WO2024131852A1 - 电机层叠铁芯的生产设备及其生产方法 - Google Patents

电机层叠铁芯的生产设备及其生产方法 Download PDF

Info

Publication number
WO2024131852A1
WO2024131852A1 PCT/CN2023/140310 CN2023140310W WO2024131852A1 WO 2024131852 A1 WO2024131852 A1 WO 2024131852A1 CN 2023140310 W CN2023140310 W CN 2023140310W WO 2024131852 A1 WO2024131852 A1 WO 2024131852A1
Authority
WO
WIPO (PCT)
Prior art keywords
glue
adhesive
spraying
template
channel
Prior art date
Application number
PCT/CN2023/140310
Other languages
English (en)
French (fr)
Inventor
项源
黄秀东
杨仁义
王洪波
杨波
石浩栋
吴八斤
Original Assignee
苏州范斯特机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州范斯特机械科技有限公司 filed Critical 苏州范斯特机械科技有限公司
Publication of WO2024131852A1 publication Critical patent/WO2024131852A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/26Perforating, i.e. punching holes in sheets or flat parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/18Lubricating, e.g. lubricating tool and workpiece simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/02Casings or enclosures characterised by the material thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/042Punching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/166Metal in the pretreated surface to be joined
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/09Magnetic cores comprising laminations characterised by being fastened by caulking

