen und bzw. oder Acetylen aus Spaltgas-gemischen

Country Status (1)

Country Link
AT (1) AT222630B (de)

Similar Documents

Publication Publication Date Title
EP1076638B1 (de) Verfahren zum trennen eines c4-kohlenwasserstoffgemisches
DE2724365C3 (de) Verfahren zum Trennen eines C4 -Kohlenwasserstoffgemisches durch extraktive Destillation
CH388925A (de) Verfahren zur Abtrennung von Kohlenwasserstoffen mit mehr als zwei Kohlenstoffatotomen aus einem acetylen- und/oder äthylenhaltigen Spaltgasgemisch
DE1808758A1 (de) Verfahren zur Abtrennung reiner aromatischer Kohlenwasserstoffe aus Kohlenwasserstoffgemischen
WO2018115494A1 (de) Verfahren und anlage zur herstellung eines olefins
DE1289031B (de) Verfahren zur Trennung und Gewinnung mehrerer Komponenten aus einem Gasgemisch
DE2635557A1 (de) Verfahren zur erzeugung von waerme mittels eines absorptions-thermotransformators
DE953700C (de) Verfahren und Vorrichtung zur Gewinnung von acetylenfreiem AEthylen
AT222630B (de) Verfahren zur Gewinnung von Äthylen und bzw. oder Acetylen aus Spaltgas-gemischen
DE1212065B (de) Verfahren zur Abtrennung von Acetylenen aus gasfoermigen Kohlenwasserstoffgemischen
DE2827661A1 (de) Verfahren und anlage zum gewinnen von wasserstoff
WO2017125438A1 (de) Verfahren zur trenntechnischen bearbeitung eines gasgemischs
EP3683201B1 (de) Verfahren zur herstellung von olefinen aus oxygenaten
DE1198812B (de) Verfahren zur Entfernung von Acetylen aus einem ueberwiegend AEthylen enthaltenden, verfluessigten C- bis C-Kohlenwasserstoff-gemisch
EP0224748B1 (de) Verfahren zum Gewinnen von Methylazetylen und Propadien
AT147157B (de) Verfahren zur getrennten Gewinnung von Äthylen und Propylen in annähernder Reinheit aus komplexen Gasgemischen.
DE922289C (de) Verfahren zur Herstellung von AEthylen
EP4344764A1 (de) Verfahren und anlage zur trenntechnischen bearbeitung eines wasserstoffhaltigen einsatzstroms
WO2022161871A1 (de) Verfahren zur abtrennung von butenen aus c4-kohlenwasserstoffströmen mit angeschlossener oligomerisierung
DE1443947C (de) Verfahren zur getrennten Gewinnung von Acetylen und Äthylen
DE1159932B (de) Verfahren zur Gewinnung von Reinacetylen
DE2930867C2 (de) Verfahren zur Trennung eines Wasserstoff, Methan und Olefine enthaltenden gasförmigen Kohlenwasserstoffgemisches und Anlage zur Durchführung dieses Verfahrens
DE1298983B (de) Verfahren zur Gewinnung von AEthylen und Acetylen aus einem bei der Hochtemperaturpyrolyse von Kohlenwasserstoffen entstehenden Gasgemisch
DE1182257B (de) Verfahren und Vorrichtung zur Zerlegung eines Gasgemisches
DE1088477B (de) Verfahren zur gleichzeitigen Gewinnung von hochreinem AEthylen und AEthan