WO2017088244A1 - 一种电磁加热设备 - Google Patents

一种电磁加热设备 Download PDF

Info

Publication number
WO2017088244A1
WO2017088244A1 PCT/CN2015/099259 CN2015099259W WO2017088244A1 WO 2017088244 A1 WO2017088244 A1 WO 2017088244A1 CN 2015099259 W CN2015099259 W CN 2015099259W WO 2017088244 A1 WO2017088244 A1 WO 2017088244A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
power
electromagnetic
heating unit
electromagnetic heating
Prior art date
Application number
PCT/CN2015/099259
Other languages
English (en)
French (fr)
Inventor
毛宏建
刘志才
王志锋
陈逸凡
冯江平
马志海
区达理
Original Assignee
佛山市顺德区美的电热电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510893659.9A external-priority patent/CN106813276B/zh
Priority claimed from CN201521007266.5U external-priority patent/CN205174470U/zh
Priority claimed from CN201510893639.1A external-priority patent/CN106813271B/zh
Priority claimed from CN201510893598.6A external-priority patent/CN106813269B/zh
Application filed by 佛山市顺德区美的电热电器制造有限公司, 美的集团股份有限公司 filed Critical 佛山市顺德区美的电热电器制造有限公司
Priority to JP2017561729A priority Critical patent/JP6692837B2/ja
Priority to EP15909155.2A priority patent/EP3312511B1/en
Publication of WO2017088244A1 publication Critical patent/WO2017088244A1/zh
Priority to US15/910,935 priority patent/US10976055B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/06Arrangement or mounting of electric heating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/04Stoves or ranges heated by electric energy with heat radiated directly from the heating element
    • F24C7/046Ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • F24C7/087Arrangement or mounting of control or safety devices of electric circuits regulating heat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0071Heating devices using lamps for domestic applications
    • H05B3/0076Heating devices using lamps for domestic applications for cooking, e.g. in ovens
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/129Cooking devices induction ovens
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the present invention relates to electromagnetic heating technology, and more particularly to an electromagnetic heating device.
  • the technical problem to be solved by the present invention is to provide an electromagnetic heating device which not only includes an electromagnetic heating unit but also an infrared heating unit, so that the limitation of the application of the single electromagnetic heating method to the induction cooker can be avoided.
  • An electromagnetic heating device comprising:
  • Electromagnetic heating unit Infrared heating unit and MCU,
  • the MCU is coupled to the electromagnetic heating unit and the infrared heating unit to control the electromagnetic heating unit and the infrared heating unit to be heated separately or simultaneously.
  • the MCU includes a power detection module and a power distribution module; the power detection module detects a power value input by the user, and sends the power value to the power distribution module; and the power distribution module receives the power value of the user input according to the received value.
  • the size distributes power to the electromagnetic heating unit and/or the infrared heating unit.
  • the power distribution module switches to start only the infrared heating unit heating; when the power detecting module detects the user input The power distribution module is switched to activate the electromagnetic heating unit and/or the infrared heating unit to heat when the power is higher than the first predetermined power value.
  • the first predetermined power value ranges from 800 watts to 1100 watts.
  • the power distribution module switches to only start heating the electromagnetic heating unit.
  • the power distribution module switches to start the electromagnetic heating unit and the infrared heating unit to jointly heat, and the second predetermined power value is greater than The first predetermined power value.
  • the second predetermined power value ranges from 1500 watts to 1700 watts.
  • the power distribution module switches to start the electromagnetic heating unit and the infrared heating unit to jointly heat; when the power When the detecting module detects that the power input by the user is lower than the second predetermined power value, the power distribution module switches to start heating of the electromagnetic heating unit.
  • the second predetermined power value is 1500 watts to 1700 watts.
  • the heating power value allocated by the power distribution unit to the electromagnetic heating unit is less than or equal to a second predetermined power value and greater than the first predetermined power value
  • the heating power value assigned by the power distribution unit to the infrared heating unit is the difference between the power value input by the user and the power value assigned to the electromagnetic heating unit.
  • the power distribution module switches to start the electromagnetic heating unit and the infrared heating unit to jointly heat; when the power When the detecting module detects that the power input by the user is lower than the third predetermined power value, the power distribution module switches to start heating of at least one of the electromagnetic heating unit and the infrared heating unit; wherein the third predetermined power value is 0.9 to 1 times the rated heating power value of the electromagnetic heating unit.
  • the third predetermined power value ranges from 2000 watts to 2200 watts.
  • the MCU further includes a material detecting module, when the material detecting module When the iron magnetic cooking appliance is detected, the power distribution module is switched to activate the electromagnetic heating unit and/or the infrared heating unit to heat the cooking appliance; when the material detecting module detects non-ferrous magnetic In the cooking appliance, the power distribution module is switched to activate the infrared heating unit to heat the cooking appliance.
  • a material detecting module when the iron magnetic cooking appliance is detected, the power distribution module is switched to activate the electromagnetic heating unit and/or the infrared heating unit to heat the cooking appliance; when the material detecting module detects non-ferrous magnetic In the cooking appliance, the power distribution module is switched to activate the infrared heating unit to heat the cooking appliance.
  • the MCU includes a heating switching reminding module, and the heating switching reminding module prompts the user to select a corresponding heating unit to heat according to the material of the cooking device detected by the material detecting module.
  • the electromagnetic heating unit comprises: a resonant circuit comprising a switching element, a resonant capacitor and a resonant inductor, wherein the resonant capacitor and the resonant inductor are connected in parallel, and one of the resonant capacitor and the resonant inductor is connected to the common a rectified mains connection, another common connection end connected to the collector of the switching element; an electromagnetic drive circuit, one end of the drive circuit is connected to the MCU, and the other end is connected to the base of the switching element; a resonant synchronization detecting circuit, one end of which is connected to the collector of the switching element to detect the voltage of the collector of the switching element, and the other end is connected to the MCU; after the MCU sends a detecting pulse to the electromagnetic driving circuit
  • the material detecting module determines the material of the cooking appliance by detecting an interval time of adjacent inversion voltages output by the resonant synchronization detecting circuit.
  • the electromagnetic heating unit comprises an ultrasonic transmitting circuit and an ultrasonic detecting circuit, and the ultrasonic transmitting circuit emits detecting ultrasonic waves, and the material detecting module determines the material of the cooking device by detecting the frequency and amplitude of the ultrasonic reflected signal.
  • the MCU further includes a detecting pot module; when the detecting pot module does not detect the presence of the cooking appliance, the power distribution module distributes the heating power to the infrared heating unit and the electromagnetic heating unit to zero The power distribution module distributes heating power to at least one of the infrared heating unit and the electromagnetic heating unit when the detecting pot module detects the presence of the cooking appliance.
  • the electromagnetic heating unit comprises: a resonant circuit including a switching element, a resonant capacitor and a resonant inductor, the resonant capacitor and the resonant inductor being connected in parallel, One of the common connection ends of the resonant capacitor and the resonant inductor is connected to the rectified mains, and the other common end is connected to the collector of the switching element; an electromagnetic driving circuit, one end of the driving circuit and the MCU The electromagnetic power adjustment module is connected, the other end is connected to the base of the switching element; the resonant synchronization detecting circuit is connected at one end to the collector of the switching element to detect the voltage of the collector of the switching element, and the other end is a connection of the MCU; after the MCU sends a detecting pulse to the electromagnetic driving circuit, the detecting pot module determines the cooking according to whether the number of voltage inversions output by the resonant synchronization detecting circuit is lower than a predetermined number of times Whether the appliance is
  • the electromagnetic heating unit comprises an ultrasonic transmitting circuit and an ultrasonic detecting circuit
  • the ultrasonic transmitting circuit emits detecting ultrasonic waves
  • the detecting pot module determines whether the cooking appliance exists by detecting whether the ultrasonic detecting signal can detect the ultrasonic reflecting signal .
  • the electromagnetic heating unit comprises a resonant circuit and an electromagnetic driving circuit, one end of the electromagnetic driving circuit is connected to the resonant circuit, and the other end is connected with an electromagnetic power regulating module in the MCU, and the electromagnetic power adjusting module is allocated according to The heating power value inputs a PWM signal of a first predetermined duty ratio to the electromagnetic driving circuit.
  • the infrared heating unit comprises an infrared heating circuit and an infrared driving circuit;
  • the infrared heating circuit comprises an infrared heating film connected between the mains neutral line and the live line, one end of the infrared driving circuit is connected to the infrared Between the heating film and the commercial power, the other end of the infrared driving circuit is connected to an infrared power adjusting module in the MCU, and the infrared power adjusting module inputs a second to the infrared driving circuit according to the allocated heating power value.
  • a PWM signal with a predetermined duty cycle.
  • the electromagnetic heating unit includes a zero-crossing detecting circuit, and one end of the zero-crossing detecting circuit is connected to the rectified mains to detect a zero-crossing signal of the mains, and the other end is connected to the MCU;
  • the infrared power adjustment module inputs the second predetermined duty ratio to the infrared driving circuit at a predetermined time according to the zero-crossing signal detected by the zero-crossing detecting circuit PWM signal.
  • the infrared driving circuit comprises a storage capacitor, a first switch, an inductor and a first diode, wherein the storage capacitor is connected in series between the infrared heating film and the commercial power, the storage capacitor and the infrared One end of the heating film connection is connected to the source of the first switch through the inductor, and one end of the storage capacitor connected to the mains is connected to the source of the first switch through a first diode, The drain of the first switch is electrically connected to the mains, and the gate of the first switch is connected to an infrared power adjustment module of the MCU.
  • the infrared driving circuit further includes a second switch and a second diode, wherein a common connection end of the inductor and the storage capacitor is connected to a drain of the second switch, and the mains and the first The source of the two switches is connected, and the second diode is connected between the drain of the second switch and the storage capacitor.
  • the infrared driving circuit comprises a switch subunit connected between the infrared heating film and the commercial power, and the isolation subunit is connected to the infrared power adjustment module of the switch subunit and the MCU. between.
  • the switch subunit is a bidirectional thyristor
  • the isolation subunit is an isolated optocoupler
  • An electromagnetic heating device comprising:
  • a panel located below the cooking appliance for supporting the cooking appliance
  • a coil disk located below the panel for electromagnetically heating the cooking appliance
  • An infrared heating assembly for infrared heating the cooking appliance
  • An electrical control board located below the panel, is electrically coupled to the coil disk and the infrared heating assembly for controlling heating of the coil disk and the infrared heating assembly.
  • the infrared heating assembly is mounted on the panel.
  • the infrared heating assembly is mounted on a surface of the panel adjacent to a side of the coil disk, and the infrared heating assembly includes an infrared heating film and a heat reflecting film, the infrared heating film is attached to the panel, and the heat reflecting film is attached to The infrared heating film is on.
  • the infrared heating assembly further includes a heat insulating film attached to the heat reflective film.
  • the coil disk is provided with a temperature sensitive temperature sensor for detecting the temperature of the bottom of the cooking appliance, and the infrared heating component is provided with a through hole for the thermosensitive temperature sensor to pass through, so that the temperature sensitive temperature sensor Direct contact with the panel.
  • the distance between the panel and the coil disk is 8 mm to 11 mm.
  • the infrared heating assembly is mounted on an outer surface of the cooking appliance.
  • the infrared heating assembly is mounted on an outer surface of the side wall of the cooking appliance.
  • the infrared heating assembly includes an infrared heating film attached to an outer surface of the cooking appliance, and a first electrically insulating film attached to the infrared heating film.
  • the infrared heating assembly includes an infrared heating film, a first electrical insulating film, and a second electrical insulating film, the second electrical insulating film is attached to an outer surface of the cooking appliance, and the infrared heating film is attached to the first On the second electrically insulating film, the first electrically insulating film is attached to the infrared heating film.
  • the infrared heating assembly includes a terminal connected to the infrared heating film, and the panel is provided with a power interface for plugging the terminal.
  • the electromagnetic heating device provided by the invention comprises the electromagnetic heating unit and the infrared heating unit, so that the heating of the heating materials of different materials can be realized, and the application thereof is widely unrestricted; in addition, since the infrared heating unit is included, the maximum heating power is not affected by the coil. The maximum heating power limit of the disk.
  • FIG. 1 is a schematic diagram of a circuit module of an electromagnetic heating device of Embodiment 1;
  • FIG. 2 is a schematic structural view of the EMC circuit 10 and the infrared heating unit 11 of FIG. 1;
  • FIG. 3 is a schematic structural view of the EMC circuit 10 and the infrared heating unit 11 of FIG. 1;
  • FIG. 4 is a schematic diagram showing a connection relationship between a resonance circuit, a resonance synchronization detection circuit, and an IGBT drive circuit and an MCU in an electromagnetic heating unit;
  • Figure 5 is a partial enlarged view of the portion II in Figure 4.
  • Figure 6 is a schematic structural view of a general electromagnetic heating device
  • Figure 7 is a schematic structural view of the electromagnetic heating device of the second embodiment after being disassembled
  • Embodiment 8 is a schematic structural view of an infrared heating assembly of Embodiment 2;
  • Figure 9 is a bottom plan view of the panel of the second embodiment.
  • Figure 10 is a schematic structural view of the electromagnetic heating device of the third embodiment after being disassembled
  • Figure 11 is a front elevational view showing the electromagnetic heating apparatus of the third embodiment.
