AT215977B - Verfahren zur Herstellung von neuen Epoxydverbindungen - Google Patents

Verfahren zur Herstellung von neuen Epoxydverbindungen

Info

Publication number
AT215977B
AT215977B AT170860A AT170860A AT215977B AT 215977 B AT215977 B AT 215977B AT 170860 A AT170860 A AT 170860A AT 170860 A AT170860 A AT 170860A AT 215977 B AT215977 B AT 215977B
Authority
AT
Austria
Prior art keywords
parts
sep
compounds
volume
formula
Prior art date
Application number
AT170860A
Other languages
English (en)
Original Assignee
Ciba Geigy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy filed Critical Ciba Geigy
Application granted granted Critical
Publication of AT215977B publication Critical patent/AT215977B/de

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Epoxy Resins (AREA)

Description


   <Desc/Clms Page number 1> 
 



  Verfahren zur Herstellung von neuen Epoxydverbindungen 
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung neuer Epoxydverbindungen der allgemeinen Formel 
 EMI1.1 
 
 EMI1.2 
 
Raromatische Kohlenwasserstoffreste, vorzugsweise für niedere Alkylreste mit 1-4 Kohlenstoffatomen oder für Wasserstoffatome, stehen, wobei   R   und   R5   bzw. R1'und   Ru'zusammen   auch einen zweiwertigen Substituenten, wie eine Methylengruppe, bedeuten können, Z einen aliphatischen, cycloaliphatischen, 
 EMI1.3 
 
 EMI1.4 
 
 EMI1.5 
 Bedeutung haben wie in Formel (I), mit epoxydierenden Mitteln behandelt. 



   Die   erfindungsgemässe   Epoxydierung der C = C-Doppelbindungen erfolgt nach üblichen Methoden, vorzugsweise mit Hilfe von organischen Persäuren, wie Peressigsäure, Perbenzoesäure, Peradipinsäure, Monoperphthalsäure usw. Man kann als epoxydierendes Mittel ferner unterchlorige Säure verwenden, wobei in einer ersten Stufe HOC1 an die Doppelbindung angelagert wird, und in einer zweiten Stufe unter Einwirkung HCl-abspaltender Mittel, z. B. starker Alkalien, die Epoxydgruppe entsteht. 



   Bei der Epoxydierung können neben den Polyepoxyden infolge Nebenreaktionen gleichzeitig auch ganz oder nur teilweise hydrolysierte Epoxyde entstehen, d. h. Verbindungen, bei denen die Epoxydgruppen des Polyepoxydes der Formel (I) ganz oder teilweise zu Hydroxylgruppen verseift worden sind. 



   Es wurde festgestellt, dass die Anwesenheit solcher Nebenprodukte die technischen Eigenschaften der gehärteten Polyepoxyde in der Regel günstig beeinflusst. Daher empfiehlt es sich im allgemeinen, auf eine Isolierung der reinen Diepoxyde aus dem Reaktionsgemisch zu verzichten. 



   Die erfindungsgemäss erhaltenen Epoxyde zerfallen in zwei Untergruppen, je nachdem ob n in der Formel (I) 1 oder 2 bedeutet. 

 <Desc/Clms Page number 2> 

 Im ersten Fall (n =   1)   liegen Epoxydverbindungen der allgemeinen Formel 
 EMI2.1 
 im zweiten Falle (n = 2), solche der allgemeinen Formel 
 EMI2.2 
 vor. Der zweiwertige Rest Z in Formel (IV) kann einen unsubstituierten oder substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Kohlenwasserstoffrest bedeuten ; als Substituenten kommen z. B. Hydroxylgruppen, Äthergruppen, Sulfidgruppen, Carboxylgruppen, Carbonsäureestergruppen, Ketogruppen, Acetalgruppen usw. in Betracht. 



   Als wichtiger Spezialfall ist dabei zu erwähnen, dass der Rest Z auch durch mehr als bloss zwei, z. B. drei, vier und mehr Kohlensäureestergruppen der Formel 
 EMI2.3 
 substituiert sein kann. 



   Besonders leicht zugänglich sind die Kohlensäureester der allgemeinen Formel 
 EMI2.4 
 und 
 EMI2.5 
 worin   R und W für   ein Wasserstoffatom oder einen niederen Alkylrest stehen und Z die gleiche Bedeutung hat wie in Formel (I). 