Definitions

  • the invention relates to the technical field of motor core manufacturing, and in particular to production equipment and a production method for a motor laminated core.
  • the viscose cores now appearing on the market are formed by using production equipment to form multiple iron core sheets, and using the viscose coated in advance on the surface of the iron core sheets to make the multiple iron core sheets bonded to each other to form a viscose core.
  • the viscose is cured by auxiliary electromagnetic induction heating during production.
  • each glue spraying port is connected to the glue spraying control device through a pipeline, so that when the mold is assembled, the number of pipeline connections is large, and manual installation is required one by one, which makes it more troublesome to connect the glue spraying control device with each glue spraying port, making the pipeline docking efficiency low, and is not conducive to maintenance, and later cleaning and maintenance are also quite difficult.
  • the present invention provides the following technical solutions:
  • the production equipment of the motor laminated core designed in this application document is formed by stacking and bonding a plurality of core sheets, each of which is formed by punching a predetermined shape on a metal strip; the production equipment includes:
  • the upper die assembly and the lower die assembly cooperate with each other to punch out iron core pieces of predetermined shapes in sequence from the metal strip conveyed in a step-by-step manner, and then drop the material;
  • a glue spraying device the glue spraying device is arranged on the lower mold assembly
  • the glue spraying device includes a glue spraying plate, a first template and a second template.
  • the first template is located between the glue spraying plate and the second template.
  • a first glue spraying area and a second glue spraying area located outside the first glue spraying area are formed on the glue spraying plate.
  • a plurality of first glue spraying ports spaced apart from each other are formed in the first glue spraying area.
  • a plurality of second glue spraying ports spaced apart from each other are formed in the second glue spraying area.
  • a plurality of first shunt channels respectively connected to the first glue spraying ports, a first glue feed channel connected to the first shunt channels, and a plurality of transition channels respectively connected to the second glue spraying ports are formed on the front of the first template.
  • a plurality of second shunt channels respectively connected to the transition channels, and a second glue feed channel connected to the second shunt channels are formed on the front of the second template.
  • the first glue feed channel is through-set on the first template
  • the second glue feed channel is through-set on the second template.
  • a first diverter cavity is formed on the front side of the first template, the first diverter cavity is connected to the first glue inlet channel, and each first diverter channel is connected to the first diverter cavity respectively.
  • the front side of the second template is formed with a second shunt cavity, and the second shunt cavity is formed with a second shunt cavity.
  • the flow cavity is communicated with the second glue inlet channel, and each second flow branch channel is communicated with the second flow branch cavity respectively.
  • a plurality of connecting grooves arranged in an annular array are formed on the front side of the first template and the front side of the second template; each connecting groove on the first template is respectively located between the plurality of first shunt channels, so that the plurality of first shunt channels are connected through the connecting groove; each connecting groove on the second template is respectively located between the plurality of second shunt channels, so that the plurality of second shunt channels are connected through the connecting groove;
  • the first glue spraying area and the second glue spraying area are both annular structures, the positions of each connecting groove on the first template are respectively arranged corresponding to the positions of the first glue spraying areas of the annular structure, the positions of each connecting groove on the second template are respectively arranged corresponding to the positions of the second glue spraying areas of the annular structure, and the plurality of first glue spraying ports are evenly distributed at equal intervals, the plurality of second glue spraying ports are evenly distributed at equal intervals, the first glue spraying port is connected to the first
  • the positioning structure is arranged on the lower mold assembly.
  • the positioning structure includes a side guide plate and a magnet.
  • a positioning groove is formed on the side guide plate.
  • the magnet is embedded in the upper inner wall of the positioning groove.
  • the side edge of the metal strip is located in the positioning groove. The magnet separates the metal strip from the upper surface of the lower mold assembly through its magnetic force.
  • a metal strip conveying channel is formed between the upper mold assembly and the lower mold assembly, and a nozzle is arranged in front of the feed end of the metal strip conveying channel.
  • the nozzle sprays a mixed liquid of stamping oil and a promoter on the surface of the metal strip.
  • the mixed liquid is mixed with the adhesive sprayed from the first glue spray port and the second glue spray port, respectively, so that a plurality of iron core sheets are stacked and bonded to each other to form a motor laminated core.
  • the production equipment of the motor laminated core described above also includes a first glue spraying control device and a second glue spraying control device
  • the first glue spraying control device and the second glue spraying control device both include a controller, a glue cartridge and a glue control device
  • the gas pressure reducing valve in the controller is connected to the air inlet port of the glue cartridge through an air pipe
  • the glue control device is connected to and controlled by the control module in the controller
  • the discharge port of the glue cartridge is connected to the glue inlet of the glue control device through a pipeline
  • the glue outlet of the glue control device is installed with a pressure sensor
  • the pressure sensor is connected to and controlled by the control module in the controller
  • the glue outlet of the glue control device of the first glue spraying control device is connected to the third glue inlet channel through a pipeline
  • the glue outlet of the glue control device of the second glue spraying control device is connected to the second glue inlet channel through a pipeline.
  • the production equipment of the motor laminated core described above also includes a lifting device;
  • the adhesive spraying device also includes an inlay ring fixed on the second template, the first template and the glue spraying plate are placed in the inner cavity of the inlay ring, the inner wall of the inlay ring is formed with a protrusion, the glue spraying plate is formed with a step, and the protrusion is limited on the step;
  • the lifting device includes a draw plate, and a draw plate pad fixed on the second template, the bottom surface of the draw plate pad and the top surface of the draw plate are respectively formed with a plurality of matching grooves arranged at equal intervals to form a plurality of matching tooth blocks, and the matching tooth blocks are correspondingly inserted into the matching grooves; one side wall of the matching groove on the draw plate pad and one side wall of the matching groove on the draw plate fit each other, and the two side walls that fit each other are both inclined surfaces with the same inclination angle, and the extended section of the draw plate passes through the channel and fits in with The cylinder
  • a method for producing a laminated core of a motor includes manufacturing the laminated core using the above-mentioned production equipment for the laminated core of the motor, and the specific steps are as follows:
  • the metal strip is conveyed in a continuous step-by-step manner in the direction of blanking, and the upper surface of the metal strip is sprayed with a mixed liquid for catalyzing the viscose between the upper die assembly and the lower die assembly entering the production equipment;
  • the metal strip is between the upper mold assembly and the lower mold assembly of the production equipment, and the metal strip is continuously and step-by-step conveyed in the blanking direction, so that the pre-forming area of the iron core sheet is attached to the adhesive spraying device in the production equipment, and the adhesive in the adhesive barrel of the first adhesive spraying control device is conveyed to the first adhesive spraying port of the adhesive spraying device through the adhesive control device, and the adhesive in the adhesive barrel of the second adhesive spraying control device is conveyed to the second adhesive spraying port of the adhesive spraying device through the adhesive control device, and the adhesive sprayed from the first adhesive spraying port and the second adhesive spraying port adheres to the lower surface of the pre-forming area of the iron core sheet, and adhesive spots are evenly distributed on the lower surface of the pre-forming area of the iron core sheet;
  • the pre-forming area of the iron core sheet coated with adhesive on the metal strip is punched to form the iron core sheet, and the iron core sheet is dropped into the dropping channel and cured and bonded with the top surface of the iron core sheet stack group inside it through the contact of adhesive and mixed liquid to form a stacked iron core; during the curing and bonding, the bonding is completed after 10s-3min in a temperature environment of 15°C-35°C, and the formed iron core sheet is pressurized by the forming die of the upper die assembly, and the iron core sheet stack group is subjected to the back pressure of the hydraulic cylinder and the clamping force of the locking ring, so that the formed iron core sheet and the top surface of the iron core sheet stack group are tightly cured and quickly bonded at room temperature.
  • the metal strip is continuously conveyed step by step in the blanking direction by a forward push and a rear pull method.
  • the adhesive spot is located at the outer edge of the core sheet.
  • the adhesive spot is located at the edge of the shaft hole on the iron core sheet.
  • the adhesive spots are located around the magnetic steel slots on the iron core sheet.
  • At least one glue point is adhered to each of the multiple teeth on the core sheet after the adhesive is applied.
  • the production equipment and production method of the motor laminated core designed by the present invention have the following beneficial effects:
  • a plurality of first glue spraying ports are connected to the first glue feeding channel through the first branch channel on the first template, and a plurality of second glue spraying ports are connected to the second glue feeding channel through the second branch channel on the second template, so that only two pipes are required to be connected to the first glue feeding channel and the third glue feeding channel respectively to realize the input of glue to the first glue spraying port and the second glue spraying port, and the solution
  • the invention solves the technical problems in the prior art that each glue spray port needs to be connected to a large number of pipes, which leads to troublesome pipe docking and installation, low pipe installation efficiency and inconvenience for maintenance.
  • the invention further achieves quick installation of pipes and glue spray ports. Due to the small number of pipes, the corresponding faulty pipes can be quickly found, which improves the maintenance speed.
  • the invention is also convenient for cleaning, and there is no need to frequently replace wearing parts, so the later maintenance is convenient.
  • the setting of the diversion chamber allows the glue to be collected in the diversion chamber and then diverted, so that the glue spraying port provides a certain pressure when spraying glue, and the pressure of the glue sprayed from each glue spraying port is balanced to control the amount of glue sprayed.
  • connection groove is set so that when there is too much glue in one shunt channel, it can overflow to other shunt channels, so that the amount of glue in each shunt channel is balanced, and the amount of glue sprayed by each spray gun is uniform, so that the thickness of the glue dots coated on the iron core is consistent, and the thickness of each motor iron core formed by bonding is also consistent, thereby improving the yield rate.
  • a side guide plate for guiding the material belt is set on the side of the metal material belt to position the metal material belt that is conveyed in a step-by-step manner, and a magnet is set on the side guide plate so that the metal material belt can be separated from the lower mold assembly. After separation, the metal material belt is adsorbed by the magnet to prevent the glue points on the material belt from shaking. Therefore, the installation of magnets on the side guide plate can better lift the material and make the feeding smoother.
  • the adhesive spraying device can be lifted up and down, and the production of rotor core or stator core can be realized.
  • the rotary bonding core production device can be used to reliably produce laminated cores.
  • Fig. 1 is a schematic diagram of the production equipment structure (I);
  • Fig. 2 is a schematic diagram of the production equipment structure (II);
  • Figure 3 is a schematic diagram of the structure of the production equipment in the mold opening state
  • Figure 4 is an enlarged view of point A
  • Figure 5 is an enlarged view of point B
  • Fig. 6 is a schematic diagram of the structure of the production equipment in the mold clamping state
  • FIG7 is a schematic structural diagram of a glue spraying device
  • Figure 8 is an enlarged view of point C
  • FIG9 is a schematic diagram of the structure of the glue spraying assembly (I).
  • Figure 10 is an enlarged view of point D
  • Fig. 11 is a schematic diagram of the structure of the glue spraying assembly (II);
  • Figure 12 is an enlarged view of point E
  • Fig. 13 is a schematic diagram of the structure of the glue spraying assembly (III);
  • FIG14 is an exploded schematic diagram of the glue spraying assembly
  • FIG15 is a schematic diagram of the assembly structure of the glue spraying assembly
  • 16 is a schematic diagram of the distribution of the first glue spraying port and the second glue spraying port for coating the viscose on the rotor iron core sheet;
  • FIG17 is a schematic diagram of a partial layout for the production of rotor laminated cores and stator laminated cores (I);
  • FIG18 is a schematic diagram of a partial layout for the production of rotor laminated cores and stator laminated cores (II);
  • Figure 19 is an enlarged view of point F
  • Figure 20 is an enlarged view of point G
  • Figure 21 is an enlarged view of point H
  • Figure 22 is an enlarged view of point I.
  • FIG. 1 to FIG. 16 are the first embodiment of the present invention, and the first embodiment describes a production device for a motor laminated core.
  • the production device for a motor laminated core specifically includes the following:
  • the motor laminated core is formed by stacking and bonding a plurality of core sheets, each of which is formed by punching a metal strip 10 into a predetermined shape.
  • the production equipment includes an upper mold assembly 1, a lower mold assembly 2 and an adhesive spraying device 3.