  • the first embodiment of the present invention is mainly used to describe the circuit of the electromagnetic heating device.
  • the electromagnetic heating device provided in the first embodiment includes an electromagnetic heating unit, an infrared heating unit and an MCU.
  • the MCU is connected to the electromagnetic heating unit and the infrared heating unit.
  • the electromagnetic heating unit and the infrared heating unit are controlled to be heated separately or simultaneously.
  • the non-ferrous magnetic cooking device can be heated.
  • the infrared heating unit can also heat the ferromagnetic cooking utensil in conjunction with the electromagnetic heating unit to increase the heating speed and the maximum heating power of the ferromagnetic cooking utensil.
  • the user can distinguish between ferromagnetic devices and non-ferromagnetic devices by means of material marks or materials attached to the cooking utensils.
  • the MCU of the electromagnetic heating device provided in the first embodiment includes a test pot mold Block and power distribution module.
  • the heating power allocated by the power distribution module to the infrared heating unit and the electromagnetic heating unit is zero, so that neither the infrared heating unit nor the electromagnetic heating unit performs heating.
  • the power distribution module distributes heating power to at least one of the infrared heating unit and the electromagnetic heating unit when the pan module detects the presence of the cooking appliance.
  • the power distribution module can only distribute the heating power to the infrared heating unit, only distribute the heating power to the electromagnetic heating unit, or simultaneously distribute the heating power to the infrared heating unit and the electromagnetic heating unit.
  • the power distribution module only distributes the heating power to the infrared heating unit.
  • the MCU of the electromagnetic heating device of the first embodiment may further include a material detecting module and a power distribution module, and when the material detecting module detects the iron magnetic cooking device, the power distribution module is switched to the starting electromagnetic heating unit. And/or the infrared heating unit heats the cooking appliance; when the material detecting module detects a non-ferrous magnetic cooking appliance, the power distribution module switches to activate only the infrared heating unit to heat the cooking appliance.
  • the MCU further includes a heating switching reminding module, and the heating switching reminding module prompts the user to select a corresponding heating unit to heat according to the material of the cooking device detected by the material detecting module.
  • the heating switching reminding module reminds the user to select one of the three heating modes of electromagnetic heating, infrared heating, and combined heating of the electromagnetic unit and the infrared unit.
  • the power distribution module connected to the detection pot module and the power distribution module connected to the material detection module can be the same power distribution module.
  • the electromagnetic heating device of the first embodiment further includes a power detecting module, and the power detecting module detects the power value input by the user, and sends the power value to the power distribution module.
  • the power distribution module distributes power to the electromagnetic heating unit and/or the infrared heating unit based on the received power value of the user input.
  • the first embodiment further provides an electromagnetic heating unit and infrared heating.
  • the technical solution provided by the present embodiment is that when the power detection module detects that the power input by the user is lower than the first predetermined power value, the power distribution module switches to only start infrared heating. The unit is heated; when the power detecting module detects that the power input by the user is higher than the first predetermined power value, the power distribution module switches to start the electromagnetic heating unit and/or the infrared heating unit to heat.
  • the electromagnetic oven IGBT may have a relatively severe hard opening condition, thereby causing a large loss of the IGBT, a high temperature rise, and shortening the life of the IGBT.
  • the current electromagnetic heating device adopts a method of regulating power heating, that is, first heating with a high power for a period of time, then stopping heating for a period of time, and then heating for a period of time, and then Stop for a while.
  • the induction cooker is first heated with 800 watts of power for 1 second and then stopped for 1 second.
  • This intermittent heating method causes the temperature of the pan and the food in the pan to vary greatly, and cannot be used or the effect is poor in the case where the soup requires continuous low temperature heating control.
  • the heating of the infrared heating unit is a resistive heating, which is different from the heating mode of the electromagnetic heating unit, and thus can be continuously heated at a power lower than the first predetermined power value.
  • the first predetermined power value in the first embodiment corresponds to whether the electromagnetic heating unit can achieve continuous heating with the power value input by the user alone and does not cause a critical value of the hard opening of the IGBT.
  • the first predetermined power value set in the first embodiment ranges from 800 watts to 1100 watts.
  • the specific first predetermined power value provided in this embodiment is 1000 watts, so that the electromagnetic first range of the predetermined power value can also be Make corresponding adjustments according to the actual situation.
  • the power distribution of the heating of the pair of infrared heating units and the electromagnetic heating unit of the present embodiment is further optimized.
  • a second predetermined power value greater than the first predetermined power value is set, and when the power detecting module detects that the power input by the user is higher than the first predetermined power value and lower than the second predetermined power value, the power is The distribution module switches to start heating only the electromagnetic heating unit, correspondingly, the heating power value assigned by the power distribution module in the MCU to the infrared heating unit Zero.
  • the power distribution module switches to simultaneously start heating the electromagnetic heating unit and the infrared heating unit, and correspondingly, the power distribution module in the MCU simultaneously gives The infrared heating unit and the electromagnetic heating unit distribute a certain amount of heating power.
  • the heating of the electromagnetic heating unit directly heats the cooking appliance, the cooking appliance itself is a heating body, and the infrared heating unit transmits the heat of the infrared heating film to the cooking appliance, that is, the infrared heating film is a heating body, and the cooking appliance is only a heat conducting medium. Therefore, the heating efficiency of the electromagnetic heating unit is higher than the heating efficiency of the infrared heating unit.
  • the infrared heating unit may be used for heating, or the infrared heating unit and the electromagnetic heating unit are used for heating, the heating of the electromagnetic heating device is improved. For efficiency reasons, it is preferred to start only the electromagnetic heating unit for heating. However, when the power input by the user is greater than a certain value, that is, higher than the predetermined power value of the second power, such as 1800 watt hours, if the electromagnetic heating single heating is still only activated, the electromagnetic heating unit not only generates a large noise, but also electromagnetic Electronic components such as IGBTs of the heating unit are also more susceptible to damage.
  • the power distribution module switches to simultaneously start the heating of the infrared heating unit and the electromagnetic heating unit.
  • the range of the second predetermined power value is set to 1500 watts to 1700 watts, and of course, corresponding adjustments may be made according to specific conditions.
  • the power distribution module of the MCU assigns a corresponding heating power value to the electromagnetic heating unit and the infrared heating unit according to a preset algorithm.
  • the preset algorithm provided in this embodiment is: the power distribution module of the MCU is allocated to the electromagnetic heating unit, and the heating power value is less than or equal to the second predetermined power value and greater than the first predetermined power value, and the power matching module of the MCU is allocated to the infrared heating.
  • the heating power of the unit is the difference between the power value input by the user and the power value assigned to the electromagnetic heating unit.
  • the power module of the MCU can also be heated to the infrared heating unit according to other preset algorithms.
  • the magnetic heating unit distributes power.
  • the following table is a specific algorithm for the MCU to distribute the heating power to the infrared heating unit and the electromagnetic heating unit according to the heating power input by the user in the first embodiment.
  • the rated heating power of the induction cooker is 2100W.
  • the induction cooker provided in the first embodiment can be continuously heated between 100W and 2100W, so that it can meet the requirements of low power continuous heating (such as In various applications such as soups, it can also meet the requirements of reducing noise and improving heating efficiency under high power heating.
  • Electromagnetic heating power W
  • Infrared heating power W 2100W 1600 500 2000W 1600 400 1900W 1600 300 1800W 1600 200 1700W 1600 100 1600W 1600 0 1500W 1500 0 1400W 1400 0 1300W 1300 0 1200W 1200 0 1100W 1100 0 1000W 1000 0 900W 0 900 800W 0 800 700 0 700 600 0 600 500 0 500 400 0 400 300 0 300 200 0 200 0 200
  • the power distribution module switches to the start state, if the power detection module detects that the power input by the user is higher than the second predetermined power value.
  • the electromagnetic heating unit and the infrared heating unit jointly heat; when the power detecting module detects that the power input by the user is lower than the second predetermined power value, the power distribution module switches to start the electromagnetic heating unit to heat. That is, unlike the technical solution based on achieving the angle of continuous low power heating of the induction cooker, when the power input by the user is lower than the first predetermined power value, the electromagnetic heating unit is selected for heating instead of the infrared heating unit.
  • the power distribution module switches to the startup electromagnetic heating, from the viewpoint of improving the total heating power of the electromagnetic heating device.
  • the unit and the infrared heating unit jointly heat; when the power detecting module detects that the power input by the user is lower than the third predetermined power value, the power distribution module switches to at least one of the starting electromagnetic heating unit and the infrared heating unit to heat;
  • the predetermined power value is 0.9 to 1 times the rated heating power value of the electromagnetic heating unit.
  • the preferred embodiment of the present embodiment is to set the third predetermined power value to be slightly lower than the rated heating power value of the electromagnetic heating unit, so that the electromagnetic heating unit has not yet been fully Before the power is heated, the power distribution module starts the electromagnetic heating unit and the infrared heating unit to jointly heat.
  • the rated heating power ie, maximum heating power
  • the power distribution module simultaneously activates the electromagnetic heating unit and the infrared heating unit. heating.
  • the preferred range of the third heating power value provided by this embodiment is from 2000 watts to 2,200 watts.
  • the third heating power value can also be adjusted according to factors such as the rated power of different electromagnetic heating devices.
  • the rated heating power of the electromagnetic heating unit is 2100 watts
  • the preferred range of the third heating power value is 1900 watts to 2100 watts.
  • the combined heating power of the infrared heating unit and the electromagnetic heating unit can increase the maximum heating power of the induction furnace to 3000 watts to 3,200 watts. It is worth noting that when the power detection module detects that the power input by the user is lower than the third predetermined power value, only the electromagnetic heating unit may be activated for heating, but may also be limited to the following heating selection: input by the user.
  • the power distribution module selects to activate the electromagnetic heating unit and the infrared heating unit to jointly heat; when the power input by the user is less than the first predetermined power value, the power distribution module selects to activate the infrared heating unit to heat.
  • the electromagnetic heating unit may be used for heating throughout the range of the third predetermined power value, or may be lower than the first predetermined power value.
  • the infrared heating unit is used for heating, and the electromagnetic heating unit is used for heating in the range of the first predetermined power value to the second predetermined power value (for example, 800 to 1100 to 1500 to 1700).
  • the electromagnetic heating unit and the infrared heating unit are combinedly heated within a predetermined power value range (for example, 1500 to 1700 to 2000 to 2200).
  • the electromagnetic heating unit and the infrared heating unit switch between heating, there is a problem of heating discontinuity.
  • the electromagnetic heating unit and the infrared heating unit are heated and switched, the latter heating unit is used.
  • the previous heating unit is allowed to continue for a delayed heating time.
  • the infrared heating unit and the electromagnetic heating unit are in a common heating state for a short period of time (about 5 seconds).
  • the electromagnetic heating device provided in the first embodiment may include the above-mentioned detecting pot module and the material detecting module, or at least one of the detecting pot module or the material detecting module.
  • the first embodiment provides a method for detecting a pot and a material based on an electromagnetic heating unit.
  • the thermal unit generally includes at least a resonant circuit and an electromagnetic driving circuit.
  • One end of the electromagnetic driving circuit is connected to the resonant circuit, and the other end is connected to the electromagnetic power adjusting module in the MCU, and the electromagnetic power adjusting module inputs the electromagnetic heating circuit according to the distributed heating power value.
  • a PWM signal of a predetermined duty cycle is inputs the electromagnetic heating circuit according to the distributed heating power value.
  • the resonant circuit comprises a switching element, a resonant capacitor and a resonant inductor, the resonant capacitor and the resonant inductor are connected in parallel, one of the common connection ends of the resonant capacitor and the resonant inductor is connected to the rectified mains, and the other common connection end and the set of switching elements
  • the electrodes are connected, wherein the switching elements are generally IGBTs.
  • the electromagnetic heating unit further comprises a resonant synchronous detecting circuit, wherein one end of the resonant synchronous detecting circuit is respectively connected with two common connecting ends of the resonant capacitor and the resonant inductor, that is, one branch of the end is connected with the collector of the IGBT to detect the IGBT collector
  • the voltage is connected to the MCU at the other end of the resonant synchronous detecting circuit.
  • the resonant synchronous detecting circuit detects that the voltage of the collector of the IGBT tube is the lowest point voltage (generally zero)
  • the electromagnetic rate adjusting module of the MCU is electromagnetically driven.
  • the circuit outputs a PWM signal of a first predetermined duty cycle.
  • the electromagnetic heating unit may further comprise a zero-crossing detection circuit, one end of the zero-crossing detection circuit is connected with the rectified mains to detect the zero-crossing signal of the mains, and the other end is connected with the MCU, and the electromagnetic power adjustment module receives the zero-crossing signal
  • the re-initialized first predetermined duty cycle PWM signal is input to the electromagnetic drive circuit.
  • the electromagnetic heating unit may further include a surge detecting circuit, an over temperature detecting circuit, an overvoltage detecting circuit, and an overcurrent detecting circuit.