   Die erfindungsgemäss erhaltenen Epoxyde stellen helle, entweder bei Raumtemperatur flüssige oder schmelzbare Harze dar, die sich mit geeigneten Härtern, wie z. B. Dicarbonsäureanhydriden, in klare und helle gehärtete Produkte mit guten technischen Eigenschaften überführen lassen. Unter diesen zeichnen sich die Epoxyde der Formel (IV) bzw. (VI) durch besonders wertvolle Eigenschaften aus, u. zw. in erster Linie solche Epoxyde, bei denen in den betreffenden Formeln der Rest Z den Kohlenwasserstoffrest eines Diphenols, wie insbesondere den Rest des   Bis-[4-oxyphenyl]-dimethylmethans   bedeutet. 

 <Desc/Clms Page number 3> 

 
 EMI3.1 
 
 EMI3.2 
 
 EMI3.3 
 haben wie in Formel (I).

   Diese Ausgangsverbindungen können ihrerseits erhalten werden, indem man mindestens 2 Mol eines Alkohols der Formel 
 EMI3.4 
 bzw. eines Gemisches aus 2 oder mehreren solchen Alkoholen mit 1 Mol Phosgen oder   l   Mol eines Kohlen- 
 EMI3.5 
 angegebene Bedeutung haben. 



   Je nachdem ob man von einem einheitlichen Alkohol der Formel (VIII) ausgeht oder von einer Mischung aus 2 oder mehreren solchen Alkoholen, werden symmetrisch gebaute Kohlensäureester erhalten oder 
 EMI3.6 
 
 EMI3.7 
 
 EMI3.8 
 haben wie in Formel (I). 



   Diese Ausgangsverbindungen können ihrerseits erhalten werden, indem man in einer ersten Stufe durch Umsetzung von 1 Mol eines Alkohols der Formel (VIII) mit 1 Mol Phosgen zum Chlorameisensäureester der Formel 
 EMI3.9 
 gelangt und sodann in einer zweiten Stufe 2 bis x Mol des Chlorameisensäureesters (X) mit 1 Mol einer Polyhydroxylverbindung, welche x Hydroxylgruppen enthält (x = ganze Zahl im Werte von mindestens 2), nach bekannten Methoden kondensiert. 



   Man kann aber auch zuerst 1 Mol der betreffenden Polyhydroxylverbindung mit x Hydroxylgruppen mit 2 bis x Mol Phosgen zu einem Polychlorameisensäureester der Formel 
 EMI3.10 
 

 <Desc/Clms Page number 4> 

 umsetzen (y = höchstens x-2) und letzteren sodann mit 2 bis x Mol eines Alkohols der Formel (VIII) kondensieren. 



   Als Polyhydroxylverbindungen, die mit den Chlorameisensäureestern umgesetzt werden, kommen gesättigte und ungesättigte Di- und Polyalkohole, ferner vorzugsweise Di- und Polyphenole in Frage. 
 EMI4.1 
    :1, 4-Dioxy-5-chlorcydohexan.   Ferner solche Polyalkole, die ausserdem andere funktionelle Gruppen enthalten, beispielsweise Zucker, wie Glukose, Galactose, Mannose, Fruktose, Rohrzucker usw. ; Zuckersäuren, wie Glucuronsäure, Galacturonsäure, Schleimsäure usw. Man kann als Polyalkohole schliesslich auch polymere Verbindungen mit freien Hydroxylgruppen, wie Polysaccharide und insbesondere Polyvinylalkohol oder teilweise hydrolysiertes Polyvinylacetal verwenden. 
 EMI4.2 
 
 EMI4.3 
 
 EMI4.4 
   :4-chlorcyclohexen- (3).    



   Als Di- und Polyphenole kommen beispielsweise in Frage : 
 EMI4.5 
 



   Die erfindungsgemäss erhaltenen Polyepoxyde können je nach der Polyhydroxylverbindung, von der sie sich ableiten, selbstverständlich noch andere funktionelle Gruppen enthalten. Speziell können neben den veresterten Hydroxylgruppen des Polyalkohols noch freie Hydroxylgruppen vorhanden sein, wodurch sich gewisse Eigenschaften, wie Härtungsdauer, Haftfestigkeit oder Hydrophilität der erfindungsgemässen Epoxydverbindungen in weitem Rahmen modifizieren lassen. 



