WO2024125648A1 - 加热装置及烹饪器具 - Google Patents
加热装置及烹饪器具 Download PDFInfo
- Publication number
- WO2024125648A1 WO2024125648A1 PCT/CN2023/139271 CN2023139271W WO2024125648A1 WO 2024125648 A1 WO2024125648 A1 WO 2024125648A1 CN 2023139271 W CN2023139271 W CN 2023139271W WO 2024125648 A1 WO2024125648 A1 WO 2024125648A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- thermal insulation
- component
- heating device
- infrared
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 496
- 238000010411 cooking Methods 0.000 title claims abstract description 28
- 238000009413 insulation Methods 0.000 claims description 257
- 238000009434 installation Methods 0.000 claims description 67
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 19
- 239000006229 carbon black Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 16
- 239000003365 glass fiber Substances 0.000 claims description 13
- 239000004964 aerogel Substances 0.000 claims description 10
- -1 iron-chromium-aluminum Chemical compound 0.000 claims description 10
- 239000010445 mica Substances 0.000 claims description 8
- 229910052618 mica group Inorganic materials 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 6
- 238000001125 extrusion Methods 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 3
- 229910001257 Nb alloy Inorganic materials 0.000 claims description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 230000017525 heat dissipation Effects 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 239000002241 glass-ceramic Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 238000005485 electric heating Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 134
- 230000000694 effects Effects 0.000 description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000011900 installation process Methods 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 5
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910001080 W alloy Inorganic materials 0.000 description 3
- MOWMLACGTDMJRV-UHFFFAOYSA-N nickel tungsten Chemical compound [Ni].[W] MOWMLACGTDMJRV-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229960004029 silicic acid Drugs 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C15/00—Details
- F24C15/34—Elements and arrangements for heat storage or insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C7/00—Stoves or ranges heated by electric energy
- F24C7/06—Arrangement or mounting of electric heating elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B11/00—Heating by combined application of processes covered by two or more of groups H05B3/00 - H05B7/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/12—Cooking devices
Definitions
- the present application relates to the technical field of cooking utensils, and in particular to a heating device and a cooking utensil.
- Electromagnetic heating is achieved by coupling the coil disk with the bottom of the pot, which generates eddy currents at the bottom of the pot and then generates heat. It is characterized by rapid heating, but poor uniformity and the presence of cold areas. Electromagnetic heating can only heat conductive pots, such as commonly used iron pots and graphite pots, but cannot heat glass or ceramic pots. Infrared heating is heated by conduction and radiation.
- the existing mixed electromagnetic heating and infrared heating solutions generally adopt the solution of setting inner and outer rings of electromagnetic heating and infrared heating. Due to the limitation of the bottom area of the cookware, the heating area cannot be set very large. Therefore, the area allocated to electromagnetic heating and infrared heating is very small. In such a small area, it is difficult to set high-power electromagnetic heating components and infrared heating devices, resulting in a small heating power of the mixed heating device.
- the main purpose of the present application is to propose a heating device and a cooking utensil, aiming to provide an electromagnetic and infrared hybrid heating device capable of achieving high-power heating.
- a heating device comprising:
- a housing having a mounting cavity formed therein;
- An infrared heating component the infrared heating component is installed in the installation cavity, and the infrared heating component includes a heating wire, the resistivity of the heating wire is not less than 0.1 u ⁇ .m;
- An electromagnetic heating assembly wherein the electromagnetic heating assembly is installed in the installation cavity and is located below the infrared heating assembly, and the electromagnetic heating assembly and the infrared heating assembly are at least partially overlapped in the vertical direction;
- the bottom surface of the infrared heating component and the top surface of the electromagnetic heating component define an insulation cavity at their overlap
- the heating device also includes an insulation member, which includes a first insulation layer, which is arranged between the electromagnetic heating component and the infrared heating component, and the thermal conductivity of the first insulation layer is less than or equal to 0.02w/m ⁇ K.
- the present application also provides a cooking utensil, the cooking utensil comprising a heating device, the heating device comprising:
- a housing having a mounting cavity formed therein;
- An infrared heating component the infrared heating component is installed in the installation cavity, and the infrared heating component includes a heating wire, the resistivity of the heating wire is not less than 0.1 u ⁇ .m;
- the electromagnetic heating component is installed in the installation cavity and is located below the infrared heating component.
- the electromagnetic heating component and the infrared heating component are at least partially overlapped in the up and down direction.
- FIG1 is an exploded view of an embodiment of a cooking utensil provided by the present application.
- FIG2 is a perspective schematic diagram of the heating device in FIG1 ;
- FIG3 is a perspective schematic diagram of the infrared heating assembly in FIG1 ;
- FIG4 is a perspective schematic diagram of the electromagnetic heating assembly in FIG1 ;
- FIG5 is a perspective schematic diagram of the lead structure in FIG3 ;
- FIG6 is an exploded view of the front view of the cooking appliance in FIG1 ;
- FIG7 is a top view of an embodiment of a heating device provided by the present application.
- FIG8 is an exploded view of the heating device in FIG7 ;
- FIG9 is an exploded view of the infrared heating assembly in FIG8 ;
- FIG10 is a cross-sectional view of an embodiment of a cooking utensil provided by the present application.
- FIG11 is a perspective schematic diagram of an embodiment of a mounting body provided by the present application.
- FIG12 is a cross-sectional view of an embodiment of a cooking utensil provided by the present application.
- FIG13 is an exploded view of an embodiment of an infrared heating assembly provided by the present application.
- FIG14 is an exploded view of an embodiment of an infrared heating assembly provided by the present application.
- FIG15 is a perspective schematic diagram of an embodiment of a mounting body provided by the present application.
- FIG16 is a perspective schematic diagram of an embodiment of a mounting body provided by the present application.
- FIG17 is a schematic structural diagram of an embodiment of a heating device provided by the present application.
- FIG18 is a side view of an embodiment of a heating device provided by the present application.
- FIG19 is a schematic structural diagram of an electromagnetic heating assembly in one embodiment of a heating device provided by the present application.
- FIG20 is a schematic structural diagram of an infrared heating assembly and a heat insulating member in an embodiment of a heating device provided by the present application;
- FIG. 21 is an exploded view of an embodiment of a heating device provided in the present application.
- Electromagnetic heating is achieved by coupling the coil disk with the bottom of the pot, which generates eddy currents at the bottom of the pot and then generates heat. It is characterized by rapid heating, but poor uniformity and the presence of cold areas. Electromagnetic heating can only heat conductive pots, such as commonly used iron pots and graphite pots, but cannot heat glass or ceramic pots. Infrared heating is heated by conduction and radiation.
- the solution of setting up inner and outer rings of electromagnetic heating and infrared heating is limited by the bottom area of the cookware, and the heating area cannot be set very large, resulting in a very small area allocated to electromagnetic heating and infrared heating. In such a small area, it is difficult to set up high-power electromagnetic heating components and infrared heating devices, thereby making the heating power of the mixed heating device relatively small.
- the infrared stove plate and the electromagnetic mounting frame are overlapped and arranged up and down, wherein the upper end surface of the infrared stove plate needs to be close to the stove panel of the cooking utensil to achieve the purpose of reducing heat leakage, and the electromagnetic mounting frame needs to be as close to the stove panel as possible to increase the electromagnetic coupling between the electromagnetic mounting frame and the bottom of the pot on the stove panel to achieve higher performance electromagnetic heating. Therefore, the electromagnetic mounting frame is generally set close to the bottom of the upper infrared stove plate.
- the furnace cavity temperature is as high as 600°C, and after passing through the heat-insulating bottom, the temperature of the outer side of the infrared stove plate is still as high as 150°C; if the outer side of the infrared stove plate directly contacts the electromagnetic mounting frame below with a large area, it is easy to cause the electromagnetic mounting frame bracket to melt or the insulation layer of the enameled wire to age.
- FIGS. 1 to 21 are specific embodiments of the heating device 100 provided in the present application.
- the heating device 100 includes a housing 30, an infrared heating component 10 and an electromagnetic heating component 20.
- the housing 30 is provided with an installation cavity.
- the infrared heating component 10 is installed in the installation cavity.
- the infrared heating component 10 includes a heating wire 11.
- the resistivity of the heating wire 11 is not Less than 0.1 u ⁇ .m;
- the electromagnetic heating component 20 is installed in the installation cavity and is located below the infrared heating component 10, and the electromagnetic heating component 20 and the infrared heating component 10 are at least partially overlapped in the up and down direction.
- the heating wire 11 of the existing red-hot heating component is mostly made of non-magnetic metal materials such as aluminum, copper, nickel-tungsten alloy, etc., whose resistivity is generally small, and the resistance of the heating element made is also small. Therefore, the heating control is difficult and the heating power achieved is also small; and when the magnetic field acts on the material with low resistivity, a shielding effect will be produced, thereby resulting in a reduction in the magnetic field of electromagnetic heating reaching the bottom of the pot on the stove panel 1, resulting in a reduction in the electromagnetic heating power.
- non-magnetic metal materials such as aluminum, copper, nickel-tungsten alloy, etc.
- the electromagnetic heating component 20 is coupled with the bottom of the device placed on the shell 30 through its electromagnetic heating coil, eddy currents are generated at the bottom of the device, and then heat is generated at the bottom of the device to heat the device.
- the infrared heating component conducts and radiates the heat generated by its heating wire 11 to heat the device placed on the shell 30.
- the electromagnetic heating component 20 is arranged on the lower side of the infrared heating component so that the infrared heating component and the electromagnetic heating component 20 can heat the device placed on the shell 30 at the same time, thereby improving the heating power of the device.
- the resistivity of the heating wire 11 is not less than 0.1u ⁇ .m.
- the existing heating wire 11 supported by non-magnetic metal materials such as aluminum, copper, nickel-tungsten alloy, etc.
- it has a larger resistivity and better magnetic conductivity, and will not shield the magnetic lines of force generated by the electromagnetic heating coil, thereby solving the problem of the heating wire of the existing infrared heating device 100 affecting the electromagnetic heating, thereby providing an electromagnetic and infrared hybrid heating device 100 that can achieve high-power heating.
- the specific shapes of the electromagnetic heating assembly 20 and the infrared heating assembly 10 are not limited, and can be round or square, which is not limited here.
- the specific composition form of the electromagnetic heating assembly 20 is not limited, as long as it can emit a magnetic field to heat the pot.
- the electromagnetic heating assembly 20 includes an electromagnetic heating coil 22, a mounting bracket 23 and a magnet structure 24.
- the electromagnetic heating coil 22 is installed on the upper side of the mounting bracket 23, and the magnet structure 24 is installed on the lower side of the mounting bracket 23.
- the stove panel 1 and the pot will be in direct contact. Therefore, the stove panel 1 is affected by the high temperature of the pot and will also generate a higher temperature. In addition, the high temperature at the bottom of the pot will pass through the stove panel 1 and be transmitted to the inside of the shell 30 of the cooking utensil 1000. At this time, once the high temperature is transmitted to the electromagnetic heating coil, the electromagnetic heating coil or the mounting seat may be burned. It is necessary to set a heat insulating member above the electromagnetic heating coil.
- the heating device 100 also includes a heat insulating member, which is arranged between the electric heating wire 11 and the electromagnetic heating component 20.
- Such an arrangement can, on the one hand, prevent the heat from the bottom of the pot from penetrating the stove surface and being transferred to the electromagnetic heating component 20. On the other hand, it can prevent the heat from radiating to the electromagnetic heating component 20 during the heating of the heating wire, thereby causing the electromagnetic heating component 20 to be burned.
- the thermal insulation member can be provided separately or directly provided on the infrared heating component.
- the infrared heating component includes a mounting body 16 and a heating wire 11.
- the heating wire 11 is provided at the upper end of the mounting body 16.
- the mounting body 16 includes a thermal insulation disk 21.
- the thermal insulation disk 21 forms the thermal insulation member.
- the thermal insulation disk 21 is provided with the heating wire 11 on the upper end surface of the thermal insulation disk 21. This can reduce the heat leakage at the bottom of the thermal insulation disk 21, thereby reducing the temperature rise at the thermal insulation disk 21.
- the thermal insulation disk 21 can directly form the thermal insulation member, or the thermal insulation disk 21 and the thermal insulation member can be provided at the same time, thereby further improving the thermal insulation effect.
- the thermal insulation component includes: one or more of hydrated silica components, ceramic fiber components, glass fiber components, and silicate components. With such arrangement, the thermal insulation component can be one of hydrated silica components, ceramic fiber components, glass fiber components, and silicate components, or a combination of more than one of the above components.
- the heating wire 11 includes one or more of iron-chromium-aluminum alloy wire, nickel-chromium alloy wire, chromium-aluminum-molybdenum alloy wire, chromium-aluminum-niobium alloy wire, and carbon fiber wire.
- the heating wire 11 can be one of iron-chromium-aluminum alloy wire, nickel-chromium alloy wire, chromium-aluminum-molybdenum alloy wire, chromium-aluminum-niobium alloy wire, and carbon fiber wire, or a combination of multiple of the above.
- the resistivity of iron-chromium-aluminum alloy is generally 1.6u ⁇ .m
- the resistivity of nickel-chromium alloy wire is generally 1.0u ⁇ .m.
- the electric heating wire 11 made of the above materials has a higher resistivity than copper, aluminum and other materials, and will not form a shielding effect on the magnetic field generated by the electromagnetic heating component 20.
- the infrared heating component 10 and the electromagnetic heating component 20 are arranged to overlap in the vertical direction, it can be understood that the larger the overlapping area, the better the effect of mixed heating.
- the area of the smaller one of the electromagnetic heating component 20 and the infrared heating component 10 is m, and the area of the overlapping part of the electromagnetic heating component 20 and the infrared heating component 10 is n, where n ⁇ 0.3m. In this way, the area of the overlapping part accounts for at least 30% of the area of one of the electromagnetic heating component 20 and the infrared heating component 10. In this way, at least enough area is guaranteed to achieve mixed heating.
- the area of the overlapping part of the electromagnetic heating component 20 and the infrared heating component 10 is 30% of the area of the smaller one of the electromagnetic heating component 20 and the infrared heating component 10.
- n ⁇ 0.6m that is, the area of the overlapping part of the electromagnetic heating component 20 and the infrared heating component 10 accounts for at least 60% of the smaller area of the two heating components.
- the heating wire 11 has two connection ends arranged on the same side, and the infrared heating component also includes a lead structure 12, which is arranged on the installation body 16 and is electrically connected to the heating wire 11;
- the lead structure 12 includes an insulating seat 13 and two power terminals 15, and the insulating seat 13 is arranged on the installation body 16.
- the two power terminals 15 are penetrated by the insulating seat 13 and are arranged side by side at intervals, and one end of each of the power terminals 15 is used to electrically connect one of the connection ends to an external power source to energize the heating wire 11; with such a configuration, the heating wire 11 and the external power source can be electrically connected through the two power terminals 15, and the structure is simple and the configuration is convenient.
- the lead structure 12 also includes a temperature sensing unit 14 arranged on the insulating seat 13, and the temperature sensing unit 14 is located between the two power terminals 15 and is used to detect the temperature of the two power terminals 15; it should be noted that during the heating process of the infrared heating component, if the temperature of the two power terminals 15 of the lead structure 12 is too high, the plastic shell will be melted, causing safety hazards; by setting the temperature sensing unit 14 to detect the temperature of the two power terminals 15, the user can promptly know the temperature of the two power terminals 15, so that when the temperature of the two power terminals 15 is too high, the user can take timely measures to stop heating, so as to avoid melting the plastic shell due to the excessively high temperature of the two power terminals 15, thereby eliminating safety hazards.
- the housing 30 includes a base and an upper cover covering the base, wherein the upper end surface of the upper cover is formed with a heating area for placing the device;
- the thermal component is arranged on the base and corresponds to the heating zone;
- the electromagnetic heating component 20 is arranged on the lower side of the infrared heating component and corresponds to the heating zone.
- the heating device 100 also includes a main control panel, an operation panel, a fan 2 and a stove panel 1.
- the main control panel and the fan 2 are arranged on the base, the operation panel is arranged on the upper cover, and the stove panel 1 is covered on the upper end surface of the upper cover.
- the stove panel 1 is used to support the appliance, so that the heating of the appliance is safer and more stable; the main control panel and the fan 2 are arranged side by side and spaced apart, so that the operation of the fan 2 will not be interfered with.
- the bottom surface of the infrared heating component 10 and the top surface of the electromagnetic heating component 20 define a heat-insulating cavity 215 at their overlapping portion.
- the electromagnetic heating component 20 is coupled with the bottom of the device placed on the shell through its electromagnetic heating coil, generating eddy currents at the bottom of the device, and then generating heat at the bottom of the device to heat the device.
- the infrared heating component conducts and radiates the heat generated by its heating wire 11 to heat the device placed on the shell.
- the specific implementation form of the thermal insulation cavity is not limited, and it can be the gap between the two, or it can be the bottom surface of the infrared heating component 10 and the top surface of the electromagnetic heating component 20, at least one of which is at least partially recessed, thereby forming the thermal insulation cavity 215.
- the bottom surface of the infrared heating component 10 and the top surface of the electromagnetic heating component 20 is at least partially recessed.
- the bottom surface of the infrared heating component 10 may be recessed inward to form the heat insulation cavity 215, or the top surface of the electromagnetic heating component 20 may be recessed inward to form the heat insulation cavity 215. Both of them may be recessed inward to form the heat insulation cavity 215.
- the at least partially recessed may be only partially recessed or completely recessed. This is not limited here.
- the form of the recess is also not limited. It may be in the form of a groove 216 or a through hole 217, etc. This is not limited here.
- an electromagnetic heating component 20 and an infrared heating component 10 are provided so that the heating device 100 can be adapted to different cookware, and the bottom surface of the infrared heating component 10 and the top surface of the electromagnetic heating component 20 define a heat-insulating cavity 215 at their overlap, and the air in the heat-insulating cavity 215 can achieve a better heat-insulating effect.
- the temperature of the outer surface of the electromagnetic mounting frame can be reduced while controlling the thickness of the infrared stove plate within a certain range and without increasing the distance from the electromagnetic heating component 20 to the stove panel.
- a connecting channel 220 connecting the thermal insulation cavity 215 and the installation cavity is opened on the peripheral side of the infrared heating component 10.
- the connecting channel 220 By setting the connecting channel 220, the installation cavity and the thermal insulation cavity 215 are connected, and the air in the installation cavity can enter the thermal insulation cavity 215, so that the air in the installation cavity and the thermal insulation cavity 215 can exchange heat, thereby cooling the thermal insulation cavity 215 and maintaining a low temperature, thereby improving the thermal insulation capacity of the thermal insulation cavity 215.
- the shell is provided with a heat dissipation channel 221 communicating with the inside and outside of the installation cavity.
- a heat dissipation channel 221 communicating with the inside and outside of the installation cavity.
- the thermal insulation cavity 215 may be one or more, and the multiple thermal insulation cavities 215 may be independent of each other or interconnected, which is not limited here. Furthermore, the thermal insulation cavity 215 is formed in plurality, and the multiple thermal insulation cavities 215 are interconnected. Such a configuration allows heat exchange between the multiple thermal insulation cavities 215, thereby avoiding the occurrence of local high temperature.
- a connecting channel 220 connecting the heat insulation cavity 215 and the installation cavity is provided on the peripheral side of the infrared heating component 10; and, the heat insulation cavity 215 is formed in plurality, and the plurality of heat insulation cavities 215 are interconnected.
- the two technical solutions can be set selectively or simultaneously, which is not limited here.
- the bottom surface of the infrared heating component 10 is at least partially recessed to form the insulation cavity.
- the bottom area of the infrared heating component 10 is M, and the area of the filled part in Figure 16 is M.
- the area of the local recessed portion of the bottom surface of the infrared heating component 10 is m, and the area of the filled part in Figure 15 is m, wherein m>0.3M. It can be understood that the larger the area of the local recessed portion of the bottom surface of the infrared heating component 10, the larger the area of the insulation cavity 215. Correspondingly, the insulation effect of the insulation cavity 215 is better. Therefore, m>0.3M, thereby ensuring that the insulation cavity 215 has sufficient area for insulation.
- the insulation cavity 215 should also maintain a certain thickness, otherwise, the air in the insulation cavity 215 is too thin, affecting the insulation effect. Therefore, the maximum distance between the bottom surface of the infrared heating component 10 and the top surface of the electromagnetic heating component 20 is a, where a>0.5mm. With this setting, the maximum thickness of the insulation cavity 215 is greater than 0.5mm, ensuring the thickness of the air layer in the insulation cavity 215, thereby ensuring the insulation effect.
- the infrared heating assembly 10 includes a mounting body 16 and a heating wire 11, and the heating wire 11 is arranged at the upper end of the mounting body 16, wherein:
- the bottom of the installation body 16 is provided with a groove 216 , and the groove 216 defines the heat insulation cavity 215 , and/or the bottom of the installation body 16 is provided with a through hole 217 which is arranged to pass through from top to bottom, and the through hole 217 defines the heat insulation cavity 215 .
- a groove 216 is provided at the bottom of the installation body 16 or a through hole 217 is provided which runs through the installation body 16 from top to bottom, thereby defining the heat insulating cavity 215.
- the air in the heat insulating cavity 215 can achieve a better heat insulating effect.
- the temperature of the outer surface of the electromagnetic mounting frame can be reduced while controlling the thickness of the infrared stove plate within a certain range and without increasing the distance from the electromagnetic heating component 20 to the stove panel.