  • the surge detection circuit detects the voltage signal of the mains. When the mains suddenly exhibits a high forward voltage or a negative voltage, the surge detection circuit sends a signal to the MCU to turn off the IGBT.
  • the over-temperature detecting circuit sends a signal to turn off the IGBT to the MCU when the temperature of the IGBT as the switching element reaches a certain value.
  • the overvoltage detecting circuit issues a signal to turn off the IGBT to the MCU when the collector voltage of the IGBT as the switching element reaches a certain value.
  • the overcurrent detecting circuit sends a signal to turn off the IGBT to the MCU when the collector current of the IGBT as the switching element reaches a certain value.
  • the electromagnetic heating unit can have other circuits, not subject to the above example circuit limit.
  • the electromagnetic heating unit can also implement electromagnetic heating using other circuits than those enumerated above.
  • the detecting pot module in the MCU can cooperate with the resonant circuit, the electromagnetic driving circuit and the synchronous resonant circuit therein to detect the presence or absence of the cooking appliance.
  • the material detection module in the MCU can also cooperate with the resonant circuit, the electromagnetic driving circuit and the synchronous resonant circuit to complete the detection of the material of the cooking appliance.
  • the electromagnetic power adjustment module in the MCU first inputs a detecting pot pulse to the electromagnetic driving circuit, and the conducting time of the detecting pot pulse is 6 us-10 us, and the interval of detecting the pulse sending of the pot is about 1 S 2 2S.
  • the detecting pot pulse causes the resonant circuit to be turned on. If the cooking device is carried on the induction cooker, the energy consumption of the resonant circuit is relatively fast, and the output voltage of the resonant synchronous detecting circuit is inverted less frequently. If the cooker is not carried on the induction cooker, the energy consumption of the resonant circuit is relatively slow, and the output voltage of the resonant synchronous detecting circuit is inverted more frequently.
  • the detecting pot module determines whether or not the cooking appliance exists by determining whether the number of times of output voltage inversion of the resonant synchronization detecting circuit reaches a predetermined number of times. For example, the predetermined number of times is 10, and when the number of times of output voltage inversion of the resonance synchronization detecting circuit is 10 or more, it is judged that the cooking appliance is present, and when the number of times of output voltage inversion of the resonance synchronization detecting circuit is less than 10, it is judged that the cooking appliance does not exist.
  • the material detecting module determines the material of the cooking appliance by detecting the interval time at which the resonant synchronous detecting circuit outputs the adjacent flipping voltage. For example, after the electromagnetic power adjustment module in the MCU inputs a detecting pot pulse to the electromagnetic driving circuit, the voltage outputted by the resonant synchronous detecting circuit generates a total of 12 inversions within a predetermined time, when the inversion cycle time is about 35 us. Then, it is determined that the cooking utensil material is 430 steel, and when the inversion cycle time is about 25 us, it is determined that the cooking utensil material is 304 steel.
  • FIG. 4 shows the specific composition of the resonant circuit and the resonant synchronous detecting circuit.
  • the resonant circuit, the electromagnetic driving circuit and the resonant synchronous detecting circuit of the electromagnetic heating unit are described below to explain the working principle of detecting the presence of the cooking appliance and the working principle of detecting the material of the cooking appliance.
  • Figure The direction of the leftmost arrow in 4 refers to the rectified mains input.
  • a pulse of a certain on-time is output, and when the electromagnetic drive circuit, that is, the IGBT drive circuit in FIG. 5 is turned on, the coil disk LH in the resonance circuit, that is, the resonant inductor, has a current flowing from the left to the right.
  • the voltage at the left end of the resonant capacitor C5 in the resonant circuit is input to the non-inverting input terminal of the internal comparator of the MCU via the voltage signal Va divided by R49, R51, R52, R53, R1, and R5 in the resonant synchronous detecting circuit, and the voltage at the right end of the resonant capacitor C5.
  • the voltage signal Vb divided by R7, R2, R6, and R57 in the resonant synchronous detecting circuit is input to the inverting input terminal of the internal comparator of the MCU.
  • the voltage at the left end of the resonant capacitor C5 is clamped to the mains voltage, and the voltage at the right end of the resonant capacitor C5 is directly pulled to the ground level by the IGBT (that is, the portion connected to the left end of the IGBT drive circuit in FIG. 4), at which time Va>Vb.
  • the resonance capacitor C5 turned into the resonance circuit is discharged to the coil disk LH in the resonance circuit.
  • the voltage on the left side of C5 is equal to the voltage on the right. Since the coil disk LH also has a current flowing from right to left, the inductive effect causes the current of the coil disk LH to continue to flow from right to left.
  • the voltage at the left end of the resonant capacitor C5 is clamped at the mains voltage, and the voltage at the right end of C5 is continuously pulled low.
  • the internal comparator of the MCU generates a pulse output of a rising edge, the counter starts counting up, and the timer is enabled to perform cycle counting.
  • the pot module in the MCU includes at least the internal comparator and counter.
  • the material detection module in the MCU includes at least the internal comparator and the timer.
  • the resonant circuit repeats the above process.
  • Vb ⁇ Va occurs again, the timer is stopped for periodic counting, and the cycle time value at this time is read to determine the type of the cooking appliance.
  • the time of the next several oscillation cycles it is also possible to read the time of the next several oscillation cycles and then average. Wait until resonance The loop continues to oscillate for a certain period of time (checking the pot pulse to cause the resonance circuit to oscillate), for example, after 200ms to 500ms, the value of the counter is read.
  • the above method combining the electromagnetic driving circuit, the resonant circuit and the resonant synchronous detecting circuit is quite effective for detecting the presence of the ferromagnetic cooking utensil and detecting the material of the ferromagnetic cooking utensil. It is of course also possible to detect the presence of the cooking appliance and the detection of the material of the cooking appliance by other means.
  • the electromagnetic heating unit is provided with an ultrasonic transmitting circuit and an ultrasonic detecting circuit, and the detecting unit detects whether the cooking device exists by detecting whether the ultrasonic reflecting signal is detected by the ultrasonic detecting circuit, and the material detecting module passes the frequency of the detected ultrasonic reflected signal and The range of amplitudes is used to determine the material of the cooking appliance.
  • the infrared heating unit includes an infrared heating circuit and an infrared heating driving circuit
  • the infrared heating circuit includes infrared heating connected between the mains neutral line and the live line.
  • one end of the infrared driving circuit is connected between the infrared heating film and the commercial power (that is, one end of the infrared driving circuit can be connected between the infrared heating film and the mains neutral line, or can be connected to the infrared
  • the other end of the infrared driving circuit is connected with the infrared power adjusting module in the MCU, and the infrared power adjusting module inputs the second predetermined duty ratio PWM to the infrared driving circuit according to the assigned heating power value. signal.
  • the infrared power adjustment module may further input the PWM signal of the second predetermined duty ratio to the infrared driving circuit at a predetermined time according to the zero-crossing signal detected by the zero-crossing detecting circuit in the electromagnetic heating unit.
  • the first infrared driving circuit provided in the first embodiment includes an isolation subunit and a switch subunit, and the switch subunit is connected in series to the infrared heating film. Between the mains, the isolation subunit is connected between the switch subunit and the infrared power conditioning module. That is, the isolation subunit can receive the PWM signal of the second predetermined duty ratio sent by the infrared power adjustment module to control the turning on and off of the switch subunit, thereby controlling whether the infrared heating circuit is turned on or off.
  • the isolation subunit is an isolated optocoupler U10, and the switch subunit is bidirectionally controllable
  • the silicon TR1 the isolated optocoupler U10 includes a light emitting device and a photosensor.
  • the positive electrode S1 of the light emitting device is connected to a DC power supply (providing a voltage of 5 volts or 3.5 volts), and the negative electrode S2 is connected to the infrared power regulating module of the MCU. This connection mode is turned on when the infrared power regulating module emits a low level.
  • the anode S1 of the light-emitting device can also be connected to the infrared power adjustment module of the MCU, and the cathode S2 of the light-emitting device is grounded.
  • This connection mode is turned on when the infrared power adjustment module emits a high level.
  • the photosensor is a bidirectional thyristor, the first anode S6 is connected to the second main electrode T2 of the triac TR1, and the second anode S4 is connected to the gate of the triac TR1.
  • the second main electrode T2 of the triac TR1 is connected to the far infrared heating film, and the first main electrode T1 of the triac TR1 is connected to the mains.
  • a first resistor R81 and a second resistor R82 are sequentially connected in series between the first anode S6 of the photosensor and the second main electrode T2 of the triac TR1.
  • a first capacitor C201 is connected in series between the common terminal of the first resistor R81 and the second resistor R82 and the first main electrode T1 of the triac TR1; and a third resistor R80 is connected between the anode S1 of the light emitting device and the DC power source.
  • the first resistor R81, the second resistor R82, the third resistor R80 and the first capacitor C201 can conduct the triac TR1 with a suitable current and voltage, and function as a filter and stabilize the triac TR1 control circuit. effect.
  • the infrared driving circuit is based on a bidirectional thyristor regulating control circuit, and the isolation subunit and the switching subunit can also be replaced by corresponding components in the relay, that is, changed to a control circuit based on relay adjustment.
  • the isolation subunit and the switch subunit can also be replaced by other electronic components.
  • the combination of the zero-crossing detecting circuit and the infrared power adjusting module adjusts two kinds of infrared heating power.
  • the first infrared power adjustment mode is more stable, and the second infrared power adjustment mode is faster.
  • the frequency of the current is 50 Hz
  • the duration of one half wave is 10 ms
  • the duration of one square wave period in the PWM signal is 100 ms
  • the infrared The heating film is heated when the PWM signal is at a high level, and stops when the PWM signal is at a low level.
  • the infrared power adjustment module calculates a high-level time t1 and a low-level time t2 in one square wave period of the PWM signal according to the allocated heating power.
  • the relationship between the assigned infrared heating power and the high level time t1 and the low level time t2 is shown in Table 2.
  • the maximum heating power that the infrared heating film can provide during the entire square wave period is 1000 W.
  • the heating power value of the infrared power adjustment module is 800w
  • the high-level time t1 of the square wave period of the PWM signal is adjusted from 100ms to 80ms
  • the corresponding low-level time t2 is adjusted from 0ms to 20ms.
  • the infrared heating circuit is turned on during eight half-wave periods of the mains.
  • the infrared power adjustment module is assigned a heating power value of 500w
  • the high level time t1 is further adjusted from 80ms to 50ms
  • the corresponding low level t2 is adjusted from 20ms to 50ms.
  • the larger the heating power value assigned by the infrared power adjustment module the longer the high-level time t1 in one square wave period of the PWM signal, and the shorter the low-level time t2.
  • the infrared power adjustment module recalculates the high-level time and the low-level time of the PWM signal square wave period according to the algorithm in Table 2, and then passes The zero-crossing detection circuit detects the zero-crossing signal. When the zero-crossing signal is detected, the infrared power adjustment module sends the recalculated PWM signal to the infrared driving circuit.
  • the second method for adjusting the infrared heating power provided in the first embodiment is different from the first one in that the duration of one square wave period in the PWM signal is set to be the same as the commercial half-wave period of 10 ms.
  • the maximum heating power that can be provided by heating the infrared heating film over the entire square wave period is 1000 w.
  • the infrared power adjustment module is assigned a heating power value of 800 w
  • the high-level time t1 of one square wave period of the PWM signal is changed from 10 ms to 8 ms
  • the corresponding low-level time t2 is 0 ms from 0 ms.
  • the infrared power adjustment module is assigned a heating power value of 500w
  • the high-level time t1 is further adjusted from 8ms to 5ms
  • the corresponding low-level t2 is adjusted from 2ms to 5ms.
  • the infrared power conditioning module will recalculate the high time in the square wave period of the PWM signal. And the low time, and then the zero crossing signal is detected by the zero crossing detection circuit. When the zero crossing signal is detected, the infrared power adjustment module sends the recalculated PWM signal to the infrared driving circuit.
  • the above shows only two ways of adjusting the infrared heating power by the two-way thyristor circuit combined with the infrared power adjustment module and the zero-crossing detection circuit, wherein the adjustment power algorithm can also adopt other methods.
  • the hardware of the adjustment circuit may not incorporate a zero-crossing detection circuit.
  • the way in which the infrared power conditioning module adjusts the infrared heating power does not necessarily use the PWM signal.
  • the second infrared heating driving circuit provided in the first embodiment is a PFC circuit, please refer to FIG. 3.
  • the PFC circuit includes a storage capacitor, a first switch, an inductor, and a first diode.
  • the storage capacitor is connected in series between the infrared heating film and the commercial power, and one end of the storage capacitor and the mains connection passes through the inductor and the source of the first switch.
  • a pole connection one end of the storage capacitor connected to the infrared heating film is connected to the source of the first switch through the first diode, the drain of the first switch is connected to the mains, the base of the first switch is opposite to the base of the MCU
  • the infrared power conditioning module is connected.
  • the infrared driving circuit further includes a second switch and a second diode, wherein the common connection end of the inductor and the storage capacitor is connected to the drain of the second switch, and the mains is connected to the source of the second switch, and the second diode
  • the tube is connected between the drain of the second switch and the storage capacitor, and the base of the second switch is connected to the infrared power adjustment module of the MCU.
  • the first switch and the second switch respectively correspond to Q1 and Q2 shown in FIG. 3, and both of them are CMOS tubes with high power and high withstand voltage;
  • the inductance corresponds to L1 in FIG. 3, and the inductance value thereof is above 400 uH;
  • a diode and a second diode are distributed corresponding to D1 and D2 in FIG. 3, which are high-power, reverse-voltage-resistant rectifier diodes;
  • the storage capacitors correspond to C1, C2, and C3 in FIG. They are all capacitors with high capacitance and high withstand voltage.