   Die erfindungsgemäss erhaltenen Polyepoxyde reagieren mit den üblichen Härten für Epoxydverbindungen. Sie lassen sich daher durch Zusatz solcher Härten analog wie andere polyfunktionelle Epoxydverbindungen bzw. Epoxydharze vernetzen bzw. aushärten. Als solche Härter kommen basische oder insbesondere saure Verbindungen in Frage. 



   Als geeignet haben sich erwiesen : Amine oder Amide, wie aliphatische und aromatische primäre, 
 EMI4.6 
 triamin, Triäthylentetramin, Tetraäthylenpentamin, Trimethylamin, Diäthylamin, Triäthanolamin, Mannich-Basen, Piperidin, Piperazin, Guanidin und Guanidinderivate, wie Phenylguanidin, Diphenylguanidin, Dicyandiamid, Anilinformaldehydharze,   Harnstoff- Formaldehydharze, Melamin- Formaldehyd-   harze, Polymere von Aminostyrolen, Polyamide, z.

   B. solche aus aliphatischen Polyaminen und di- oder 
 EMI4.7 
 

 <Desc/Clms Page number 5> 

 
 EMI5.1 
 mehrwertigeMethylendomethylentetrahydrophthalsäureanhydrid, Dodecenylbernsteinsäureanhydrid, Hexahydrophthalsäureanhydrid, Hexachloroendomethylentetrahydrophthalsäureanhydrid oder Endomethylentetrahydrophthalsäureanhydridoder   deren Gemische ; Malein- oder Bernsteinsäureanhydrid,   dabeikannman gegebenenfalls Beschleuniger, wie tertiäre Amine, ferner vorteilhaft Polyhydroxylverbindungen, wie Hexantriol, Glycerin, mitverwenden. 



   Es wurde gefunden, dass man bei der Härtung der erfindungsgemässen Epoxyharze mit Carbonsäureanhydriden vorteilhaft auf 1 Grammäquivalent Epoxydgruppe nur etwa 0, 3-0, 9 Grammäquivalente Anhydridgruppen verwendet. 



   Bei Anwendung von basischen Beschleunigern, wie Alkalialkoholaten oder Alkalisalzen von Carbonsäuren, können bis 1, 0 Grammäquivalente Anhydridgruppen eingesetzt werden. 



   Der   Ausdruck "Härten" wie   er hier gebraucht wird, bedeutet die Umwandlung der vorstehenden Epoxydverbindungen in unlösliche und unschmelzbare Harze. 



   Die härtbaren Gemische enthalten ausserdem vorteilhaft einen Anteil der sonst entsprechenden Polyepoxyde, deren Epoxydgruppen jedoch ganz oder teilweise zu Hydroxylgruppen verseift sind und/oder andere vernetzend wirkende Polyhydroxylverbindungen, wie Hexantriol. Sie können ferner als aktive Verdünner Monoepoxyde, wie Kresylglycid, enthalten. 



   Selbstverständlich können den härtbaren Epoxydverbindungen auch andere Polyepoxyde zugesetzt werden, wie z. B. Mono- oder Polyglycidyläther von Mono- oder Polyalkoholen, wie Butylalkohol,   1, 4-   Butandiol oder Glycerin, bzw. von   Mono- oder Polyphenolen, wie Resorcin, Bis-[4-oxyphenyl]-dimethan,   oder Kondensationsprodukte von Aldehyden mit Phenolen (Novolake), ferner Polyglycidylester von Polycarbonsäuren, wie Phthalsäure, sowie ferner Aminopolyepoxyde, wie sie z. B. erhalten werden durch Dehydrohalogenierung von Umsetzungsprodukten aus Epihalogenhydrinen und primären oder sekundären Aminen, wie n-Butylamin, Anilin oder   4, 4'-Di- [monomethylamino]-diphenylmethan.   



   Die härtbaren Epoxydverbindungen bzw. deren Mischungen mit Härtern können ferner vor der Härtung in irgendeiner Phase mit Füllmitteln, Weichmachern, farbgebenden Stoffen usw. versetzt werden. Als Streck- und Füllmittel können beispielsweise Asphalt, Bitumen, Glasfasern, Glimmer, Quarzmehl, Cellulose, Kaolin, fein verteilte Kieselsäure (Ärosil) oder Metallpulver verwendet werden. 