  • the upper die assembly 1 and the lower die assembly 2 cooperate with each other to punch out iron core pieces of predetermined shapes in sequence from the metal strip 10 conveyed in a step-by-step manner, and then drop the materials; wherein, the step-by-step feeding adopts roller feeders 9 respectively arranged at both ends of the production equipment, and the metal strip 10 is conveyed in a forward push and rear pull manner, and a plurality of punches and dies are respectively arranged on the upper die assembly 1 and the lower die assembly 2, so that iron core pieces of predetermined shapes can be punched out.
  • the glue spraying device 3 is arranged on at least one of the upper mold assembly 1 and the lower mold assembly 2.
  • the glue spraying device 3 is arranged corresponding to the surface of the metal strip 10 for the iron core sheet forming part.
  • the glue spraying device 3 includes a glue spraying plate 30, a first template 31 and a second template 32.
  • the glue spraying plate 30 is a ring structure, generally a circular ring.
  • the first template 31 is arranged between the glue spraying plate 30 and the second template 32, and the mandrel pressing plate 33 is placed in the inner hole of the glue spraying plate 30.
  • the inner wall of the glue spraying plate 30 forms a first boss 304, and the outer wall of the mandrel pressing plate 33 forms a second boss 331.
  • the second boss 331 is pressed on the first boss 304, and the screw rods of multiple bolts respectively penetrate the mandrel pressing plate 33 and the first template 31 and are threadedly connected with the threaded holes of the second template 32, so that the screws at this place can be screwed.
  • the number of bolts is set to nine, and a ring 34 is fixed on the second template 32.
  • the screw rods of multiple bolts penetrate the threaded holes of the ring 34 and the second template 32 respectively, and the number of bolts can be set to at least ten.
  • the first template 31 and the glue spraying plate 30 are placed in the inner cavity of the ring 34.
  • the inner wall of the ring 34 is formed with a protrusion 341.
  • the glue spraying plate 30 is formed with a step 303, and the protrusion 341 is limited on the step 303. Then, the glue spraying plate 30, the first template 31 and the second template 32 are connected to each other through the arrangement of the mandrel pressing plate 33 and the ring 34, so that the structure is compact and reliable.
  • the glue spraying plate 30, the first template 31 and the second template 32 are all metal plates.
  • the glue spraying plate 30, the first template 31 and the second template 32 are sealed by a rubber sealing ring 35 to prevent glue leakage.
  • the adhesive spraying device 3 is arranged in the concave cavity of the lower mold assembly 2.
  • a first glue spraying area 36 and a second glue spraying area 37 located outside the first glue spraying area 36 are formed on the glue spraying surface of the glue spraying plate 30.
  • a plurality of first glue spraying ports 301 spaced apart from each other are formed in the first glue spraying area 36, and a plurality of second glue spraying ports 302 spaced apart from each other are formed in the second glue spraying area 37.
  • the upper glue outlet ends of the first glue spraying ports 301 and the second glue spraying ports 302 are in the form of a conical cavity 305 whose lower port diameter is larger than that of the upper port.
  • the upper port of the conical cavity 305 is also connected to a straight section channel 306, and the diameter of the straight section channel 306 is consistent with the diameter of the upper port of the conical cavity 305, so that the diameter of the glue dots of the first glue spraying ports 301 and the second glue spraying ports 302 are limited during glue spraying to avoid excessively large glue dot diameters.
  • the front surface of the first template 31 is formed with a plurality of first branch channels 312 respectively connected to the first glue spraying ports 301, a first glue feeding channel 313 connected to the first branch channels 312, and a plurality of flow channels 314 respectively connected to the second glue spraying ports 302.
  • the front side of the second template 32 is formed with a plurality of second branch channels 321 respectively connected to each transition channel 311, and a second glue inlet channel 322 connected to each second branch channel 321; when the third glue inlet channel 323 inputs glue, the glue enters the first glue injection port 301 through the first glue inlet channel 313 and the first branch channel 312, and then is ejected through the straight section channel 306 of the first glue injection port 301; when the second glue inlet channel 322 inputs glue, the glue passes through the second branch channel 321 After passing through the transition channel 311, it enters the second glue spray port 302 and is then sprayed out through the straight channel 306 of the second glue spray port 302.
  • the glue sprayed from the first glue spray port 301 and the second glue spray port 302 is directly coated on the surface of the iron core sheet forming part on the metal strip 10.
  • the first glue inlet channel 313 is through-set on the first template 31, and the second glue inlet channel 322 is through-set on the second template 32.
  • an avoidance hole or avoidance gap may be provided on the second template (32) to expose the lower end of the first glue inlet channel 313, so that the first glue inlet channel 313 can be directly connected to the glue inlet pipe.
  • a first diversion chamber 314 is formed on the front side of the first template 31.
  • the first diversion chamber 314 is connected to the first glue inlet channel 313.
  • Each first diversion channel 312 is connected to the first diversion chamber 314 respectively.
  • the first diversion chamber 314 is used to collect the glue input through the first glue inlet channel 313 and the third glue inlet channel 323.
  • the glue in the first diversion chamber 314 is filled, it enters into each first diversion channel 312, so that the first glue spray port 301 has a higher pressure to spray the glue.
  • the first diversion chamber 314 limits the amount of glue and pressure sprayed by the glue spray port in the single area, so as to achieve precise quantitative glue spraying in each part.
  • a second diverter chamber 325 is formed on the front side of the second template 32.
  • the second diverter chamber 325 is connected to the second glue inlet channel 322.
  • Each second diverter channel 321 is respectively connected to the second diverter chamber 325.
  • the second diverter chamber 325 is used to collect the glue input from the second glue inlet channel 322. When the glue in the second diverter chamber 325 is filled, it enters into each second diverter channel 321, so that the first glue spray port 301 has a higher pressure to spray the glue.
  • the second diverter chamber 325 limits the amount of glue and pressure sprayed by the glue spray port in the single area, so as to achieve precise quantitative glue spraying in each part.
  • the first glue spraying area 36 and the second glue spraying area 37 are both annular structures, generally in a circular shape, and multiple first glue spraying ports 301 are evenly distributed at equal intervals, and multiple second glue spraying ports 302 are evenly distributed at equal intervals.
  • the structural setting makes the glue points coated on the surface of the iron chip forming part of the metal strip 10 evenly distributed, so as to achieve stable and reliable fixed connection between each iron chip.
  • a plurality of connecting grooves 324 arranged in a circular array are formed on the front side of the first template 31 and the front side of the second template 32; the arrangement enables the plurality of first diversion channels 312 to be connected through the connecting grooves 324 on the first template 31, and the plurality of second diversion channels 321 to be connected through the connecting grooves 324 on the second template 32, so that when there is excessive amount of glue in a certain diversion channel, it can be diverted to other diversion channels on the corresponding template through the connecting grooves 324.
  • each connecting groove 324 on the first template 31 is respectively located between the plurality of first shunt channels 312, so that the plurality of first shunt channels 312 are connected through the connecting groove 324, and the positions of each connecting groove 324 on the first template 31 are respectively arranged corresponding to the positions of the first glue spraying areas 36 of the annular structure, and the first glue spraying port 301 is connected to the first glue spraying area 36 through the connecting groove 324 on the first template 31.
  • the diversion channel 312 is connected, and a third glue feeding channel 323 connected to the first glue feeding channel 313 is formed on the second template 32.
  • the second glue feeding channel 322 and the third glue feeding channel 323 are arranged through the second template 32; when the third glue feeding channel 323 inputs glue, the glue enters the first glue feeding channel 313, the first diversion channel 312, the first diversion cavity 314 and the connecting groove 324 to the first glue spray port 301, and is finally sprayed out through the straight section channel 306 of the first glue spray port 301, and is directly coated on the surface of the iron chip forming part on the metal strip 10.
  • each connecting groove 324 on the second template 32 is respectively located between the multiple second diversion channels 321, so that the multiple second diversion channels 321 are connected through the connecting groove 324, and the positions of each connecting groove 324 on the second template 32 are respectively set corresponding to the position of the second glue spraying area 37 of the annular structure, and the second glue spraying port 302 is connected with the second diversion channel 321 through the transition channel 311 and the connecting groove 324 on the second template 32; when the second glue inlet channel 322 inputs glue, the glue enters the second glue spraying port 302 through the second diversion channel 321, the second diversion cavity 325, the connecting groove 324 and the transition channel 311, and finally is sprayed out through the straight section channel 306 of the second glue spraying port 302, and is directly coated on the surface of the iron chip forming part on the metal strip 10.
  • the front side of the first template 31 is a side facing the glue spraying plate 30
  • the front side of the second template 32 is a side facing the first template 31 .
  • the positioning structure also includes a positioning structure for guiding and limiting the metal strip 10 during step-by-step conveying.
  • the positioning structure can be set to two, and the two positioning structures are respectively arranged on the left and right sides of the lower mold assembly 2, wherein the positioning structure includes a side guide plate 7 and a magnet 72, a positioning groove 71 is formed on the side guide plate 7, and the magnet 72 is embedded in the upper inner wall of the positioning groove 71.
  • the side edge of the metal strip 10 is located in the positioning groove 71, and the magnet 72 separates the metal strip 10 from the upper surface of the lower mold assembly 2 through its magnetic force, so as to ensure that the metal strip 10 is adsorbed by the magnet 72 after separation, so as to prevent When the metal strip 10 shakes, the glue dots on the metal strip 10 are further prevented from shaking, and the shape of the glue dots on the metal strip 10 is prevented from changing. Therefore, the lifting and feeding of the materials are smoother under the setting of the side guide plate 7 and the magnet 72. Since the step-by-step feeding adopts the roller feeder 9 set at both ends of the production equipment, and the metal strip 10 is conveyed in a forward push and rear pull manner, the metal strip 10 is adsorbed by the magnet 72 to play a lifting role. The metal strip 10 can also be conveyed in a step-by-step manner under the adsorption. Since the metal strip 10 is made of silicon steel sheet, it can be adsorbed by the magnet 72.
  • a metal strip conveying channel is formed between the upper mold assembly 1 and the lower mold assembly 2, and a nozzle 8 is arranged in front of the feed end of the metal strip conveying channel.
  • the nozzle 8 sprays a mixed liquid of stamping oil and a promoter on the surface of the metal strip 10.
  • the mixed liquid is mixed with the adhesive sprayed from the first adhesive spray port 301 and the second adhesive spray port 302 respectively, so that multiple iron core sheets are stacked and bonded to each other to form a motor stacked core.
  • the mixed liquid has the function of catalyzing the adhesive, and the adhesive is an anaerobic adhesive of the acrylic ester type, so that it can be cured at room temperature after being compounded with each other to achieve bonding between multiple iron core sheets.
  • the first glue spraying control device 13 and the second glue spraying control device 14 are also included.
  • the first glue spraying control device 13 and the second glue spraying control device 14 both include a controller 131, a glue cartridge 132 and a glue control device 133.
  • the gas pressure reducing valve in the controller 131 is connected to the air inlet port of the glue cartridge 132 through an air line pipe.
  • the glue control device 133 is connected to the controller 131.
  • the control module is connected and controlled by it, the discharge port of the glue cylinder 132 is connected to the glue inlet of the glue control device 133 through a pipeline, and the glue outlet of the glue control device 133 is installed with a pressure sensor 134, which is connected to the control module in the controller 131 and controlled by it.
  • the pressure sensor 134 detects that the pressure is too high, and the pressure sensor 134 alarms; when the seal of the pipeline joint fails, resulting in too low pressure, the pressure sensor 134 alarms; wherein, the glue outlet of the glue control device 133 of the first glue spraying control device 13 is connected to the third glue inlet channel 323 through a pipeline, and the glue outlet of the glue control device 133 of the second glue spraying control device 14 is connected to the third glue inlet channel 323 through a pipeline, and the glue outlet of the glue control device 133 of the second glue spraying control device 14 is connected to the third glue inlet channel 323 through a pipeline.
  • the control module adopts a PLC controller
  • the gas pressure reducing valve adopts an electric proportional pressure reducing valve.
  • the PLC controller controls the air intake pressure of the electric proportional pressure reducing valve according to the punching speed of the punch press and the set value of the glue output amount, and controls the glue control device 133 of the first glue spraying control device 13 to work and output glue to the first glue spraying port 301 and controls the glue control device 133 of the second glue spraying control device 14 to work and output glue to the second glue spraying port 302, so that the glue spraying amount of each glue spraying is accurately controlled, and the glue output by the glue control device 133 is provided by the glue output by the glue cylinder 132, and the glue control device 133 adopts a screw pump.
  • a lifting device 4 is also included; the lifting device 4 includes a draw plate 42 and a draw plate pad 41 fixed on the second template 32, the bottom surface of the draw plate pad 41 and the top surface of the draw plate 42 are respectively formed with a plurality of matching grooves 412 arranged at equal intervals to form a plurality of matching tooth blocks 411, and the matching tooth blocks 411 are correspondingly inserted into the matching grooves 412; a side wall of the matching groove 412 on the draw plate pad 41 and a side wall of the matching groove 412 on the draw plate 42 fit each other, and both side walls that fit each other are inclined surfaces 413 with the same inclination angle, and the extension section of the draw plate 42 passes through the channel and is connected to the cylinder 43 located on the lower die assembly 2; when a motor laminated core or iron core sheet is punched out, When punching the second motor laminated core or core sheet, the cylinder 43 pulls the draw plate 42 so that the matching tooth block 411 is configured in the matching groove 412, thereby forcing the