  • the base of the first switch corresponds to Vc L in FIG. 3, and the base of the second switch corresponds to Vc H in FIG.
  • the infrared power adjustment module in the MCU is combined with the PFC circuit to adjust the infrared power to be a voltage-regulated power.
  • the specific principles are as follows:
  • the infrared power adjustment module sends a full duty PWM signal to the base Vc L of the first switch, and sends a zero duty duty PWM signal to the base Vc H of the second switch, that is, the first switch Q1 is fully open
  • the second switch Q2 is fully closed, and the half-wave rectified mains is stabilized and filtered by the inductor L1 and the storage capacitors (C1, C2, C3) to provide a stable DC voltage of about 310V to the infrared heating film.
  • the infrared power adjustment module sends a PWM signal of a certain duty ratio to the base Vc L of the first switch, and sends a PWM signal of a zero duty ratio to the base Vc H of the second switch, that is, the first
  • the switch Q1 is intermittently opened, and the second switch Q2 is fully closed.
  • the rectified mains charges the storage capacitors (C1, C2, C3) through the inductor L1 and the second diode D2, and flows through the infrared heating film to continuously generate the infrared heating film. Heat.
  • the inductance current L1 keeps the current current flow unchanged, and continues to charge the storage capacitors (C1, C2, C3) while flowing through the infrared heating film, so that the infrared heating film generates output power.
  • the second switch Q2 is fully closed, and the power of the infrared heating film is adjusted by the first switch Q1, and the operating voltage of the infrared heating film can be adjusted within a range of 0 to 310V.
  • the infrared power adjustment module is directed to the base of the first switch
  • Vc L transmits a PWM signal of a full duty ratio and transmits a PWM signal of a certain duty ratio to the base Vc H of the second switch, that is, the first switch Q1 is fully opened, and the second switch Q2 is intermittently opened.
  • the rectified mains is short-circuited to the ground by the second switch Q2 after the inductor L1, and the inductor L1 has a large current flowing; due to the damping effect of the second diode D2, the storage capacitor ( The currents of C1, C2, and C3 cannot flow to the ground through the second switch Q2, and continue to discharge through the infrared heating film, so that the infrared heating film continues to perform power output.
  • the second switch Q2 is turned off, the inductor keeps the current current flow unchanged due to the inductance effect L1, and the current of the inductor L1 is charged to the storage capacitors (C1, C2, C3) via the second diode D2, and flows through the infrared heating film. So that the infrared heating film continues to generate heat.
  • the first switch Q1 is fully opened, and the power of the infrared heating film is adjusted by the second switch Q2, and the operating voltage of the infrared heating film can be adjusted within the range of 310 to 550V.
  • the second embodiment mainly illustrates the structure of the first implementation of the electromagnetic heating device.
  • the electromagnetic heating device includes: a panel 110 located below the cooking appliance for supporting the cooking appliance; a coil tray 130 located below the panel 110 for electromagnetic heating of the cooking appliance; and an infrared heating component 120 installed at The panel 110 is used for infrared heating of the cooking appliance; the electronic control board 160 is electrically connected to the coil disk 130 and the infrared heating component 120 for controlling the heating of the coil disk 130 and the infrared heating component 120.
  • the electromagnetic heating apparatus generally also includes a bottom cover that is covered by the panel 110.
  • the coil disk 130 and the electric control board 160 are both received in the bottom cover, and the heat dissipation fan 150 is further accommodated in the bottom cover.
  • the touch panel 140 please refer to FIG. 7.
  • the infrared heating assembly 120 may be mounted on the surface of the panel 110 near the side of the cooking appliance, or may be mounted on the surface of the panel 110 near the coil tray 130, or may be embedded inside the panel 110.
  • the infrared heating component 120 is mounted on the surface of the panel 110 near the side of the coil disk 130.
  • the infrared heating component 120 includes an infrared heating film 121, a heat reflecting film 122, and a heat insulating film 123. Referring to FIG. 8, it is apparent that only FIG.
  • the positional relationship between the panel 110 and the infrared heating film 121, the heat reflecting film 122, and the heat insulating film 123 is illustrated, but does not constitute a limitation on the sizes of the infrared heating film 121, the heat reflecting film 122, and the heat insulating film 123.
  • the infrared heating film 121 is attached to the panel 110
  • the heat reflecting film 122 is attached to the infrared heating film 121
  • the heat insulating film 123 is attached to the heat reflecting film 122.
  • the shape of the infrared heating film 121 may be rectangular.
  • the coil disk 130 may be cut into the infrared heating film 121. Please refer to FIG. 9.
  • the coil disk 130 may be externally connected to the infrared heating film 121, and then heated in the infrared.
  • a rectangular sub-infrared heating film is provided around the four sides of the film 121.
  • the infrared heating film 121 may have other shapes.
  • the shape of the infrared heating film 121 is circular in order to fit the shape of the bottom of the cooking appliance.
  • the infrared heating film 121 provided in the second embodiment is a film type infrared heating film having a thickness ranging from 5 um to 20 um and a heating power ranging from 0.1 watt to 15 watts per square centimeter.
  • the main component of a formulation of the thin film type infrared heating film 121 is tin dioxide, chromium oxide, manganese dioxide, and nickel oxynitride.
  • the infrared heating film 121 of the formulation is generally attached to the panel 110 by spraying.
  • the other components of the film type infrared heating film 121 are tin tetrachloride, nickel tetrachloride, iron oxide, titanium tetrachloride, sodium chloride and tin dioxide.
  • the infrared heating film 121 of the material is deposited by PVD. The manner is attached to the panel 110.
  • the infrared heating film 121 is double-sidedly heated, and one side of the heat is directly radiated to the cooking appliance, and the other side of the heat is re-transmitted to the cooking apparatus by the reflection of the reflective film.
  • heat reflecting film 122 heat generation of the infrared heating film 121 on the side close to the coil disk 130 is prevented from being wasted, thereby improving the heating efficiency of the infrared heating film 121.
  • the heat reflecting film 122 The infrared heating film 121 is also prevented from radiating heat to the coil disk 130, so that the temperature of the coil disk 130 is too high, which affects the normal operation of the coil disk 130.
  • the heat insulating film 123 attached to the heat reflecting film 122 of the second embodiment further reduces the radiation influence of the heat of the infrared heating film 121 on the coil disk 130.
  • the heat insulating film 123 may not be provided.
  • An infrared heating film 121, a heat reflecting film 122, and a heat insulating film 123 are sequentially disposed on the panel 110 along the axial direction of the coil disk 130. Please refer to FIG. 8 for further reference.
  • the second embodiment further controls the distance between the infrared heating component 120 and the coil disk 130.
  • the distance between the infrared heating component 120 and the coil disk 130 ranges from 8 mm to 11 mm. .
  • the distance between the infrared heating assembly 120 and the coil disk 130 is greater than this range, which affects the heating efficiency of the coil plate 130 to the cooking utensil. If the distance between the infrared heating unit 120 and the coil disk 130 is less than this range, the influence of the heat of the infrared heating film 121 on the excessive temperature of the coil disk 130 cannot be effectively prevented.
  • a thermal temperature sensor is installed on the coil disk 130, and the temperature sensor detects the temperature of the bottom of the cooking appliance indirectly by detecting the temperature of the panel 110 to prevent the cooking appliance from being dry and the like.
  • a through hole for the temperature sensitive temperature sensor is opened in the center of the infrared heating film 121 so that the temperature sensitive temperature sensor can directly contact the panel 110.
  • the diameter of the through hole should be such that the temperature sensitive sensor can accurately cook the temperature of the appliance, and the thermal temperature sensor can be electrically insulated from the infrared heating film 121, and the effect on the effective heating area of the infrared heating film can be minimized.
  • the heat reflecting film 122 may be obtained by sputtering a metal or nano-scale ceramic material on the transparent polyester film; the heat insulating film 123 may be made of aluminum foil veneer, polyethylene film, fiber braid. And the metal coating film is laminated by hot melt adhesive.
  • the third embodiment provides a second structural implementation of the electromagnetic heating device.
  • the electromagnetic heating device includes: a cooking appliance 230; and a panel 210 located under the cooking appliance 230. a support for the cooking appliance 230; a coil tray 240 located below the panel 210 for electromagnetic heating of the cooking appliance 230; and an infrared heating assembly 220 mounted on the outer surface of the cooking appliance 230 for performing the cooking appliance 230 Infrared heating; an electronic control board electrically coupled to the coil disk 240 and the infrared heating assembly 220 for controlling the heating of the coil disk 240 and the infrared heating assembly 220.
  • the electromagnetic heating device of the third embodiment also includes a bottom cover, and the structure inside the bottom cover can adopt the same structure as that of the third embodiment, and details are not described herein again.
  • the third embodiment differs from the second embodiment in that the infrared heating unit 220 is disposed on the outer surface of the sterilizing device 230 instead of being mounted on the panel 210.
  • the infrared heating assembly 220 includes an infrared heating film 221 and a first electrical insulating film 222.
  • the infrared heating film 221 may be attached only to the outer surface of the bottom wall of the cooking appliance 230, or may be attached only to the sidewall of the cooking appliance 230.
  • the outer surface may also be attached to the entire outer surface of the cooking appliance 230.
  • the third preferred embodiment of the present embodiment is to attach the infrared heating film 221 to the outer surface of the side wall of the cooking appliance 230.
  • the third preferred embodiment of the present embodiment is to attach the infrared heating film 221 to the outer surface of the bottom wall of the cooking appliance 230. Since the infrared heating film 221 itself is energized, in order to prevent the infrared heating film 221 from being short-circuited by contact with the external electric conductor, and also to prevent the user from accidentally touching the infrared heating film 221, the first electric power is attached to the infrared heating film 221.
  • the insulating film 222 Since the infrared heating film 221 itself is energized, in order to prevent the infrared heating film 221 from being short-circuited by contact with the external electric conductor, and also to prevent the user from accidentally touching the infrared heating film 221, the first electric power is attached to the infrared heating film 221.
  • the insulating film 222 is attached to the infrared heating film 221.
  • a thin film type infrared heating film 221 having a thickness ranging from 5 um to 20 um and a heating power ranging from 0.1 watt to 15 watts per square centimeter.
  • the main component of a formulation of the film type infrared heating film 221 is tin dioxide, chromium oxide, manganese dioxide, and nickel oxynitride.
  • the infrared heating film 221 of the formulation is generally attached to the panel 210 by spraying.
  • the main component of the film type infrared heating film 221 is tin tetrachloride, nickel tetrachloride, iron oxide, titanium tetrachloride, sodium chloride and tin dioxide.
  • the infrared heating film 221 of the material is deposited by PVD. The method is attached to the cooking appliance 230.
  • the infrared heating film 221 does not short-circuit due to contact with the cooking appliance 230.
  • the base material of the cooking appliance 230 is a conductive material such as metal, such as aluminum or stainless steel, in order to prevent the infrared heating film 221 from being short-circuited due to contact with the cooking appliance 230, the third embodiment further provides a second electrical insulating film 223.
  • the second electrically insulating film 223 is directly attached to the outer surface of the cooking appliance 230, the infrared heating film 221 is attached to the second electrically insulating film 223, and the first electrically insulating film 222 is attached to the infrared heating film 221.
  • the power supply of the infrared heating assembly 220 becomes a problem.
  • One solution is to provide a separate power supply to the infrared heating component 220.
  • Another solution provided in the third embodiment is to provide a terminal 250 connecting the infrared heating film 221 on the infrared heating component 220 and open on the panel 210.
  • the power interface 211 for the terminal 250 is inserted, that is, the power of the coil disk 240 is used to supply power to the infrared heating unit 220. This not only avoids the need to provide a separate power supply component, but also controls the heating of the infrared heating film 221 and the coil disk 240 by using the electronic control board originally existing in the induction cooker.
  • the circuit and mechanical structure of the electromagnetic heating device in this case can be compatible with the existing heating circuit and the heating system, and electromagnetic and infrared heating can be realized without major modification of the existing induction cooker circuit and mechanical structure, thereby improving the performance of the electromagnetic heating device. Improve application range and user experience.
  • first electrical insulating film 222 and the second electrical insulating film 223 of the third embodiment may be inorganic insulating films made of silicon oxide, silicon nitride, aluminum oxide or aluminum nitride, or may be polyacyl.
  • the electromagnetic heating device of the above embodiment makes the electromagnetic heating device applicable to other cooking utensils other than the ferromagnetic pot by adding an infrared heating unit and controlling the heating of the coil disc and the infrared heating unit by the electric control board.
  • the induction cooker IGBT may have a relatively severe hard opening condition, thereby causing a large loss of the IGBT.
  • the temperature rise is higher and the IGBT life is shortened.
  • the heating of the infrared heating component is a resistive heating, which is different from the heating mode of the coil disk, so that it can be continuously heated at a power value lower than a certain power value.
  • the electromagnetic heating device of the above embodiment improves the service life of the electronic components of the induction cooker and reduces the induction cooker by means of combined heating at the time of high power heating, that is, heating by the coil disk and the infrared heating component at the same time. Vibration noise.
  • the electromagnetic heating device provided in the first embodiment of the present invention can realize heating of heating materials of different materials due to the electromagnetic heating unit and the infrared heating unit, and the application thereof is widely unrestricted; and since the infrared heating unit is included, the maximum heating power thereof is Not limited by the maximum heating power of the coil disk.
  • the electromagnetic heating device provided by the second embodiment and the third embodiment of the present invention can increase the infrared heating component and control the heating of the coil disk and the infrared heating component by using the electric control board, so that the electromagnetic heating device can be applied to other than the ferromagnetic pot.
  • Other cooking appliances; and, the electromagnetic heating apparatus of the present invention can also reduce vibration and noise when the heating power is large, and can achieve continuous low-power heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Stoves And Ranges (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