   Die Gemische aus den Epoxydverbindungen und Härtern können im ungefüllten oder gefüllten Zustand gegebenenfalls in Form von Lösungen oder Emulsionen als Textilhilfsmittel, Laminierharze, Anstrichmittel, Lacke, Tauchharze, Giessharze, Streich-,   Ausfüll-und Spachtelmassen,   Klebemittel u. dgl. sowie zur Herstellung solcher Mittel dienen. Besonders wertvoll sind die neuen Harze als Isolationsmassen für die Elektroindustrie. 



   In den nachfolgenden Beispielen bedeuten Teile Gewichtsteile, Prozente Gewichtsprozente ; das Verhältnis der Gewichtsteile zu den Volumteilen ist dasselbe wie beim Kilogramm zum Liter ; die Temperaturen sind in Celsiusgraden angegeben. 
 EMI5.2 
 werden in einem Reaktionsgefäss mit Rührer gemischt und bei   20-25 0 Innentemperatur   werden innert 4 Stunden 106, 5 Teile Phosgen (1, 075 Mol) eingeleitet. Es scheidet sich Pyridinhydrochlorid in Form weisser Kristalle aus. Man lässt 2 Stunden unter Rühren nachreagieren und versetzt sodann mit 1000 Vol.Teilen Eiswasser. 



   Sodann wird von der wässerigen unteren Schicht, welche das Pyridin-Hydrochlorid gelöst enthält, abgetrennt und die ätherische Lösung des gebildeten Carbonats noch dreimal mit je 500 Vol.-Teilen Eiswasser gewaschen. Das Lösungsmittel (Äther) wird bei Atmosphärendruck weggedampft und der Rückstand im Wasserstrahlvakuum von restlichen Spuren Wasser und Pyridin befreit. Der Rückstand wird bei 0, 15 mm Hg im Hochvakuum destilliert. Man erhält nach einem Vorlauf von etwa 13 Teilen (bis 155 ) eine Hauptfraktion, die einheitlich bei   155-160  überdestilliert. Ausbeute : 225, 7   Teile, ent- 
 EMI5.3 
 von 3 Teilen Natriumacetat werden bei etwa   300 unter   Eiskühlung und Rühren in 1 Stunde 415 Teile 42%ige Peressigsäure zugetropft.

   Das Gemisch wird anschliessend 4 Stunden bei   300 gehalten.   Die benzolische Lösung wird mit Wasser und verdünnter Sodalösung säurefrei gewaschen, über Natriumsulfat getrocknet und eingedampft. Es werden 138 Teile flüssiges Diepoxyd mit einem Epoxydgehalt von 6, 06 Epoxydäquivalenten pro kg erhalten. c)   Herstellung eines Giesskörpers :   
 EMI5.4 
 erhält man eine klare Lösung, die in eine Aluminium-Form vergossen wird. Nach etwa 3 Stunden bei 120   tritt Gelierung ein.

   Der Giessling wird 5 Stunden bei   120   und   10 Stunden bei   1400 gehärtet   und zeigt die folgenden mechanischen Eigenschaften : 

 <Desc/Clms Page number 6> 

 
 EMI6.1 
 
<tb> 
<tb> Biegefestigkeit <SEP> ............................................... <SEP> 10,57 <SEP> kg/mm2
<tb> Schlagbiegefestigkeit <SEP> ......................................... <SEP> 9,07 <SEP> cm <SEP> kg/cm2
<tb> 
 
Beispiel 2: a) Entsprechend den Angaben von Beispiel 1 a) wird   Bis- [6-methyl-A -tetrahydrobenzyl]-   carbonat erhalten, wenn man an Stelle von 224 Teilen   #3-Tetrahydrobenzylalkohol   eine äquivalente Menge 6-Methyl-A3-tetrahydrobenzylalkohol verwendet.

   Die Ausbeute beträgt   85, 5%   der Theorie. b) Eine Lösung von 106 Teilen   Bis- [6-methyl-A -tetrahydrobenzyl]-carbonat   in 350 Vol.-Teilen Benzol und 1, 5 Teile Natriumacetat werden unter Kühlung bei   300 mit   191 Teilen 42%iger Peressigsäure versetzt. Das Gemisch wird 3 Stunden bei   20-23   und   4 Stunden bei   300 gehalten.   Die benzolische Lösung wird mit Wasser und verdünnter Sodalösung säurefrei gewaschen, über Natriumsulfat getrocknet und im Vakuum auf dem Wasserbad eingedampft. Es bleiben als Rückstand 100 Teile Diepoxyd mit einem Epoxydgehalt von 4, 64 Epoxydäquivalenten/kg. 