  • a cavity is provided on the draw plate pad 41 , and the cavity is used to accommodate the joint connecting the second glue inlet channel 322 and the third glue inlet channel 323 .
  • the guide assembly 5 includes a guide column 52 fixed on the drawer pad 41 and a guide sleeve 51 installed on the lower mold assembly 2.
  • the guide column 52 is inserted into the guide sleeve 51.
  • the guide sleeve can adopt a ball guide sleeve 51 to make the guide column 52 move more smoothly in the guide sleeve 51.
  • the reset assembly 6 includes a sleeve 61 mounted on the lower mold assembly 2, and a spring 62 and a column 63 placed in the sleeve 61.
  • the column 63 is connected to the draw plate pad 41, and the two ends of the spring 62 are respectively connected to the sleeve 61 and the column 63.
  • the core production is carried out based on the above-mentioned motor laminated core production equipment, and the specific method and steps are as follows:
  • the metal strip 10 is conveyed in a continuous step-by-step manner in the blanking direction, and before entering between the upper mold assembly 1 and the lower mold assembly 2 of the production equipment, the upper surface of the metal strip 10 is sprayed with a mixed liquid for catalyzing the viscose.
  • Catalysis means that the mixed liquid can chemically react with the viscose.
  • the metal strip 10 is conveyed in a continuous step-by-step manner in the blanking direction between the upper mold assembly 1 and the lower mold assembly 2 of the production equipment, so that the pre-forming area of the iron core sheet is attached to the glue spraying device 3 located in front of the blanking station in the production equipment, and the glue in the glue cylinder 132 in the first glue spraying control device 13 is conveyed to the first glue spraying port 301 of the glue spraying device 3 through the glue control device 133, and the glue in the glue cylinder 132 in the second glue spraying control device 14 is conveyed to the second glue spraying port 302 of the glue spraying device 3 through the glue control device 133, and the glue sprayed from the first glue spraying port 301 and the second glue spraying port 302 adheres to the lower surface of the pre-forming area of the iron core sheet, and glue dots 117 are evenly distributed on the lower surface of the pre-forming area of the iron core sheet.
  • the pre-forming area of the iron core sheet coated with adhesive on the metal strip 10 is punched to form the iron core sheet, and the iron core sheet is dropped into the dropping channel 21 and solidified and bonded to the top surface of the iron core sheet stack group inside it through the contact of adhesive and mixed liquid to form a laminated iron core; during solidification and bonding, the bonding is completed within 10s-3min in a temperature environment of 15°C-35°C, and the formed iron core sheet is pressed by the forming die of the upper die assembly 1, and the iron core sheet stack group is subjected to the back pressure of the hydraulic cylinder and the clamping force of the locking ring, so that the formed iron core sheet and the top surface of the iron core sheet stack group are tightly bonded.
  • the temperature range of 15°C-35°C is generally the normal temperature range, but the preferred embodiment is 20°C-25°C; the time range is 10s-3min to complete the rapid bonding, but the solidification state of about 10s or more than 10S is the initial solidification, and the initial solidification achieves the effect that it cannot be separated by human power, and the complete solidification state can be reached in 3min.
  • the adhesive point is located at the outer edge of the core sheet, or
  • the adhesive spot is located at the edge of the shaft hole on the iron core sheet, or
  • the adhesive spot is located around the magnetic steel slot on the iron core sheet, or
  • At least one adhesive dot is adhered to each of the multiple teeth on the iron core sheet.
  • the tooth is formed by forming multiple slots on the rotor or stator, and the setting of the above-mentioned adhesive dot positions greatly reduces the vibration and noise of the motor core.
  • FIG. 17 to FIG. 21 show a second embodiment of the present invention, and the second embodiment describes a method for producing a laminated core of a motor.
  • the method for producing a laminated core of a motor of the present invention includes the following steps:
  • the rotor core and the stator core are manufactured based on the production equipment and production method of the motor laminated core described in the first embodiment.
  • the mixed liquid spraying station is arranged at the material strip inlet end of the production equipment, and the production equipment sequentially comprises a forming station 102 for forming a notch forming hole 112, a notch forming hole 113 and a stator square slot 111, a forming station 2 103 for forming a ventilation hole 114 and a notch forming hole 3 125, a forming station 3 104 for forming a rotor magnetic steel slot 115, a rotor center hole 116 and re-forming the stator square slot 111, and a glue spraying device 3 having a glue spraying device Station 105, blanking station 106 for forming rotor core sheet 118, forming station 4 107 for forming slot-shaped holes 120 and elongated holes 122, forming station 5 108 for forming stator slots and stator shaft holes, glue spraying station
  • step S1 the metal strip 10 is conveyed in a continuous step-by-step manner in the blanking direction, and before entering between the upper mold assembly 1 and the lower mold assembly 2 of the production equipment, the upper surface of the metal strip 10 is sprayed with a mixed liquid for catalyzing the adhesive; because the mixed liquid and the acrylic anaerobic adhesive can quickly produce a chemical reaction at the junction, so as to make advance preparations so that multiple iron core sheets can be stacked in the production equipment after being formed and cured and bonded under the above-mentioned time and temperature conditions.
  • step S2 the metal strip 10 is conveyed in a continuous step-by-step manner in the blanking direction between the upper mold assembly 1 and the lower mold assembly 2 of the production equipment, and multiple rows of blanking and forming areas 101 of the metal strip 10 are blanked synchronously, so as to form a rotor center hole 116 with a notch, a plurality of ventilation holes 114 and a plurality of rotor magnetic steel slots 115 surrounding the rotor center hole 116, and a plurality of stator square slots 111 located at the periphery of the plurality of rotor magnetic steel slots 115 and arranged in a circular array in each forming area, and the rotor magnetic steel slots 115 are located at the periphery of the through hole, and then a rotor iron core sheet preforming area is defined by the periphery of the rotor magnetic steel slots 115; the step provides a corresponding structure and conditions for the blanking and forming of the rotor iron core sheet 118, and makes advance preparations for
  • Step S3 during the continuous step-by-step conveying of the metal strip 10, the pre-formed area of the rotor iron core sheet is attached to the glue spraying device 3 located in front of the rotor blanking station in the production equipment, and the glue in the glue cylinder 132 of the first glue spraying control device 13 is conveyed to the first glue spraying port 301 of the glue spraying device 3 through the glue control device 133, and the glue in the glue cylinder 132 of the second glue spraying control device 14 is conveyed to the second glue spraying port 302 of the glue spraying device 3 through the glue control device 133, and the first glue spraying port
  • the glue sprayed from the first and second glue spray ports 301 and 302 adheres to the lower surface of the pre-forming area of the rotor iron core sheet, and glue dots 117 are evenly distributed between the ventilation holes 114 and between the rotor magnetic steel slots 115, wherein the points of the first glue spray ports 301 are respectively arranged corresponding to the glue points between the ventilation holes 114, and
  • Step S4 during the continuous step-by-step conveying process of the metal strip 10, the pre-formed area of the rotor iron core sheet sprayed with the glue dots 117 is punched to form a rotor iron core sheet 118, and the material is dropped into the blanking channel 21 and the top surface of the rotor iron core sheet stack inside the blanking channel 21 is contacted with the adhesive and the mixed liquid to be cured and bonded at room temperature to form a rotor iron core.
  • the lower end surface of the rotor iron core sheet stack of the blanking channel 21 is supported by a supporting hydraulic cylinder, and each time a rotor iron core sheet 118 is punched, the support is controlled by the support.
  • the hydraulic cylinder descends by a distance equal to the thickness of the rotor iron core sheet 118 to facilitate lamination and bonding of the next punched and formed iron core sheets.
  • Normal temperature refers to 15°C-35°C, and 20°C-25°C is preferred in this embodiment.
  • step S5 during the continuous step-by-step conveying of the metal strip 10, a plurality of slot holes 120 arranged in a circular array are punched out of the periphery of the blanking hole 119, and a long hole 122 is formed on the slot hole 120 at one end close to the blanking hole 119; the forming step is a preliminary preparation for the forming of the stator slot 123 to avoid deformation caused by direct forming.
  • Step S6 during the continuous step-by-step conveying of the metal strip 10, the edge of the blanking hole 119 is punched to form a stator center hole, and a portion of the elongated hole 122 is removed to connect the slot-shaped hole 120 with the blanking hole 119 to form a stator slot 123, and then a stator iron core sheet pre-forming area is formed by defining the outer periphery of the stator square slot 111; through the combination of step S5 and step S6, deformation of the stator slot 123 formed by punching is avoided, the quality of the stator iron core sheet 124 is effectively guaranteed, and production efficiency and quality are improved.
  • Step S7 during the continuous step-by-step conveying of the metal strip 10, the stator iron core pre-forming area is attached to the glue spraying device 3 located in front of the stator blanking station in the production equipment, and the glue in the glue cartridge 132 in the first glue spraying control device 13 is conveyed to the first glue spraying port 301 of the glue spraying device 3 through the glue control device 133, and the glue in the glue cartridge 132 in the second glue spraying control device 14 is conveyed to the second glue spraying port 302 of the glue spraying device 3 through the glue control device 133, and the glue sprayed from the first glue spraying port 301 and the second glue spraying port 302 is made to be
  • the glue is adhered to the lower surface of the pre-forming area of the stator iron core sheet to form glue dots 117, and the glue dots 117 are evenly distributed between the stator slot shapes 123 and between the stator slot shapes 123 and the stator square slots 111; wherein, the positions of the first glue spray ports 301 are respectively arranged
  • Step S8 before the stator iron core sheet 124 is blanked, the stator iron core sheet stack in the blanking channel 21 is rotated 360°/N, wherein the N coefficient is 18, so the rotation angle is 20°, and the N coefficient is not limited to this, and can also be adaptively adjusted according to the shape of the iron core sheet; then, during the continuous step-by-step conveying process of the metal strip 10, the stator iron core sheet pre-forming area sprayed with the glue dots 117 is punched to form a stator iron core sheet 124 with an outer notch, and the stator iron core sheet 124 is blanked into the blanking channel 21 and bonded and fixed to the top surface of the stator iron core sheet stack by contacting the adhesive with the liquid at room temperature to form a stator iron core; the lower end surface of the stator iron core sheet stack in the blanking channel 21 is supported by a supporting hydraulic cylinder, and each time a stator iron core sheet is punched, the supporting hydraulic cylinder is controlled to descend by a distance of the thickness of the stat
  • step S2 specifically includes:
  • Step S21 during the continuous step-by-step conveying of the metal strip 10, two symmetrically arranged notch forming holes 112, a plurality of notch forming holes 113 arranged in a circular array around the notch forming hole 1, and a plurality of stator square slots 111 arranged in a circular array around the plurality of notch forming holes 113 are punched out on one side of the longitudinal center line at the center position of the forming area;
  • Step S22 during the continuous step-by-step conveying of the metal strip 10, a notch forming hole 125 is punched out on the other side of the longitudinal centerline at the center of the forming area, and a plurality of ventilation holes 114 arranged in a circular array are formed in the peripheral area of the notch forming hole 112 and the notch forming hole 125, and the two notch forming holes 112 and the notch forming hole 3 are distributed in a circular array;
  • Step S23 during the continuous step-by-step conveying of the metal strip 10, a plurality of rotor magnetic steel slots 115 with notches are formed according to the positions of the notch forming holes 113, and stator square slots 111 are punched between the stator square slots 111, wherein two adjacent rotor magnetic steel slots 115 are arranged obliquely and symmetrically with each other;
  • Step S24 during the continuous step-by-step conveying of the metal strip 10, a rotor center hole 116 with a notch is punched out at the center position of the notch forming hole 112 and the notch forming hole 3.
  • the above steps enable the stator square slot 111, the notched rotor magnetic steel slot 115, the notched rotor center hole 116, and the ventilation hole 114 to be effectively formed, avoiding deformation during the forming process, and also eliminating the step of deliberately designing the notch, thereby improving production efficiency.
  • stator outline notch forming hole forming step between step S5 and step S6, and a square slot forming area is defined by a plurality of stator square slots 111 arranged in an annular array, and three notch forming areas arranged in an annular array are formed in the square slot forming area, and each notch forming area has two parallel stator square slots 111, so that the three notch forming areas are punched out to form notch forming holes four, and then the stator iron core sheet 124 with an outline notch is pre-formed and punched out according to the stator iron core sheet 124.
  • the pre-forming mode is adopted, so that the stator iron core sheet 124 with an outline notch is effectively formed to avoid deformation, and the step of deliberately forming the outline notch is omitted, thereby improving production efficiency.
  • the second embodiment described above realizes the simultaneous production of multiple rows of rotor cores and stator cores; and can also meet the lamination requirements of large rotations of the stator cores.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本发明所公开的电机层叠铁芯的生产设备及其生产方法,所述生产设备包括上模组件、下模组件和粘胶喷涂装置,所述粘胶喷涂装置由上至下依次包括喷胶板、第一模板和第二模板,并在各板之间设置通道,且各通道与第一喷胶口和第二喷胶口连通,从而实现对金属料带上用于成型铁芯片部分进行涂覆粘胶,待铁芯片成型后,多个铁芯片在生产设备内通过液压缸的辅助作用下进行常温固化粘接,以形成电机层叠铁芯,且可通过设置喷胶控制装置的参数,实现定量喷胶,由于在模板上设置通道,无需设置胶管,使得粘胶输入管道减少,使用时可快速的找到对应出现故障的管道,提升检索速度,并且清洗方便,也无需经常性更换易损零件。