一种电磁加热设备,包括:电磁加热单元、红外加热单元(11)和MCU(8)。所述MCU(8)与所述电磁加热单元和红外加热单元(11)连接,且用于控制所述电磁加热单元和红外加热单元(11)单独或者同时加热。电磁加热设备,由于包括电磁加热单元和红外加热单元(11),因此可以实现不同材质加热器具的加热,其应用广泛不受限制。此外由于包括红外加热单元(11),因此其最大加热功率不受线圈盘(130,240)最大加热功率的限制。

Description

一种电磁加热设备 技术领域
本发明涉及电磁加热技术,尤其涉及一种电磁加热设备。
背景技术
目前的电磁加热设备,比如电磁炉,一般仅具有线圈盘,因此只能对铁磁性烹饪器具进行加热,不能对非铁质磁性烹饪器具进行加热,其使用烹饪器具的种类受到限制。此外,对于铁磁性烹饪器具来说,其最大加热功率也受到线圈盘最大加热功率的限制。
发明内容
本发明要解决的技术问题是:提供一种电磁加热设备,其不仅包括电磁加热单元还包括红外加热单元,从而可以避免单一的电磁加热方法对电磁炉应用的限制。
一种电磁加热设备,包括:
电磁加热单元、红外加热单元和MCU,
所述MCU与所述电磁加热单元和红外加热单元连接,以控制所述电磁加热单元和所述红外加热单元单独加热或者同时加热。
优选地,所述MCU包括功率检测模块和功率分配模块;所述功率检测模块检测用户输入的功率值,并发送给功率分配模块;所述功率分配模块根据接收到的所述用户输入的功率值大小给所述电磁加热单元和/或红外加热单元分配功率。
优选地,当所述功率检测模块检测到用户输入的功率低于第一预定功率值时,所述功率分配模块切换至仅启动所述红外加热单元加热;当所述功率检测模块检测到用户输入的功率高于第一预定功率值时,所述功率分配模块切换至启动所述电磁加热单元和/或所述红外加热单元加热。
优选地,所述第一预定功率值的范围是800瓦~1100瓦。
优选地,当所述功率检测模块检测到用户输入的功率大于等于第一预定功率值且低于第二预定功率值时,所述功率分配模块切换至仅启动所述电磁加热单元加热,当所述功率检测模块检测到用户输入的功率大于或者等于第二预定功率值时,所述功率分配模块切换至启动所述电磁加热单元和所述红外加热单元联合加热,所述第二预定功率值大于所述第一预定功率值。
优选地,所述第二预定功率值的范围是1500瓦~1700瓦。
优选地,当所述功率检测模块检测到用户输入的功率高于第二预定功率值时,所述功率分配模块切换至启动所述电磁加热单元和所述红外加热单元联合加热;当所述功率检测模块检测到用户输入的功率低于第二预定功率值时,所述功率分配模块切换至启动所述电磁加热单元加热。
优选地,所述第二预定功率值是1500瓦~1700瓦。
优选地,当用户输入的功率高于第二预定功率值时,所述功率分配单元分配给所述电磁加热单元的加热功率值小于等于第二预定功率值且大于第一预定功率值,所述功率分配单元分配给所述红外加热单元提供的加热功率值为用户输入的功率值与分配给电磁加热单元功率值的差值。
优选地,当所述功率检测模块检测到用户输入的功率高于第三预定功率值时,所述功率分配模块切换至启动所述电磁加热单元和所述红外加热单元联合加热;当所述功率检测模块检测到用户输入的功率低于第三预定功率值时,所述功率分配模块切换至启动所述电磁加热单元和红外加热单元中的至少一者加热;其中所述第三预定功率值为0.9~1倍电磁加热单元的额定加热功率值。
优选地,所述第三预定功率值的范围是2000瓦~2200瓦。
优选地,所述MCU还包括材质检测模块,当所述材质检测模块 检测到铁质磁性的烹饪器具时,所述功率分配模块切换至启动所述电磁加热单元和/或所述红外加热单元加热所述烹饪器具;当所述材质检测模块检测到非铁质磁性的烹饪器具时,所述功率分配模块切换至启动所述红外加热单元加热所述烹饪器具。
优选地,所述MCU包括加热切换提醒模块,所述加热切换提醒模块根据所述材质检测模块所检测到的烹饪器具材质,提醒用户选择相应的加热单元加热。
优选地,所述电磁加热单元包括:谐振电路,所述谐振电路包括开关元件、谐振电容和谐振电感,所述谐振电容和谐振电感并联,所述谐振电容和谐振电感的其中一个公共连接端与整流后的市电连接,另一个公共连接端与所述开关元件的集电极连接;电磁驱动电路,所述驱动电路的一端与所述MCU连接,另一端与所述开关元件的基极连接;谐振同步检测电路,一端与所述开关元件的集电极连接,以检测所述开关元件集电极的电压,另一端与所述MCU连接;在所述MCU向所述电磁驱动电路发送检锅脉冲后,所述材质检测模块通过检测所述谐振同步检测电路输出的相邻翻转电压的间隔时间来判断所述烹饪器具的材质。
优选地,所述电磁加热单元包括超声波发射电路和超声波检测电路,所述超声波发射电路发出检测超声波,所述材质检测模块通过所检测到超声波反射信号的频率和幅值来判断烹饪器具的材质。
优选地,所述MCU还包括检锅模块;当所述检锅模块没有检测到烹饪器具存在时,所述功率分配模块向所述红外加热单元和所述电磁加热单元分配的加热功率均为零;当所述检锅模块检测到烹饪器具存在时,所述功率分配模块向所述红外加热单元和所述电磁加热单元中的至少一者分配加热功率。
优选地,所述电磁加热单元包括:谐振电路,所述谐振电路包括开关元件、谐振电容和谐振电感,所述谐振电容和谐振电感并联,所 述谐振电容和谐振电感的其中一个公共连接端与整流后的市电连接,另一个公共连接端与所述开关元件的集电极连接;电磁驱动电路,所述驱动电路的一端与所述MCU中的电磁功率调节模块连接,另一端与所述开关元件的基极连接;谐振同步检测电路,一端与所述开关元件的集电极连接,以检测所述开关元件集电极的电压,另一端与所述MCU的连接;在所述MCU向所述电磁驱动电路发送检锅脉冲后,所述检锅模块根据所述谐振同步检测电路所输出的电压翻转次数是否低于预定的次数来判断所述烹饪器具是否存在。
优选地,所述电磁加热单元包括超声波发射电路和超声波检测电路,所述超声波发射电路发出检测超声波,所述检锅模块通过所述超声波检测电路是否能检测到超声波反射信号来判断烹饪器具是否存在。
优选地,所述电磁加热单元包括谐振电路和电磁驱动电路,所述电磁驱动电路的一端与所述谐振电路连接,另一端与MCU中的电磁功率调节模块连接,所述电磁功率调节模块根据分配的加热功率值向所述电磁驱动电路输入第一预定占空比的PWM信号。
优选地,所述红外加热单元包括红外加热电路和红外驱动电路;所述红外加热电路包括连接在市电零线和火线之间的红外加热膜,所述红外驱动电路的一端连接在所述红外加热膜与市电之间,所述红外驱动电路的另一端与所述MCU中的红外功率调节模块连接,所述红外功率调节模块根据所分配的加热功率值向所述红外驱动电路输入第二预定占空比的PWM信号。
优选地,所述电磁加热单元包括过零检测电路,所述过零检测电路一端与整流后的市电连接,以检测市电的过零信号,另一端与所述MCU连接;
所述红外功率调节模块根据所述过零检测电路所检测的过零信号在预定的时间向所述红外驱动电路输入所述第二预定占空比的 PWM信号。
优选地,所述红外驱动电路包括储能电容、第一开关、电感和第一二极管,所述储能电容串联在所述红外加热膜与市电之间,所述储能电容与红外加热膜连接的一端通过所述电感与所述第一开关的源极连接,所述储能电容与所述市电连接的一端通过第一二极管与所述第一开关的源极连接,所述第一开关的漏极与所述市电连接,所述第一开关的栅极与所述MCU的红外功率调节模块连接。
优选地,所述红外驱动电路还包括第二开关和第二二极管,所述电感和所述储能电容的公共连接端与所述第二开关的漏极连接,市电与所述第二开关的源极连接,所述第二二极管连接在所述第二开关的漏极与所述储能电容之间。
优选地,所述红外驱动电路包括开关子单元和隔离子单元,所述开关子单元连接在红外加热膜与市电之间,隔离子单元连接在所述开关子单元与MCU的红外功率调节模块之间。
优选地,所述开关子单元为双向可控硅,所述隔离子单元为隔离光耦。
一种电磁加热设备,包括:
面板,位于烹饪器具的下方,用于支撑所述烹饪器具;
线圈盘,位于所述面板的下方,用于对所述烹饪器具进行电磁加热;
红外加热组件,用于对所述烹饪器具进行红外加热;
电控板,位于所述面板的下方,与所述线圈盘和所述红外加热组件电连接,用于控制所述线圈盘和所述红外加热组件的加热。
优选地,所述红外加热组件安装在所述面板上。
优选地,所述红外加热组件安装在面板靠近所述线圈盘一侧的表面,红外加热组件包括红外加热膜和热反射膜,所述红外加热膜附着在面板上,所述热反射膜附着在所述红外加热膜上。
优选地,红外加热组件还包括隔热膜,所述隔热膜附着在热反射膜上。
优选地,所述线圈盘上设有检测烹饪器具底部温度的热敏温度传感器,所述红外加热组件上开设有供所述热敏温度传感器穿过的通孔,以使得所述热敏温度传感器与所述面板直接接触。
优选地,所述面板与所述线圈盘之间的距离为8mm~11mm。
优选地,所述红外加热组件安装在所述烹饪器具的外表面。
优选地,所述红外加热组件安装在所述烹饪器具侧壁的外表面。
优选地,所述红外加热组件包括红外加热膜和第一电绝缘膜,所述红外加热膜附着在所述烹饪器具的外表面,所述第一电绝缘膜附着在所述红外加热膜上。
优选地,所述红外加热组件包括红外加热膜、第一电绝缘膜和第二电绝缘膜,所述第二电绝缘膜附着在烹饪器具的外表面,所述红外加热膜附着在所述第二电绝缘膜上,所述第一电绝缘膜附着在所述红外加热膜上。
优选地,所述红外加热组件包括与红外加热膜连接的接线端子,所述面板上设置有用于插接所述接线端子的电源接口。
本发明提供的电磁加热设备,由于包括电磁加热单元和红外加热单元,因此可以实现不同材质加热器具的加热,其应用广泛不受限制;此外由于包括红外加热单元,因此其最大加热功率不受线圈盘最大加热功率的限制。
附图说明
图1是实施例一的电磁加热设备的电路模块示意图;
图2是图1中EMC电路10和红外加热单元11的结构示意图;
图3是图1中EMC电路10和红外加热单元11的结构示意图;
图4是电磁加热单元中的谐振电路、谐振同步检测电路和IGBT驱动电路与MCU之间的连接关系示意图;
图5是图4中II处的局部放大示意图;
图6是一般电磁加热设备的结构示意图;
图7是实施例二的电磁加热设备拆开后的结构示意图;
图8是实施例二的红外加热组件的结构示意图;
图9是实施例二的面板仰视示意图;
图10是实施例三的电磁加热设备拆开后的结构示意图;
图11是实施例三的电磁加热设备正视结构示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
在本申请的描述中,需要说明的是,术语“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
实施例一
本实施例一主要用于说明电磁加热设备的电路,具体的本实施例一提供的电磁加热设备,包括电磁加热单元、红外加热单元和MCU,其中,MCU与电磁加热单元和红外加热单元连接,以控制电磁加热单元和红外加热单元单独加热或者同时加热。
本实施例一提供的电磁加热设备,由于设有红外加热单元,因此可以对非铁质磁性烹饪器具进行加热。此外,红外加热单元还可以联合电磁加热单元对铁磁性烹饪器具进行加热,以提高对铁磁性烹饪器具的加热速度和最高加热功率。一般来说,用户可以通过烹饪器具上附着的材质标识或者材质说明人为区分铁磁性器具和非铁磁性器具。
进一步地,本实施例一提供的电磁加热设备的MCU包括检锅模 块和功率分配模块。其中,当检锅模块没有检测到烹饪器具存在时,功率分配模块向红外加热单元和电磁加热单元分配的加热功率均为零,从而使得红外加热单元和电磁加热单元都不进行加热。当检锅模块检测到烹饪器具存在时,功率分配模块向红外加热单元和电磁加热单元中的至少一者分配加热功率。比如,当检锅模块检测到铁磁性锅具存在时,功率分配模块可以仅向红外加热单元分配加热功率,仅向电磁加热单元分配加热功率,或者同时向红外加热单元和电磁加热单元分配加热功率。当检锅模块检测到非铁磁性锅具存在时,功率分配模块则仅向红外加热单元分配加热功率。
此外,本实施例一的电磁加热设备的MCU还可以包括材质检测模块和功率分配模块,当所述材质检测模块检测到铁质磁性的烹饪器具时,所述功率分配模块切换至启动电磁加热单元和/或所述红外加热单元加热所述烹饪器具;当所述材质检测模块检测到非铁质磁性的烹饪器具时,所述功率分配模块切换至仅启动红外加热单元加热所述烹饪器具。
具体地,MCU还包括加热切换提醒模块,所述加热切换提醒模块根据材质检测模块所检测到的烹饪器具材质,提醒用户选择相应的加热单元加热。比如,当材质检测模块检测到铁磁性锅具存在时,加热切换提醒模块提醒用户在电磁加热、红外加热,以及电磁单元和红外单元组合加热这三种加热方式中选择一种。
本领域的技术人员可以知道,与检锅模块连接的功率分配模块和与材质检测模块连接的功率分配模块可以是同一功率分配模块。
本实施例一的电磁加热设备还包括功率检测模块,功率检测模块检测用户输入的功率值,并发送给功率分配模块。功率分配模块根据接收到的用户输入的功率值大小给电磁加热单元和/或红外加热单元分配功率。
在上述基础上,本实施例一还提供一种电磁加热单元和红外加热 单元之间加热功率的分配方法。从实现电磁加热设备低功率连续加热的角度考虑,本实施例提供的技术方案是:当功率检测模块检测到用户输入的功率低于第一预定功率值时,功率分配模块切换至仅启动红外加热单元加热;当功率检测模块检测到用户输入的功率高于第一预定功率值时,功率分配模块切换至启动电磁加热单元和/或红外加热单元加热。一般来说,当电磁加热单元以低于第一预定功率值的功率进行连续加热时,电磁炉IGBT会出现比较严重的硬开情况,从而造成IGBT的损耗较大、温升较高、缩短IGBT寿命。为了解决这个问题,在加热功率低于第一预定功率值时,目前的电磁加热设备采取调功加热的方式,即先用大功率加热一段时间,再停止加热一段时间,再加热一段时间,再停止一段时间。比如,为了实现400瓦功率的加热,电磁炉先用800瓦的功率加热1秒,然后再停止加热1秒。这种间歇加热的方式使锅具温度及锅里的食物变化很大,对于煲汤等需要连续较低温度加热控制的场合无法使用或者使用效果较差。而红外加热单元的加热属于电阻式的加热,不同于电磁加热单元的加热方式,因此能以低于第一预定功率值的功率连续加热。本实施例一中第一预定功率值相当于是电磁加热单元能否能单独以用户输入的功率值实现连续加热且不发生IGBT硬开的一个临界值。本实施例一中设置的第一预定功率值的范围是800瓦~1100瓦,本实施例提供的一个具体的第一预定功率值为1000瓦,使得电磁当然第一预定功率值的范围还可以根据实际情况做相应的调整。
当用户输入的功率值大于第一预定功率值时,本实施例一对红外加热单元和电磁加热单元加热的功率分配做了进一步的优化。具体的,本实施例一设置了大于第一预定功率值的第二预定功率值,当功率检测模块检测到用户输入的功率高于第一预定功率值且低于第二预定功率值时,功率分配模块切换至仅启动所述电磁加热单元加热,对应地,MCU中的功率分配模块给红外加热单元分配的加热功率值 为零。当功率检测模块检测到用户输入的功率高于第二预定功率值时,功率分配模块切换至同时启动所述电磁加热单元和所述红外加热单元加热,对应地,MCU中的功率分配模块同时给红外加热单元和电磁加热单元分配一定值的加热功率。电磁加热单元加热是直接对烹饪器具进行加热,烹饪器具本身为发热体,而红外加热单元是通过将红外加热膜的发热传递给烹饪器具,即红外加热膜为发热体,烹饪器具只是导热介质,因此电磁加热单元的加热效率要高于红外加热单元的加热效率。当用户输入的功率大于第一预定功率值且低于第二预定功率值时,尽管可以选用红外加热单元进行加热,或者选用红外加热单元和电磁加热单元联合加热,但从提高电磁加热设备的加热效率角度考虑,优先选用仅启动电磁加热单元进行加热。但当用户输入的功率大于一定值时,即高于第二功预定功率值时,比如1800瓦时,如果仍然仅仅启动电磁加热单加热,则电磁加热单元不仅会产生较大的噪音,而且电磁加热单元的IGBT等电子元件也更容易受到损坏。如果仅从降低电磁炉的噪声和提高电磁炉电子元件寿命角度考虑,也可以选择仅启动红外加热单元进行加热。但从提高加热效率、降低电磁炉的噪声和提高电磁炉电子元件寿命角度综合考虑,在用户输入的功率高于第二功预定功率值时,功率分配模块切换至同时启动红外加热单元和电磁加热单元加热。本实施例一将第二预定功率值的范围设置为1500瓦~1700瓦,当然还可以根据具体情况再做相应的调整。