   Beispiel 3 : a) Zu 69, 1 Teilen   Methyl-2, 5-endomethylen-A -tetrahydrobenzylalkohol   und   29, 6 Teilen   Diäthylcarbonat wird festes Natriumäthylat gegeben (hergestellt aus 0, 2 Teilen Natrium und absolutem Alkohol). Die Mischung wird im Ölbad von   1500 bis 1600 erhitzt   und der gebildete Alkohol im Verlaufe von 2 Tagen zusammen mit 120 Vol.-Teilen Benzol (zugegeben in 4 Portionen) über eine 30 cm hohe Raschigkolonne abdestilliert. Der Katalysator wird abfiltriert und das Filtrat destilliert. 



   Bei   1370/0, 04 mm   Hg werden 55 Teile   Bis- [methyl-2, 5-endomethylen-A -tetrahydrobenzyl]-carbonat   erhalten. b) 45, 3 Teile des oben beschriebenen Carbonats werden in 200 Vol.-Teilen Benzol gelöst. Man gibt zur Lösung 5 Teile wasserfreies Natriumacetat und portionenweise unter Rühren und Kühlen 72 Teile 42%iger Peressigsäure. Die Temperatur wird noch während einer Stunde bei   30-33'gehalten.   Die gekühlte benzolische Lösung des Epoxyds wird mit Wasser und 2 n-Sodalösung säurefrei gewaschen, über Natriumsulfat getrocknet, filtriert und eingedampft. Es wird ein flüssiges Diepoxyd erhalten, dessen Epoxydgehalt mit Bromwasserstoff in Eisessig nicht bestimmbar ist. 



   Beispiel   4 : a) A -Tetrahydrobenzyl-chlorfbrmiat :  
336 Teile   A-Tetrahydrobenzylalkohol   werden in 40 Minuten zu einer Lösung von 530 Teilen Phosgen in 1500 Vol.-Teilen Äther getropft, wobei die Temperatur unter   100 gehalten   wird. Das Gemisch wird anschliessend 1 Stunde unter Rückfluss gekocht. Das Lösungsmittel wird abgedampft und der Rückstand im Wasserstrahlvakuum destilliert. Es werden 501 Teile   #3-Tetrahydrobenzyl-chlorformiat   vom Kp. 



    86  /10 mm   erhalten. b)   2, 2-Di- (p-oxyphenyl)-propan-bis- (A -tetrahydrobenzylcarbonat) :  
228 Teile   2, 2-Di- (p-oxyphenyl)-propan   werden in einer Mischung von 700 Vol.-Teilen Chloroform und 160 Teilen trockenem Pyridin gelöst. Unter Rühren werden dazu 350 Teile   #3-Tetrahydrobenzyl-   chlorformiat getropft. Die Temperatur wird durch Kühlung bei   3-9'gehalten.   Anschliessend wird die Mischung 15 Stunden bei Raumtemperatur stehen gelassen. Die Lösung wird in der Eiskälte mit 400 Teilen Wasser, 100 Vol.-Teilen 2 n-Salzsäure, 250 Vol.-Teilen 2 n-Natronlauge und 50 Vol.-Teilen Monoatriumphosphatlösung gewaschen, über Natriumsulfat getrocknet und eingedampft. Es werden 505 Teile   kristal-   lisiertes Produkt erhalten. 



   Zur Analyse wird eine Probe aus Methanol kristallisiert. Fp.   60-610.   
 EMI6.2 
 
<tb> 
<tb> 



  Analyse <SEP> : <SEP> CgiH <SEP> Oo,
<tb> berechnet <SEP> : <SEP> C <SEP> 73, <SEP> 78%, <SEP> H <SEP> 7, <SEP> 19%, <SEP> 
<tb> gefunden <SEP> : <SEP> C <SEP> 73, <SEP> 88%, <SEP> H <SEP> 7, <SEP> 28%. <SEP> 
<tb> 
 c) 2,2-Di-(p-oxphenyl)-propan-bis-(3',4'-epoxyhexahydrobenzylcarbonat):
473 Teile   2,2-Di (p-oxyphenyl)propan-bis-(#3-tetrahydrobenzyl-carbonat)   werden in 2000 Vol.-Teilen Benzol gelöst. Es werden 50 Teile wasserfreies Natriumacetat und im Verlaufe einer Stunde 450 Teile 42% ige Peressigsäure unter Rühren zugegeben. Durch Kühlung wird die Temperatur bei   29-31   ge-   
 EMI6.3 
 Peressigsäure verbraucht. Die benzolische Lösung wird mit dreimal 500 Teilen Eiswasser und 300 Vol.Teilen 2 n-Natriumcarbonatlösung gewaschen, über Natriumsulfat getrocknet und eingedampft.