Description

电机层叠铁芯的生产设备及其生产方法 技术领域
本发明涉及电机铁芯制造技术领域,具体涉及电机层叠铁芯的生产设备及其生产方法。
背景技术
现在市面上出现的粘胶铁芯,尤其是新能源汽车驱动电机粘胶铁芯,其是利用生产设备将多片铁芯片成型,并利用提前涂覆在铁芯片表面的粘胶使得多个铁芯片相互粘接而形成粘胶铁芯,一般市面上在生产时通过辅助电磁感应加热方式使得粘胶固化,然而在粘胶涂覆时,需要采用分散式的多个胶点涂覆,并且具有多个喷胶口,因此每个喷胶口分别通过管道与喷胶控制装置对接,以致于在模具组装时管道连接数量较多,人工需要逐根安装,导致喷胶控制装置与每个喷胶口进行对接较为麻烦,使得管道对接效率低下,同时不利于检修,而且后期清洗、保养也相当困难,并且该类喷胶机构设置在较窄的齿部进行喷胶时胶量不易控制,容易出现溢胶现象;另外,由于模内辅助加热固化需要较大的电能源消耗,而且还需要等待一段时间后才可实现粘胶固化,从而导致生产效率较低,电能源消耗较大。
发明内容
为解决上述至少一个技术缺陷,本发明提供了如下技术方案:
本申请文件所设计的电机层叠铁芯的生产设备,电机层叠铁芯由多个铁芯片相互层叠并粘接而形成,各铁芯片在金属料带上冲裁成预定形状而形成;生产设备包括:
上模组件和下模组件,上模组件和下模组件相配合动作,以将步进式输送的金属料带依次冲裁出预定形状的铁芯片,并落料;
粘胶喷涂装置,粘胶喷涂装置设置于下模组件上;
粘胶喷涂装置包括喷胶板、第一模板和第二模板,第一模板位于喷胶板与第二模板之间,喷胶板上形成有第一喷胶区、以及位于第一喷胶区外围的第二喷胶区,第一喷胶区内形成有多个相互间隔设置的第一喷胶口,第二喷胶区内形成有多个相互间隔设置的第二喷胶口,第一模板的正面形成有多个分别与各第一喷胶口连通的第一分流通道、与各第一分流通道相连通的第一进胶通道、以及分别与各第二喷胶口对应连通的多个过渡通道,第二模板的正面形成有多个分别与各过渡通道连通的第二分流通道、以及与各第二分流通道相连通的第二进胶通道,第一进胶通道贯通地设置于第一模板上,第二进胶通道贯通地设置于第二模板上。
根据以上所述的电机层叠铁芯的生产设备,第一模板的正面形成有第一分流腔,第一分流腔与第一进胶通道相连通,各第一分流通道分别与第一分流腔连通。
根据以上所述的电机层叠铁芯的生产设备,第二模板的正面形成有第二分流腔,第二分 流腔与第二进胶通道相连通,各第二分流通道分别与第二分流腔连通。
根据以上所述的电机层叠铁芯的生产设备,第一模板的正面和第二模板的正面均形成有多个环形阵列设置的连通槽;第一模板上的各连通槽分别位于多个第一分流通道之间,以使多个第一分流通道通过连通槽连通;第二模板上的各连通槽分别位于多个第二分流通道之间,以使多个第二分流通道通过连通槽连通;第一喷胶区和第二喷胶区均呈环形结构,第一模板上的各连通槽位置分别与环形结构的第一喷胶区位置对应地设置,第二模板上的各连通槽位置分别与环形结构的第二喷胶区位置对应地设置,且多个第一喷胶口呈等间距均匀分布,多个第二喷胶口呈等间距均匀分布,第一喷胶口通过第一模板上的连通槽与第一分流通道连通,第二喷胶口通过过渡通道和第二模板上的连通槽与第二分流通道连通,第二模板上形成有与第一进胶通道连通的第三进胶通道,第三进胶通道贯穿地设置于第二模板上。
根据以上所述的电机层叠铁芯的生产设备,还包括用于金属料带在步进式输送时导向和限位的定位结构,定位结构设置于下模组件上,定位结构包括侧导板和磁铁,侧导板上形成有定位槽,磁铁嵌设于定位槽的上内壁,金属料带的侧边缘位于定位槽内,磁铁通过其磁力作用将金属料带与下模组件的上表面分离。
根据以上所述的电机层叠铁芯的生产设备,上模组件和下模组件之间形成有金属料带输送通道,金属料带输送通道的进料端前方设置有喷嘴,喷嘴对金属料带表面喷涂冲压油与促进剂混合的混合液体,混合液体分别与第一喷胶口和第二喷胶口所喷出的粘胶混合,以使多个铁芯片相互层叠并粘接而形成电机层叠铁芯。
根据以上所述的电机层叠铁芯的生产设备,还包括第一喷胶控制装置和第二喷胶控制装置,第一喷胶控制装置和第二喷胶控制装置均包括控制器、胶筒和粘胶控制设备,控制器中的气体减压阀通过气路管与胶筒的进气端口对接,粘胶控制设备与控制器中的控制模块相连并受其控制,胶筒的出料端口通过管道与粘胶控制设备的进胶口对接,粘胶控制设备的出胶口安装有压力传感器,压力传感器与控制器中的控制模块相连并受其控制;其中,第一喷胶控制装置的粘胶控制设备出胶口通过管道与第三进胶通道对接,第二喷胶控制装置的粘胶控制设备出胶口通过管道与第二进胶通道对接。
根据以上所述的电机层叠铁芯的生产设备,还包括抬升装置;粘胶喷涂装置还包括固定于第二模板上的镶环,第一模板和喷胶板置于镶环的内腔中,镶环的内壁形成有凸起,喷胶板上形成有台阶,且凸起限位于台阶上;抬升装置包括抽板、以及固定于第二模板上的抽板垫块,抽板垫块的底面和抽板的顶面分别通过多个相互等间距间隔设置的配合槽而形成多个配合齿块,且配合齿块对应插入配合槽内;抽板垫块上的配合槽一侧壁和抽板上的配合槽一侧壁相互贴合,且相互贴合的两侧壁均为倾斜角度一致的斜面,抽板的延伸段贯穿通道后与 位于下模组件上的气缸连接;导向组件包括固定于抽板垫块上的导柱和安装于下模组件上的导套,导柱插入导套内;复位组件包括安装于下模组件上的套筒、以及置于套筒内的弹簧和柱体,柱体与抽板垫块连接,弹簧的两端分别与套筒和柱体连接。
作为另一方面,一种电机层叠铁芯的生产方法,包括利用以上所述的电机层叠铁芯的生产设备制造层叠铁芯,其具体步骤如下:
金属料带以连续步进式向落料方向输送,并在进入生产设备的上模组件和下模组件之间,对金属料带的上表面进行喷涂用于催化粘胶的混合液体;
金属料带在生产设备的上模组件和下模组件之间,金属料带以连续步进式向落料方向输送,使铁芯片预成型区贴合于生产设备中的粘胶喷涂装置上,第一喷胶控制装置中的胶筒内粘胶通过粘胶控制设备输送至粘胶喷涂装置的第一喷胶口处,第二喷胶控制装置中的胶筒内粘胶通过粘胶控制设备输送至粘胶喷涂装置的第二喷胶口处,并使第一喷胶口和第二喷胶口所喷出的粘胶粘附在铁芯片预成型区的下表面,并在铁芯片预成型区的下表面均匀分布有胶点;
金属料带在连续步进式输送过程中,对金属料带上涂覆有粘胶的铁芯片预成型区作冲裁处理,以成型铁芯片,并落料至落料通道内与其内部的铁芯片叠片组顶面之间通过粘胶与混合液体接触而固化粘接,以形成层叠铁芯;固化粘接时,在15℃-35℃的温度环境中经过10s-3min的时间完成粘接,以及所成型的铁芯片受上模组件的成型模施压,铁芯片叠片组受液压缸的背压力和锁紧圈的包紧力作用下,以使所成型的铁芯片与铁芯片叠片组顶面之间紧密地常温固化快速粘接。
根据以上所述的电机层叠铁芯的生产方法,金属料带连续步进式向落料方向输送的方式采用前推后拉的方式。
根据以上所述的电机层叠铁芯的生产方法,粘胶涂覆后胶点位于铁芯片的外边缘处。
根据以上所述的电机层叠铁芯的生产方法,粘胶涂覆后胶点位于铁芯片上的轴孔边缘处。
根据以上所述的电机层叠铁芯的生产方法,粘胶涂覆后胶点位于铁芯片上的磁钢槽周边。
根据以上所述的电机层叠铁芯的生产方法,粘胶涂覆后铁芯片上的多个齿部中的每个齿部分别粘附至少一个胶点。
与现有技术相比,本发明所设计的电机层叠铁芯的生产设备及其生产方法,有益效果如下:
1、多个第一喷胶口通过第一模板上的第一分流通道与第一进胶通道连通,以及多个第二喷胶口通过第二模板上的第二分流通道与第二进胶通道连通的结构设置,使得仅需两根管道分别与第一进胶通道和第三进胶通道对接即可实现粘胶输入至第一喷胶口和第二喷胶口,解 决了现有技术中需要每个喷胶口进行连接管道的管道连接数量较多,导致管道对接安装较为麻烦,管道安装效率低下,同时不利于检修的技术问题,进一步达到了管道与喷胶口安装快捷,由于管道数量较少,可快速的找到对应出现故障的管道,提升检修速度,并且清洗方便,也无需经常性更换易损零件,后期保养方便。
2、对于分流腔的设置,使得粘胶在分流腔内汇集后再分流,使得喷胶口在喷胶时提供一定的压力,并且使得每个喷胶口所喷出的粘胶的压力均衡,以对喷出的胶量得到控制。
3、对于连通槽的设置使得一分流通道中的粘胶出现过多时可满溢至其它分流通道,使得每个分流通道中的粘胶量均衡,促使每个喷胶所喷出的粘胶量均匀,使得在铁芯片上涂覆的胶点厚度一致,促使粘接成型的每个电机铁芯厚度也一致,提升成品率。
4、在金属料带的侧边设置用于引导料带的侧导板,以对步进式输送的金属料带进行定位,并且在侧导板上设置磁铁,以使得金属料带可与下模组件分离,而且分离后金属料带被磁铁吸附,以防止在料带上的胶点发生抖动,因此在侧导板上安装磁铁的设置,可以更好地抬料,送料更为顺畅。
5、在喷胶控制装置的控制下实现定量精准的喷胶,并且在常温下可快速生产粘胶固化铁芯。
6、在抬升装置设置的情况下实现粘胶喷涂装置上下升降活动,并且可实现转子铁芯或定子铁芯的生产,回转粘接的铁芯生产装置中使用并可靠生产层叠铁芯。
附图说明
图1是生产设备结构示意图(一);
图2是生产设备结构示意图(二);
图3是生产设备开模状态结构示意图;
图4是A处放大图;
图5是B处放大图;
图6是生产设备合模状态结构示意图;
图7是粘胶喷涂装置的结构示意图;
图8是C处放大图;
图9是喷胶组件结构示意图(一);
图10是D处放大图;
图11是喷胶组件结构示意图(二);
图12是E处放大图;
图13是喷胶组件结构示意图(三);
图14是喷胶组件的爆炸示意图;
图15是喷胶组件组装结构示意图;
图16是转子铁芯片上涂覆粘胶用的第一喷胶口和第二喷胶口点位分布示意图;
图17是转子层叠铁芯和定子层叠铁芯生产用部分排样示意图(一);
图18是转子层叠铁芯和定子层叠铁芯生产用部分排样示意图(二);
图19是F处放大图;
图20是G处放大图;
图21是H处放大图;
图22是I处放大图。
图中:上模组件1、下模组件2、落料通道21;
粘胶喷涂装置3、喷胶板30、第一喷胶口301、第二喷胶口302、台阶303、第二凸台331、
圆锥腔305、直段通道306、第一模板31、过渡通道311、第一分流通道312、第一进胶通道313、第一分流腔314、第二模板32、第二分流通道321、第二进胶通道322、第三进胶通道323、连通槽324、第二分流腔325、芯轴压板33、第一凸台304、镶环34、凸起341、橡胶密封圈35、第一喷胶区36、第二喷胶区37;
抬升装置4、抽板垫块41、配合齿块411、配合槽412、斜面413、抽板42、气缸43;
导向组件5、导套51、导柱52;
复位组件6、套筒61、弹簧62、柱体63;
侧导板7、定位槽71、磁铁72
喷嘴8;
辊式送料机9;
金属料带10;
第一喷胶控制装置13、第二喷胶控制装置14、控制器131、胶筒132、粘胶控制设备133、
压力传感器134;
冲裁成型区101、成型工位一102、成型工位二103、成型工位三104、喷胶工位一105、
落料工位一106、成型工位四107、成型工位五108、喷胶工位二109、落料工位二110、定子方槽111、缺口成型孔一112、缺口成型孔二113、通风孔114、转子磁钢槽115、转子中心孔116、胶点117、转子铁芯片118、落料孔119、槽形孔120、长形孔122、定子槽形123、定子铁芯片124、缺口成型孔三125。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描 述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
图1-图16是本发明的第一实施例,且第一实施例所描述的是电机层叠铁芯的生产设备,在第一实施例中,电机层叠铁芯的生产设备具体包括如下:
电机层叠铁芯由多个铁芯片相互层叠并粘接而形成,各铁芯片在金属料带10上冲裁成预定形状而形成。生产设备包括上模组件1、下模组件2和粘胶喷涂装置3。
上模组件1和下模组件2相配合动作,以将步进式输送的金属料带10依次冲裁出预定形状的铁芯片,并落料;其中,步进式送料采用在所述生产设备的两端分别设置辊式送料机9,并采用前推后拉的方式进行金属料带10的输送,并且上模组件1和下模组件2上分别设置多个冲头和模具,从而可冲裁出预定形状的铁芯片。
粘胶喷涂装置3设置于上模组件1和下模组件2中的至少一者上,粘胶喷涂装置3与金属料带10上用于铁芯片成型部分的表面对应地设置,所述粘胶喷涂装置3包括喷胶板30、第一模板31和第二模板32,喷胶板30为环体结构,一般采用圆环体,第一模板31设置于喷胶板30和第二模板32之间,并且芯轴压板33置于喷胶板30的内孔中,喷胶板30的内壁形成第一凸台304,芯轴压板33的外壁形成有第二凸台331,第二凸台331压制于第一凸台304上,并且多个螺栓的螺杆分别贯穿芯轴压板33和第一模板31后与第二模板32的螺纹孔螺纹连接,可以将该处螺栓设定为九个,第二模板32上固定有镶环34,在利用多个螺栓的螺杆分别贯穿镶环34与第二模板32的螺纹孔螺纹连接,并且该处螺栓可设定为至少十个,第一模板31和喷胶板30置于镶环34的内腔中,镶环34的内壁形成有凸起341,喷胶板30上形成有台阶303,且凸起341限位于台阶303上,进而通过芯轴压板33和镶环34的设置使得喷胶板30、第一模板31和第二模板32得到相互连接,从而使得结构紧凑可靠,喷胶板30、第一模板31和第二模板32均为金属板,喷胶板30、第一模板31和第二模板32之间通过橡胶密封圈35密封,以防止漏胶。所述粘胶喷涂装置3设置于下模组件2的凹腔内。
喷胶板30的喷胶面上形成有第一喷胶区36、以及位于第一喷胶区36外围的第二喷胶区37,第一喷胶区36内形成有多个相互间隔设置的第一喷胶口301,第二喷胶区37内形成有多个相互间隔设置的第二喷胶口302,第一喷胶口301和第二喷胶口302的上部出胶端呈下端口直径大于上端口直径的圆锥腔305,圆锥腔305的上端口还连通有直段通道306,直段通道306的直径与圆锥腔305的上端口直径一致,从而使得第一喷胶口301和第二喷胶口302在喷胶时的胶点直径尺寸受到限制,避免胶点直径过大。