对于用户输入的功率高于第二预定功率值的情形,MCU的功率分配模块根据预设的算法向电磁加热单元和红外加热单元分配相应的加热功率值。本实施例提供的一种预设算法是:MCU的功率配模块分配给电磁加热单元的加热功率值小于等于第二预定功率值且大于第一预定功率值,MCU的功率配模块分配给红外加热单元的加热功率为用户输入的功率值与分配给电磁加热单元功率值的差值。当然MCU的功率配模块还可以按照其它预设的算法向红外加热单元和电 磁加热单元分配功率。下表是本实施例一中MCU根据用户输入的加热功率向红外加热单元和电磁加热单元分配加热功率的具体算法。下表中,电磁炉的额定加热功率为2100W,从表中可以看出,本实施例一提供的电磁炉可以在100W到2100W之间的连续加热,使之既能够满足低功率连续加热的要求(比如煲汤等各种应用场合),也能满足高功率加热情况下对降低噪音和提高加热效率的要求。
用户输入功率(W) 电磁加热功率(W) 红外加热功率(W)
2100W 1600 500
2000W 1600 400
1900W 1600 300
1800W 1600 200
1700W 1600 100
1600W 1600 0
1500W 1500 0
1400W 1400 0
1300W 1300 0
1200W 1200 0
1100W 1100 0
1000W 1000 0
900W 0 900
800W 0 800
700 0 700
600 0 600
500 0 500
400 0 400
300 0 300
200 0 200
100 0 100
表1
如果仅从降低电磁炉的噪声和提高电磁炉电子元件寿命角度考虑,本实施例提供的技术方案是:当功率检测模块检测到用户输入的功率高于第二预定功率值时,功率分配模块切换至启动电磁加热单元和红外加热单元联合加热;当功率检测模块检测到用户输入的功率低于第二预定功率值时,功率分配模块切换至启动电磁加热单元加热。即,与基于实现电磁炉连续低功率加热的角度的技术方案不同的是,当用户输入的功率低于第一预定功率值时,选用电磁加热单元进行加热,而不是选用红外加热单元加热。
如果从提高电磁加热设备的总加热功率的角度考虑,本实施例提供的技术方案是:当功率检测模块检测到用户输入的功率高于第三预定功率值时,功率分配模块切换至启动电磁加热单元和红外加热单元联合加热;当功率检测模块检测到用户输入的功率低于第三预定功率值时,功率分配模块切换至启动电磁加热单元和红外加热单元中的至少一者加热;其中第三预定功率值为0.9~1倍电磁加热单元的额定加热功率值。
由于电磁加热单元长时间在额定功率加热会容易损坏,本实施例将优选的方案是将第三预定功率值设置为稍低于电磁加热单元的额定加热功率值,使得在电磁加热单元尚未以全功率加热前,功率分配模块就启动电磁加热单元和红外加热单元联合加热。比如,电磁加热单元的额定加热功率(即最大加热功率)为2200瓦的情况下,当功率检测模块检测到用户输入的功率大于2000瓦时,功率分配模块就同时启动电磁加热单元和红外加热单元加热。本实施例提供的第三加热功率值的优选范围为2000瓦至2200瓦。当然该第三加热功率值还可以根据不同电磁加热设备的额定功率等因素再做调整。比如电磁加热单元的额定加热功率为2100瓦的情况下,第三加热功率值的优选范围为 1900瓦至2100瓦。
采用该技术方案,如果红外加热单元能提供的最大额定加热功率为1000瓦,则采用这种联合红外加热单元和电磁加热单元加热的方式可以将电磁炉的最大加热功率提高到3000瓦~3200瓦。值得注意的是:当功率检测模块检测到用户输入的功率低于第三预定功率值的情况下,可以仅启动电磁加热单元进行加热,但也可以但不限于以下的加热选择:在用户输入的功率大于第二预定功率值时,功率分配模块选择启动电磁加热单元和红外加热单元联合加热;在用户输入的功率小于第一预定功率值时,功率分配模块选择启动红外加热单元加热。比如,当将第三预定功率值的范围设置为2000瓦~2200瓦时,可以在低于第三预定功率值的范围内全程采用电磁加热单元进行加热,也可以在低于第一预定功率值的范围内(0至800~1100)采用红外加热单元加热,在第一预定功率值至第二预定功率值范围内(比如800~1100至1500~1700)内采用电磁加热单元加热,在第二预定功率值至第三预定功率值范围内(比如1500~1700至2000~2200)内采用电磁加热单元和红外加热单元联合加热。
值得注意的是:电磁加热单元和红外加热单元在加热切换时,会出现加热不连续的问题,优选的,本实施例一在电磁加热单元和红外加热单元发生加热切换时,在后一加热单元已经开始进行加热时,再让前一加热单元持续一个延迟加热时间。比如当由仅红外加热单元加热向仅电磁加热单元加热切换时,中间存在一小段时间(大约5秒)红外加热单元和电磁加热单元处于共同加热状态。
本实施例一提供的电磁加热设备,既可以同时包括上述检锅模块和材质检测模块,也可以至少包括检锅模块或者材质检测模块中的其中一个。以下,本实施例一提供一种基于电磁加热单元进行检锅和材质检测的方式。
以下结合图1、图4和图5介绍电磁加热单元的主要电路,电磁加 热单元一般至少包括谐振电路和电磁驱动电路,电磁驱动电路的一端与谐振电路连接,另一端与MCU中的电磁功率调节模块连接,电磁功率调节模块根据分配的加热功率值向电磁驱动电路输入第一预定占空比的PWM信号。
其中,谐振电路包括开关元件、谐振电容和谐振电感,谐振电容和谐振电感并联,谐振电容和谐振电感的其中一个公共连接端与整流后的市电连接,另一个公共连接端与开关元件的集电极连接,其中开关元件一般采用IGBT。
电磁加热单元还包括谐振同步检测电路,谐振同步检测电路的一端分别与谐振电容和谐振电感的两个公共连接端连接,即该端中有一个分支与IGBT的集电极连接,以检测IGBT集电极的电压,谐振同步检测电路的另一端与MCU连接,在谐振同步检测电路检测到所述IGBT管的集电极的电压为最低点电压(一般为零)时,MCU的电磁率调节模块向电磁驱动电路输出第一预定占空比的PWM信号。
电磁加热单元还可以包括过零检测电路,过零检测电路一端与整流后的市电连接,以检测市电的过零信号,另一端与MCU连接,电磁功率调节模块在收到过零信号后向电磁驱动电路输入重新初始化后的第一预定占空比PWM信号。
电磁加热单元还可以包括浪涌检测电路、过温检测电路,过压检测电路和过流检测电路。浪涌检测电路检测市电的电压信号,当市电突然出现很高的正向电压或者负向电压时,浪涌检测电路向MCU发出关断IGBT的信号。过温检测电路在作为开关元件的IGBT温度达到一定值时向MCU发出关断IGBT的信号。过压检测电路以在作为开关元件的IGBT的集电极电压达到一定值时向MCU发出关断IGBT的信号。过流检测电路在作为开关元件的IGBT的集电极电流达到一定值时向MCU发出关断IGBT的信号。
很显然,电磁加热单元可以具有其它电路,不受以上举例电路的 限制。此外电磁加热单元还可以采用不同于上述列举的其它电路来实现电磁加热。
对于本实施例一中列举的电磁加热单元中的上述电路,MCU中的检锅模块可以与其中的谐振电路、电磁驱动电路和同步谐振电路相配合完成检测烹饪器具是否存在。MCU中的材质检测模块也可以与其中的谐振电路、电磁驱动电路和同步谐振电路相配合完成烹饪器具材质的检测。
具体的,首先通过MCU中的电磁功率调节模块向电磁驱动电路输入一个检锅脉冲,该检锅脉冲的导通时间为6us-10us,检锅脉冲发送的间隔时间大约为1S~2S。该检锅脉冲使得谐振电路导通,如果电磁炉上承载有烹饪器具,则谐振电路的能量消耗得比较快,谐振同步检测电路的输出电压翻转次数较少。如果电磁炉上没有承载烹饪器具,则谐振电路的能量消耗得比较慢,谐振同步检测电路的输出电压翻转次数较多。检锅模块通过判断谐振同步检测电路的输出电压翻转次数是否达到预定次数来判断是否存在烹饪器具。比如,预定的次数为10,当谐振同步检测电路的输出电压翻转次数大于等于10,则判断烹饪器具存在,当谐振同步检测电路的输出电压翻转次数小于10,则判断烹饪器具不存在。
材质检测模块是通过检测谐振同步检测电路输出相邻翻转电压的间隔时间来判断烹饪器具的材质。比如,在MCU中的电磁功率调节模块向电磁驱动电路输入一个检锅脉冲后,在预定的时间内,谐振同步检测电路输出的电压共产生了12次翻转,当其翻转周期时间在35us左右时,则判定烹饪器具材质为430钢,当其翻转周期时间在25us左右时,则判定烹饪器具材质为304钢。
图4显示了谐振电路和谐振同步检测电路的具体组成,以下结合电磁加热单元的谐振电路、电磁驱动电路和谐振同步检测电路说明检测烹饪器具是否存在的工作原理和检测烹饪器具材质的工作原理,图 4中最左端的箭头方向指的是整流后的市电输入。
在电磁炉开始加热前,输出一个一定导通时间的脉冲,电磁驱动电路也即图5中的IGBT驱动电路导通时,谐振电路中的线圈盘LH即谐振电感有电流从左边流向右边。谐振电路中的谐振电容C5左端电压经谐振同步检测电路中的R49、R51、R52、R53、R1、R5分压后的电压信号Va输入MCU的内部比较器的同相输入端,谐振电容C5右端电压经谐振同步检测电路中的R7、R2、R6、R57分压后的电压信号Vb输入MCU的内部比较器的反相输入端。此时谐振电容C5左端电压被钳位在市电电压,谐振电容C5右端电压被IGBT(也即图4中连接在IGBT驱动电路左端的部分)直接拉到地电平,此时Va>Vb。
当IGBT驱动电路关断IGBT时,谐振电路中的线圈盘LH由于电感效应,电流不能突变,维持从左到右继续流动,并向谐振电容C5充电,使谐振电容C5右端电压不断升高,直到LH电流释放完毕。当LH的电流为0时,C5右端电压达到最高,此时Va<Vb。
当Va<Vb时,转为谐振电路中的谐振电容C5向谐振电路中的线圈盘LH放电。电流从线圈盘LH右端流向左端。直到C5的电能释放完毕,此时C5左边的电压等于右边的电压。由于线圈盘LH还有从右向左的电流流动,电感效应使线圈盘LH的电流继续从右向左流动。此时谐振电容C5左端电压被钳位在市电电压,C5右端电压不断被拉低。直到Vb<Va时,此时在MCU的内部比较器产生一个上升沿的脉冲输出,计数器开始进行累加计数,同时使能计时器进行周期计时。MCU中的检锅模块至少包括该内部比较器和计数器。相应的,MCU中的材质检测模块至少包括该内部比较器和计时器。
因为谐振回路的能量没有释放完,谐振回路还会重复上述过程,当再一次出现Vb<Va时,停止计时器进行周期计时,读取此时的周期时间值,以判断烹饪器具的类型。当然,为了周期时间的读取准确,还可以读取接下来的几个振荡周期的时间,然后再做平均。等到谐振 回路持续振荡一定的时间(检锅脉冲引发谐振电路震荡完毕),如200ms~500ms后,读取计数器的值。
以上结合电磁驱动电路、谐振电路和谐振同步检测电路的方式对检测铁磁性烹饪器具是否存在以及检测铁磁性烹饪器具的材质效果相当好。当然还可以通过其它方式实现烹饪器具是否存在的检测和烹饪器具材质的检测。比如,电磁加热单元中设置超声波发射电路和超声波检测电路,检锅模块通过超声波检测电路是否能检测到超声波反射信号来判断烹饪器具是否存在,材质检测模块则通过所检测到超声波反射信号的频率和幅值范围来判断烹饪器具的材质。
结合图2和图3,以下介绍红外加热单元电路的组成,一般来说,红外加热单元包括红外加热电路和红外加热驱动电路,红外加热电路包括连接在市电零线和火线之间的红外加热膜,红外驱动电路的一端连接在所述红外加热膜与市电之间(即红外驱动电路的一端既可以连接在所述红外加热膜与市电零线之间,也可以连接在所述红外加热膜与市电火线之间),红外驱动电路的另一端与MCU中的红外功率调节模块连接,红外功率调节模块根据所分配的加热功率值向红外驱动电路输入第二预定占空比的PWM信号。
进一步的,红外功率调节模块还可以根据电磁加热单元中的过零检测电路所检测的过零信号在预定的时间向所述红外驱动电路输入所述第二预定占空比的PWM信号。
本实施例一提供的红外加热驱动电路有两种,如图2所示,本实施例一提供的第一种红外驱动电路包括隔离子单元和开关子单元,开关子单元串联在红外加热膜与市电之间,隔离子单元连接在开关子单元和红外功率调节模块之间。即,隔离子单元能接收红外功率调节模块发出的第二预定占空比的PWM信号,以控制开关子单元的开通与关断,进而控制红外加热电路的导通与否。
具体而言,隔离子单元为隔离光耦U10,开关子单元为双向可控 硅TR1,隔离光耦U10包括发光器件和光敏器件。发光器件的正极S1连接直流电源(提供5伏或者3.5伏的电压),负极S2连接MCU的红外功率调节模块,这种连接方式光敏器件在红外功率调节模块发出低电平时导通。当然,发光器件的正极S1还可以连接MCU的红外功率调节模块,而发光器件的负极S2接地,这种连接方式光敏器件在红外功率调节模块发出高电平时导通。光敏器件为双向晶闸管,第一阳极S6连接双向可控硅TR1的第二主电极T2,第二阳极S4连接双向可控硅TR1的栅极。双向可控硅TR1的第二主电极T2与远红外加热膜连接,双向可控硅TR1的第一主电极T1与市电连接。
光敏器件的第一阳极S6和双向可控硅TR1的第二主电极T2之间依次串联有第一电阻R81和第二电阻R82。第一电阻R81和第二电阻R82的公共端与双向可控硅TR1的第一主电极T1之间串联第一电容C201;发光器件的正极S1与直流电源之间连接有第三电阻R80。第一电阻R81、第二电阻R82、第三电阻R80和第一电容C201能起到以合适的电流和电压导通双向可控硅TR1,并起到滤波和稳定双向可控硅TR1控制电路的作用。
这种红外驱动电路是基于双向可控硅调节控制电路,隔离子单元和开关子单元还可以置换为继电器中相对应的元器件,即更改为基于继电器调节的控制电路。当然隔离子单元和开关子单元还可以用其它电子元件所代替。
对应于这种基于双向可控硅的红外驱动电路,其结合过零检测电路和红外功率调节模块调节红外加热功率的两种。第一种红外功率调节方式更为稳定,第二种红外功率调节模式响应速度更快。
具体而言,本实施例一提供的第一种调节红外加热功率的方式中:电流的频率为50HZ,其一个半波的时长为10ms,将PWM信号中一个方波周期的时长为100ms,红外加热膜在PWM信号为高电平时加热,在PWM信号为低电平时停止加热。
首先,红外功率调节模块根据所分配的加热功率计算PWM信号的一个方波周期内的高电平时间t1和低电平时间t2。表2中示出了被分配的红外加热功率与高电平时间t1、低电平时间t2之间的关系。表2中,红外加热膜在整个方波周期内都加热能提供的最大加热功率为1000w。当红外功率调节模块被分配的加热功率值为800w时,PWM信号的方波周期的高电平时间t1由100ms调整为80ms,相应的低电平时间t2由0ms调整为20ms。即在一个PWM信号的方波周期内,红外加热电路在8个市电半波周期内是导通的。当红外功率调节模块被分配的加热功率值为500w时,则将高电平时间t1再由80ms调整为50ms,相应的低电平t2由20ms调整为50ms。一般来说,红外功率调节模块被分配的加热功率值越大,PWM信号的一个方波周期内的高电平时间t1越长,低电平时间t2就越短。