   Die wässerigen Teile werden mit 500 Vol.-Teilen Benzol extrahiert. Der Extrakt wird mit der Hauptmenge vereinigt. Die letzten Reste Lösungsmittel werden im Hochvakuum durch Erhitzen auf   1500 entfernt.   



  Es werden 466 Teile Diepoxyd mit einem Epoxydgehalt von   3, 4 Epoxydäquivalenten/kg   erhalten. d) 63 Teile Epoxyd und 27 Teile Phthalsäureanhydrid werden in der Schmelze vermischt und in eine Aluminium-Giessform eingefüllt. Das Gemisch geliert nach 21 Minuten bei 120 . Der Giessling zeigt nach der Härtung (2 Stunden bei 120  und 24 Stunden bei 160 ) folgende Eigenschaften : 
 EMI6.4 
 
<tb> 
<tb> Biegefestigkeit <SEP> 13, <SEP> 5 <SEP> kg/mm2 <SEP> 
<tb> Schlagfestigkeit <SEP> 13, <SEP> 9 <SEP> cm <SEP> kgfcm2 <SEP> 
<tb> Martenswert...................................... <SEP> 170 
<tb> 
 
 EMI6.5 
 
112 Teile   A-Tetrahydrobenzylalkohol   werden mit 500 Vol.-Teilen trockenem Benzol und 120 Teilen trockenem Pyridin vermischt.

   Unter guter Kühlung werden bei   5-10   93, 5   Teile Äthylenglykol-bis- 

 <Desc/Clms Page number 7> 

 chlorformiat zugetropft. Das ausgefallene Pyridinhydrochlorid wird abfiltriert. Das Filtrat wird in der Eiskälte mit zweimal 300 Vol.-Teilen 2 n-Salzsäure und 50 Vol.-Teilen 2 n-Kaliumbicarbonat gewaschen, über Natriumsulfat getrocknet und eingedampft. Bei der Destillation des Rückstandes werden 118 Teile   Äthylenglykol-bis- (A tetrahydrobenzyl-carbonat)   vom Kp. 169-171  /0, 07 mm Hg erhalten. b)   Äthylenglykol-bis- (3, 4-epoxyhexahydrobenzyl-carbonat) :  
102 Teile   Athylenglykol-bis- (A -tetrahydrobenzyl-carbonat)   werden mit 600 Vol.-Teilen Chlorbenzol vermischt.

   Es werden 180 Teile   33%ige schwefelsäurefreie   Peressigsäure zugegeben und das Gemisch 2 Stunden bei   30   und   3 Stunden bei 5'gehalten. Die obere Phase wird in einem rotierenden Verdampfer im Wasserstrahlvakuum eingedampft. Die letzten Reste Lösungsmittel werden im Hochvakuum bei   1000 entfernt.   Das erhaltene Diepoxyd weist einen Epoxydgehalt von 4, 4 Epoxydäquivalenten/kg auf. 



   Beispiel 6 : a)   89,     2Teiletechn. 2, 4-Dihydroxy-3-hydroxymethyl-pentan werden in 160Teilen trockenem   Pyridin und 500 Vol.-Teilen Benzol gelöst. Zu dieser Lösung werden unter Rühren im Verlaufe von 40 Minuten bei   6-10  349   Teile   A-Tetrahydrobenzyl-chlorfbrmiat   gegeben. Anschliessend wird das Gemisch 3 Stunden bei Raumtemperatur gehalten und dann 2 Stunden auf   600 erwärmt.   Man kühlt, filtriert das gebildete Pyridinhydrochlorid ab und wäscht mit 500 Vol.-Teilen Benzol. b) Das Filtrat wird mit 40 Teilen wasserfreiem Natriumacetat und im Verlaufe einer Stunde unter Rühren mit 460 Teilen 42% iger Peressigsäure versetzt. Die Temperatur wird durch Kühlung bei   30    gehalten.

   Nach weiteren 2 Stunden bei   28-30'wird   die benzolische Lösung mit dreimal 300 Vol.-Teilen Wasser, 300 Vol.-Teilen 2 n-Sodalösung und 50   Vol.-Teilen 1-molarer   Mononatriumphosphatlösung gewaschen. Die wässerigen Teile werden mit 500 Vol.-Teilen Benzol extrahiert. Die vereinigten benzolischen Lösungen werden über Natriumsulfat getrocknet, filtriert und eingedampft, zuletzt im Hochvakuum bei 120  . 



   Es werden 313 Teile eines dickflüssigen Harzes mit 4, 37 Epoxydäquivalenten/kg erhalten. 



   Beispiel 7 : a) 10, 2 Teile eines Novolaks (hergestellt aus Phenol und Formaldehyd im molaren Verhältnis 3 : 2 in Gegenwart von Oxalsäure) werden in 100 Vol.-Teilen n-Natronlauge gelöst. Zu der Lösung werden unter Rühren 17, 5 Teile   A-Tetrahydrobenzyl-chlorfbrmiat   getropft. Die Temperatur wird durch Kühlung bei zirka   250 gehalten.   Das Produkt wird in 150 Vol.-Teilen Chloroform aufgenommen. Die Lösung wird über Natriumsulfat getrocknet, filtriert und eingedampft. Die letzten Reste Lösungsmittel werden im Hochvakuum auf dem Wasserbad entfernt. Es werden 20, 3 Teile eines braunen Harzes erhalten. b) Obiges Carbonat wird wieder in 150 Vol.-Teilen Chloroform gelöst, mit 2, 5 Teilen wasserfreiem Natriumacetat und unter Kühlung bei zirka 30   mit 25 Teilen 42% iger Peressigsäure versetzt.

   Nachdem das Gemisch 1 Stunde unter Rühren bei etwa   300 reagiert   hat, wird mit Eis gekühlt, mit 200 Vol.-Teilen Benzol verdünnt und mit Wasser und 2 n-Sodalösung säurefrei gewaschen. Die Lösung wird über Natriumsulfat getrocknet, filtriert und eingedampft. Es werden 21, 5 Teile Harz mit 2, 56 Epoxydäquivalenten/kg erhalten. 



   Beispiel 8 : a)   6-Methyl-Ll3-tetrahydrobenzyl-chlorformiat     :  
126 Teile   6. Methyl-Ll3-tetrahydrobenzylalkohol   werden bei   9  zu   212 Teilen Phosgen in 700   Vol.-   
 EMI7.1 
 hydrobenzyl-chlorformiat getropft. Die Temperatur wird durch Kühlung bei   0-10'gehalten.   Anschliessend wird die Mischung 15 Stunden bei Raumtemperatur stehen gelassen. Das Gemisch wird mit 500 Vol.-Teilen Benzol verdünnt und in der Eiskälte mit 200 Teilen Wasser, zweimal 200 Vol.-Teilen 2 n-Salzsäure und 200 Vol.-Teilen 2 n-Bicarbonatlösung gewaschen. c) Die Lösung des Carbonats wird mit 18 Teilen wasserfreiem Natriumacetat und im Verlaufe von 
 EMI7.2 
 2 n-Sodalösung gewaschen, über Natriumsulfat getrocknet und eingedampft.

   Es werden 206 Teile Diepoxyd mit 3, 36 Epoxydäquivalenten/kg erhalten. 

**WARNUNG** Ende DESC Feld kannt Anfang CLMS uberlappen**.

Claims (1)