第一模板31的正面面形成有多个分别与各第一喷胶口301连通的第一分流通道312、与各第一分流通道312相连通的第一进胶通道313、以及分别与各第二喷胶口302对应连通的多个过 渡通道311,第二模板32的正面形成有多个分别与各过渡通道311连通的第二分流通道321、以及与各第二分流通道321相连通的第二进胶通道322;当第三进胶通道323输入粘胶后,粘胶通过第一进胶通道313和第一分流通道312进入至第一喷胶口301,然后再通过第一喷胶口301的直段通道306喷出;当第二进胶通道322输入粘胶后,粘胶经第二分流通道321和过渡通道311后进入至第二喷胶口302,然后再通过第二喷胶口302的直段通道306喷出,因此金属料带10上用于铁芯片成型部分的表面与喷胶板30的上表面接触后,第一喷胶口301和第二喷胶口302所喷出的粘胶直接涂覆于金属料带10上用于铁芯片成型部分的表面上,第一进胶通道313贯通地设置于第一模板31上,第二进胶通道322贯通地设置于第二模板32上。
另一实施方式,可在第二模板(32)上设置避让孔或避让缺口,以使第一进胶通道313的下端口露出,以实现第一进胶通道313可直接与进胶用管道进行对接。
本实施例中,第一模板31的正面形成有第一分流腔314,第一分流腔314与第一进胶通道313相连通,各第一分流通道312分别与第一分流腔314连通,第一分流腔314用于将经第一进胶通道313和第三进胶通道323输入的粘胶进行汇集,当第一分流腔314的粘胶被填充满后,再进入至各第一分流通道312中,以使得第一喷胶口301具有较大压力喷出粘胶,第一分流腔314对该单一区域的喷胶口所喷出的胶量、压力等进行限制,实现每个部位定量喷胶精准。
本实施例中,第二模板32的正面形成有第二分流腔325,第二分流腔325与第二进胶通道322相连通,各第二分流通道321分别与第二分流腔325连通,第二分流腔325用于将第二进胶通道322输入的粘胶进行汇集,当第二分流腔325的粘胶被填充满后,再进入至各第二分流通道321中,以使得第一喷胶口301具有较大压力喷出粘胶,第二分流腔325对该单一区域的喷胶口所喷出的胶量、压力等进行限制,实现每个部位定量喷胶精准。
本实施来中,第一喷胶区36和第二喷胶区37均呈环形结构,一般采用圆环形,且多个第一喷胶口301呈等间距均匀分布,多个第二喷胶口302呈等间距均匀分布,其结构设置使得涂覆于金属料带10上用于铁芯片成型部分的表面上胶点分布均匀,达到各铁芯片之间固定连接稳定可靠。
本实施例中,第一模板31的正面和第二模板32的正面均形成有多个环形阵列设置的连通槽324;其设置使得多个第一分流通道312之间通过第一模板31上的各连通槽324连通,多个第二分流通道321之间通过第二模板32上的各连通槽324连通,从而实现对某一分流通道内的粘胶量过多时可通过连通槽324分流至对应模板上的其它分流通道中。
具体地,第一模板31上的各连通槽324分别位于多个第一分流通道312之间,以使多个第一分流通道312通过连通槽324连通,第一模板31上的各连通槽324位置分别与环形结构的第一喷胶区36位置对应地设置,第一喷胶口301通过第一模板31上的连通槽324与第一 分流通道312连通,第二模板32上形成有与第一进胶通道313连通的第三进胶通道323,第二进胶通道322和第三进胶通道323贯穿地设置于第二模板32上;当第三进胶通道323输入粘胶时,粘胶经第一进胶通道313、第一分流通道312、第一分流腔314和连通槽324进入至第一喷胶口301,最后通过第一喷胶口301的直段通道306喷出,并直接涂覆于金属料带10上用于铁芯片成型部分的表面上。
具体地,第二模板32上的各连通槽324分别位于多个第二分流通道321之间,以使多个第二分流通道321通过连通槽324连通,第二模板32上的各连通槽324位置分别与环形结构的第二喷胶区37位置对应地设置,第二喷胶口302通过过渡通道311和第二模板32上的连通槽324与第二分流通道321连通;当第二进胶通道322输入粘胶时,粘胶经第二分流通道321、第二分流腔325、连通槽324和过渡通道311进入至第二喷胶口302,最后通过第二喷胶口302的直段通道306喷出,并直接涂覆于金属料带10上用于铁芯片成型部分的表面上。
上述中,第一模板31的正面为朝向喷胶板30的一侧面,第二模板32的正面为朝向第一模板31的一侧面。
本实施例中,还包括用于金属料带10在步进式输送时导向和限位的定位结构,定位结构可设置为两个,并且两个定位结构分别设置于下模组件2上的左右两侧,其中,定位结构包括侧导板7和磁铁72,侧导板7上形成有定位槽71,磁铁72嵌设于定位槽71的上内壁,金属料带10的侧边缘位于定位槽71内,所述磁铁72通过其磁力作用将所述金属料带10与所述下模组件2的上表面分离,以保证分离后金属料带10被磁铁72吸附,以防止在金属料带10抖动,进一步防止在金属料带10上的胶点发生抖动,避免粘在金属料带10上的胶点形状发生变化,因此在侧导板7和磁铁72的设置下抬料和送料更为顺畅,由于步进式送料采用在所述生产设备的两端分别设置辊式送料机9,并采用前推后拉的方式进行金属料带10的输送,所以金属料带10被磁铁72吸附,起到抬料作用,也可在吸附的情况下金属料带10作步进式输送,由于金属料带10采用硅钢片,所以可被磁铁72吸附。
本实施例中,上模组件1和下模组件2之间形成有金属料带输送通道,金属料带输送通道的进料端前方设置有喷嘴8,喷嘴8对金属料带10表面喷涂冲压油与促进剂混合的混合液体,混合液体分别与第一喷胶口301和第二喷胶口302所喷出的粘胶混合,以使多个铁芯片相互层叠并粘接而形成电机层叠铁芯,该混合液体具有催化粘胶的功能,并且粘胶为丙烯酸酯类的厌氧胶,从而相互复合后可在常温环境下实现固化,以实现多个铁芯片之间的粘接。
本实施例中,还包括第一喷胶控制装置13和第二喷胶控制装置14,第一喷胶控制装置13和第二喷胶控制装置14均包括控制器131、胶筒132和粘胶控制设备133,控制器131中的气体减压阀通过气路管与胶筒132的进气端口对接,粘胶控制设备133与控制器131中的 控制模块相连并受其控制,胶筒132的出料端口通过管道与粘胶控制设备133的进胶口对接,粘胶控制设备133的出胶口安装有压力传感器134,压力传感器134与控制器131中的控制模块相连并受其控制,当管道堵塞压力传感器134检测到压力过大,压力传感器134报警,当管道接头密封失效,导致压力过小,压力传感器134报警;其中,第一喷胶控制装置13的粘胶控制设备133出胶口通过管道与第三进胶通道323对接,第二喷胶控制装置14的粘胶控制设备133出胶口通过管道与第二进胶通道322对接,其中,控制模块采用PLC控制器,气体减压阀采用电气比例减压阀,PLC控制器根据冲床冲压速度、出胶量设定值来控制电气比例减阀的进气压力、以及控制第一喷胶控制装置13的粘胶控制设备133工作而输出粘胶至第一喷胶口301和控制第二喷胶控制装置14的粘胶控制设备133工作而输出粘胶至第二喷胶口302,从而使得每一次喷胶的喷胶量得到精准的控制,粘胶控制设备133工作而输出的粘胶由胶筒132输出粘胶而提供,粘胶控制设备133采用螺杆泵。
本实施例中,还包括抬升装置4;抬升装置4包括抽板42、以及固定于第二模板32上的抽板垫块41,抽板垫块41的底面和抽板42的顶面分别通过多个相互等间距间隔设置的配合槽412而形成多个配合齿块411,且配合齿块411对应插入配合槽412内;抽板垫块41上的配合槽412一侧壁和抽板42上的配合槽412一侧壁相互贴合,且相互贴合的两侧壁均为倾斜角度一致的斜面413,抽板42的延伸段贯穿通道后与位于下模组件2上的气缸43连接;当一个电机层叠铁芯或铁芯片冲裁完成之后,开始冲第二个电机层叠铁芯或铁芯片时,气缸43抽动抽板42,使得配合齿块411配置至配合槽412内,从而迫使喷胶板30低于下模组件2顶面1mm至2mm,这样即使之前在喷胶板30上有残留的粘胶,也不会粘在金属料带上,致使输送过程中的金属料带保持清洁,如在金属料带上粘附其余粘胶容易导致粘接形成的铁芯垂直度、平面度、圆度等形位公差无法符合要求,致使铁芯报废的情况发生,多个螺栓分别贯穿依次镶环34和第二模板32后与抽板垫块41的螺纹孔螺纹连接,该处螺栓可设置为至少五个。
抽板垫块41上设置有空腔,该空腔用于容纳对接第二进胶通道322和第三进胶通道323的接头。
本实施例中,导向组件5包括固定于抽板垫块41上的导柱52和安装于下模组件2上的导套51,导柱52插入导套51内,当抽板垫块41作上下升降运动时,导柱52在导套51内作伸缩运动,使得粘胶喷涂装置3升降运动稳定可靠,并且始终保持上下方向运动,导套可采用滚珠导套51,以使得导柱52在导套51内活动更为顺畅。
本实施例中,复位组件6包括安装于下模组件2上的套筒61、以及置于套筒61内的弹簧62和柱体63,柱体63与抽板垫块41连接,弹簧62的两端分别与套筒61和柱体63连接, 当气缸43抽动抽板42,使得粘胶喷涂装置3上升后,再次抽动抽板42使得配合齿块411与配合槽412内对应,此时,在弹簧62的作用下驱动粘胶喷涂装置3下移,且配合齿块411对应陷入配合槽412内,该结构设置实现粘胶喷涂装置3复位下移的功能。
基于上述电机层叠铁芯的生产设备进行铁芯生产,具体方法步骤如下:
金属料带10以连续步进式向落料方向输送,并在进入生产设备的上模组件1和下模组件2之间前,对金属料带10的上表面进行喷涂用于催化粘胶的混合液体,催化指的是混合液体与粘胶可发生化学反应。
金属料带10在生产设备的上模组件1和下模组件2之间,以连续步进式向落料方向输送,使铁芯片预成型区贴合于生产设备中位于落料工位前的粘胶喷涂装置3上,第一喷胶控制装置13中的胶筒132内粘胶通过粘胶控制设备133输送至粘胶喷涂装置3的第一喷胶口301处,第二喷胶控制装置14中的胶筒132内粘胶通过粘胶控制设备133输送至粘胶喷涂装置3的第二喷胶口302处,并使第一喷胶口301和第二喷胶口302所喷出的粘胶粘附在铁芯片预成型区的下表面,并在铁芯片预成型区的下表面均匀分布有胶点117。
金属料带10在步进式输送过程中,对金属料带10上涂覆有粘胶的铁芯片预成型区作冲裁处理,以成型铁芯片,并落料至落料通道21内与其内部的铁芯片叠片组顶面之间通过粘胶与混合液体接触而固化粘接,以形成层叠铁芯;固化粘接时,在15℃-35℃的温度环境中经过10s-3min的时间内完成粘接,以及所成型的铁芯片受上模组件1的成型模施压,以及铁芯片叠片组受液压缸的背压力和锁紧圈的包紧力作用下,以使所成型的铁芯片与铁芯片叠片组顶面之间紧密地粘接。其中,15℃-35℃的温度范围一般为常温温度范围,但是本实施例优选20℃-25℃;时间范围在10s-3min完成快速粘接,然而10s左右或10S以上的固化状态为初步固化,初步固化实现人力无法分离的效果,3min可达到完全固化状态。
根据以上所述的电机层叠铁芯的生产方法,粘胶涂覆后胶点位于铁芯片的外边缘处,或者
粘胶涂覆后胶点位于铁芯片上的轴孔边缘处,或者
粘胶涂覆后胶点位于铁芯片上的磁钢槽周边,或者
粘胶涂覆后铁芯片上的多个齿部中的每个齿部分别粘附至少一个胶点,当齿部较长时可在每个齿部上粘附两个或三个胶点,齿部由在转子或定子上成型多个槽形后而形成,且上述胶点位置的设置使得电机铁芯的振动和噪音得到大幅度降低。
图17-图21所示是本发明的第二实施例,且第二实施例所描述的是电机层叠铁芯的生产方法,在第二实施例中,本发明电机层叠铁芯的生产方法包括以下方式:
在第一实施例所述的电机层叠铁芯的生产设备及其生产方法的基础上制造转子铁芯和定 子铁芯,所述生产设备上的料带进入端设置混合液体喷涂工位,所述生产设备依次包括用于成型缺口成型孔一112、缺口成型孔二113和定子方槽111的成型工位一102,用于成型通风孔114和缺口成型孔三125的成型工位二103,用于成型转子磁钢槽115、转子中心孔116及再成型定子方槽111的成型工位三104,具有粘胶喷涂装置3的喷胶工位一105,用于成型转子铁芯片118的落料工位一106,用于成型槽形孔120及长形孔122的成型工位四107,用于成型定子槽形和定子轴孔的成型工位五108,具有粘胶喷涂装置3的喷胶工位二109,用于成型定子铁芯片124的落料工位二110,利用上述装置成型转子铁芯片和定子铁芯片,并在铁芯片落料前进行涂胶,其具体生产步骤如下:
步骤S1,金属料带10以连续步进式向落料方向输送,并在进入生产设备的上模组件1和下模组件2之间前,对金属料带10的上表面进行喷涂用于催化粘胶的混合液体;因为,混合液体与丙烯酸酯类的厌氧胶相接处,可快速产生化学反应,从而为了使得多个铁芯片成型后可在生产设备内层叠并在上述时间和温度条件下固化粘接作预先准备。
步骤S2,金属料带10在生产设备的上模组件1和下模组件2之间,以连续步进式向落料方向输送,并对金属料带10多列冲裁成型区101进行同步冲裁,以在各成型区成型带缺口的转子中心孔116、环绕转子中心孔116的多个通风孔114和多个转子磁钢槽115、以及位于多个转子磁钢槽115外围且环形阵列设置的多个定子方槽111,且转子磁钢槽115位于通孔的外围,进而通过转子磁钢槽115外围界定形成转子铁芯片预成型区;其步骤为转子铁芯片118冲裁成型提供对应结构及条件,为后转子铁芯片118成型作预先准备。
步骤S3,金属料带10连续步进式输送过程中,转子铁芯片预成型区贴合于生产设备中位于转子落料工位前的粘胶喷涂装置3上,第一喷胶控制装置13中的胶筒132内粘胶通过粘胶控制设备133输送至粘胶喷涂装置3的第一喷胶口301处,第二喷胶控制装置14中的胶筒132内粘胶通过粘胶控制设备133输送至粘胶喷涂装置3的第二喷胶口302处,并使第一喷胶口301和第二喷胶口302所喷出的粘胶粘附在转子铁芯片预成型区的下表面,并且各通风孔114之间和各转子磁钢槽115之间分别均匀分布有胶点117,其中,各第一喷胶口301点位分别与各通风孔114之间的胶点点位对应地设置,各第二喷胶口302点位分别与各转子磁钢槽115之间的胶点点位对应地设置,达到粘胶可有效涂覆,使得粘胶也与促进剂达到有效接触。
步骤S4,在金属料带10连续步进式输送过程中,对喷涂有胶点117的转子铁芯片预成型区进行冲裁,以形成转子铁芯片118,并落料至落料通道21内与其内部的转子铁芯片叠片组顶面之间通过粘胶与混合液体接触而常温固化粘合固定,以形成转子铁芯,在落料通道21的转子铁芯片叠片组下端面具有支撑液压缸支撑,并且每冲裁一片转子铁芯片118控制支撑 液压缸下降一个转子铁芯片118厚度的距离,以便于下次冲裁成型的铁芯片进行叠片粘接,常温指的是15℃-35℃,本实施例优选20℃-25℃。
步骤S5,金属料带10连续步进式输送过程中,对落料孔119外围冲裁形成多个环形阵列设置的槽形孔120,槽形孔120上靠近落料孔119的一端形成有长形孔122;其步骤的成型为定子槽形123的成型作预先准备,避免直接成型而发生变形。
步骤S6,金属料带10连续步进式输送过程中,对落料孔119边沿进行冲裁而形成定子中心孔,并去除长形孔122上的一部分,使槽形孔120与落料孔119连通而形成定子槽形123,进而通过定子方槽111的外围界定形成定子铁芯片预成型区;其通过步骤S5和步骤S6的结合,避免冲裁成型的定子槽形123发生变形,有效保证定子铁芯片124质量,提升生产效率及品质。
步骤S7,金属料带10连续步进式输送过程中,定子铁芯片预成型区贴合于生产设备中位于定子落料工位前的粘胶喷涂装置3上,第一喷胶控制装置13中的胶筒132内粘胶通过粘胶控制设备133输送至粘胶喷涂装置3的第一喷胶口301,第二喷胶控制装置14中的胶筒132内粘胶通过粘胶控制设备133输送至粘胶喷涂装置3的第二喷胶口302处,并使第一喷胶口301和第二喷胶口302所喷出的粘胶粘附在定子铁芯片预成型区的下表面,以形成胶点117,所述胶点117分别均匀地分布在各定子槽形123之间、以及定子槽形123与定子方槽111之间;其中,各第一喷胶口301的点位分别与各定子槽形123之间的胶点点位对应地设置,各第二喷胶口302的点位分别与定子槽形123与定子方槽111之间的胶点点位对应地设置,达到粘胶可有效涂覆,使得粘胶也与促进剂达到有效接触。
步骤S8,在定子铁芯片124落料前对已在落料通道21内的定子铁芯片叠片组作360°/N回转,其中,N系数为18,所以回转角度为20°,N系数不限制于此,还可根据铁芯片形状作适应性调整;然后在金属料带10连续步进式输送过程中,对喷涂有胶点117的定子铁芯片预成型区进行冲裁,以形成带外形缺口的定子铁芯片124,并落料至落料通道21内与定子铁芯片叠片组顶面之间通过粘胶与液体接触而常温固化粘合固定,以形成定子铁芯;在落料通道21的定子铁芯片叠片组下端面具有支撑液压缸支撑,并且每冲裁一片定子铁芯片控制支撑液压缸下降一个定子铁芯片124厚度的距离,以便于下次冲裁成型的铁芯片进行叠片粘接。
本实施例中,在步骤S2中,具体包括:
步骤S21,金属料带10连续步进式输送过程中,在成型区中心位置处的纵向中心线一侧冲裁成型两个相对称设置的缺口成型孔一112、围绕缺口成型孔一并环形阵列设置的多个缺口成型孔二113、以及围绕多个缺口成型孔二113并环形阵列设置的多个定子方槽111;
步骤S22,金属料带10连续步进式输送过程中,在成型区中心位置处的纵向中心线另一侧冲裁成型缺口成型孔三125,以及在缺口成型孔一112和缺口成型孔三125的外围区域成型多个环形阵列设置的通风孔114,两个缺口成型孔一112和缺口成型孔三呈环形阵列分布;
步骤S23,金属料带10连续步进式输送过程中,依各缺口成型孔二113的位置分别成型多个带缺口的转子磁钢槽115,以及在各定子方槽111之间再冲裁成型定子方槽111,其中,相邻两个转子磁钢槽115呈倾斜设置,并相互对称;
步骤S24,金属料带10连续步进式输送过程中,依缺口成型孔一112和缺口成型孔三分布的中心位置处冲裁成型带缺口的转子中心孔116。
上述步骤使得定子方槽111、带缺口的转子磁钢槽115、带缺口的转子中心孔116、通风孔114可有效成型,避免成型过程中发生变形,而且还省去了特意去设计形成缺口的步骤,提升生产效率。
本实施例中,在步骤S5与步骤S6之间具有定子外形缺口形成孔成型步骤,由环形阵列设置的多个定子方槽111界定形成方槽成型区,方槽成型区内形成有三个环形阵列设置的缺口成型区,各缺口成型区内具有两个并列的定子方槽111,从而对三个缺口成型区进行冲裁形成缺口成型孔四,再依据定子铁芯片124预成型冲裁形成带外形缺口的定子铁芯片124,其采用预成型模式,使得带外形缺口的定子铁芯片124有效成型,避免发生变形,而且省去特意去成型外形缺口的步骤,提升生产效率。
上述第二实施例实现了多列转子铁芯、定子铁芯的同时生产;而且能实现定子铁芯大回转的层叠要求。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种电机层叠铁芯的生产设备,电机层叠铁芯由多个铁芯片相互层叠并粘接而形成,各铁芯片在金属料带(10)上冲裁成预定形状而形成;其特征在于,生产设备包括:
    上模组件(1)和下模组件(2),上模组件(1)和下模组件(2)相配合动作,以将步进式输送的金属料带(10)依次冲裁出预定形状的铁芯片,并落料;
    粘胶喷涂装置(3),粘胶喷涂装置(3)设置于下模组件(2)上;
    粘胶喷涂装置(3)包括喷胶板(30)、第一模板(31)和第二模板(32),第一模板(31)设置于喷胶板(30)和第二模板(32)之间,喷胶板(30)上形成有第一喷胶区(36)、以及位于第一喷胶区(36)外围的第二喷胶区(37),第一喷胶区(36)内形成有多个相互间隔设置的第一喷胶口(301),第二喷胶区(37)内形成有多个相互间隔设置的第二喷胶口(302),第一模板(31)的正面形成有多个分别与各第一喷胶口(301)连通的第一分流通道(312)、与各第一分流通道(312)相连通的第一进胶通道(313)、以及分别与各第二喷胶口(302)对应连通的多个过渡通道(311),第二模板(32)的正面形成有多个分别与各过渡通道(311)连通的第二分流通道(321)、以及与各第二分流通道(321)相连通的第二进胶通道(322),第一进胶通道(313)贯通地设置于第一模板(31)上,第二进胶通道(322)贯通地设置于第二模板(32)上。
  2. 根据权利要求1所述的电机层叠铁芯的生产设备,其特征在于,第一模板(31)的正面还形成有第一分流腔(314),第一分流腔(314)与第一进胶通道(313)相连通,各第一分流通道(312)分别与第一分流腔(314)连通。
  3. 根据权利要求1所述的电机层叠铁芯的生产设备,其特征在于,第二模板(32)的正面形成有第二分流腔(325),第二分流腔(325)与第二进胶通道(322)相连通,各第二分流通道(321)分别与第二分流腔(325)连通。
  4. 根据权利要求1-3任一项所述的电机层叠铁芯的生产设备,其特征在于,第一模板(31)的正面和第二模板(32)的正面均形成有多个环形阵列设置的连通槽(324);第一模板(31)上的各连通槽(324)分别位于多个第一分流通道(312)之间,以使多个第一分流通道(312)通过连通槽(324)连通;第二模板(32)上的各连通槽(324)分别位于多个第二分流通道(321)之间,以使多个第二分流通道(321)通过连通槽(324)连通;
    第一喷胶区(36)和第二喷胶区(37)均呈环形结构,第一模板(31)上的各连通槽(324)位置分别与环形结构的第一喷胶区(36)位置对应地设置,第二模板(32)上的各连通槽(324)位置分别与环形结构的第二喷胶区(37)位置对应地设置,且多个第一喷胶口(301)呈等间距均匀分布,多个第二喷胶口(302)呈等间距均匀分布,第一喷胶口(301)通过第一模板(31)上的连通槽(324)与第一分流通道(312)连通,第二喷胶口(302)通过过渡通道(311) 和第二模板(32)上的连通槽(324)与第二分流通道(321)连通,第二模板(32)上形成有与第一进胶通道(313)连通的第三进胶通道(323),第三进胶通道(323)贯通地设置于第二模板(32)上。
  5. 根据权利要求4所述的电机层叠铁芯的生产设备,其特征在于,还包括用于金属料带(10)在步进式输送时导向和限位的定位结构,定位结构设置于下模组件(2)上,定位结构包括侧导板(7)和磁铁(72),侧导板(7)上形成有定位槽(71),磁铁(72)嵌设于定位槽(71)的上内壁,金属料带(10)的侧边缘位于定位槽(71)内,磁铁(72)通过其磁力作用将金属料带(10)与下模组件(2)的上表面分离。
  6. 根据权利要求5所述的电机层叠铁芯的生产设备,其特征在于,上模组件(1)和下模组件(2)之间形成有金属料带输送通道,金属料带输送通道的进料端前方设置有喷嘴(8),喷嘴(8)对金属料带(10)表面喷涂冲压油与促进剂混合的混合液体,混合液体分别与第一喷胶口(301)和第二喷胶口(302)所喷出的粘胶混合,以使多个铁芯片相互层叠并粘接而形成电机层叠铁芯。
  7. 根据权利要求6所述的电机层叠铁芯的生产设备,其特征在于,还包括第一喷胶控制装置(13)和第二喷胶控制装置(14),第一喷胶控制装置(13)和第二喷胶控制装置(14)均包括控制器(131)、胶筒(132)和粘胶控制设备(133),控制器(131)中的气体减压阀通过气路管与胶筒(132)的进气端口对接,粘胶控制设备(133)与控制器(131)中的控制模块相连并受其控制,胶筒(132)的出料端口通过管道与粘胶控制设备(133)的进胶口对接,粘胶控制设备(133)的出胶口安装有压力传感器(134),压力传感器(134)与控制器(131)中的控制模块相连并受其控制;其中,第一喷胶控制装置(13)的粘胶控制设备(133)出胶口通过管道与第三进胶通道(323)对接,第二喷胶控制装置(14)的粘胶控制设备(133)出胶口通过管道与第二进胶通道(322)对接。
  8. 根据权利要求7所述的电机层叠铁芯的生产设备,其特征在于,还包括抬升装置(4);粘胶喷涂装置(3)还包括固定于第二模板(32)上的镶环(34),第一模板(31)和喷胶板(30)置于镶环(34)的内腔中,镶环(34)的内壁形成有凸起(341),喷胶板(30)上形成有台阶(303),且凸起(341)限位于台阶(303)上;抬升装置(4)包括抽板(42)、固定于第二模板(32)上的抽板垫块(41)、以及导向组件(5)和复位组件(6),抽板垫块(41)的底面和抽板(42)的顶面分别通过多个相互等间距间隔设置的配合槽(412)而形成多个配合齿块(411),且配合齿块(411)对应插入配合槽(412)内;抽板垫块(41)上的配合槽(412)一侧壁和抽板(42)上的配合槽(412)一侧壁相互贴合,且相互贴合的两侧壁均为倾斜角度一致的斜面(413),抽板(42)的延伸段贯穿通道后与位于下模组件(2)上的气 缸(43)连接;导向组件(5)包括固定于抽板垫块(41)上的导柱(52)和安装于下模组件(2)上的导套(51),导柱(52)插入导套(51)内;复位组件(6)包括安装于下模组件(2)上的套筒(61)、以及置于套筒(61)内的弹簧(62)和柱体(63),柱体(63)与抽板垫块(41)连接,弹簧(62)的两端分别与套筒(61)和柱体(63)连接。
  9. 一种电机层叠铁芯的生产方法,其特征在于,包括利用权利要求1-8任一项所述的电机层叠铁芯的生产设备制造层叠铁芯,其具体步骤如下:
    金属料带(10)以连续步进式向落料方向输送,并在进入生产设备的上模组件(1)和下模组件(2)之间,对金属料带(10)的上表面进行喷涂用于催化粘胶的混合液体;
    金属料带(10)在生产设备的上模组件(1)和下模组件(2)之间,金属料带(10)在连续步进式向落料方向输送过程中,使铁芯片预成型区贴合于生产设备中的粘胶喷涂装置(3)上,第一喷胶控制装置(13)中的胶筒(132)内粘胶通过粘胶控制设备(133)输送至粘胶喷涂装置(3)的第一喷胶口(301)处,第二喷胶控制装置(14)中的胶筒(132)内粘胶通过粘胶控制设备(133)输送至粘胶喷涂装置(3)的第二喷胶口(302)处,并使第一喷胶口(301)和第二喷胶口(302)所喷出的粘胶粘附在铁芯片预成型区的下表面,并在铁芯片预成型区的下表面均匀分布有胶点(117);
    金属料带(10)在连续步进式输送过程中,对金属料带(10)上涂覆有粘胶的铁芯片预成型区作冲裁处理,以成型铁芯片,并落料至落料通道(21)内与其内部的铁芯片叠片组顶面之间通过粘胶与混合液体接触而固化粘接,以形成层叠铁芯;固化粘接时,在15℃-35℃的温度环境中经过10s-3min的时间完成粘接,以及所成型的铁芯片受上模组件(1)的成型模施压,铁芯片叠片组受液压缸的背压力和锁紧圈的包紧力作用,以使所成型的铁芯片与铁芯片叠片组顶面之间紧密地粘接。
  10. 根据权利要求9所述的电机层叠铁芯的生产方法,其特征在于,金属料带连续步进式向落料方向输送的方式采用前推后拉的方式;
    粘胶涂覆后胶点(117)位于铁芯片的外边缘处,或者,
    粘胶涂覆后胶点(117)位于铁芯片上的轴孔边缘处,或者,
    粘胶涂覆后胶点(117)位于铁芯片上的磁钢槽周边,或者,
    粘胶涂覆后铁芯片上的多个齿部中的每个齿部分别粘附至少一个胶点(117)。
PCT/CN2023/140310 2022-12-21 2023-12-20 电机层叠铁芯的生产设备及其生产方法 WO2024131852A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211645605.7 2022-12-21
CN202211645605.7A CN115632528B (zh) 2022-12-21 2022-12-21 电机层叠铁芯的生产设备及其生产方法

Publications (1)

Publication Number Publication Date
WO2024131852A1 true WO2024131852A1 (zh) 2024-06-27

Family

ID=84909944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/140310 WO2024131852A1 (zh) 2022-12-21 2023-12-20 电机层叠铁芯的生产设备及其生产方法

Country Status (11)

Country Link
US (1) US11909278B2 (zh)
EP (1) EP4391330A1 (zh)
JP (1) JP7387929B1 (zh)
KR (1) KR102615702B1 (zh)
CN (1) CN115632528B (zh)
DE (1) DE102023107146A1 (zh)
FR (1) FR3144437A1 (zh)
GB (1) GB2625602A (zh)
SK (1) SK500192023A3 (zh)
TW (1) TWI822606B (zh)
WO (1) WO2024131852A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632781B (zh) * 2020-06-11 2021-01-08 宁波震裕科技股份有限公司 一种新能源汽车电机铁芯级进模的自动喷胶控制系统
CN115632528B (zh) * 2022-12-21 2023-03-28 苏州范斯特机械科技有限公司 电机层叠铁芯的生产设备及其生产方法
CN117038303B (zh) * 2023-07-13 2024-04-30 重庆望变电气(集团)股份有限公司 一种硅钢片切片叠放系统及其控制方法
CN116780839B (zh) * 2023-08-22 2023-11-03 苏州范斯特机械科技有限公司 粘胶式铁芯的层叠方法及生产设备、粘胶式层叠铁芯
CN116749631A (zh) * 2023-08-22 2023-09-15 宁波震裕科技股份有限公司 一种复合料带的制造方法
CN117261258B (zh) * 2023-10-08 2024-06-18 肇庆高峰机械科技有限公司 一种大方块磁材粘料机及其工作方法
CN117161230B (zh) * 2023-10-25 2024-02-27 河北利达金属制品集团有限公司 一种汽车座椅零部件的快速冲压设备
CN117206411B (zh) * 2023-11-09 2024-01-12 广东诺米家居智能科技有限公司 一种厨衣柜五金件的冲压装置及冲压方法
CN117791987B (zh) * 2024-02-27 2024-05-28 宁波震裕科技股份有限公司 一种电机层叠铁芯的高速生产方法
CN118122880A (zh) * 2024-04-30 2024-06-04 宁波震裕科技股份有限公司 一种尾部无搭边双列料带铁芯制造装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285754A (en) * 1979-11-05 1981-08-25 Solid Photography Inc. Method and apparatus for producing planar elements in the construction of surfaces and bodies
JPS62183582U (zh) * 1986-05-09 1987-11-21
US20090107398A1 (en) 2007-10-31 2009-04-30 Nordson Corporation Fluid dispensers and methods for dispensing viscous fluids with improved edge definition
DE102011090081A1 (de) 2011-12-29 2013-07-04 Robert Bosch Gmbh Lamellenpaket
JP6193642B2 (ja) * 2013-06-27 2017-09-06 ミネベアミツミ株式会社 積層鉄心の製造方法
JP6445042B2 (ja) * 2014-11-07 2018-12-26 黒田精工株式会社 積層鉄心の製造装置および積層鉄心の製造方法
KR101729289B1 (ko) * 2015-06-10 2017-04-25 주식회사비.엠.씨 접착식 적층 코어 제조장치
KR101876292B1 (ko) * 2016-03-18 2018-07-10 주식회사 포스코대우 접착식 적층코어 제조장치 및 이를 위한 코어 라미네이터
JP6543608B2 (ja) * 2016-12-22 2019-07-10 株式会社三井ハイテック 積層鉄心の製造方法及び積層鉄心の製造装置
KR102433826B1 (ko) * 2017-01-09 2022-08-18 구로다 프리시젼 인더스트리스 리미티드 적층 철심의 제조 장치
JP7187287B2 (ja) * 2018-11-30 2022-12-12 株式会社三井ハイテック 積層鉄心製品の製造方法
CN113169641A (zh) * 2018-12-17 2021-07-23 日本制铁株式会社 层叠铁芯、层叠铁芯的制造方法、以及旋转电机
SG11202108948YA (en) 2018-12-17 2021-09-29 Nippon Steel Corp Laminated core and electric motor
SG11202108987SA (en) 2018-12-17 2021-09-29 Nippon Steel Corp Laminated core and electric motor
JP6831931B1 (ja) * 2020-01-20 2021-02-17 田中精密工業株式会社 接着剤塗付装置及びこの接着剤塗付装置を有する積層鉄心の製造装置並びにその製造方法
CN111632781B (zh) * 2020-06-11 2021-01-08 宁波震裕科技股份有限公司 一种新能源汽车电机铁芯级进模的自动喷胶控制系统
JP7493469B2 (ja) * 2021-01-29 2024-05-31 株式会社三井ハイテック 回転電機のコア部製造方法及びコア部製造装置
CN114884292B (zh) * 2022-07-07 2022-11-01 宁波震裕科技股份有限公司 一种电机粘胶铁芯制造装置及其制造方法
CN115415113B (zh) * 2022-08-23 2024-04-23 苏州范斯特机械科技有限公司 一种模具进胶系统
CN218610156U (zh) 2022-10-14 2023-03-14 苏州范斯特机械科技有限公司 一种转子铁芯的点胶装置
CN115632528B (zh) * 2022-12-21 2023-03-28 苏州范斯特机械科技有限公司 电机层叠铁芯的生产设备及其生产方法

Also Published As

Publication number Publication date
EP4391330A1 (en) 2024-06-26
US11909278B2 (en) 2024-02-20
JP7387929B1 (ja) 2023-11-28
TWI822606B (zh) 2023-11-11
DE102023107146A1 (de) 2024-06-27
US20230198354A1 (en) 2023-06-22
KR102615702B1 (ko) 2023-12-19
CN115632528B (zh) 2023-03-28
CN115632528A (zh) 2023-01-20
SK500192023A3 (sk) 2023-05-17
GB2625602A (en) 2024-06-26
GB202302738D0 (en) 2023-04-12
FR3144437A1 (fr) 2024-06-28

Similar Documents

Publication Publication Date Title
WO2024131852A1 (zh) 电机层叠铁芯的生产设备及其生产方法
JP2024089591A (ja) モーター用積層鉄心の製造機器及びその製造方法
CN114884292B (zh) 一种电机粘胶铁芯制造装置及其制造方法
WO2016071943A1 (ja) 積層鉄心の製造装置および積層鉄心の製造方法
US10666119B2 (en) Laminate unit for manufacturing bonded-type laminated core member and apparatus having the same for manufacturing laminated core member
KR101599291B1 (ko) 접착식 적층 코어부재 제조장치 및 접착제 도포유닛
CN111632781B (zh) 一种新能源汽车电机铁芯级进模的自动喷胶控制系统
CN104218743A (zh) 一种电机铁芯自动粘胶叠层高速冲压级进模具
TWI652879B (zh) 黏合式積層鐵芯之製法與沾膠模組
CN204068607U (zh) 一种电机铁芯自动粘胶叠层高速冲压级进模具
WO2023169312A1 (zh) 采用点胶叠层的电机定转子铁芯冲压级进模及点胶工艺
CN209829952U (zh) 用于加工管件鼓波的水压加工装置
KR101566491B1 (ko) 접착식 적층 코어부재 제조장치 및 접착제 도포유닛
CN113346689A (zh) 模内快速固化粘接的新能源汽车电机粘胶铁芯制造工艺
CN210327312U (zh) 冲压设备
CN207771630U (zh) 一种精磨片成型设备
CN110479849A (zh) 一种阀片模具
CN219903037U (zh) 一种带中心孔膜片的成型装置
CN219086973U (zh) 一种用于胶水粘结的马达铁芯的点胶装置及其模具
CN218557863U (zh) 一种具有环形镶件排气结构的注塑模具
CN116780839B (zh) 粘胶式铁芯的层叠方法及生产设备、粘胶式层叠铁芯
CN220215514U (zh) 一种用于螺杆泵式点胶模具
CN207771628U (zh) 精磨片成型设备
CN213972522U (zh) 一种具有自动弹出功能的塑料模具
CN218466209U (zh) 一种纸浆模塑成型机