在红外加热膜的加热过程中,如果被分配到新的加热功率,红外功率调节模块会根据如表2中的算法重新计算PWM信号方波周期的高电平时间和低电平时间,然后通过过零检测电路检测过零信号,当检测到过零信号时,红外功率调节模块就会将重新计算后得到的PWM信号发送给红外驱动电路。
本实施例一提供的第二种调节红外加热功率的方式与第一种不同的是:将PWM信号中一个方波周期的时长设置为与市电半波周期相同的10ms。仍以红外加热膜在整个方波周期内都加热能提供的最大加热功率为1000w为例。当红外功率调节模块被分配的加热功率值为800w时,将PWM信号一个方波周期的高电平时间t1由10ms改为8ms,相应的低电平时间t2由0ms为2ms。当红外功率调节模块被分配的加热功率值为500w时,则将高电平时间t1再由8ms调整为5ms,相应的低电平t2由2ms调整为5ms。
同样的,在红外加热膜的加热过程,如果被分配到新的加热功率,红外功率调节模块也会重新计算PWM信号方波周期内的高电平时间 和低电平时间,然后通过过零检测电路检测过零信号,当检测到过零信号时,红外功率调节模块就会将重新计算后得到的PWM信号发送给红外驱动电路。
设定功率(W) 控制周期(ms) 开通周期(ms) 关断周期(ms)
900 100 90 10
800 100 80 20
700 100 70 30
600 100 60 40
500 100 50 50
400 100 40 60
300 100 30 70
200 100 20 80
100 100 10 90
表2
以上所示的只是双向可控硅电路结合红外功率调节模块和过零检测电路调节红外加热功率的两种方式,其中调节功率算法还可以采用其它方式。其调节电路的硬件可以不结合过零检测电路。红外功率调节模块调节红外加热功率的方式也不一定采用PWM信号的方式。
本实施例一提供的第二种红外加热驱动电路为PFC电路,请参见图3。PFC电路包括储能电容、第一开关、电感和第一二极管,储能电容串联在红外加热膜与市电之间,储能电容与市电连接的一端通过电感与第一开关的源极连接,储能电容与红外加热膜连接的一端通过第一二极管与第一开关的源极连接,第一开关的漏极与市电连接,第一开关的基极与所述MCU的红外功率调节模块连接。
进一步地,红外驱动电路还包括第二开关和第二二极管,电感和储能电容的公共连接端与第二开关的漏连接,市电与第二开关的源极连接,第二二极管连接在第二开关的漏极与储能电容之间,第二开关的基极与MCU的红外功率调节模块连接。
其中,第一开关和第二开关分别对应图3中所示的Q1和Q2,它们均是大功率、耐压高的CMOS管;电感对应图3中的L1,其电感值在400uH以上;第一二极管和第二二极管分布对应图3中的D1和D2,它们均是是大功率、反向耐压高的整流二极管;储能电容对应图3中的C1、C2、C3,它们均是容值大耐压高的电容。第一开关的基极对应图3中的Vc L,第二开关的基极对应图3中的Vc H。
MCU中的红外功率调节模块结合PFC电路调节红外功率属于电压式调节功率的方式,其具体原理如下:
当红外功率调节模块向第一开关的基极Vc L发送全占空比的PWM信号,且向第二开关的基极Vc H发送零占空比的PWM信号时,即第一开关Q1全开、第二开关Q2全闭,半波整流后的市电经电感L1和储能电容(C1、C2、C3)整流滤波稳压后,给红外加热膜提供310V左右稳定的直流电压。
需要降低输出功率时,红外功率调节模块向第一开关的基极Vc L发送一定占空比的PWM信号,向第二开关的基极Vc H发送零占空比的PWM信号时,即第一开关Q1间歇性开放,第二开关Q2全闭。在第一开关Q1导通时,整流后的市电经电感L1、第二二极管D2给储能电容(C1、C2、C3)充电,同时流经红外加热膜,使红外加热膜持续产生热量。在第一开关Q1截止时,由于电感效应电感L1保持当前电流流向不变,继续给储能电容(C1、C2、C3)充电,同时流经红外加热膜,使红外加热膜产生输出功率。
红外功率调节模块向第一开关Q1的基极Vc L发送的PWM信号占空比越大,电感L1和储能电容(C1、C2、C3)存储的能量越大,红外加热膜的工作电压越高,相应的红外加热膜输出功率越大。将第二开关Q2全闭,采用第一开关Q1调节红外加热膜的功率,红外加热膜的工作电压可以在0至310V的范围内调节。
需要进一步增加功率时,红外功率调节模块向第一开关的基极 Vc L发送全占空比的PWM信号,且向第二开关的基极Vc H发送一定占空比的PWM信号时,即第一开关Q1全开,第二开关Q2间歇性开放。当第二开关Q2导通时,整流后的市电经电感L1后被第二开关Q2对地短路,电感L1有大电流流过;由于第二二极管D2的阻尼作用,储能电容(C1、C2、C3)的电流无法经第二开关Q2流到地,继续通过红外加热膜放电,使红外加热膜继续进行功率输出。当第二开关Q2截止时,电感由于电感效应L1保持当前电流流向不变,电感L1的电流经第二二极管D2给储能电容(C1、C2、C3)充电,同时流经红外加热膜,使红外加热膜持续产生热量。
红外功率调节模块向第二开关的基极VcH发送的PWM信号占空比越大,电感L1和储能电容(C1、C2、C3)存储的能量越大,红外加热膜的工作电压越大(最大工作电压可以达到550V)相应的红外加热膜输出功率越大。将第一开关Q1全开,采用第二开关Q2调节红外加热膜的功率,红外加热膜的工作电压可以在310至550V的范围内调节。
很显然,红外加热驱动电路和红外加热电路的具体形式不受上述描述的限制,任何采用现有技术得到的可行的形式都可以包含在本实施例一保护范围中。
实施例二
请参见图6,本实施例二主要说明电磁加热设备的第一种实现的的结构。具体的,该电磁加热设备包括:面板110,位于烹饪器具的下方,用于支撑烹饪器具;线圈盘130,位于面板110的下方,用于对烹饪器具进行电磁加热;红外加热组件120,安装在面板110上,用于对烹饪器具进行红外加热;电控板160,与线圈盘130和红外加热组件120电连接,用于控制线圈盘130和红外加热组件120的加热。
该电磁加热设备一般还包括底盖,底盖由面板110所封盖。线圈盘130和电控板160均收容于底盖内,底盖内还收容有散热风扇150和 触控面板140,请参见图7。
红外加热组件120可以安装在面板110靠近烹饪器具一侧的表面,也可以安装在面板110靠近线圈盘130一侧的表面,还可以嵌入面板110内部。以红外加热组件120安装在面板110靠近线圈盘130一侧的表面为例,红外加热组件120包括红外加热膜121、热反射膜122以及隔热膜123,请参见图8,显然图8中只是示意面板110和红外加热膜121、热反射膜122以及隔热膜123之间的位置关系,但是并不构成对红外加热膜121、热反射膜122以及隔热膜123的尺寸的限制。红外加热膜121附着在面板110上,热反射膜122附着在红外加热膜121上,隔热膜123附着在热反射膜122上。
红外加热膜121的形状可以为矩形,此时线圈盘130可以内切于红外加热膜121之内,请参见图9,当然线圈盘130也可以外接于红外加热膜121之外,然后在红外加热膜121四条边的周围设置矩形状的子红外加热膜。此外红外加热膜121还可以呈其它形状。当然由于烹饪器具的底部大多为圆形,为了与烹饪器具底部形状适配,因此红外加热膜121的优选形状为圆形。
本实施例二提供的红外加热膜121为薄膜式红外加热膜,其厚度范围5um~20um,加热功率范围为0.1瓦~15瓦/平方厘米。该薄膜式红外加热膜121的一种配方的主要成分为二氧化锡、三氧化二铬、二氧化锰、三氧化二镍,该配方的红外加热膜121一般通过喷涂方式附着在面板110上。薄膜式红外加热膜121另一种配方的主要成分为四氯化锡、四氯化镍、氧化铁、四氯化钛、氯化钠和二氧化锡,该材质的红外加热膜121通过PVD沉积方式附着在面板110上。
红外加热膜121为双面发热,其一面发热直接辐射给烹饪器具,另一面的发热则通过反射膜的反射重新传递给烹饪器具。通过设置热反射膜122,避免了红外加热膜121靠近线圈盘130一侧的发热白白浪费掉,从而提高了红外加热膜121的加热效率。此外,热反射膜122 还避免了红外加热膜121向线圈盘130辐射热量,使得线圈盘130温度过高,影响线圈盘130的正常工作。本实施例二附着在热反射膜122上的隔热膜123则进一步降低了红外加热膜121的发热对线圈盘130的辐射影响。当然在热反射膜122本身的隔热性能比较好的情况下,也可以不设置隔热膜123。沿着线圈盘130的轴向方向,在所述面板110上依次设置有红外加热膜121、热反射膜122和隔热膜123,请进一步参见图8。
为了更进一步降低红外加热膜121的发热对线圈的影响,本实施例二还控制红外加热组件120与线圈盘130的距离,具体的,红外加热组件120与线圈盘130的距离范围为8mm~11mm。红外加热组件120与线圈盘130的距离大于这一范围,则会影响线圈盘130对烹饪器具的加热效率。红外加热组件120与线圈盘130的距离小于这一范围,则不能有效的防止红外加热膜121发热对线圈盘130温度过高的影响。
一般而言,线圈盘130上会安装热敏温度传感器,热敏温度传感器通过检测面板110的温度以间接检测烹饪器具锅底的温度,以达到防止烹饪器具干烧等功能。为了防止红外加热膜121对热敏温度传感器测温的影响,红外加热膜121的中央开设供热敏温度传感器穿过的通孔,以使得热敏温度传感器能直接与面板110接触。通孔直径大小要保证热敏温度传感器既能准确烹饪器具的温度,又能使得热敏温度传感器与红外加热膜121保持电绝缘,还能尽量减少对红外加热膜有效加热面积的影响。
此外,本实施例二中,热反射膜122可以是在透明的聚酯膜上溅镀一层金属或纳米级陶瓷材料得到;隔热膜123可以由铝箔贴面、聚乙烯薄膜、纤维编织物和金属涂膜通过热熔胶层压而成。
实施例三
本实施例三提供电磁加热设备的第二种结构实现方式,具体的该电磁加热设备包括:烹饪器具230;面板210,位于烹饪器具230的下 方,用于支撑烹饪器具230;线圈盘240,位于面板210的下方,用于对烹饪器具230进行电磁加热;红外加热组件220,安装在烹饪器具230的外表面,用于对烹饪器具230进行红外加热;电控板,与线圈盘240和红外加热组件220电连接,用于控制线圈盘240和红外加热组件220的加热。
请参见图10,本实施例三的该电磁加热设备也包括底盖,且底盖内部的结构可以采取和实施例三相同的结构,此处不再赘述。此外,本实施例三和实施例二不同之处在于将红外加热组件220设置在喷饪器具230的外表面而不是安装在面板210上。
请参见图11,红外加热组件220包括红外加热膜221和第一电绝缘膜222,红外加热膜221可以仅附着在烹饪器具230的底壁外表面,也可以仅附着在烹饪器具230的侧壁外表面,还可以附着在烹饪器具230整个外表面。从降低对面板210的热影响以及防止红外加热膜221磨损的角度考虑,本实施例三优选的方案是将红外加热膜221附着在烹饪器具230的侧壁外表面。从有利于烹饪器具内的食物产生在加热过程中产生热对流的角度考虑,本实施例三优选的方案是将红外加热膜221附着在烹饪器具230的底壁外表面。由于红外加热膜221本身是通电的,为了防止红外加热膜221与外部的电导体接触发生短路,也为了防止用户不小心接触红外加热膜221触电,因此在红外加热膜221上附着了第一电绝缘膜222。
本实施例三提供的也为薄膜式红外加热膜221,其厚度范围5um~20um,加热功率范围为0.1瓦~15瓦/平方厘米。薄膜式红外加热膜221的一种配方的主要成分为二氧化锡、三氧化二铬、二氧化锰、三氧化二镍,该配方的红外加热膜221一般通过喷涂方式附着在面板210上。薄膜式红外加热膜221另一种配方的主要成分为四氯化锡、四氯化镍、氧化铁、四氯化钛、氯化钠和二氧化锡,该材质的红外加热膜221通过PVD沉积方式附着在烹饪器具230上。
当烹饪器具230的基体材料为非金属等电绝缘材料时,比如陶瓷,红外加热膜221上不会因为与烹饪器具230接触而发生短路。但当烹饪器具230的基体材料为金属等导电材料时,比如铝或者不锈钢,为防止红外加热膜221因与烹饪器具230接触而发生短路,本实施例三进一步设置了第二电绝缘膜223,第二电绝缘膜223直接附着在烹饪器具230的外表面,红外加热膜221附着第二电绝缘膜223上,第一电绝缘膜222附着在红外加热膜221上。
由于红外加热组件220安装在烹饪器具230的外表面,红外加热组件220的供电成为一个问题。一种解决方案是给红外加热组件220配备单独的电源,本实施例三提供的另一种解决方案是在红外加热组件220上设置连接红外加热膜221的接线端子250,并在面板210上开设供该接线端子250插入的电源接口211,即用线圈盘240的电源给红外加热组件220供电。这样不仅避免了另设一套供电组件,还可以用电磁炉中原来就存在的电控板同时控制红外加热膜221和线圈盘240加热。
该情况下的电磁加热设备的电路及机械结构能够兼容现有加热电路及加热系统,不用对现有电磁炉电路及机械结构进行大的改动就可以实现电磁及红外加热,进而提升电磁加热设备的性能,提高应用范围及用户体验。
此外,本实施例三的第一电绝缘膜222和第二电绝缘膜223可以是氧化硅、氮化硅、氧化铝或氮化铝等制得的无机电绝缘膜,也可以是由聚酰亚胺、聚乙烯、聚偏二氟乙烯或聚四氟乙烯等制得的有机电绝缘膜。
上述实施例的电磁加热设备,通过增加红外加热组件,并采用电控板控制线圈盘和红外加热组件的加热,从而使得电磁加热设备可以适用于铁磁性锅具以外的其它烹饪器具。
进一步地,当线圈盘以低于某一特定功率值的功率连续加热时,电磁炉IGBT会出现比较严重的硬开情况,从而造成IGBT的损耗较大、 温升较高、缩短IGBT寿命。而红外加热组件的加热属于电阻式的加热,不同于线圈盘的加热方式,因此可以在低于某一特定功率值的功率值时连续加热。
更进一步地,当用户输入的功率大于一定值时,如果仍然仅仅只启动电磁线圈盘加热时,则电磁炉不仅会产生较大的噪音,而且电磁炉的IGBT等电子元件更容易受到损坏。故从上述实施例的电磁加热设备,通过在高功率加热时组合加热的方式,也即同时采用线圈盘和红外加热组件进行加热的方式,提高了电磁炉的电子元件的使用寿命,且降低了电磁炉的振动噪声。
以上实施方式仅用于说明本发明,而非对本发明的限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行各种组合、修改或者等同替换,都不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。
工业实用性
本发明实施例一提供的电磁加热设备,由于包括电磁加热单元和红外加热单元,因此可以实现不同材质加热器具的加热,其应用广泛不受限制;且由于包括红外加热单元,因此其最大加热功率不受线圈盘最大加热功率的限制。
本发明实施例二和实施例三提供的电磁加热设备,通过增加红外加热组件,并采用电控板控制线圈盘和红外加热组件的加热,从而使得电磁加热设备可以适用于铁磁性锅具以外的其它烹饪器具;并且,本发明的电磁加热设备在加热功率大时,还可以降低振动和噪音,且可以实现连续低功率加热。