  1. PATENTANSPRÜCHE : 1. Verfahren zur Herstellung von neuen Epoxydverbindungen der allgemeinen Formel EMI7.3 <Desc/Clms Page number 8> EMI8.1 stituenten, wie Halogenatome, Alkoxygruppen oder aliphatische, cycloaliphytische, araliphatische oder aromatische Kohlenwasserstoffreste, insbesondere für niedere Alkylreste mit 1-4 Kohlenstoffatomen oder für Wasserstoffatome, stehen, wobei R und Rg bzw. R,'und R,'zusammen auch einen zweiwertigen Substituenten, wie eine Methylengruppe, bedeuten können, Z einen aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Rest und n eine ganze Zahl im Werte von l oder 2 bedeuten, dadurch gekennzeichnet, dass man Verbindungen der allgemeinen Formel EMI8.2 EMI8.3 behandelt.
    2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man ausgeht von Verbindungen der Formel EMI8.4 worin R und R'für ein Wasserstoffatom oder einen niederen Alkylrest stehen.
    3. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man ausgeht von Verbindungen der Formel EMI8.5 worin R und R'für ein Wasserstoffatom oder einen niederen Alkylrest stehen, und Z die gleiche Bedeutung hat wie in Anspruch 1.
    4. Verfahren gemäss Anspruch 1 und 3, dadurch gekennzeichnet, dass man ausgeht von Verbindungen der Formel EMI8.6 worin R und R'für ein Wasserstoffatom oder einen niederen Alkylrest stehen, und Z'den Kohlenwasserstoffrest eines Polyphenols bedeutet.
AT170860A 1959-09-10 1960-03-04 Verfahren zur Herstellung von neuen Epoxydverbindungen AT215977B (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH215977T 1959-09-10

Publications (1)

Publication Number Publication Date
AT215977B true AT215977B (de) 1961-07-10

Family

ID=29589262

Family Applications (1)

Application Number Title Priority Date Filing Date
AT170860A AT215977B (de) 1959-09-10 1960-03-04 Verfahren zur Herstellung von neuen Epoxydverbindungen

Country Status (1)

Country Link
AT (1) AT215977B (de)

Similar Documents

Publication Publication Date Title
DE1222076C2 (de) Verfahren zur herstellung von diepoxiden
CH396861A (de) Verfahren zur Herstellung von neuen Epoxydverbindungen
CH496021A (de) Verfahren zur Herstellung von neuen Polyglycidyläthern
DE1904110A1 (de) Neue langkettige,aliphatische oder cycloaliphatische Saeurereste enthaltende Polyglycidylester,Verfahren zu ihrer Herstellung und ihrer Anwendung
DE1418692C3 (de)
DE1053781B (de) Verfahren zur Herstellung von haertbaren Epoxyharzen
DE1942836A1 (de) Neue Diglycidylester von aliphatischen Dicarbonsaeuren,Verfahren zu ihrer Herstellung und ihrer Anwendung
EP0131842B1 (de) Flüssiger Epoxidharzhärter und Verfahren zu dessen Herstellung
CH395043A (de) Verfahren zur Herstellung von neuen epoxydgruppenhaltigen Acetalen
AT215977B (de) Verfahren zur Herstellung von neuen Epoxydverbindungen
DE2205104A1 (de) Neue N-heterocyclische Polyglycidylverbindungen, Verfahren zu ihrer Herstellung und ihrer Anwendung
DE1670490B2 (de) N,N&#39;-Diglycidyl-bis-hydantoinylverbindungen, Verfahren zu ihrer Herstellung ihre Verwendung
DE2059623A1 (de) Neue Diglycidylderivate von N-heterocyclischen Verbindungen,Verfahren zu ihrer Herstellung und Anwendung
DE1418485C3 (de) Epoxydierte cyclische Acetale und Verfahren zu ihrer Herstellung
AT222639B (de) Verfahren zur Herstellung von neuen, mindestens zwei Epoxydgruppen enthaltenden Glycidyläthern
AT222638B (de) Verfahren zur Herstellung von neuen Monoepoxyden
DE2308609A1 (de) Epoxidgruppenhaltige cyclische acetale
AT218003B (de) Verfahren zur Herstellung von neuen, mindestens zwei Epoxydgruppen enthaltenden Acetalen
AT219022B (de) Verfahren zur Herstellung von neuen, mindestens zwei Epoxydgruppen enthaltenden Acetalen
AT211812B (de) Verfahren zur Herstellung von neuen epoxydierten hydroaromatischen Acetalen
AT214422B (de) Verfahren zur Herstellung von neuen Glycidyläthern
AT221506B (de) Verfahren zur Herstellung von neuen Epoxydverbindungen
DE2220549C3 (de) Diglycidylester, Verfahren zu ihrer Herstellung und ihre Verwendung
DE3235664A1 (de) Ein cycloaliphatisches diepoxid, verfahren zur herstellung und verwendung
AT233838B (de) Heiß härtbare Gemische aus Epoxydverbindungen und Polycarbonsäureanhydriden