- the specific implementation form of the installation body 16 is not limited, and it can be an integrally formed shell, or a combination of an installation frame and a mounting rack, etc., which is not limited here.
- the installation body 16 includes a separately arranged installation frame 218 and a mounting frame 219, the installation frame 218 is used to install the heating wire 11, the mounting frame 219 is arranged below the heating wire 11, and the mounting frame 219 is provided with the groove 216 and/or the through hole 217, and the groove 216 and/or the through hole 217 define the insulation cavity 215.
- the heating wire 11 is installed by providing a mounting frame 218, and then the mounting frame 219 can support the mounting frame 218 and the heating wire 11, and the groove 216 and/or the through hole 217 opened on the mounting frame 219 can define the heat-insulating cavity 215, thereby reducing the temperature of the outer surface of the electromagnetic mounting frame without increasing the distance from the electromagnetic heating component 20 to the stove panel.
- the infrared heating assembly 10 is generally provided with a heat insulating member.
- the heat insulating member can directly play the role of the installation body 16. Therefore, in this embodiment, the installation body 16 includes a first heat insulating member, and a groove 216 is provided on the bottom surface of the first heat insulating member.
- the groove 216 defines the heat-insulating cavity 215 . In this configuration, the groove 216 is directly opened on the bottom surface of the first heat-insulating component to form the heat-insulating cavity 215 , which has a simple structure.
- the infrared heating assembly 10 also includes a second thermal insulation member 212 arranged between the installation body 16 and the heating wire 11.
- the second thermal insulation member 212 can serve to insulate the heating wire 11 to prevent the high temperature generated by the heating wire 11 from damaging the electromagnetic mounting frame.
- the first thermal insulation member and/or the second thermal insulation member 212 includes a thermal insulation bottom for placing the heating wire 11 and a thermal insulation ring surrounding the heating wire 11.
- the thermal insulation bottom can insulate the bottom of the heating wire 11, and the thermal insulation ring is arranged around the heating wire 11 to insulate the circumference of the heating wire 11, thereby focusing the heat generated by the heating wire 11 and avoiding heat diffusion.
- the heat insulating bottom and the heat insulating ring can be integrally formed or separately provided.
- the heat insulating ring can be made of a material with better heat insulating performance
- the heat insulating bottom can be made of white carbon black material, etc., which are not limited here. Since the strength of the white carbon black material is relatively low, if an independent heat insulating ring is used, it is easy to be deformed or crushed by compression. Therefore, the heat insulating bottom and the heat insulating ring are integrally formed.
- first thermal insulation member and the second thermal insulation member 212 are the same as the thermal insulation members described above, without limitation. It should be noted that the thermal insulation member made of white carbon black in conjunction with a fan can control the temperature in the furnace plate between 120°C and 200°C, and has a good thermal insulation effect. Therefore, in one embodiment, the material of the first thermal insulation member and the second thermal insulation member 212 is white carbon black.
- the infrared heating assembly 10 also includes a third thermal insulation member 214 arranged on the side of the second thermal insulation member 212 facing away from the heating wire 11.
- the third heat insulating member 214 is made of aerogel, glass fiber, or ceramic fiber.
- the infrared heating assembly 10 further includes a support plate 222 .
- the heating device 100 includes an electromagnetic heating component 20, an infrared heating component 20 and a thermal insulation member 34; wherein the infrared heating component 20 is arranged above the electromagnetic heating component 20; the thermal insulation member 34 may include a first thermal insulation layer 31, the first thermal insulation layer 31 is arranged between the electromagnetic heating component 20 and the infrared heating component 20, and the thermal conductivity of the first thermal insulation layer 31 is less than or equal to 0.02w/m ⁇ K.
- a heat insulating member 34 including a first heat insulating layer 31 is provided between the electromagnetic heating component 20 and the infrared heating component 20, and the thermal conductivity of the first heat insulating layer 31 is less than or equal to 0.02w/m ⁇ K.
- this solution uses a first heat insulating layer 31 with a lower thermal conductivity to replace the white carbon black heat insulating layer, which can achieve the same heat insulating effect while effectively reducing the thickness of the first heat insulating layer 31, thereby reducing the distance between the electromagnetic heating component 20 and the stove panel, thereby reducing the thickness of the whole machine and increasing the heating power of the electromagnetic heating component 20.
- the weight of the whole machine is also reduced, which can improve market competitiveness.
- the thermal conductivity of the first thermal insulation layer 31 is less than or equal to 0.02w/m ⁇ K, which refers to the thermal conductivity at normal temperature and pressure.
- the second thermal insulation layer 32 also needs to be a non-magnetic insulation material to avoid electromagnetic shielding caused by the second thermal insulation layer 32 on the heating of the electromagnetic heating component 20 located therebelow, thereby not hindering the heating of the electromagnetic heating component 20.
- the thickness of the first thermal insulation layer 31 can be set between 2 mm and 3 mm, thereby greatly reducing the thickness of the first thermal insulation layer 31, so that the thickness of the whole machine can also be reduced accordingly.
- a mounting structure may be provided on the peripheral side of the electromagnetic heating component 20 so that the electromagnetic heating component 20 can be fixedly installed on the bottom shell of the cooking utensil 1000 through the mounting structure.
- a first screw hole may be opened on the mounting structure, and a second screw hole may be opened on the bottom shell of the cooking utensil 1000.
- the electromagnetic heating component 20 can be fixedly installed on the bottom shell of the cooking utensil 1000 by passing a screw through the first screw hole and inserting it into the second screw hole.
- the first thermal insulation layer 31 may include at least one of an aerogel layer, a mica sheet, and a glass fiber layer. Since the thermal conductivity of the aerogel layer, the mica sheet, and the glass fiber layer at normal temperature and pressure is low, by using at least one of the aerogel layer, the mica sheet, and the glass fiber layer as the first thermal insulation layer 31, the thermal conductivity of the first thermal insulation layer 31 can be made less than or equal to 0.02w/m ⁇ K, so that the first thermal insulation layer 31 has a good thermal insulation effect, so as to prevent the high temperature of the infrared heating component 20 from affecting the normal operation of the electromagnetic heating component 20.
- the first heat insulating layer 31 may include only one of the aerogel layer, the mica sheet, and the glass fiber layer, or may include an aerogel layer and a mica sheet stacked in sequence, or may include an aerogel layer and a glass fiber layer stacked in sequence, or may include a mica sheet and a glass fiber layer stacked in sequence, or may include an aerogel layer, a mica sheet, and a glass fiber layer stacked in sequence.
- two adjacent layers of the structure may be fixed by gluing.
- the projection of the infrared heating component 20 on the electromagnetic heating component 20 may fall within the projection of the first thermal insulation layer 31 on the electromagnetic heating component 20 .
- the heat generated by the infrared heating component 20 during operation can be effectively isolated by the first heat insulation layer 31 , so as to fully prevent the high temperature of the infrared heating component 20 from affecting the normal operation of the electromagnetic heating component 20 .
- the thermal insulation member 34 may also include a second thermal insulation layer 32, the second thermal insulation layer 32 is arranged between the first thermal insulation layer 31 and the infrared heating component 20, and the thermal conductivity of the first thermal insulation layer 31 is less than the thermal conductivity of the second thermal insulation layer 32.
- the heat generated by the infrared heating assembly 20 during operation can be fully isolated under the double insulation effect of the first insulation layer 31 and the second insulation layer 32.
- the infrared heating assembly 20 can be installed on the second insulation layer 32 to ensure the installation stability of the infrared heating assembly 20.
- the thickness of the first thermal insulation layer 31 and the second thermal insulation layer 32 can be set between 2 mm and 3 mm.
- the present solution can also achieve the effect of reducing the thickness of the thermal insulation layer by replacing the white carbon black thermal insulation layer with the first thermal insulation layer 31 and the second thermal insulation layer 32 having a smaller thermal conductivity.
- the second thermal insulation layer 32 also needs to be made of non-magnetic insulation material to prevent the second thermal insulation layer 32 from causing electromagnetic shielding to the electromagnetic heating component 20 located therebelow, thereby not hindering the heating of the electromagnetic heating component 20.
- the infrared heating component 20 and the second thermal insulation layer 32 can be fixed together by extrusion molding; or, the infrared heating component 20 and the second thermal insulation layer 32 can also be fixed together by bonding, screw connection, etc.
- the second thermal insulation layer 32 and the infrared heating component 20 can be an integral structure formed by extrusion molding, that is, during the installation process, the infrared heating component 20 can be first extruded on one side of the second thermal insulation layer 32, and then the side of the second thermal insulation layer 32 facing away from the infrared heating component 20 is connected to the first thermal insulation layer 31.
- the infrared heating component 20 can be fixed on the thermal insulation layer by extrusion, and the thickness of the thermal insulation layer required for extruding and fixing the infrared heating component 20 is only about 2 mm.
- the thickness of the white carbon black thermal insulation layer needs to be set between 10 mm and 15 mm.
- the second thermal insulation layer 31 in the present application adopts white carbon black material, which can facilitate the extrusion molding of the infrared heating component 20 and the second thermal insulation layer 32.
- the thermal insulation layer only needs to be set to about 2 mm, and the first thermal insulation layer 31 with a smaller thermal conductivity can be used to achieve the corresponding thermal insulation effect, so that the thermal insulation layer composed of the first thermal insulation layer 31 and the second thermal insulation layer 32 only needs to be set to 4 mm to 6 mm.
- the second heat insulating layer 32 may be a white carbon black layer. Since the heat insulating layer made of white carbon black material is relatively soft, during the installation process, the infrared heating component 20 can be better squeezed and fixed on the white carbon black layer to achieve the installation and fixation of the infrared heating component 20, thereby eliminating the need to use an additional connection structure to fix the infrared heating component 20 on the second heat insulating layer 32.
- the thermal insulation member 34 may also include a thermal insulation seat 33, which is arranged between the electromagnetic heating component 20 and the first thermal insulation layer 31, and the first thermal insulation layer 31 and the second thermal insulation layer 32 are stacked on the thermal insulation seat 33 in sequence.
- the first thermal insulation layer 31 can be first stacked on the thermal insulation seat 33, and then the combined structure of the second thermal insulation layer 32 and the infrared heating component 20 can be installed on the first thermal insulation layer 31 to ensure the installation stability of the first thermal insulation layer 31 and the second thermal insulation layer 32, and to ensure the shape of the first thermal insulation layer 31 and the second thermal insulation layer 32 to prevent the first thermal insulation layer 31 and the second thermal insulation layer 32 from collapsing after being heated, thereby affecting the thermal insulation effect.
- the material of the thermal insulation seat 33 can be a non-magnetic insulating metal material or a high-temperature resistant non-metallic material, which is not limited here.
- the non-metallic material has no shielding effect on the magnetic lines and will not hinder the heating of the electromagnetic heating component 20.
- a first installation groove 331 can be provided on the side of the thermal insulation seat 33 facing away from the electromagnetic heating component 20. During the installation process, the first thermal insulation layer 31 and the second thermal insulation layer 32 can be installed in the first installation groove 331 to prevent the first thermal insulation layer 31 and the second thermal insulation layer 32 from being displaced and affecting the thermal insulation effect.
- the first thermal insulation layer 31 and the second thermal insulation layer 32 can also be protected by the thermal insulation seat 33 to prevent the first thermal insulation layer 31 and the second thermal insulation layer 32 from being damaged during heating or transportation.
- the side wall of the first thermal insulation layer 31 can be abutted against the side wall of the first installation groove 331, so that the first thermal insulation layer 31 is fixed in the first installation groove 331 by interference fit; of course, an adhesive layer can also be provided between the first thermal insulation layer 31 and the bottom wall of the first installation groove 331, so that the first thermal insulation layer 31 is fixed in the second installation groove 321 by adhesion.
- the side wall of the second thermal insulation layer 32 can be abutted against the side wall of the first installation groove 331, so that the second thermal insulation layer 32 is fixed in the first installation groove 331 by interference fit; of course, an adhesive layer can also be provided between the second thermal insulation layer 32 and the first thermal insulation layer 31, so that the second thermal insulation layer 32 is fixed in the first installation groove 331 by adhesion.
- a second installation groove 321 can be opened on the side of the second insulation layer 32 facing away from the first insulation layer 31, and during the installation process, the infrared heating component 20 can be installed in the second installation groove 321.
- the infrared heating component 20 in the second installation groove 321 of the second thermal insulation layer 32, not only the installation stability of the infrared heating component 20 can be improved, but also the heat radiation emitted by the infrared heating component 20 to the surroundings can be isolated through the second thermal insulation layer 32, so as to avoid the heat radiation emitted by the infrared heating component 20 to the surroundings from affecting other high-temperature-resistant structures of the cooking appliance 1000, such as the circuit board in the cooking appliance 1000.
- the electromagnetic heating component 20 may include a mounting bracket 23, an electromagnetic heating coil 22 and a magnet structure 24; wherein the mounting bracket 23 has a first side and a second side that are arranged back to back, and the first side is arranged close to the infrared heating component 20; the electromagnetic heating coil 22 can be arranged on the first side of the mounting bracket 23, and the first thermal insulation layer 31 can be arranged between the electromagnetic heating coil 22 and the infrared heating component 20; the magnet structure 24 can be arranged on the second side of the mounting bracket 23.
- the electromagnetic heating component 20 when used to heat ordinary iron pots or stainless steel cookware, works and can heat the food in the ordinary iron pots or stainless steel cookware by electromagnetic heating.
- the infrared heating component 20 may include a heating wire 11 and a lead structure 12; wherein the heating wire 11 may be arranged on the side of the first heat insulation layer 31 facing away from the electromagnetic heating component 20; and the lead structure 12 may be installed on the heating wire 11 and electrically connected to the heating wire 11.
- the connection method of the lead structure 12 in the infrared heating component may refer to the aforementioned embodiment, and will not be repeated here.
- the present application also provides a cooking utensil 1000, the cooking utensil 1000 comprising a heating device 100, the heating device 100 comprising:
- An infrared heating component 10 wherein the infrared heating component 10 is installed in the installation cavity, and the infrared heating component 10 comprises a heating wire 11, and the resistivity of the heating wire 11 is not less than 0.1 u ⁇ .m;
- the electromagnetic heating component 20 is installed in the installation cavity and is located below the infrared heating component 10.
- the electromagnetic heating component 20 and the infrared heating component 10 are at least partially overlapped in the up and down direction.
- the electromagnetic heating component 20 is coupled with the bottom of the appliance placed on the shell 30 through its electromagnetic heating coil, generating eddy currents at the bottom of the appliance, and then generating heat at the bottom of the appliance to heat the appliance.
- the infrared heating component conducts and radiates the heat generated by its heating wire 11 to heat the appliance placed on the shell 30.
- the electromagnetic heating component 20 is arranged on the lower side of the infrared heating component, so that the infrared heating component and the electromagnetic heating component 20 can heat the appliance placed on the shell 30 at the same time, thereby increasing the heating power of the appliance and improving the heating uniformity.
- the infrared heating method can also realize low-power continuous heating, meet special cooking needs, and expand the cooking range.
- the resistivity of the heating wire 11 is not less than 0.1u ⁇ .m. Compared with the existing heating wire 11 supported by non-magnetic metal materials such as aluminum, copper, and nickel-tungsten alloy, its resistivity is larger and the magnetic conductivity is better. It will not shield the magnetic lines of force generated by the electromagnetic heating coil, so that the heating wire of the infrared heating device 100 will not affect the electromagnetic heating.
- the present application also defines an insulation cavity 215 at the overlap of the bottom surface of the infrared heating component 10 and the top surface of the electromagnetic heating component 20.
- the air in the insulation cavity 215 can achieve a better insulation effect. In this way, the temperature of the outer surface of the electromagnetic mounting frame can be reduced under the premise of controlling the thickness of the infrared stove plate within a certain range and without increasing the distance between the electromagnetic heating component 20 and the stove panel.
- the present application also sets a first insulation layer 31 with a lower thermal conductivity between the electromagnetic heating component 20 and the infrared heating component 20, which can not only prevent the heat emitted by the infrared heating component 20 from radiating downward, but also reflect the heat back to reduce heat loss, thereby ensuring the integration of the two heating methods, improving the heating efficiency, and not affecting the normal operation of the electromagnetic heating component 20.
- the thickness of the first insulation layer 31 can be effectively reduced, thereby reducing the distance between the electromagnetic heating component 20 and the stove panel, thereby reducing the thickness of the whole machine and increasing the heating power of the electromagnetic heating component 20, thereby increasing the heating power of the whole machine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electric Stoves And Ranges (AREA)
Abstract
一种加热装置(100)及烹饪器具(1000),加热装置(100)包括壳体(30)、红外加热组件(10)和电磁加热组件(20),壳体(30)内形成有安装腔;红外加热组件(10)安装于安装腔内,且红外加热组件(10)包括电热丝(11),电热丝(11)的电阻率不小于0.1uΩ.m;电磁加热组件(20)安装于安装腔内,且位于红外加热组件(10)的下方,电磁加热组件(20)与红外加热组件(10)至少部分沿上下向重叠设置。
Description
相关申请
本申请要求于2022年12月15日申请的、申请号为202223411358.2、202223375925.3以及于2023年7月21日申请的、专利号为202321949761.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及烹饪器具的技术领域,尤其涉及一种加热装置及烹饪器具。
电磁加热是通过线圈盘与锅底的耦合,使锅底产生涡流,进而产生热量,其特点是升温迅速,但是均匀性较差,存在冷区,并且电磁加热只能对导电的锅具进行加热,比如常用的铁质锅具,石墨锅具等,而对玻璃或者陶瓷的锅具,不能进行加热。红外加热是通过传导和辐射两种方式进行加热,刚开始加热时,电阻丝的热量大部分被隔热层,灶面板等吸收,需要预热一段时间后才能对锅具进行稳定的加热;因此锅具升温速度慢,效率低,但是加热到一定温度后,由于红外光辐射的作用,加热均匀性较好。
现有的电磁加热和红外加热混合的方案,一般采用的是电磁加热和红外加热内外环设置的方案,受限于锅具的底部面积的限制,加热区域不能设置得很大,因此,分配给电磁加热和红外加热的面积都很小,在如此小的面积下,难以设置大功率的电磁加热组件和红外加热装置,导致混合加热装置的加热功率较小。
发明内容
本申请的主要目的是提出一种加热装置及烹饪器具,旨在提供一种能实现大功率加热的电磁与红外的混合加热装置。
为实现上述目的,本申请提出的一种加热装置,包括:
壳体,所述壳体内形成有安装腔;
红外加热组件,所述红外加热组件安装于所述安装腔内,且所述红外加热组件包括电热丝,所述电热丝的电阻率不小于0.1uΩ.m;以及,
电磁加热组件,所述电磁加热组件安装于所述安装腔内,且位于所述红外加热组件的下方,所述电磁加热组件与所述红外加热组件至少部分沿上下向重叠设置;
其中,所述红外加热组件的底面和所述电磁加热组件的顶面,两者在其重叠处限定出隔热腔,所述加热装置还包括隔热件,所述隔热件包括第一隔热层,所述第一隔热层设于所述电磁加热组件与所述红外加热组件之间,且所述第一隔热层的热导率小于或等于0.02w/m·K。
本申请还提供一种烹饪器具,所述烹饪器具包括加热装置,所述加热装置包括:
壳体,所述壳体内形成有安装腔;
红外加热组件,所述红外加热组件安装于所述安装腔内,且所述红外加热组件包括电热丝,所述电热丝的电阻率不小于0.1uΩ.m;以及,
电磁加热组件,所述电磁加热组件安装于所述安装腔内,且位于所述红外加热组件的下方,所述电磁加热组件与所述红外加热组件至少部分沿上下向重叠设置。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请提供的烹饪器具一实施例的爆炸图;
图2为图1中的加热装置的立体示意图;
图3为图1中的红外加热组件的立体示意图;
图4为图1中的电磁加热组件的立体示意图;
图5为图3中的引线结构的立体示意图;
图6为图1中的烹饪器具的主视图的爆炸图;
图7为本申请提供的加热装置一实施例的俯视图;
图8为图7中的加热装置的爆炸图;
图9为图8中的红外加热组件的爆炸图;
图10为本申请提供的烹饪器具一实施例的截面图;
图11为本申请提供的安装主体的一实施例的立体示意图;
图12为本申请提供的烹饪器具的一实施例的截面图;
图13为本申请提供的红外加热组件一实施例的爆炸图;
图14为本申请提供的红外加热组件一实施例的爆炸图;
图15为本申请提供的安装主体的一实施例的立体示意图;
图16为本申请提供的安装主体的一实施例的立体示意图;
图17为本申请提供的加热装置一实施例的结构示意图;
图18为本申请提供的加热装置一实施例的侧视图;
图19为本申请提供的加热装置一实施例中电磁加热组件的结构示意图;
图20为本申请提供的加热装置一实施例中红外加热组件和隔热件的结构示意图;
图21为本申请提供的加热装置一实施例的爆炸图。
附图标号说明:
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
电磁加热是通过线圈盘与锅底的耦合,使锅底产生涡流,进而产生热量,其特点是升温迅速,但是均匀性较差,存在冷区,并且电磁加热只能对导电的锅具进行加热,比如常用的铁质锅具,石墨锅具等,而对玻璃或者陶瓷的锅具,不能进行加热。红外加热是通过传导和辐射两种方式进行加热,刚开始加热时,电阻丝的热量大部分被隔热层,灶面板等吸收,需要预热一段时间后才能对锅具进行稳定的加热;因此锅具升温速度慢,效率低,但是加热到一定温度后,由于红外光辐射的作用,加热均匀性较好。
现有的电磁加热和红外加热混合的方案中,采用电磁加热和红外加热内外环设置的方案因受限于锅具的底部面积的限制,加热区域不能设置得很大,导致分配给电磁加热和红外加热的面积都很小,在如此小的面积下,难以设置大功率的电磁加热组件和红外加热装置,从而使混合加热装置的加热功率较小。
而现有的混合加热装置中,采用红外炉盘和电磁安装架上下重叠设置的方案,其中红外炉盘的上端面需要紧贴烹饪器具的灶面板,以达到减少热量泄漏的目的,同时电磁安装架需同时尽量靠近灶面板,以便增加电磁安装架与灶面板上锅具底部的电磁耦合,实现更高性能的电磁加热,因此,电磁安装架一般紧贴上方的红外炉盘底部设置。由于红外炉盘加热时,炉腔温度高达600℃,经过隔热底后,红外炉盘外侧的温度仍高达150℃;如果红外炉盘外侧大面积直接接触下方的电磁安装架,容易导致电磁安装架支架熔融,或者漆包线绝缘层老化。
增加红外炉盘隔热底厚度可以有效地降低红外炉盘外侧的温度,但是电磁安装架会随着隔热底厚度的增加逐渐远离灶面板,导致与锅具底部的耦合变差,因此,如何降低整机厚度并提升整机的加热功率成为亟待解决的问题。
为了解决上述问题,本申请提供一种加热装置100及烹饪器具1000,图1至图21为本申请提供的加热装置100的具体实施例。
请参阅图1至图6,所述加热装置100包括壳体30、红外加热组件10和电磁加热组件20,所述壳体30内形成有安装腔;所述红外加热组件10安装于所述安装腔内,且所述红外加热组件10包括电热丝11,所述电热丝11的电阻率不
小于0.1uΩ.m;所述电磁加热组件20安装于所述安装腔内,且位于所述红外加热组件10的下方,所述电磁加热组件20与所述红外加热组件10至少部分沿上下向重叠设置。
需要强调的是,现有的红热加热组件的电热丝11,多采用铝,铜,镍钨合金等不导磁金属材料制成,其电阻率一般较小,制作成的发热件电阻也较小,因此,加热控制的难度大,实现的加热功率也较小;并且,磁场作用在电阻率小的材料上时,会产生屏蔽作用,从而导致电磁加热的磁场达到灶面板1上的锅底的减少,电磁加热功率降低的问题。
本申请的技术方案中,所述电磁加热组件20是通过其电磁加热线圈与置于壳体30上的器具的底部耦合,在器具的底部产生涡流,进而在器具的底部产生热量以对器具加热,所述红外发热组件通过将其电热丝11产生的热量进行传导和辐射,以对置于壳体30上的器具加热,在所述红外发热组件的下侧设置所述电磁加热组件20,以使得红外发热组件和所述电磁加热组件20能够同时对置于所述壳体30上的器具进行加热,实现器具加热功率的提升以及加热均匀性的改善,从而克服现有混合加热技术中红外加热功率小,电磁加热面积小以及功率小的问题;并且,所述电热丝11的电阻率不小于0.1uΩ.m,相较于现有的采用的铝,铜,镍钨合金等不导磁金属材料支撑的电热丝11,其电阻率较大,导磁效果较好,不会对所述电磁加热线圈产生的磁力线进行屏蔽,解决了现有红外加热装置100的发热丝影响电磁加热的问题,从而提供了一种能实现大功率加热的电磁与红外的混合加热装置100。
需要强调的是,在本申请中,所述电磁加热组件20和所述红外加热组件10的具体形状不受限制,可以是圆形,也可以是方形,在此不作限定。所述电磁加热组件20的具体组成形式不受限制,只要能发射磁场对锅具进行加热即可,在本申请中所述电磁加热组件20包括电磁加热线圈22、安装支架23和磁体结构24,所述电磁加热线圈22安装于所述安装支架23的上侧,所述磁体结构24安装于所述安装支架23的下侧。
需要说明的是,在电磁加热组件20加热的过程中,灶面板1与锅具之间会直接接触,因此,灶面板1受到锅具的高温的影响,也会产生较高的温度,并且,锅具底部的高温会透过灶面板1,从而传到烹饪器具1000的壳体30内部,此时,一旦高温传递至电磁加热线圈上,可能会烧坏电磁加热线圈或者是安装座,需要在电磁加热线圈的上方设置隔热件,在本申请中,所述加热装置100还包括隔热件,所述隔热件设置于所述电热丝11和所述电磁加热组件20之间,如此设置,一方面能够防止锅底的热量穿透灶面传递到电磁加热组件20上,另一方面,可以防止发热丝发热的过程中,热量辐射至所述电磁加热组件20上,从而导致所述电磁加热组件20被烧熔的现象的发生。
进一步的,所述隔热件是可以单独设置,也可以是直接设置在红热发热组件上的,所述红外发热组件包括安装主体16、电热丝11,所述电热丝11设置在所述安装主体16的上端,所述安装主体16包括隔热盘21,所述隔热盘21形成所述隔热件如此设置,在所述隔热盘21的上端面设置所述电热丝11,能够减少所述隔热盘21底部的热量泄露,从而减少所述隔热盘21处的温升,此时,所述隔热盘21可以直接形成所述隔热件,也可以是所述隔热盘21和所述隔热件同时设置,从而进一步提升隔热效果。
所述隔热件的具体组成不受限制,可以是任意材质或者形状,只需要能够产生隔热的效果即可,还可以是物理隔热,也可以是化学反应进行吸热隔热,在此不作限定,在本申请中,所述隔热件包括:水合二氧化硅件,陶瓷纤维件,玻璃纤维件,硅酸盐件中的一种或者多种,如此设置,所述隔热件可以是水合二氧化硅件、陶瓷纤维件、玻璃纤维件、硅酸盐件中的一种,也可以上述中多种的组合形成的。
所述电热丝11的具体形式不受限制,只需要其电阻率不小于0.1uΩ.m即可,在本实施中,所述电热丝11包括铁铬铝合金丝,镍铬合金丝,铬铝钼合金丝,铬铝铌合金丝,碳纤维丝中的一种或者多种,如此设置,所述电热丝11可以是铁铬铝合金丝,镍铬合金丝,铬铝钼合金丝,铬铝铌合金丝,碳纤维丝中的一种,也可以上述中多种的组合形成的。
需要说明的是,铁铬铝合金的电阻率一般为1.6uΩ.m,镍铬合金丝的电阻率一般为1.0uΩ.m,采用上述材料制成的电热丝11,其电阻率相较于铜、铝等材料,其电阻率较大,不会对所述电磁加热组件20产生的磁场形成屏蔽作用。
由于所述红外加热组件10和所述电磁加热组件20是呈上下向重叠设置的,因此,可以理解的是,重叠的面积越大,混合加热的效果越好,所述电磁加热组件20与所述红外加热组件10中面积较小的一个的面积为m,所述电磁加热组件20与所述红外加热组件10重叠部分的面积的n,其中,n≥0.3m,如此设置,重叠部分的面积至少占了所述电磁加热组件20与所述红外加热组件10中两个中一个的30%,如此设置,至少保证了有足够的面积实现混合加热,在某一实施例中,所述电磁加热组件20与所述红外加热组件10重叠部分的面积为述电磁加热组件20与所述红外加热组件10中面积较小的一个的面积的30%,此时,应用本申请中的加热装置100的烹饪器具1000,可以同时实现单独的红外加热、单独的电磁加热和红外与电磁混合加热,对三个锅具同时实现三种不同的加热方式。
进一步的,为了提升混合加热的效果,n≥0.6m,也就是所述电磁加热组件20与所述红外加热组件10重叠部分的面积至少占两个加热组件中面积较小一个的60%,如此设置,确保了足够的混合加热的面积,应用本实施例中提供的加热装置100的烹饪器具1000,可以保证有足够的混合加热的面积对锅具的底部进行加热,从而提升混合加热的效果。
可以理解的是,当所述电磁加热组件20与所述红外加热组件10完全重叠时,也就是所述电磁加热组件20设置于所述红外加热组件10的投影内,或者是,所述红外加热组件10设置在所述电磁加热组件20的投影内时,混合加热的效果最好,因此,n=m,从而能够提供最好的混合加热效果。
所述电热丝11具有同侧设置的两个连接端,所述红外发热组件还包括引线结构12,所述引线结构12设置在所述安装主体16,且与所述电热丝11电性连接;所述引线结构12包括绝缘座13以及两个接电端子15,所述绝缘座13设置在所述安装主体16,两个所述接电端子15穿设于所述绝缘座13且并排间隔设置,各所述接电端子15的一端用于分别电连接其中一个所述连接端与外部电源,以使所述电热丝11通电;如此设置,能够通过两个所述接电端子15电连接所述电热丝11和外部电源,结构简单,设置简便。
同时,所述引线结构12还包括设于所述绝缘座13上的感温单元14,所述感温单元14处于两个所述接电端子15之间,用于检测两个所述接电端子15的温度;需要说明的是,在所述红外发热组件加热过程中,若所述引线结构12的两个所述接电端子15的温度过高,会烧熔塑胶外壳,带来安全隐患;通过设置所述感温单元14检测两个所述接电端子15的温度,以使用户能够及时获知两个所述接电端子15的温度,以在两个所述接电端子15的温度过高时,用户能够及时采取措施,停止加热,以避免因两个所述接电端子15的温度过高而烧熔塑胶外壳,从而消除安全隐患。
所述壳体30包括底座以及盖合所述底座的上盖,所述上盖的上端面形成有用于供器具放置的加热区;所述红外发
热组件设于所述底座,且对应所述加热区设置;所述电磁加热组件20设于所述红外发热组件的下侧,且对应所述加热区设置,通过设置所述底座和所述上盖,使得所述壳体30的拆装更加方便,也便于所述红外发热组件和所述电磁加热组件20的拆装。
需要说明的是,在本申请中,所述加热装置100还包括主控板、操作面板、风机2以及灶面板1,所述主控板以及所述风机2设于所述底座,所述操作面板设于所述上盖,所述灶面板1盖设于所述上盖的上端面,所述灶面板1用以支撑器具,如此,使得所述器具的加热更加安全、稳定;所述主控板与所述风机2并排间隔设置,如此,不会对所述风机2的工作产生干扰。
请参阅图7至图16,在一实施例中,所述红外加热组件10的底面和所述电磁加热组件20的顶面,两者在其重叠处限定出隔热腔215。
所述电磁加热组件20是通过其电磁加热线圈与置于壳体上的器具的底部耦合,在器具的底部产生涡流,进而在器具的底部产生热量以对器具加热,所述红外发热组件通过将其电热丝11产生的热量进行传导和辐射,以对置于壳体上的器具加热。
具体的,所述隔热腔的具体实现形式不受限制,可以是两者之间的间隙,也可以是所述红外加热组件10的底面和所述电磁加热组件20的顶面,两者至少其中之一,至少局部凹陷,从而形成所述隔热腔215。
需要说明的是,所述红外加热组件10的底面和所述电磁加热组件20的顶面,两者至少其中之一,至少局部凹陷,可以是,所述红外加热组件10的底面向内凹陷,从而形成所述隔热腔215,也可以是所述电磁加热组件20的顶面向内凹陷,从而形成所述隔热腔215,还可以是两者都向内凹陷,从而形成所述隔热腔215,在此不做限定,至少局部凹陷,可以是只有局部凹陷,可以是全部凹陷,在此不做限定,凹陷的形式的也不受限制,可以是采用凹槽216的形式,也可以是采用通孔217的形式,等等,在此不做限定。
本申请提供的技术方案中,通过设置电磁加热组件20和红外加热组件10,从而让加热装置100能够适配不同的锅具,并且,所述红外加热组件10的底面和所述电磁加热组件20的顶面,两者在其重叠处限定出隔热腔215,隔热腔215内的空气能够起到较优的隔热效果,如此,能够在将红外炉盘厚度控制在一定范围内的前提下,也是在不增加电磁加热组件20到灶面板的距离的前提下,降低电磁安装架的外表面的温度。
进一步的,提升所述隔热腔215的隔热能力,所述红外加热组件10的周侧开设有连通所述隔热腔215和所述安装腔的连通通道220,如此设置,通过设置所述连通通道220,从而连通所述安装腔和所述隔热腔215,能够让所述安装腔内的空气进入到所述隔热腔215内,让所述安装腔和所述隔热腔215内的空气进行热交换,从而对所述隔热腔215进行降温,让所述隔热腔215保持较低的温度,从而提升了所述隔热腔215的隔热能力。
再进一步地,所述壳体开设有连通所述安装腔内外的散热通道221,如此设置,能够让所述安装腔与外界通过所述散热通道221进行空气交换,以对所述安装腔进行降温。
此外,所述隔热腔215可以是一个,也可以是多个,多个所述隔热腔215之间可以是相互独立的,也可以是相互连通的,在此不做限定,进一步的,所述隔热腔215形成有多个,多个所述隔热腔215呈相互连通设置,如此设置,能够让多个所述隔热腔215之间进行热量交换,从而避免局部高温的现象的发生。
需要强调的是,所述红外加热组件10的周侧开设有连通所述隔热腔215和所述安装腔的连通通道220;以及,所述隔热腔215形成有多个,多个所述隔热腔215呈相互连通设置,两个技术方案,可以是择一设置的,也可以是同时设置的,在此不做限定。
进一步的,请参阅图15和图16,所述红外加热组件10的底面至少局部凹陷,以形成所述隔热腔,为了让所述隔热腔215有足够的面积进行隔热,请参阅图11,所述红外加热组件10的底面积为M,图16中填充的部分的面积为M,此外,请参阅图15,所述红外加热组件10的底面局部凹陷部分的面积为m,图15中填充部分的面积为m,其中,m>0.3M,可以理解的是,所述红外加热组件10的底面局部凹陷部分的面积越大,所述隔热腔215的面积也越大,对应着,所述隔热腔215的隔热效果更好,因此,m>0.3M,从而能够保障所述隔热腔215有足够的面积进行隔热。
与此同时,请参阅图10,所述隔热腔215也应保持一定的厚度,不然,位于所述隔热腔215内的空气太过稀薄,影响隔热效果,因此,所述红外加热组件10的底面与所述电磁加热组件20的顶面之间的间距的最大距离为a,其中,a>0.5mm,如此设置,所述隔热腔215的最大厚度大于0.5mm,保障位于所述隔热腔215内的空气层的厚度,从而保障了隔热效果。
进一步的,由于电磁加热组件20上不易设置隔热腔215,因此,所述红外加热组件10包括安装主体16和电热丝11,所述电热丝11设置在所述安装主体16的上端,其中:
所述安装主体16的底部开设有凹槽216,所述凹槽216限定出所述隔热腔215,和/或,所述安装主体16的底部开设有沿上下贯通设置的通孔217,所述通孔217限定出所述隔热腔215。
在本实施例中,通过在所述安装主体16的底部开设凹槽216或者沿上下贯通设置的通孔217,从而限定出所述隔热腔215,隔热腔215内的空气能够起到较优的隔热效果,如此,能够在将红外炉盘厚度控制在一定范围内的前提下,也是在不增加电磁加热组件20到灶面板的距离的前提下,降低电磁安装架的外表面的温度。
需要说明的是,所述安装主体16的具体实现形式不受限制,可以是一体成型的壳体,也可以是安装框和安装架的组合,等等,在此不做限定。
再进一步的,所述安装主体16包括分体设置的安装框218和安装架219,所述安装框218用于安装所述电热丝11,所述安装架219设置于所述电热丝11的下方,所述安装架219开设有所述凹槽216和/或所述通孔217,所述凹槽216和/或所述通孔217限定出所述隔热腔215。
如此设置,通过设置安装框218对所述电热丝11起到安装的作用,接着所述安装架219能够起到对所述安装框218和所述电热丝11起到支撑的作用,而安装架219上的开设的所述凹槽216和/或所述通孔217,能够限定出所述隔热腔215,从而在不增加电磁加热组件20到灶面板的距离的前提下,降低电磁安装架的外表面的温度。
此外,为了对电热丝11进行隔热,所述红外加热组件10一般都会设置隔热件,此时,所述隔热件可以直接起到所述安装主体16的作用,因此,在本实施例中,所述安装主体16包括第一隔热件,所述第一隔热件的底面开设有凹槽216,
所述凹槽216限定出所述隔热腔215,如此设置,直接在所述第一隔热件的底面开设有凹槽216形成所述隔热腔215,结构简单。
在另一实施例中,由于采用的隔热件的强度较低,难以起到安装主体16的作用,因此,所述红外加热组件10还包括设置于所述安装主体16和所述电热丝11之间的第二隔热件212,所述第二隔热件212能够起到对所述电热丝11进行隔热的作用,以避免电热丝11产生的高温对电磁安装架造成损坏。
所述第一隔热件和/或所述第二隔热件212包括供所述电热丝11放置的隔热底和围设于所述电热丝11外围的隔热圈,如此设置,所述隔热底能够对所述电热丝11的底部进行隔热,而所述隔热圈围设于所述电热丝11的外围,能够对所述电热丝11的周向进行隔热,让所述电热丝11产生的热量更加聚焦,避免热量的扩散。
需要强调的是,所述隔热底和所述隔热圈可以是一体成型的,也可以是分体设置的,在两者分体设置时,所述隔热圈可以采用隔热性能更优的材料制成,所述隔热底可以采用白炭黑材料制成,等等,在此不做限定。由于所述白炭黑材料的强度较低,假使采用独立的隔热圈,容易压变形或者压碎所述隔热底,因此,所述隔热底和所述隔热圈呈一体成型设置。
所述第一隔热件和所述第二隔热件212的具体材质如前文所述隔热件,不作限制,需要说明的是,采用白炭黑制成的隔热件并与风机配合,能够将炉盘内的温度控制在120℃~200℃之间,隔热效果好,因此,在一实施例中,所述第一隔热件和所述第二隔热件212的材质为白炭黑。
与此同时,目前,有很多需要考虑减小炉盘厚度的场景;包括减小机身厚度,做更轻薄的产品外观,或者,一种混合加热的烹饪器具1000,需要在炉盘下方设置一个电磁安装架,为了增加电磁安装架与锅具的耦合,需要尽量减小红外炉盘的厚度;
请参阅图14,另一方面,还需要在保持原有隔热层厚度情况下,进一步提升隔热层的隔热性能,降低炉盘壳体的温度;上述应用场景,可以通过在第二隔热件212下方,设置隔热性能更好的第三隔热件214,从而在保持原有隔热层厚度情况下,进一步提升隔热层的隔热性能,降低炉盘壳体的温度,因此,所述红外加热组件10还包括设置于第二隔热件212背对所述电热丝11一侧的第三隔热件214。
具体地,所述第三隔热件214的材质为气凝胶,玻璃纤维,陶瓷纤维中的一种。为了对所述第三隔热件214进行支撑,所述红外加热组件10还包括支撑板222。
结合参阅图17至图21,在本申请加热装置100的一实施例中,该加热装置100包括电磁加热组件20、红外加热组件20以及隔热件34;其中,红外加热组件20设置在电磁加热组件20的上方;隔热件34可以包括第一隔热层31,第一隔热层31设置在电磁加热组件20与红外加热组件20之间,且第一隔热层31的热导率小于或等于0.02w/m·K。
可以理解的是,本申请提出的加热装置100中,通过在电磁加热组件20与红外加热组件20之间设置有包括第一隔热层31的隔热件34,第一隔热层31的热导率小于或等于0.02w/m·K,相比于采用白炭黑材料作为隔热层,本方案通过采用热导率更小的第一隔热层31来替代白炭黑隔热层,可以在达到相同隔热效果的同时,有效降低第一隔热层31的厚度,从而能够减少电磁加热组件20与灶面板之间的距离,便可以降低整机的厚度、并提升电磁加热组件20的加热功率。另外,整机的重量也得以降低,能够提升市场竞争力。
需要说明的是,第一隔热层31的热导率小于或等于0.02w/m·K指的是在常温常压下的热导率。第二隔热层32也需要为非隔磁材料,以避免第二隔热层32对位于其下方的电磁加热组件20的加热造成电磁屏蔽,从而不会妨碍电磁加热组件20的加热。
在一实施例中,通过采用热导率更小的第一隔热层31来替代白炭黑隔热层,可以将第一隔热层31的厚度设置在2mm~3mm之间即可,从而大大降低了第一隔热层31的厚度,使得整机的厚度也得以相应降低。
在一实施例中,电磁加热组件20的周侧可以设置有安装结构,以通过安装结构将电磁加热组件20固定安装在烹饪器具1000的底壳上,具体而言,可以在安装结构上开设有第一螺钉孔,并在烹饪器具1000的底壳上开设有第二螺钉孔,使用螺钉穿设于第一螺钉孔并插设于第二螺钉孔,即可将电磁加热组件20固定安装在烹饪器具1000的底壳上。
进一步地,结合参阅图21,在本申请加热装置100的一实施例中,第一隔热层31可以包括气凝胶层、云母片、玻璃纤维层中的至少一层。由于气凝胶层、云母片以及玻璃纤维层在常温常压下的热导率均较低,通过使用气凝胶层、云母片以及玻璃纤维层中的至少一层作为第一隔热层31,可以使第一隔热层31的热导率小于或等于0.02w/m·K,以使第一隔热层31具有较好的隔热效果,以避免红外加热组件20的高温影响电磁加热组件20的正常工作。
示例性的,第一隔热层31可以只包括气凝胶层、云母片、玻璃纤维层中的一层,也可以包括依次层叠设置的气凝胶层和云母片,也可以包括依次层叠设置的气凝胶层和玻璃纤维层,也可以包括依次层叠设置的云母片和玻璃纤维层,还可以包括依次层叠设置的气凝胶层、云母片以及玻璃纤维层。具体而言,相邻的两层结构之间可以通过粘贴的方式进行固定。
进一步地,结合参阅图21,在本申请加热装置100的一实施例中,红外加热组件20在电磁加热组件20上的投影可以落入第一隔热层31在电磁加热组件20上的投影内。
如此设置,便可以通过第一隔热层31有效隔离红外加热组件20在工作过程中所产生的热量,以充分避免红外加热组件20的高温影响电磁加热组件20的正常工作。
进一步地,结合参阅图21,在本申请加热装置100的一实施例中,隔热件34还可以包括第二隔热层32,第二隔热层32设置在第一隔热层31与红外加热组件20之间,且第一隔热层31的热导率小于第二隔热层32的热导率。
如此设置,便可以在第一隔热层31和第二隔热层32的双重隔热作用下,充分隔离红外加热组件20在工作过程中所产生的热量。另外,可以将红外加热组件20安装在第二隔热层32上,以保证红外加热组件20的安装稳定性。
本实施例中,尽管设置了第一隔热层31和第二隔热层32这两层隔热层,但是第一隔热层31和第二隔热层32的厚度均可以设置在2mm~3mm之间即可,相比于采用单独的白炭黑材料作为隔热层,本方案通过采用热导率更小的第一隔热层31和第二隔热层32来替代白炭黑隔热层,也同样可以达到降低隔热层厚度的效果。
需要说明的是,第二隔热层32也需要为非隔磁材料,以避免第二隔热层32对位于其下方的电磁加热组件20的加热造成电磁屏蔽,从而不会妨碍电磁加热组件20的加热。
在实际应用过程中,红外加热组件20与第二隔热层32之间可以通过挤压成型的方式固定在一起;或者,红外加热组件20与第二隔热层32之间也可以采用粘接、螺钉连接等方式固定在一起。在一些实施例中,第二隔热层32与红外加热组件20可以为挤压成型的一体结构,也即,在安装过程中,可以先将红外加热组件20挤压在第二隔热层32的一侧,然后将第二隔热层32背向红外加热组件20的一侧与第一隔热层31进行连接。
需要说明的是,采用单独的白炭黑材料作为隔热层时,可以将红外加热组件20通过挤压的方式固定在隔热层上,而挤压固定红外加热组件20所需要的隔热层厚度只需要2mm左右即可,但是为了使隔热层具有足够的隔热效果,从而需要将白炭黑隔热层的厚度设置在10mm~15mm之间;而本申请中的第二隔热层31采用白炭黑材料,可以便于红外加热组件20与第二隔热层32的挤压成型,该隔热层只需设置2mm左右即可,可以使用导热率更小的第一隔热层31来达到相应的隔热效果,从而可以使第一隔热层31和第二隔热层32组合成的隔热层也只需设置在4mm~6mm即可。
进一步地,结合参阅图21,在本申请加热装置100的一实施例中,第二隔热层32可以为白炭黑层。由于白炭黑材料制成的隔热层较软,在安装过程中,可以更好地将红外加热组件20挤压固定在白炭黑层上,以实现红外加热组件20的安装固定,从而无需采用额外的连接结构将红外加热组件20固定在第二隔热层32上。
进一步地,结合参阅图21,在本申请加热装置100的一实施例中,隔热件34还可以包括隔热座33,隔热座33设置在电磁加热组件20与第一隔热层31之间,且第一隔热层31与第二隔热层32依次叠设在隔热座33上。
如此设置,在安装过程中,可以先将第一隔热层31叠设在隔热座33上,再将第二隔热层32与红外加热组件20的组合结构安装在第一隔热层31上,以保证第一隔热层31与第二隔热层32的安装稳定性,并保证第一隔热层31与第二隔热层32的形态,以防止第一隔热层31和第二隔热层32受热后发生坍塌的现象,而影响隔热效果。
在实际应用过程中,隔热座33的材质可以为非隔磁的金属材料,也可以为耐高温的非金属材料,在此不作限定,其中,非金属材料对磁力线没有屏蔽作用,不会妨碍电磁加热组件20的加热。
进一步地,为了进一步提升第一隔热层31和第二隔热层32的安装稳定性,结合参阅图21,在本申请加热装置100的一实施例中,可以在隔热座33背向电磁加热组件20的一侧开设有第一安装槽331,在安装过程中,可以将第一隔热层31和第二隔热层32均安装在第一安装槽331内,以防止第一隔热层31和第二隔热层32发生位置偏移,而影响隔热效果。另外,通过将第一隔热层31和第二隔热层32安装在隔热座33的第一安装槽331内,还可以通过隔热座33对第一隔热层31和第二隔热层32进行保护,以防止在加热或搬运过程中损坏第一隔热层31和第二隔热层32。
在实际应用过程中,在安装过程中,将第一隔热层31安装在第一安装槽331后,可以使第一隔热层31的侧壁与第一安装槽331的槽侧壁抵接,以使第一隔热层31通过过盈配合的方式固定在第一安装槽331中;当然,也可以在第一隔热层31与第一安装槽331的槽底壁之间设置有粘接层,以使第一隔热层31通过粘接的方式固定在第二安装槽321中。同样地,将第二隔热层32安装在第一安装槽331后,可以使第二隔热层32的侧壁与第一安装槽331的槽侧壁抵接,以使第二隔热层32通过过盈配合的方式固定在第一安装槽331中;当然,也可以在第二隔热层32与第一隔热层31之间设置有粘接层,以使第二隔热层32通过粘接的方式固定在第一安装槽331中。
进一步地,结合参阅图21,在本申请加热装置100的一实施例中,还可以在第二隔热层32背向第一隔热层31的一侧开设有第二安装槽321,在安装过程中,可以使红外加热组件20安装在第二安装槽321内。
如此设置,通过将红外加热组件20安装在第二隔热层32的第二安装槽321内,不仅可以提升红外加热组件20的安装稳定性,还可以通过第二隔热层32来隔离红外加热组件20向四周散发的热辐射,以避免红外加热组件20向四周散发的热辐射对烹饪器具1000的其他不耐高温结构造成影响,例如烹饪器具1000中的线路板。
进一步地,结合参阅图19和图21,在本申请加热装置100的一实施例中,电磁加热组件20可以包括安装支架23、电磁加热线圈22以及磁体结构24;其中,安装支架23具有背对设置的第一侧和第二侧,且第一侧靠近红外加热组件20设置;电磁加热线圈22可以设置在安装支架23的第一侧,第一隔热层31可以设置在电磁加热线圈22与红外加热组件20之间;磁体结构24可以设置在安装支架23的第二侧。
如此设置,当用于对普通铁质锅具或不锈钢炊具进行加热时,电磁加热组件20工作,可以通过电磁加热的方式对普通铁质锅具或不锈钢炊具中的食材进行加热。
进一步地,结合参阅图20和图21,在本申请加热装置100的一实施例中,红外加热组件20可以包括电热丝11和引线结构12;其中,电热丝11可以设置在第一隔热层31背向电磁加热组件20的一侧;引线结构12可以安装在电热丝11上,并电连接于电热丝11。其中,引线结构12在红外发热组件中的连接方式可参考前述实施例,此处不再赘述。
本申请还提供一种烹饪器具1000,所述烹饪器具1000包括加热装置100,所述加热装置100包括:
壳体30,所述壳体30内形成有安装腔;
红外加热组件10,所述红外加热组件10安装于所述安装腔内,且所述红外加热组件10包括电热丝11,所述电热丝11的电阻率不小于0.1uΩ.m;以及,
电磁加热组件20,所述电磁加热组件20安装于所述安装腔内,且位于所述红外加热组件10的下方,所述电磁加热组件20与所述红外加热组件10至少部分沿上下向重叠设置。
本申请的技术方案中,所述电磁加热组件20是通过其电磁加热线圈与置于壳体30上的器具的底部耦合,在器具的底部产生涡流,进而在器具的底部产生热量以对器具加热,所述红外发热组件通过将其电热丝11产生的热量进行传导和辐射,以对置于壳体30上的器具加热,在所述红外发热组件的下侧设置所述电磁加热组件20,以使得红外发热组件和所述电磁加热组件20能够同时对置于所述壳体30上的器具进行加热,实现器具加热功率的提升以及加热均匀性的改善,从而具有电磁加热和红外加热的双重优势,既可以加热普通铁质锅具、又可以加热陶瓷类锅具,以实现不挑锅加热。由
于融合了红外加热方式,还可以实现小功率连续加热,实现了特殊烹饪需求,拓宽了烹饪范围。并且,所述电热丝11的电阻率不小于0.1uΩ.m,相较于现有的采用的铝,铜,镍钨合金等不导磁金属材料支撑的电热丝11,其电阻率较大,导磁效果较好,不会对所述电磁加热线圈产生的磁力线进行屏蔽,从而红外加热装置100的发热丝不会影响电磁加热。
除此之外,本申请还在所述红外加热组件10的底面和所述电磁加热组件20的顶面的重叠处限定出隔热腔215,隔热腔215内的空气能够起到较优的隔热效果,如此,能够在将红外炉盘厚度控制在一定范围内的前提下,也是在不增加电磁加热组件20到灶面板的距离的前提下,降低电磁安装架的外表面的温度。另外,本申请还通过在电磁加热组件20与红外加热组件20之间设置了热导率较小的第一隔热层31,不仅能够防止红外加热组件20发出的热量向下辐射,还能够使热量反射回去,以减少热量损失,保证了两种加热方式的集成融合,提升了加热效率的同时,又不会影响电磁加热组件20的正常工作,同时还可以有效降低第一隔热层31的厚度,从而能够减少电磁加热组件20与灶面板之间的距离,便可以降低整机的厚度、并提升电磁加热组件20的加热功率,从而提升整机的加热功率。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。
Claims (32)
- 一种加热装置,其中,所述加热装置包括:壳体,所述壳体内形成有安装腔;红外加热组件,所述红外加热组件安装于所述安装腔内,且所述红外加热组件包括电热丝,所述电热丝的电阻率不小于0.1uΩ.m;以及,电磁加热组件,所述电磁加热组件安装于所述安装腔内,且位于所述红外加热组件的下方,所述电磁加热组件与所述红外加热组件至少部分沿上下向重叠设置。
- 如权利要求1所述的加热装置,其特征在于,所述加热装置还包括隔热件,所述隔热件设置于所述电热丝和所述电磁加热组件之间。
- 如权利要求1或2所述的加热装置,其中,所述红外发热组件包括安装主体、电热丝,所述电热丝设置在所述安装主体的上端,所述安装主体包括隔热盘,所述隔热盘形成所述隔热件。
- 如权利要求2或3所述的加热装置,其中,所述隔热件包括:水合二氧化硅件,陶瓷纤维件,玻璃纤维件,硅酸盐件中的一种或者多种。
- 如权利要求1至4任一项所述的加热装置,其中,所述电热丝包括铁铬铝合金丝,镍铬合金丝,铬铝钼合金丝,铬铝铌合金丝,碳纤维丝中的一种或者多种。
- 如权利要求1至5任一项所述的加热装置,其中,所述电磁加热组件与所述红外加热组件中面积较小的一个的面积为m,所述电磁加热组件与所述红外加热组件重叠部分的面积的n,其中,n≥0.3m。
- 如权利要求6所述的加热装置,其中,n≥0.6m。
- 如权利要求7所述的加热装置,其中,n=m。
- 如权利要求3所述的加热装置,其中,所述电热丝具有同侧设置的两个连接端,所述红外发热组件还包括引线结构,所述引线结构设置在所述安装主体,且与所述电热丝电性连接;所述引线结构包括绝缘座以及两个接电端子,所述绝缘座设置在所述安装主体,两个所述接电端子穿设于所述绝缘座且并排间隔设置,各所述接电端子的一端用于分别电连接其中一个所述连接端与外部电源,以使所述电热丝通电。
- 如权利要求9所述的加热装置,其中,所述引线结构还包括设于所述绝缘座上的感温单元,所述感温单元处于两个所述接电端子之间,用于检测两个所述接电端子的温度。
- 如权利要求1所述的加热装置,其中,所述加热装置包括:壳体,所述壳体内形成有安装腔;电磁加热组件,所述电磁加热组件安装于所述安装腔内;以及,红外加热组件,安装于所述安装腔内,位于所述电磁加热组件的上方,且至少部分与所述电磁加热组件沿上下向重叠设置;其中,所述红外加热组件的底面和所述电磁加热组件的顶面,两者在其重叠处限定出隔热腔。
- 如权利要求11所述的加热装置,其中,所述红外加热组件的周侧开设有连通所述隔热腔和所述安装腔的连通通道;和/或,所述隔热腔形成有多个,多个所述隔热腔呈相互连通设置。
- 如权利要求11或12所述的加热装置,其中,所述红外加热组件的底面至少局部凹陷,以形成所述隔热腔,所述红外加热组件的底面积为M,所述红外加热组件的底面局部凹陷部分的面积为m,其中,m>0.3M。
- 如权利要求11至13任一项所述的加热装置,其中,所述红外加热组件的底面与所述电磁加热组件的顶面之间的间距的最大距离为a,其中,a>0.5mm。
- 如权利要求11至14任一项所述的加热装置,其中,所述红外加热组件包括安装主体和电热丝,所述电热丝设置在所述安装主体的上端,其中:所述安装主体的底部开设有凹槽,所述凹槽限定出所述隔热腔;和/或,所述安装主体的底部开设有沿上下贯通设置的通孔,所述通孔限定出所述隔热腔。
- 如权利要求15所述的加热装置,其中,所述安装主体包括分体设置的安装框和安装架,所述安装框用于安装所述电热丝,所述安装架设置于所述电热丝的下方,所述安装架开设有所述凹槽和/或所述通孔,所述凹槽和/或所述通 孔限定出所述隔热腔。
- 如权利要求15所述的加热装置,其中,所述安装主体包括第一隔热件,所述第一隔热件的底面开设有凹槽,所述凹槽限定出所述隔热腔。
- 如权利要求15所述的加热装置,其中,所述红外加热组件还包括设置于所述安装主体和所述电热丝之间的第二隔热件。
- 如权利要求18所述的加热装置,其中,所述红外加热组件还包括设置于第二隔热件背对所述电热丝一侧的第三隔热件。
- 如权利要求19所述的加热装置,其中,所述第二隔热件的材质为白炭黑;和/或,所述第三隔热件的材质为气凝胶,玻璃纤维,陶瓷纤维中的一种。
- 如权利要求11所述的加热装置,其中,所述壳体开设有连通所述安装腔内外的散热通道。
- 如权利要求1所述的加热装置,其中,所述加热装置包括:电磁加热组件;红外加热组件,所述红外加热组件设于所述电磁加热组件的上方;隔热件,所述隔热件包括第一隔热层,所述第一隔热层设于所述电磁加热组件与所述红外加热组件之间,且所述第一隔热层的热导率小于或等于0.02w/m·K。
- 如权利要求22所述的加热装置,其中,所述第一隔热层包括气凝胶层、云母片、玻璃纤维层中的至少一层。
- 如权利要求22或23所述的加热装置,其中,所述红外加热组件在所述电磁加热组件上的投影落入所述第一隔热层在所述电磁加热组件上的投影内。
- 如权利要求22至24任一项所述的加热装置,其中,所述隔热件还包括第二隔热层,所述第二隔热层设于所述第一隔热层与所述红外加热组件之间,所述第一隔热层的热导率小于所述第二隔热层的热导率。
- 如权利要求25所述的加热装置,其中,所述第二隔热层为白炭黑层。
- 如权利要求25所述的加热装置,其中,所述隔热件还包括隔热座,所述隔热座设于所述电磁加热组件与所述第一隔热层之间,所述第一隔热层与所述第二隔热层依次叠设于隔热座。
- 如权利要求27所述的加热装置,其中,所述隔热座背向所述电磁加热组件的一侧开设有第一安装槽,所述第一隔热层和所述第二隔热层均设于所述第一安装槽内。
- 如权利要求25所述的加热装置,其中,所述第二隔热层背向所述第一隔热层的一侧开设有第二安装槽,所述红外加热组件设于所述第二安装槽内。
- 如权利要求25所述的加热装置,其中,所述第二隔热层与所述红外加热组件为挤压成型的一体结构。
- 如权利要求22至30中任一项所述的加热装置,其中,所述电磁加热组件包括:安装支架,所述安装支架具有背对设置的第一侧和第二侧,所述第一侧靠近所述红外加热组件设置;电磁加热线圈,所述电磁加热线圈设于所述第一侧,所述第一隔热层设于所述电磁加热线圈与所述红外加热组件之间;磁体结构,所述磁体结构设于所述第二侧。
- 一种烹饪器具,其中,所述烹饪器具包括如权利要求1至31中任一项所述的加热装置。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202223375925.3 | 2022-12-15 | ||
CN202223375925.3U CN219283405U (zh) | 2022-12-15 | 2022-12-15 | 加热组件和烹饪器具 |
CN202223411358.2U CN219107707U (zh) | 2022-12-15 | 2022-12-15 | 一种加热装置及烹饪器具 |
CN202223411358.2 | 2022-12-15 | ||
CN202321949761.2U CN220379745U (zh) | 2023-07-21 | 2023-07-21 | 一种加热装置及烹饪器具 |
CN202321949761.2 | 2023-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024125648A1 true WO2024125648A1 (zh) | 2024-06-20 |
Family
ID=91484406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/139271 WO2024125648A1 (zh) | 2022-12-15 | 2023-12-15 | 加热装置及烹饪器具 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024125648A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205535999U (zh) * | 2016-01-21 | 2016-08-31 | 九阳股份有限公司 | 一种电磁红外炉 |
WO2017088244A1 (zh) * | 2015-11-27 | 2017-06-01 | 佛山市顺德区美的电热电器制造有限公司 | 一种电磁加热设备 |
CN216147266U (zh) * | 2021-07-22 | 2022-04-01 | 深圳麦克韦尔科技有限公司 | 加热器件及电子雾化装置 |
KR20220126984A (ko) * | 2021-03-10 | 2022-09-19 | 김형석 | 전자기파를 이용한 가열 장치 |
CN219107707U (zh) * | 2022-12-15 | 2023-05-30 | 佛山市顺德区美的电热电器制造有限公司 | 一种加热装置及烹饪器具 |
CN219283405U (zh) * | 2022-12-15 | 2023-06-30 | 佛山市顺德区美的电热电器制造有限公司 | 加热组件和烹饪器具 |
-
2023
- 2023-12-15 WO PCT/CN2023/139271 patent/WO2024125648A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017088244A1 (zh) * | 2015-11-27 | 2017-06-01 | 佛山市顺德区美的电热电器制造有限公司 | 一种电磁加热设备 |
CN205535999U (zh) * | 2016-01-21 | 2016-08-31 | 九阳股份有限公司 | 一种电磁红外炉 |
KR20220126984A (ko) * | 2021-03-10 | 2022-09-19 | 김형석 | 전자기파를 이용한 가열 장치 |
CN216147266U (zh) * | 2021-07-22 | 2022-04-01 | 深圳麦克韦尔科技有限公司 | 加热器件及电子雾化装置 |
CN219107707U (zh) * | 2022-12-15 | 2023-05-30 | 佛山市顺德区美的电热电器制造有限公司 | 一种加热装置及烹饪器具 |
CN219283405U (zh) * | 2022-12-15 | 2023-06-30 | 佛山市顺德区美的电热电器制造有限公司 | 加热组件和烹饪器具 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5411060B2 (ja) | 真空断熱構造体、真空断熱加熱ヒータおよび真空断熱加熱ヒータを用いた加熱装置 | |
US20100237064A1 (en) | Electromagnetic module of electronic apparatus and manufacturing process thereof | |
WO2024125648A1 (zh) | 加热装置及烹饪器具 | |
CN219283405U (zh) | 加热组件和烹饪器具 | |
CN219107697U (zh) | 一种电磁加热装置及烹饪器具 | |
CN219107707U (zh) | 一种加热装置及烹饪器具 | |
CN209726277U (zh) | 烹饪炉具 | |
CN213272778U (zh) | 一种电暖器 | |
CN220379745U (zh) | 一种加热装置及烹饪器具 | |
CN207802438U (zh) | 线圈盘及加热平台 | |
CN220186904U (zh) | 一种红外加热组件、加热装置及烹饪器具 | |
CN209726279U (zh) | 烹饪炉具 | |
CN110798923B (zh) | 加热面板及无火灶 | |
CN215412009U (zh) | 电焰灶及组合灶 | |
CN216491125U (zh) | 一种电热结构 | |
CN215112779U (zh) | 一种超薄电晶炉 | |
CN110030590A (zh) | 烹饪炉具 | |
CN205425063U (zh) | 烹饪器具和加热盘 | |
CN207214156U (zh) | 一种具有高热效率的电陶炉发热盘 | |
CN219087344U (zh) | 加热装置及烹饪器具 | |
CN208769463U (zh) | 锅具及炊具 | |
CN218197024U (zh) | 一种热熔器 | |
CN221901041U (zh) | 一种电热盘和一种烹饪器具 | |
CN215777227U (zh) | 电磁加热锅具组件 | |
CN217088201U (zh) | 一种组合式加热结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23902840 Country of ref document: EP Kind code of ref document: A1 |