Claims (33)

  1. 一种电磁加热设备,其特征在于,包括:
    电磁加热单元、红外加热单元和MCU,
    所述MCU与所述电磁加热单元和红外加热单元连接,以控制所述电磁加热单元和所述红外加热单元单独加热或者同时加热。
  2. 如权利要求1所述的电磁加热设备,其特征在于,所述MCU包括功率检测模块和功率分配模块;所述功率检测模块检测用户输入的功率值,并发送给功率分配模块;所述功率分配模块根据接收到的所述用户输入的功率值大小给所述电磁加热单元和/或红外加热单元分配功率。
  3. 如权利要求2所述的电磁加热设备,其特征在于,当所述功率检测模块检测到用户输入的功率低于第一预定功率值时,所述功率分配模块切换至仅启动所述红外加热单元加热;当所述功率检测模块检测到用户输入的功率高于第一预定功率值时,所述功率分配模块切换至启动所述电磁加热单元和/或所述红外加热单元加热。
  4. 如权利要求3所述的电磁加热设备,其特征在于,所述第一预定功率值的范围是800瓦~1100瓦。
  5. 如权利要求3所述的电磁加热设备,其特征在于,当所述功率检测模块检测到用户输入的功率大于等于第一预定功率值且低于第二预定功率值时,所述功率分配模块切换至仅启动所述电磁加热单元加热,当所述功率检测模块检测到用户输入的功率大于或者等于第二预定功率值时,所述功率分配模块切换至启动所述电磁加热单元和所述红外加热单元联合加热,所述第二预定功率值大于所述第一预定功率值。
  6. 根据权利要求5所述的电磁加热设备,其特征在于,所述第二预定功率值的范围是1500瓦~1700瓦。
  7. 如权利要求2所述的电磁加热设备,其特征在于,当所述功 率检测模块检测到用户输入的功率高于第二预定功率值时,所述功率分配模块切换至启动所述电磁加热单元和所述红外加热单元联合加热;当所述功率检测模块检测到用户输入的功率低于第二预定功率值时,所述功率分配模块切换至启动所述电磁加热单元加热。
  8. 如权利要求7所述的电磁加热设备,其特征在于,所述第二预定功率值是1500瓦~1700瓦。9、如权利要求7所述的电磁加热设备,其特征在于,当用户输入的功率高于第二预定功率值时,所述功率分配单元分配给所述电磁加热单元的加热功率值小于等于第二预定功率值且大于第一预定功率值,所述功率分配单元分配给所述红外加热单元提供的加热功率值为用户输入的功率值与分配给电磁加热单元功率值的差值。
  9. 如权利要求2所述的电磁加热设备,其特征在于,当所述功率检测模块检测到用户输入的功率高于第三预定功率值时,所述功率分配模块切换至启动所述电磁加热单元和所述红外加热单元联合加热;当所述功率检测模块检测到用户输入的功率低于第三预定功率值时,所述功率分配模块切换至启动所述电磁加热单元和红外加热单元中的至少一者加热;其中所述第三预定功率值为0.9~1倍电磁加热单元的额定加热功率值。11、根据权利要求10所述的电磁加热设备,其特征在于,所述第三预定功率值的范围是2000瓦~2200瓦。
  10. 如权利要求2所述的电磁加热设备,其特征在于,所述MCU还包括材质检测模块,当所述材质检测模块检测到铁质磁性的烹饪器具时,所述功率分配模块切换至启动所述电磁加热单元和/或所述红外加热单元加热所述烹饪器具;当所述材质检测模块检测到非铁质磁性的烹饪器具时,所述功率分配模块切换至启动所述红外加热单元加热所述烹饪器具。
  11. 如权利要求12所述的电磁加热设备,其特征在于,所述MCU包括加热切换提醒模块,所述加热切换提醒模块根据所述材质检测模 块所检测到的烹饪器具材质,提醒用户选择相应的加热单元加热。
  12. 如权利要求12所述的电磁加热设备,其特征在于,所述电磁加热单元包括:
    谐振电路,所述谐振电路包括开关元件、谐振电容和谐振电感,所述谐振电容和谐振电感并联,所述谐振电容和谐振电感的其中一个公共连接端与整流后的市电连接,另一个公共连接端与所述开关元件的集电极连接;
    电磁驱动电路,所述驱动电路的一端与所述MCU连接,另一端与所述开关元件的基极连接;
    谐振同步检测电路,一端与所述开关元件的集电极连接,以检测所述开关元件集电极的电压,另一端与所述MCU连接;
    在所述MCU向所述电磁驱动电路发送检锅脉冲后,所述材质检测模块通过检测所述谐振同步检测电路输出的相邻翻转电压的间隔时间来判断所述烹饪器具的材质。
  13. 如权利要求12所述的电磁加热设备,其特征在于,所述电磁加热单元包括超声波发射电路和超声波检测电路,所述超声波发射电路发出检测超声波,所述材质检测模块通过所检测到超声波反射信号的频率和幅值来判断烹饪器具的材质。
  14. 如权利要求2所述的电磁加热设备,其特征在于,所述MCU还包括检锅模块;当所述检锅模块没有检测到烹饪器具存在时,所述功率分配模块向所述红外加热单元和所述电磁加热单元分配的加热功率均为零;当所述检锅模块检测到烹饪器具存在时,所述功率分配模块向所述红外加热单元和所述电磁加热单元中的至少一者分配加热功率。
  15. 如权利要求16所述的电磁加热设备,其特征在于,所述电磁加热单元包括:
    谐振电路,所述谐振电路包括开关元件、谐振电容和谐振电感, 所述谐振电容和谐振电感并联,所述谐振电容和谐振电感的其中一个公共连接端与整流后的市电连接,另一个公共连接端与所述开关元件的集电极连接;
    电磁驱动电路,所述驱动电路的一端与所述MCU中的电磁功率调节模块连接,另一端与所述开关元件的基极连接;
    谐振同步检测电路,一端与所述开关元件的集电极连接,以检测所述开关元件集电极的电压,另一端与所述MCU的连接;
    在所述MCU向所述电磁驱动电路发送检锅脉冲后,所述检锅模块根据所述谐振同步检测电路所输出的电压翻转次数是否低于预定的次数来判断所述烹饪器具是否存在。
  16. 如权利要求16所述的电磁加热设备,其特征在于,所述电磁加热单元包括超声波发射电路和超声波检测电路,所述超声波发射电路发出检测超声波,所述检锅模块通过所述超声波检测电路是否能检测到超声波反射信号来判断烹饪器具是否存在。
  17. 如权利要求1至13中任意一项所述的电磁加热设备,其特征在于,所述电磁加热单元包括谐振电路和电磁驱动电路,所述电磁驱动电路的一端与所述谐振电路连接,另一端与MCU中的电磁功率调节模块连接,所述电磁功率调节模块根据分配的加热功率值向所述电磁驱动电路输入第一预定占空比的PWM信号。
  18. 如权利要求1至13、15、16、18中任意一项所述的电磁加热设备,其特征在于,所述红外加热单元包括红外加热电路和红外驱动电路;所述红外加热电路包括连接在市电零线和火线之间的红外加热膜,所述红外驱动电路的一端连接在所述红外加热膜与市电之间,所述红外驱动电路的另一端与所述MCU中的红外功率调节模块连接,所述红外功率调节模块根据所分配的加热功率值向所述红外驱动电路输入第二预定占空比的PWM信号。
  19. 如权利要求13、15、16、18所述的电磁加热设备,其特征在 于,所述电磁加热单元包括过零检测电路,所述过零检测电路一端与整流后的市电连接,以检测市电的过零信号,另一端与所述MCU连接;
    所述红外功率调节模块根据所述过零检测电路所检测的过零信号在预定的时间向所述红外驱动电路输入所述第二预定占空比的PWM信号。
  20. 如权利要求20所述的电磁加热设备,其特征在于,所述红外驱动电路包括储能电容、第一开关、电感和第一二极管,所述储能电容串联在所述红外加热膜与市电之间,所述储能电容与红外加热膜连接的一端通过所述电感与所述第一开关的源极连接,所述储能电容与所述市电连接的一端通过第一二极管与所述第一开关的源极连接,所述第一开关的漏极与所述市电连接,所述第一开关的栅极与所述MCU的红外功率调节模块连接。
  21. 如权利要求22所述的电磁加热设备,其特征在于,所述红外驱动电路还包括第二开关和第二二极管,所述电感和所述储能电容的公共连接端与所述第二开关的漏极连接,市电与所述第二开关的源极连接,所述第二二极管连接在所述第二开关的漏极与所述储能电容之间。
  22. 如权利要求22所述的电磁加热设备,其特征在于,所述红外驱动电路包括开关子单元和隔离子单元,所述开关子单元连接在红外加热膜与市电之间,隔离子单元连接在所述开关子单元与MCU的红外功率调节模块之间。
  23. 如权利要求24所述的电磁加热设备,其特征在于,所述开关子单元为双向可控硅,所述隔离子单元为隔离光耦。
  24. 一种电磁加热设备,其特征在于,包括:
    面板,位于烹饪器具的下方,用于支撑所述烹饪器具;
    线圈盘,位于所述面板的下方,用于对所述烹饪器具进行电磁加 热;
    红外加热组件,用于对所述烹饪器具进行红外加热;
    电控板,位于所述面板的下方,与所述线圈盘和所述红外加热组件电连接,用于控制所述线圈盘和所述红外加热组件的加热。
  25. 根据权利要求26所述的电磁加热设备,其特征在于,所述红外加热组件安装在所述面板上。
  26. 根据权利要求27所述的电磁加热设备,其特征在于,所述红外加热组件安装在面板靠近所述线圈盘一侧的表面,红外加热组件包括红外加热膜和热反射膜,所述红外加热膜附着在面板上,所述热反射膜附着在所述红外加热膜上。
  27. 根据权利要求28所述的电磁加热设备,其特征在于,红外加热组件还包括隔热膜,所述隔热膜附着在热反射膜上。
  28. 根据权利要求28所述的电磁加热设备,其特征在于,所述线圈盘上设有检测烹饪器具底部温度的热敏温度传感器,所述红外加热组件上开设有供所述热敏温度传感器穿过的通孔,以使得所述热敏温度传感器与所述面板直接接触。
  29. 根据权利要求27所述的电磁加热设备,其特征在于,所述面板与所述线圈盘之间的距离为8mm~11mm。
  30. 根据权利要求26所述的电磁加热设备,其特征在于,所述红外加热组件安装在所述烹饪器具的外表面。
  31. 根据权利要求32所述的电磁加热设备,其特征在于,所述红外加热组件安装在所述烹饪器具侧壁的外表面。
  32. 根据权利要求32所述的电磁加热设备,其特征在于,所述红外加热组件包括红外加热膜和第一电绝缘膜,所述红外加热膜附着在所述烹饪器具的外表面,所述第一电绝缘膜附着在所述红外加热膜上。
  33. 根据权利要求32所述的电磁加热设备,其特征在于,所述
PCT/CN2015/099259 2015-11-27 2015-12-28 一种电磁加热设备 WO2017088244A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017561729A JP6692837B2 (ja) 2015-11-27 2015-12-28 電磁加熱装置
EP15909155.2A EP3312511B1 (en) 2015-11-27 2015-12-28 Electromagnetic heating device
US15/910,935 US10976055B2 (en) 2015-11-27 2018-03-02 Electromagnetic heating device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201510893659.9A CN106813276B (zh) 2015-11-27 2015-11-27 一种电磁炉
CN201510893659.9 2015-11-27
CN201510893639.1 2015-11-27
CN201521007266.5U CN205174470U (zh) 2015-11-27 2015-11-27 一种电磁加热设备
CN201510893598.6 2015-11-27
CN201510893639.1A CN106813271B (zh) 2015-11-27 2015-11-27 一种低功率连续加热电磁炉
CN201510893598.6A CN106813269B (zh) 2015-11-27 2015-11-27 一种电磁加热设备
CN201521007266.5 2015-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/910,935 Continuation US10976055B2 (en) 2015-11-27 2018-03-02 Electromagnetic heating device

Publications (1)

Publication Number Publication Date
WO2017088244A1 true WO2017088244A1 (zh) 2017-06-01

Family

ID=58763800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099259 WO2017088244A1 (zh) 2015-11-27 2015-12-28 一种电磁加热设备

Country Status (4)

Country Link
US (1) US10976055B2 (zh)
EP (1) EP3312511B1 (zh)
JP (1) JP6692837B2 (zh)
WO (1) WO2017088244A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062779A (zh) * 2020-07-31 2022-02-18 浙江绍兴苏泊尔生活电器有限公司 加热频率检测方法、装置、设备及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968553B1 (ko) * 2017-01-04 2019-04-12 엘지전자 주식회사 Wpt 구현 가능한 전자 유도 가열 조리기 및 pfc 전력 변환 장치
CN108966398A (zh) * 2018-07-23 2018-12-07 珠海格力电器股份有限公司 一种抑制电磁耦合的装置、控制电路、电器及其控制方法
CN111107683B (zh) * 2018-10-26 2021-10-22 佛山市顺德区美的电热电器制造有限公司 运行控制方法、装置、烹饪器具和计算机可读存储介质
FR3089101B1 (fr) * 2018-12-04 2021-01-29 Christophe Bietrix Appareil électroménager pour la cuisson et le chauffage de produits alimentaires
PL3737210T3 (pl) * 2019-05-10 2022-12-05 BSH Hausgeräte GmbH Urządzenie pieca indukcyjnego
CN112393283B (zh) * 2019-08-12 2023-04-07 佛山市顺德区美的电热电器制造有限公司 烹饪器具
CN113261854B (zh) * 2021-06-25 2022-02-11 广东格莱瑞节能科技有限公司 一种多种加热方式的加热器具
CN115884455B (zh) * 2022-12-29 2023-09-05 广东海明晖电子科技有限公司 电磁加热系统及其低待机功耗控制电路

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040094533A1 (en) * 2002-11-15 2004-05-20 Engineered Glass Products, Llc. Heating plate assembly for a cooking appliance
CN2712038Y (zh) * 2004-07-04 2005-07-20 华中科技大学 一种电磁炉陶瓷炊具
CN201297678Y (zh) * 2008-08-28 2009-08-26 广东伊立浦电器股份有限公司 可磁电互换加热的炉具
CN201335433Y (zh) * 2008-12-04 2009-10-28 浙江苏泊尔家电制造有限公司 红外电磁一体炉
CN202077214U (zh) * 2011-05-05 2011-12-14 九阳股份有限公司 与电磁炉组合使用的立体加热装置
CN102613880A (zh) * 2012-04-17 2012-08-01 浙江乐太电器有限公司 一种自动翻炒烹饪电热灶
CN204483887U (zh) * 2015-02-11 2015-07-22 佛山市顺德区美的电热电器制造有限公司 电加热盘及烹饪器具
CN204483889U (zh) * 2015-03-05 2015-07-22 佛山市顺德区美的电热电器制造有限公司 电加热盘及烹饪器具
CN204634072U (zh) * 2015-03-04 2015-09-09 佛山市顺德区美的电热电器制造有限公司 电磁加热系统及其中开关管的过零开通检测装置
CN205162733U (zh) * 2015-11-02 2016-04-20 九阳股份有限公司 一种多功能烹饪装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632010Y2 (ja) * 1988-10-04 1994-08-24 東京電力株式会社 電気調理器具
JPH06349570A (ja) 1993-06-02 1994-12-22 Matsushita Electric Ind Co Ltd 複合加熱装置
FR2744200B1 (fr) 1996-01-26 1998-03-13 Brandsatch Holding Sa Boite de chauffe comportant des tubes a infra-rouges pour le chauffage d'une feuille de matiere plastique avant son formage et procede de chauffage mis en oeuvre avec une telle boite de chauffe
JP4342451B2 (ja) * 2005-01-14 2009-10-14 株式会社東芝 加熱調理器
DE102005050036A1 (de) * 2005-10-14 2007-05-31 E.G.O. Elektro-Gerätebau GmbH Induktionsheizeinrichtung und zugehöriges Betriebs- und Topferkennungsverfahren
JP2009004141A (ja) 2007-06-20 2009-01-08 Panasonic Corp 多口加熱調理器
CN201134946Y (zh) * 2008-01-07 2008-10-15 珠海格力电器股份有限公司 主功率管控制电路
CN201323669Y (zh) 2008-11-28 2009-10-07 佛山市顺德区瑞德电子实业有限公司 一种电磁炉低功率段连续加热控制装置
CN102156416B (zh) 2011-04-19 2013-01-09 株洲变流技术国家工程研究中心有限公司 一种变流器控制装置
CN202206580U (zh) 2011-07-26 2012-04-25 佛山市顺德区美的电热电器制造有限公司 电磁炉连续低功率加热的控制电路
JP6021516B2 (ja) * 2012-08-22 2016-11-09 三菱電機株式会社 誘導加熱調理器およびその制御方法
CN105007786B (zh) * 2013-02-25 2017-08-25 松下知识产权经营株式会社 感应加热烹调器
CN204539512U (zh) 2015-04-07 2015-08-05 佛山市顺德区美的电热电器制造有限公司 电磁加热装置和具有其的电磁炉

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040094533A1 (en) * 2002-11-15 2004-05-20 Engineered Glass Products, Llc. Heating plate assembly for a cooking appliance
CN2712038Y (zh) * 2004-07-04 2005-07-20 华中科技大学 一种电磁炉陶瓷炊具
CN201297678Y (zh) * 2008-08-28 2009-08-26 广东伊立浦电器股份有限公司 可磁电互换加热的炉具
CN201335433Y (zh) * 2008-12-04 2009-10-28 浙江苏泊尔家电制造有限公司 红外电磁一体炉
CN202077214U (zh) * 2011-05-05 2011-12-14 九阳股份有限公司 与电磁炉组合使用的立体加热装置
CN102613880A (zh) * 2012-04-17 2012-08-01 浙江乐太电器有限公司 一种自动翻炒烹饪电热灶
CN204483887U (zh) * 2015-02-11 2015-07-22 佛山市顺德区美的电热电器制造有限公司 电加热盘及烹饪器具
CN204634072U (zh) * 2015-03-04 2015-09-09 佛山市顺德区美的电热电器制造有限公司 电磁加热系统及其中开关管的过零开通检测装置
CN204483889U (zh) * 2015-03-05 2015-07-22 佛山市顺德区美的电热电器制造有限公司 电加热盘及烹饪器具
CN205162733U (zh) * 2015-11-02 2016-04-20 九阳股份有限公司 一种多功能烹饪装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312511A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062779A (zh) * 2020-07-31 2022-02-18 浙江绍兴苏泊尔生活电器有限公司 加热频率检测方法、装置、设备及存储介质
CN114062779B (zh) * 2020-07-31 2023-06-27 浙江绍兴苏泊尔生活电器有限公司 加热频率检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP3312511B1 (en) 2020-11-11
US20180245794A1 (en) 2018-08-30
US10976055B2 (en) 2021-04-13
EP3312511A4 (en) 2018-08-29
JP6692837B2 (ja) 2020-05-13
JP2018515739A (ja) 2018-06-14
EP3312511A1 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
WO2017088244A1 (zh) 一种电磁加热设备
CN106813269B (zh) 一种电磁加热设备
JP6021933B2 (ja) 誘導加熱調理器
CN106813271B (zh) 一种低功率连续加热电磁炉
ES2627683T3 (es) Dispositivo de calentamiento que tiene una función de detección de la posición de un recipiente para alimentos
WO2014069011A1 (ja) 誘導加熱調理器
WO2019119641A1 (zh) 电磁烹饪器具及其功率控制方法
US11064573B2 (en) Determining resonant frequency for quasi-resonant induction cooking devices
CN114080860B (zh) 用于控制向感应线圈提供电功率的方法
CN106813270A (zh) 一种电磁加热设备
JP2006114311A (ja) 誘導加熱調理器
CN106813276B (zh) 一种电磁炉
WO2019119640A1 (zh) 电磁烹饪器具及其功率控制方法
JP2009043587A (ja) 誘導加熱調理器
JP2012248499A (ja) 誘導加熱調理器
JP2005149737A (ja) 誘導加熱装置
JP2004185829A (ja) 電磁調理器
GB2531599A (en) Energy saving electric toaster
JP6005281B2 (ja) 誘導加熱調理器
CN1232157C (zh) 微波炉控制电路
TWI713410B (zh) 電磁感應加熱裝置
CN210670622U (zh) 低功率加热电路及烹饪器具
JP2003151752A (ja) 電磁調理器
KR20240030942A (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
JPH0255917B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561729

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE