WO2024120092A1 - 一种正极材料及其制备方法、电池、储能设备和储能系统 - Google Patents

一种正极材料及其制备方法、电池、储能设备和储能系统 Download PDF

Info

Publication number
WO2024120092A1
WO2024120092A1 PCT/CN2023/129676 CN2023129676W WO2024120092A1 WO 2024120092 A1 WO2024120092 A1 WO 2024120092A1 CN 2023129676 W CN2023129676 W CN 2023129676W WO 2024120092 A1 WO2024120092 A1 WO 2024120092A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
source
sodium
battery
electrode material
Prior art date
Application number
PCT/CN2023/129676
Other languages
English (en)
French (fr)
Inventor
张瑞旺
杨金星
张业正
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024120092A1 publication Critical patent/WO2024120092A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a positive electrode material and a preparation method thereof, a battery, an energy storage device and an energy storage system.
  • Sodium-ion battery is an emerging electrochemical energy storage technology.
  • the raw materials of sodium-ion battery are abundant and inexpensive.
  • the research on sodium-ion batteries continues to increase.
  • sodium-ion battery technology is becoming increasingly mature. It has shown great application prospects in large-scale energy storage, small static energy storage power stations such as 5G base stations, or low-speed electric vehicles, and has replaced lithium-ion batteries in some energy storage fields.
  • the key to further commercialization of sodium-ion battery technology is to find suitable cathode materials. Since the vanadium-based polyanion material sodium vanadium phosphate (Na3V2(PO4)3) with a fast ion conductor structure has high safety and relatively high specific capacity, current sodium-ion batteries mostly use this vanadium-based polyanion material as the cathode material. However, the raw materials of the vanadium element in this vanadium-based polyanion material are expensive and toxic, which seriously hinders the commercial application of this type of material.
  • the present application provides a positive electrode material and a preparation method thereof, a battery, an energy storage device and an energy storage system, so as to improve the cycle stability of the positive electrode material while ensuring the specific capacity of the positive electrode material, so that the battery using the positive electrode material has higher rate performance and cycle stability.
  • the present application provides a positive electrode material, which may include Na4-xAxVMn1-yBy(PO4)3.
  • A is an alkaline metal ion
  • B is a transition metal ion
  • the positive electrode material has a high specific capacity and cycle stability, which can enable a battery using the positive electrode material to have a high rate performance and cycle stability.
  • 0.05 ⁇ x ⁇ 0.1 may be satisfied.
  • x may be 0.06, 0.07, 0.09 or 0.1, etc.
  • 0.1 ⁇ y ⁇ 0.15 may be satisfied.
  • y may be 0.11, 0.12, 0.13 or 0.14, etc.
  • A may be, but is not limited to, potassium ions or lithium ions.
  • B may be, but is not limited to, one of magnesium ions, copper ions, zinc ions or calcium ions.
  • the present application also provides a method for preparing a positive electrode material, which may include:
  • a sodium source, an alkaline metal source, a vanadium source, a manganese source, a transition metal source, a phosphorus source, a complexing agent and a carbon source are mixed in a solvent to prepare a precursor solution;
  • the precursor is sintered and cooled to obtain carbon-coated Na4-xAxVMn1-yBy(PO4)3.
  • the positive electrode material prepared by the preparation method of the positive electrode material provided by the present application has a high specific capacity and cycle stability.
  • the positive electrode material When used in a battery, it can have a high rate performance and cycle stability during the long-term cycle use of the battery, which is conducive to extending the service life of the battery.
  • the sodium source, alkaline metal source, vanadium source, manganese source, transition metal source and phosphorus source can be weighed according to the stoichiometric ratio of (4-x):x:1:(1-y):y:3, and the complexing agent and carbon source can also be weighed.
  • the mass of the carbon source can be 10% to 20% of the total mass of the sodium source, alkaline metal source, vanadium source, manganese source, transition metal source and phosphorus source, so that the prepared positive electrode material has good conductivity.
  • the specific amount of the complexing agent is not limited in this application, as long as it can play the role of complexing the ions in the above-mentioned source materials.
  • the sodium source may be, but is not limited to, at least one of sodium acetate, sodium sulfate, sodium oxalate, or sodium citrate. That is, the sodium source may be one of sodium acetate, sodium sulfate, sodium oxalate, or sodium citrate, or the sodium source may be a mixture of two or more of sodium acetate, sodium sulfate, sodium oxalate, or sodium citrate.
  • the alkaline metal source may be, but is not limited to, at least one of potassium acetate, potassium oxalate, potassium nitrate, or potassium carbonate. That is, the alkaline metal source may be one of potassium acetate, potassium oxalate, potassium nitrate, or potassium carbonate, or the alkaline metal source may be a mixture of two or more of potassium acetate, potassium oxalate, potassium nitrate, or potassium carbonate.
  • the vanadium source may be, but is not limited to, at least one of ammonium metavanadate, sodium metavanadate or vanadium acetylacetonate. That is, the vanadium source may be one of ammonium metavanadate, sodium metavanadate or vanadium acetylacetonate, or the vanadium source may be a mixture of two or more of ammonium metavanadate, sodium metavanadate or vanadium acetylacetonate.
  • the manganese source may be, but is not limited to, at least one of manganese acetate, manganese nitrate, manganese oxalate dihydrate, manganese carbonate, or manganese dihydrogen phosphate. That is, the manganese source may be one of manganese acetate, manganese nitrate, manganese oxalate dihydrate, manganese carbonate, or manganese dihydrogen phosphate, or the manganese source may be two of manganese acetate, manganese nitrate, manganese oxalate dihydrate, manganese carbonate, or manganese dihydrogen phosphate, or a mixture of the two.
  • the transition metal source may be, but is not limited to, a nitrate comprising one of magnesium ions, copper ions, zinc ions, or calcium ions.
  • the transition metal source may be, but is not limited to, an oxalate comprising one of magnesium ions, copper ions, zinc ions, or calcium ions.
  • the phosphorus source may be, but is not limited to, at least one of ammonium dihydrogen phosphate, sodium dihydrogen phosphate, diammonium hydrogen phosphate, disodium hydrogen phosphate, potassium phosphate, or sodium phosphate. That is, the phosphorus source may be one of ammonium dihydrogen phosphate, sodium dihydrogen phosphate, diammonium hydrogen phosphate, disodium hydrogen phosphate, potassium phosphate, or sodium phosphate, or the phosphorus source may be a mixture of two or more of ammonium dihydrogen phosphate, sodium dihydrogen phosphate, diammonium hydrogen phosphate, disodium hydrogen phosphate, potassium phosphate, or sodium phosphate.
  • the complexing agent may be, but is not limited to, at least one of oxalic acid, ascorbic acid, citric acid monohydrate or malic acid.
  • the complexing agent may be one of oxalic acid, ascorbic acid, citric acid monohydrate or malic acid, or the complexing agent may be a mixture of two or more of oxalic acid, ascorbic acid, citric acid monohydrate or malic acid.
  • the carbon source may be, but is not limited to, at least one of oxalic acid, ascorbic acid, citric acid, sucrose, glucose, sucrose or malic acid.
  • the carbon source may be one of oxalic acid, ascorbic acid, citric acid, sucrose, glucose, sucrose or malic acid, or the carbon source may be a mixture of two or more of oxalic acid, ascorbic acid, citric acid, sucrose, glucose, sucrose or malic acid.
  • the solvent may be, but is not limited to, at least one of water, acetone, ethanol or ethylene glycol. That is, the solvent may be one of water, acetone, ethanol or ethylene glycol, or the solvent may be a mixture of two or more of water, acetone, ethanol or ethylene glycol.
  • the precursor liquid in the process of drying the precursor liquid to form a gel-like substance, can be placed at a temperature of 60°C to 80°C for drying, and the drying time can be, for example, 5h to 20h, until a gel-like substance is formed.
  • the above-mentioned precursor liquid can be placed at a temperature of 80°C and dried for 10h, so as to reduce the drying time on the basis of being able to obtain a gel-like substance, thereby reducing the preparation cost.
  • the gel-like substance in the process of drying the gel-like substance to form a precursor, can be placed at a temperature of 100° C. to 200° C. for drying, and the drying time can be, for example, 5 hours to 20 hours, until a solid precursor is formed.
  • the gel-like substance can be placed at a temperature of 150° C. for drying for 5 hours, so as to reduce the drying time on the basis of being able to form a precursor, thereby reducing the preparation cost.
  • the precursor When sintering the precursor, the precursor can be placed in an inert gas and sintered at a temperature of 700°C to 800°C, and the sintering time can be, for example, 5h to 10h. The sintered product can then be cooled to obtain carbon-coated Na4-xAxVMn1-yBy(PO4)3. In a possible implementation of the present application, the precursor can be placed in an inert gas and sintered at 750°C for 8h, and then cooled to obtain carbon-coated Na4-xAxVMn1-yBy(PO4)3.
  • the type of the inert gas is not limited, and exemplary thereof may be nitrogen or argon, as long as the oxidation of the components in the precursor can be effectively reduced.
  • the positive electrode material obtained by the preparation method provided in the above embodiments of the present application can inhibit the Jan-Taylor effect brought by Mn3+ and reduce the migration energy of Na+ through the synergistic effect of alkali metal element ions and transition metal element ions, thereby making the positive electrode material have a higher specific capacity while effectively improving the cycle stability of the positive electrode material, showing good application prospects.
  • the present application further provides a positive electrode sheet, which may include a positive electrode current collector and a positive electrode additional layer disposed on a surface of one side of the positive electrode current collector.
  • the positive electrode additional layer is an integrated mixed layer, and the positive electrode additional layer may include a positive electrode adhesive and the positive electrode material of the first aspect.
  • the battery When the positive electrode plate provided in the present application is applied to a battery, the battery can have a higher specific capacity during the long-term cycle use of the battery, thereby making the battery have higher cycle stability and rate performance.
  • the present application further provides a battery, the battery comprising a negative electrode sheet, a separator and the positive electrode sheet of the third aspect, wherein the separator is located between the positive electrode sheet and the negative electrode sheet.
  • the battery provided in the present application has a higher specific capacity during long-term cycle use, so that the battery has higher cycle stability and rate performance.
  • the present application further provides a battery pack, which includes a power converter and the battery of the fourth aspect, the battery is electrically connected to the power converter, and the power converter can be used to perform power conversion processing on the voltage and/or current of the battery.
  • the battery pack since the rate performance and cycle stability of the battery are effectively improved, the rate performance and cycle stability of the battery pack can be improved.
  • the present application further provides an energy storage device, which may include a housing cavity and the battery described in the fourth aspect, and the battery may be accommodated in the housing cavity.
  • the energy storage device may be used as a power supply device for an electrical device to supply power to the electrical device. Since the rate performance and cycle stability of the battery of the energy storage device are effectively improved, it is beneficial to improve the rate performance and cycle stability of the energy storage device.
  • the present application also provides an energy storage system, which may include a power converter and the energy storage device of the sixth aspect.
  • the power converter can be used to perform power conversion processing on the voltage and/or current, and input the converted voltage and/or current to the energy storage device, so that the energy storage device can meet the power requirements of the power-consuming device. Since the energy storage device in the energy storage system has better rate performance and cycle stability, it can help improve the operating stability of the energy storage system.
  • FIG1 is a flow chart of a method for preparing a positive electrode material provided in an embodiment of the present application
  • FIG2 is a comparison chart of the cycle performance of the batteries of Example 1 and three comparative examples provided in the present application at a 5C rate;
  • FIG3 is a comparison chart of the rate performance of the batteries of Example 1 and three comparative examples provided in the present application.
  • references to "one embodiment” or “a specific embodiment” described in this specification mean that one or more embodiments of the present application include a particular feature, structure or characteristic described in conjunction with the embodiment.
  • the terms “include”, “comprising”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized.
  • Sodium-ion battery raw materials are abundant and inexpensive. As sodium-ion battery technology matures, it has shown great application prospects in the above-mentioned electronic devices. In addition, the current cost of raw materials for lithium-ion batteries has risen sharply, and the development of sodium-ion batteries will be faster in the future, and they will replace lithium-ion batteries in some energy storage fields.
  • sodium ion batteries mostly use sodium vanadium phosphate (Na3V2(PO4)3), a vanadium-based polyanion material with a fast ion conductor structure, as its positive electrode material.
  • Na3V2(PO4)3 sodium vanadium phosphate
  • V vanadium element
  • the raw materials of the vanadium element (V) contained in this type of material are expensive and toxic.
  • Mn manganese elements
  • Na4MnV(PO4)3 sodium vanadium manganese phosphate
  • the Jan-Taylor effect is sometimes also called the Jan-Taylor deformation, which describes the configuration deformation of the electron cloud of a nonlinear molecule with multiple degenerate states in the ground state under certain circumstances.
  • the octahedral complex will be twisted along the axial direction (that is, the z-axis). The distortion of the octahedron will cause the distortion of the lattice and cause the collapse of the material structure.
  • the positive electrode material provided in this application aims to solve the above-mentioned problems by reducing the influence of the Jan-Taylor effect brought by Mn3+ through regulation by element doping, thereby improving its cycle stability without sacrificing the specific capacity of the positive electrode material, thereby improving the cycle stability and rate performance of the battery using the positive electrode material.
  • the present application uses two elements to dope and modify Na4MnV(PO4)3 to suppress the Jan-Taylor effect brought by Mn3+ through the synergistic effect of double ions and reduce the migration energy of sodium ions (Na+).
  • the synergistic effect refers to the phenomenon that the effect of two or more modification measures combined is greater than the effect of each modification measure alone.
  • the material Na4MnV(PO4)3 can be doped and modified by using alkali metal ions A and transition metal ions B.
  • alkali metal ions A are doped at the Na position
  • transition metal ions B are doped at the Mn position to obtain the material Na4-xAxVMn1-yBy(PO4)3.
  • the alkali metal ion A can be, but is not limited to, one of potassium ions (K+) or lithium ions (Li+)
  • the transition metal ion B can be, but is not limited to, one of magnesium ions (Mg2+), copper ions (Cu2+), zinc ions (Zn2+) or calcium ions (Ca2+).
  • the alkali metal ion A may be K+, x may be 0.05, the transition metal ion B may be Mg2+, y may be 0.1, and the resulting material may be Na3.95K0.05VMn0.9Mg0.1(PO4)3.
  • the alkali metal ion A may be Li+, x may be 0.07, the transition metal ion B may be Mg2+, y may be 0.12, and the resulting material may be Na3.93Li0.07VMn0.88Mg0.12(PO4)3, etc.
  • Na4MnV(PO4)3 is doped and modified by using alkali metal ions A and transition metal ions B to obtain the positive electrode material Na4-xAxVMn1-yBy(PO4)3, so that the Jan-Taylor effect brought by Mn3+ is suppressed and the migration energy of Na+ is reduced through the synergistic effect of alkali metal element ions and transition metal element ions.
  • This can not only make the positive electrode material have a higher specific capacity, but also effectively improve the cycle stability of the positive electrode material, showing good application prospects.
  • the preparation method of the positive electrode material is described below.
  • the positive electrode material can be prepared by a sol-gel method.
  • FIG. 1 is a flow chart of the preparation method of the positive electrode material provided in the embodiment of the present application.
  • the preparation method may include the following steps:
  • Step 001 Prepare precursor solution.
  • the positive electrode material may include sodium, alkaline metal, vanadium, manganese, transition metal and phosphorus.
  • a sodium source, an alkaline metal source, a vanadium source, a manganese source, a transition metal source and a phosphorus source can be weighed, and a complexing agent and a carbon source can be weighed, and then the above materials are mixed together in a solvent.
  • the above mixture can be magnetically stirred, and the stirring time is not specifically limited in this application. Exemplarily, it can be stirred for 2h to 4h.
  • the sodium source, alkaline metal source, vanadium source, manganese source, transition metal source and phosphorus source can be weighed according to the stoichiometric ratio of (4-x): x: 1: (1-y): y: 3.
  • the mass of the carbon source can be 10% to 20% of the total mass of the sodium source, alkaline metal source, vanadium source, manganese source, transition metal source and phosphorus source, which can effectively improve the conductivity of the subsequent positive electrode material.
  • the specific amount of the complexing agent is not limited, as long as it can play the role of complexing the ions of the above-mentioned source materials.
  • the sodium source may be, but is not limited to, at least one of sodium acetate, sodium sulfate, sodium oxalate, or sodium citrate. That is, the sodium source may be one of sodium acetate, sodium sulfate, sodium oxalate, or sodium citrate, or the sodium source may be a mixture of two or more of sodium acetate, sodium sulfate, sodium oxalate, or sodium citrate.
  • the alkaline metal source may be, but is not limited to, at least one of potassium acetate, potassium oxalate, potassium nitrate, or potassium carbonate. That is, the alkaline metal source may be one of potassium acetate, potassium oxalate, potassium nitrate, or potassium carbonate, or the alkaline metal source may be a mixture of two or more of potassium acetate, potassium oxalate, potassium nitrate, or potassium carbonate.
  • the vanadium source may be, but is not limited to, at least one of ammonium metavanadate, sodium metavanadate or vanadium acetylacetonate. That is, the vanadium source may be one of ammonium metavanadate, sodium metavanadate or vanadium acetylacetonate, or the vanadium source may be a mixture of two or more of ammonium metavanadate, sodium metavanadate or vanadium acetylacetonate.
  • the manganese source may be, but is not limited to, at least one of manganese acetate, manganese nitrate, manganese oxalate dihydrate, manganese carbonate, or manganese dihydrogen phosphate. That is, the manganese source may be one of manganese acetate, manganese nitrate, manganese oxalate dihydrate, manganese carbonate, or manganese dihydrogen phosphate, or the manganese source may be two of manganese acetate, manganese nitrate, manganese oxalate dihydrate, manganese carbonate, or manganese dihydrogen phosphate, or a mixture of the two.
  • the transition metal source may be, but is not limited to, a nitrate comprising one of magnesium ions, copper ions, zinc ions, or calcium ions.
  • the transition metal source may be, but is not limited to, an oxalate comprising one of magnesium ions, copper ions, zinc ions, or calcium ions.
  • the phosphorus source may be, but is not limited to, at least one of ammonium dihydrogen phosphate, sodium dihydrogen phosphate, diammonium hydrogen phosphate, disodium hydrogen phosphate, potassium phosphate, or sodium phosphate. That is, the phosphorus source may be one of ammonium dihydrogen phosphate, sodium dihydrogen phosphate, diammonium hydrogen phosphate, disodium hydrogen phosphate, potassium phosphate, or sodium phosphate, or the phosphorus source may be at least one of ammonium dihydrogen phosphate, sodium dihydrogen phosphate, diammonium hydrogen phosphate, disodium hydrogen phosphate, potassium phosphate, or sodium phosphate. A mixture of two or more.
  • the complexing agent may be, but is not limited to, at least one of oxalic acid, ascorbic acid, citric acid monohydrate or malic acid.
  • the complexing agent may be one of oxalic acid, ascorbic acid, citric acid monohydrate or malic acid, or the complexing agent may be a mixture of two or more of oxalic acid, ascorbic acid, citric acid monohydrate or malic acid.
  • the carbon source may be, but is not limited to, at least one of oxalic acid, ascorbic acid, citric acid, sucrose, glucose, sucrose or malic acid.
  • the carbon source may be one of oxalic acid, ascorbic acid, citric acid, sucrose, glucose, sucrose or malic acid, or the carbon source may be a mixture of two or more of oxalic acid, ascorbic acid, citric acid, sucrose, glucose, sucrose or malic acid.
  • the solvent may be, but is not limited to, at least one of water, acetone, ethanol or ethylene glycol. That is, the solvent may be one of water, acetone, ethanol or ethylene glycol, or the solvent may be a mixture of two or more of water, acetone, ethanol or ethylene glycol.
  • Step 002 Dry the precursor solution to form a gel-like substance.
  • the precursor solution obtained in the above step 001 can be placed at a temperature of 60°C to 80°C for drying, and the drying time can be, for example, 5h to 20h, until a gel-like substance is formed.
  • the above precursor solution can be placed at a temperature of 80°C and dried for 10h, so as to reduce the drying time on the basis of obtaining a gel-like substance, thereby reducing the preparation cost.
  • Step 003 Dry the gel-like substance to form a precursor.
  • the gel-like substance obtained in the above step 002 can be placed at a temperature of 100°C to 200°C for drying, and the drying time can be, for example, 5h to 20h, until a solid precursor is formed.
  • the gel-like substance can be placed at a temperature of 150°C for 5h to be dried, so as to reduce the drying time on the basis of being able to form a precursor, thereby reducing the preparation cost.
  • Step 004 Sinter the precursor.
  • the precursor obtained in the above step 003 can be placed in an inert gas and sintered at a temperature of 700°C to 800°C.
  • the sintering time can be, for example, 5h to 10h.
  • the sintered product can be cooled to obtain carbon-coated Na4-xAxVMn1-yBy(PO4)3.
  • the precursor can be placed in an inert gas and sintered at 750°C for 8h, and then cooled to obtain carbon-coated Na4-xAxVMn1-yBy(PO4)3.
  • the type of inert gas is not specifically limited, and exemplary thereof may be nitrogen or argon.
  • the positive electrode material obtained by the preparation method provided in the above embodiments of the present application can inhibit the Jan-Taylor effect brought by Mn3+ and reduce the migration energy of Na+ through the synergistic effect of alkali metal element ions and transition metal element ions, thereby making the positive electrode material have a higher specific capacity while effectively improving the cycle stability of the positive electrode material, showing good application prospects.
  • the positive electrode material provided in the above embodiments of the present application When the positive electrode material provided in the above embodiments of the present application is applied to a battery, it can be specifically used to form a positive electrode plate of the battery.
  • the positive electrode plate can also include a positive electrode current collector, a positive electrode conductive agent, and a positive electrode adhesive.
  • the positive electrode current collector can be used as a carrier of other substances in the positive electrode plate, and its material can be, but is not limited to, platinum foil, copper foil, or aluminum foil.
  • the positive electrode conductive agent can enable electrons to be better transferred between the positive electrode active material and the positive electrode current collector, so as to improve the conductivity of the battery.
  • the specific type of the positive electrode conductive agent is not limited, and the exemplary positive electrode conductive agent may be at least one of conductive carbon black, conductive graphite powder, Ketjen black, acetylene black, carbon nanotubes, nano carbon fibers or carbon nanotubes.
  • the positive electrode binder may include, but is not limited to, at least one of poly(1,1-difluoroethylene) (PVDF), HSV900 or polytetrafluoroethylene (PTFE).
  • PVDF poly(1,1-difluoroethylene)
  • HSV900 polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • the positive electrode binder may be one of polyvinylidene fluoride or polytetrafluoroethylene, or may include a mixture of polyvinylidene fluoride and polytetrafluoroethylene.
  • the above-mentioned positive electrode material, positive electrode conductor and positive electrode adhesive can be mixed and coated on at least one side surface of the positive electrode collector, and then dried to form a positive electrode additional layer on the surface of the positive electrode collector.
  • the positive electrode additional layer is an integrated mixed layer, thereby obtaining a positive electrode sheet.
  • the mass ratio of the positive electrode active material, the positive electrode conductive agent and the positive electrode adhesive can be (8-9.8): (0.5-5): (1.0-1.5).
  • the positive electrode material, the positive electrode conductive agent and the positive electrode adhesive are mixed in the above mass ratio, so that the energy density of the battery using the positive electrode plate can meet the commercial requirements, and the positive electrode additional layer can be reliably bonded to the positive electrode current collector to improve the structural stability of the positive electrode plate.
  • the positive electrode conductive agent and the positive electrode conductive agent are mixed in the above-mentioned proportion, they can be dissolved in an appropriate amount of solvent to form a uniformly mixed slurry.
  • the solvent can be exemplarily one of water, acetone, ethanol or N-methylpyrrolidone (NMP), as long as the above-mentioned positive electrode active material, the positive electrode conductive agent and the positive electrode conductive agent can be dissolved.
  • the slurry can be applied to the positive electrode current collector, and after vacuum drying, it can be cut into positive electrode sheets of a required size.
  • the shape of the positive electrode sheet is not limited, and it can be exemplarily circular or rectangular, etc.
  • the positive electrode plate obtained is a disc with a diameter of 12 mm.
  • the positive electrode shell assembled with the positive electrode sheet and the electrolyte, and the negative electrode shell assembled with the negative electrode sheet and the electrolyte are buckled together.
  • the diaphragm is located between the positive electrode sheet and the negative electrode sheet to simultaneously block the openings of the positive electrode shell and the negative electrode shell, and the diaphragm can be infiltrated by the electrolyte in the positive electrode shell and the negative electrode shell to form a closed battery structure.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a specific method for preparing a positive electrode material comprising:
  • Step 1 Sodium acetate, potassium oxalate, sodium metavanadate, manganese nitrate, magnesium nitrate and sodium phosphate are weighed according to the stoichiometric ratio of each ion in Na3.9K0.1VMn0.9Mg0.1(PO4)3, and oxalic acid and glucose are weighed, and the above materials are mixed together in a solvent, and magnetically stirred for 4 hours to prepare a precursor solution.
  • the content of glucose is 10% of the total mass of the above sodium acetate, potassium oxalate, sodium metavanadate, manganese nitrate, magnesium nitrate and sodium phosphate.
  • Step 2 Dry the precursor solution at 80° C. for 15 hours until a gel-like substance is formed.
  • Step 3 Place the above gel-like substance in an oven at 200° C. and dry it for 10 hours to obtain a precursor.
  • Step 4 Place the above precursor in an inert gas atmosphere and sinter at 750°C for 8 hours, and obtain carbon-coated Na3.9K0.1VMn0.9Mg0.1(PO4)3 material after cooling.
  • the positive electrode material is used to form a positive electrode sheet.
  • the positive electrode material Na3.9K0.1VMn0.9Mg0.1(PO4)3 is mixed with conductive carbon black and polyvinylidene fluoride in a mass ratio of 7:2:1, and a solvent N-methylpyrrolidone is added, and the mixture is slurried and coated on an aluminum foil, and finally dried to obtain a positive electrode sheet.
  • the positive electrode plates are assembled into a battery according to the battery assembly process provided in the above embodiment, which will not be described in detail here.
  • the electrolyte of the battery can be a carbonate solution.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a specific method for preparing a positive electrode material comprising:
  • Step 1 Sodium acetate, potassium oxalate, sodium metavanadate, manganese nitrate, magnesium nitrate and sodium phosphate are weighed according to the stoichiometric ratio of each ion in Na3.95K0.05VMn0.9Mg0.1(PO4)3, and oxalic acid and glucose are weighed, and the above materials are mixed together in a solvent, and magnetically stirred for 4 hours to prepare a precursor solution.
  • the content of glucose is 10% of the total mass of the above sodium acetate, potassium oxalate, sodium metavanadate, manganese nitrate, magnesium nitrate and sodium phosphate.
  • Step 2 Dry the precursor solution at 80° C. for 15 hours until a gel-like substance is formed.
  • Step 3 Place the above gel-like substance in an oven at 200° C. and dry it for 10 hours to obtain a precursor.
  • Step 4 Place the above precursor in an inert gas atmosphere and sinter at 750°C for 8 hours, and obtain carbon-coated Na3.95K0.05VMn0.9Mg0.1(PO4)3 material after cooling.
  • the above positive electrode material is used to form a positive electrode sheet.
  • the above positive electrode material Na3.95K0.05VMn0.9Mg0.1(PO4)3 is mixed with conductive carbon black and polyvinylidene fluoride in a mass ratio of 7:2:1, and a solvent N-methylpyrrolidone is added, and the mixture is slurried and coated on an aluminum foil, and finally dried to obtain a positive electrode sheet.
  • the positive electrode plates are assembled into a battery according to the battery assembly process provided in the above embodiment, which will not be described in detail here.
  • the electrolyte of the battery can be a carbonate solution.
  • a specific method for preparing a positive electrode material comprising:
  • Step 1 Sodium acetate, potassium oxalate, sodium metavanadate, manganese nitrate, copper nitrate and sodium phosphate are weighed according to the stoichiometric ratio of each ion in Na3.95K0.05VMn0.9Cu0.1(PO4)3, and oxalic acid and glucose are weighed, and the above materials are mixed together in a solvent, and magnetically stirred for 4 hours to prepare a precursor solution.
  • the content of glucose is 10% of the total mass of the above sodium acetate, potassium oxalate, sodium metavanadate, manganese nitrate, copper nitrate and sodium phosphate.
  • Step 2 Dry the precursor solution at 80° C. for 15 hours until a gel-like substance is formed.
  • Step 3 Place the above gel-like substance in an oven at 200° C. and dry it for 10 hours to obtain a precursor.
  • Step 4 Place the above precursor in an inert gas atmosphere and sinter at 750°C for 8 hours, and obtain carbon-coated Na3.95K0.05VMn0.9Cu0.1(PO4)3 material after cooling.
  • the positive electrode material is used to form a positive electrode sheet.
  • the positive electrode material Na3.95K0.05VMn0.9Cu0.1(PO4)3 is mixed with conductive carbon black and polyvinylidene fluoride in a mass ratio of 7:2:1, and a solvent N-methylpyrrolidone is added, and the mixture is slurried and coated on an aluminum foil, and finally dried to obtain a positive electrode sheet.
  • the positive electrode plates are assembled into a battery according to the battery assembly process provided in the above embodiment, which will not be described in detail here.
  • the electrolyte of the battery can be a carbonate solution.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a specific method for preparing a positive electrode material comprising:
  • Step 1 Sodium acetate, potassium oxalate, sodium metavanadate, manganese nitrate, zinc nitrate and sodium phosphate are weighed according to the stoichiometric ratio of each ion in Na3.95K0.05VMn0.9Zn0.1(PO4)3, and oxalic acid and glucose are weighed, and the above materials are mixed together in a solvent, and magnetically stirred for 4 hours to prepare a precursor solution.
  • the content of glucose is 10% of the total mass of the above sodium acetate, potassium oxalate, sodium metavanadate, manganese nitrate, zinc nitrate and sodium phosphate.
  • Step 2 Dry the precursor solution at 80° C. for 15 hours until a gel-like substance is formed.
  • Step 3 Place the above gel-like substance in an oven at 200° C. and dry it for 10 hours to obtain a precursor.
  • Step 4 Place the above precursor in an inert gas atmosphere and sinter at 750°C for 8 hours, and obtain carbon-coated Na3.95K0.05VMn0.9Zn0.1(PO4)3 material after cooling.
  • the positive electrode material is used to form a positive electrode sheet.
  • the positive electrode material Na3.95K0.05VMn0.9Zn0.1(PO4)3 is mixed with conductive carbon black and polyvinylidene fluoride in a mass ratio of 7:2:1, and a solvent N-methylpyrrolidone is added, and the mixture is slurried and coated on an aluminum foil, and finally dried to obtain a positive electrode sheet.
  • the positive electrode plates are assembled into a battery according to the battery assembly process provided in the above embodiment, which will not be described in detail here.
  • the electrolyte of the battery can be a carbonate solution.
  • the present application also provides the following comparative examples.
  • a specific method for preparing a positive electrode material comprising:
  • Step 1 Sodium acetate, sodium metavanadate, manganese nitrate and sodium phosphate are weighed according to the stoichiometric ratio of each ion in Na4VMn(PO4)3, and oxalic acid and glucose are weighed, and the above materials are mixed together in a solvent, and magnetically stirred for 4 hours to prepare a precursor solution.
  • the content of glucose is 10% of the total mass of the above sodium acetate, sodium metavanadate, manganese nitrate and sodium phosphate.
  • Step 2 Dry the precursor solution at 80° C. for 15 hours until a gel-like substance is formed.
  • Step 3 Place the above gel-like substance in an oven at 200° C. and dry it for 10 hours to obtain a precursor.
  • Step 4 Place the above precursor in an inert gas atmosphere and sinter at 750°C for 8 hours, and obtain carbon-coated Na4VMn(PO4)3 material after cooling.
  • the above positive electrode material is used to form a positive electrode sheet.
  • the above positive electrode material Na4VMn(PO4)3 is mixed with conductive carbon black and polyvinylidene fluoride in a mass ratio of 7:2:1, and a solvent N-methylpyrrolidone is added, and the mixture is slurried and coated on an aluminum foil, and finally dried to obtain a positive electrode sheet.
  • the positive electrode plates are assembled into a battery according to the battery assembly process provided in the above embodiment, which will not be described in detail here.
  • the electrolyte of the battery can be a carbonate solution.
  • Step 1 Sodium acetate, potassium oxalate, sodium metavanadate, manganese nitrate and sodium phosphate are weighed according to the stoichiometric ratio of each ion in Na3.9K0.1VMn(PO4)3, and oxalic acid and glucose are weighed, and the above materials are mixed together in a solvent, and magnetically stirred for 4 hours to prepare a precursor solution.
  • the content of glucose is 10% of the total mass of the above sodium acetate, potassium oxalate, sodium metavanadate, manganese nitrate and sodium phosphate.
  • Step 2 Dry the precursor solution at 80° C. for 15 hours until a gel-like substance is formed.
  • Step 3 Place the above gel-like substance in an oven at 200° C. and dry it for 10 hours to obtain a precursor.
  • the positive electrode material is used to form a positive electrode sheet.
  • the positive electrode material Na3.9K0.1VMn(PO4)3 is mixed with Conductive carbon black and polyvinylidene fluoride are mixed in a mass ratio of 7:2:1, and a solvent N-methylpyrrolidone is added. After slurrying, the mixture is coated on an aluminum foil, and finally dried to obtain a positive electrode sheet.
  • the positive electrode plates are assembled into a battery according to the battery assembly process provided in the above embodiment, which will not be described in detail here.
  • the electrolyte of the battery can be a carbonate solution.
  • a specific method for preparing a positive electrode material comprising:
  • Step 1 Sodium acetate, sodium metavanadate, manganese nitrate, copper nitrate and sodium phosphate are weighed according to the stoichiometric ratio of each ion in Na4VMn0.9Cu0.1(PO4)3, and oxalic acid and glucose are weighed, and the above materials are mixed together in a solvent, and magnetically stirred for 4 hours to prepare a precursor solution.
  • the content of glucose is 10% of the total mass of the above sodium acetate, sodium metavanadate, manganese nitrate, copper nitrate and sodium phosphate.
  • Step 2 Dry the precursor solution at 80° C. for 15 hours until a gel-like substance is formed.
  • Step 3 Place the above gel-like substance in an oven at 200° C. and dry it for 10 hours to obtain a precursor.
  • Step 4 Place the above precursor in an inert gas atmosphere and sinter at 750°C for 8 hours, and obtain carbon-coated Na4VMn0.9Cu0.1(PO4)3 material after cooling.
  • the above positive electrode material is used to form a positive electrode sheet.
  • the above positive electrode material Na4VMn0.9Cu0.1(PO4)3 is mixed with conductive carbon black and polyvinylidene fluoride in a mass ratio of 7:2:1, and a solvent N-methylpyrrolidone is added, and the mixture is slurried and coated on an aluminum foil, and finally dried to obtain a positive electrode sheet.
  • the positive electrode plates are assembled into a battery according to the battery assembly process provided in the above embodiment, which will not be described in detail here.
  • the electrolyte of the battery can be a carbonate solution.
  • Figure 2 is a comparison chart of the cycle performance of the battery in Example 1 and the batteries in the three comparative examples at a 5C rate.
  • the specific capacity of the battery provided in Example 1 still does not decrease significantly after 1000 cycles.
  • the specific capacity of the batteries in Comparative Examples 1, 2 and 3 has shown a downward trend after a small number of cycles (e.g., 100 cycles), and after 1000 cycles, the magnitude of the decrease in specific capacity is very obvious.
  • Table 1 shows the performance comparison of the battery in Example 1 and the batteries in three comparative examples.
  • the specific capacity of the battery in comparative example 1 at a 5C rate is 88mAh/g, and its capacity retention rate after 1000 cycles is 40.0%; the specific capacity of the battery in comparative example 2 at a 5C rate is 95.5mAh/g, and its capacity retention rate after 1000 cycles is 58%; the specific capacity of the battery in comparative example 3 at a 5C rate is 97.5mAh/g, and its capacity retention rate after 1000 cycles is 76.2%. Therefore, the battery provided in the present application has good cycle performance, and the cycle stability of the positive electrode material obtained by doping Na4VMn(PO4)3 with double ions can be effectively improved.
  • Figure 3 is a comparison chart of the rate performance of the battery of Example 1 and the batteries of the three comparative examples.
  • the battery of Example 1 has a higher specific capacity, for example, at the 0.5C rate shown in Table 1, its specific capacity is 118.8 mAh/g; and at the 20C rate, its specific capacity is 102 mAh/g.
  • the specific capacity of the battery in comparative example 1 varies greatly during the cycle at different rates. For example, at a 0.5C rate, its specific capacity is 110.5mAh/g; and at a 20C rate, its specific capacity is 60.2mAh/g.
  • the specific capacity of the battery in comparative example 2 also varies greatly during the cycle at different rates. For example, at a 0.5C rate, its specific capacity is 109.3mAh/g; and at a 20C rate, its specific capacity is 73mAh/g.
  • the specific capacity of the battery in comparative example 3 also varies greatly during the cycle at different rates. For example, at a 0.5C rate, its specific capacity is 115mAh/g; and at a 20C rate, its specific capacity is 72.9mAh/g. It can be seen from the above comparison that the battery provided in the present application exhibits better rate performance.
  • the battery provided in the present application has good cycle performance and rate performance, and the cycle stability and rate performance of the positive electrode material obtained by doping Na4VMn(PO4)3 with double ions can be effectively improved.
  • the batteries assembled in the above embodiments of the present application can form a battery pack, which may include a power converter and multiple batteries, wherein the battery can be electrically connected to the power converter, and the power converter can be used to perform power conversion processing on the voltage and/or current of the battery.
  • the rate performance and cycle stability of its batteries are effectively improved, the rate performance and cycle stability of the battery pack can be improved.
  • the battery assembled in the above embodiments of the present application can be used, but not limited to, in energy storage devices such as electronic devices, electric vehicles or power storage systems.
  • the electronic device can be, for example, various computers, mobile phones or displays that use secondary batteries as driving power sources.
  • Electric vehicles can be, for example, electric cars, electric tricycles or electric bicycles that use secondary batteries as driving power sources.
  • the power storage system can be, for example, a power storage system that uses secondary batteries as power storage sources.
  • the energy storage device may include a housing cavity, and the battery may be housed in the housing cavity.
  • the energy storage device may be used as a power supply device for an electrical device to supply power to the electrical device. Since the rate performance of the battery provided in the present application is effectively improved, and the battery has a high specific capacity, the cycle stability of the battery is better, thereby meeting the high-rate application scenarios of the energy storage device and improving the operating stability of the energy storage device.
  • the energy storage system may also include a power converter.
  • the power converter can be used to perform power conversion processing on voltage and/or current, and input the converted voltage and/or current into the energy storage device, so that the energy storage device can meet the power requirements of the power-consuming device. Since the energy storage device in the energy storage system has better rate performance and cycle stability, it can help improve the operating stability of the energy storage system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种正极材料及其制备方法、电池、储能设备和储能系统。正极材料可以包括Na4-xAxVMn1-yBy(PO4)3,其中:A为碱性金属离子,B为过渡金属离子,且0.02≤x≤0.15,0.05≤y≤0.2。本申请采用碱性金属离子和过渡金属离子这两种离子对Na4VMn(PO4)3进行掺杂的制备方法制备得到的正极材料具有较高的比容量和循环稳定性。因此,在将该正极材料应用于电子设备的正极极片时,可以使电子设备的倍率性能和循环稳定性得以提升。

Description

一种正极材料及其制备方法、电池、储能设备和储能系统
相关申请的交叉引用
本申请要求在2022年12月09日提交中国专利局、申请号为202211584977.3、申请名称为“一种正极材料及其制备方法、正极极片、电池和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及到一种正极材料及其制备方法、电池、储能设备和储能系统。
背景技术
钠离子电池是一种新兴的电化学储能技术,钠离子电池的原料丰富且价格低廉。随着锂离子电池原材料的价格上升,对于钠离子电池的研究热度不断提高。目前,钠离子电池技术日益成熟,其在大规模储能、5G基站等小型静态储能电站或低速电动车等方面显现出了巨大的应用前景,并且在部分储能领域已经代替了锂离子电池。
钠离子电池技术进一步迈向商业化应用的关键在于找到适宜的正极材料。由于具有快离子导体结构的钒基聚阴离子材料磷酸钒钠(Na3V2(PO4)3)具有高安全性,以及相对较高的比容量,因此目前的钠离子电池多采用该钒基聚阴离子材料作为正极材料。但是,该钒基聚阴离子材料中的钒元素的原材料价格昂贵且有毒,其严重阻碍了该类材料的商业化应用。
基于此,如何得到一种既安全,又能够使电池具有较高的倍率性能以及循环稳定性的正极材料已成为本领域技术人员亟待解决的难题。
发明内容
本申请提供了一种正极材料及其制备方法、电池、储能设备和储能系统,以在保证正极材料的比容量的同时,提升正极材料的循环稳定性,从而使应用有该正极材料的电池具有较高的倍率性能以及循环稳定性。
第一方面,本申请提供了一种正极材料,该正极材料可以包括Na4-xAxVMn1-yBy(PO4)3。其中:A为碱性金属离子,B为过渡金属离子,且0.02≤x≤0.15,0.05≤y≤0.2。该正极材料具有较高的比容量和循环稳定性,其可以使应用有该正极材料的电池具有较高的倍率性能以及循环稳定性。
在本申请一个可能的实现方式中,在对x进行取值时,可以使0.05≤x≤0.1,示例性的,x可以为0.06、0.07、0.09或0.1等。另外,在对y进行取值时,可以使0.1≤y≤0.15,示例性的,y可以为0.11、0.12、0.13或0.14等。
在本申请提供的正极材料中,A可以但不限于为钾离子或锂离子。另外,B可以但不限于为镁离子、铜离子、锌离子或钙离子中的一种。
第二方面,本申请还提供一种正极材料的制备方法,该制备方法可以包括:
将钠源、碱性金属源、钒源、锰源、过渡金属源、磷源、络合剂和碳源混合于溶剂中制成前驱液;
对前驱液进行干燥形成凝胶状物质;
对凝胶状物质进行干燥形成前驱体;
对前驱体进行烧结,并冷却后得到碳包覆的Na4-xAxVMn1-yBy(PO4)3。
采用本申请提供的正极材料的制备方法制备得到的正极材料具有较高的比容量和循环稳定性。在将该正极材料用于电池时,可在电池的长期循环使用的过程中,使其具有较高的倍率性能和循环稳定性,其有利于延长电池的使用寿命。
在具体形成前驱液时,可按照(4-x):x:1:(1-y):y:3的化学计量比称取钠源、碱性金属源、钒源、锰源、过渡金属源和磷源,并称取络合剂和碳源。
其中,碳源的质量可为上述钠源、碱性金属源、钒源、锰源、过渡金属源和磷源总质量的10%~20%,以使制备形成的正极材料具有较好的导电性能。另外,在本申请中不对络合剂的具体用量进行限定,只要使其能够起到将上述各源材料中的离子进行络合的作用即可。
在对上述材料称取完成之后,可将其混合于溶剂中,并利用磁力搅拌机对其进行搅拌。其搅拌的时间可以但不限于为2h~4h,例如可为3h或3.5h等,以形成前驱液。
在本申请一个可能的实现方式中,钠源可以但不限于为醋酸钠、硫酸钠、草酸钠或柠檬酸钠中的至少一种。也就是说,钠源可以为醋酸钠、硫酸钠、草酸钠或柠檬酸钠中的一种,或者钠源可以为醋酸钠、硫酸钠、草酸钠或柠檬酸钠中的两种或两种以上的混合物。
碱性金属源可以但不限于为醋酸钾、草酸钾、硝酸钾或碳酸钾中的至少一种。也就是说,碱性金属源可以为醋酸钾、草酸钾、硝酸钾或碳酸钾中的一种,或者碱性金属源可以为醋酸钾、草酸钾、硝酸钾或碳酸钾中的两种或两种以上的混合物。
钒源可以但不限于为偏钒酸铵、偏钒酸钠或乙酰丙酮钒中的至少一种。也就是说,钒源可以为偏钒酸铵、偏钒酸钠或乙酰丙酮钒中的一种,或者钒源可以为偏钒酸铵、偏钒酸钠或乙酰丙酮钒中的两种或两种以上的混合物。
锰源可以但不限于为乙酸锰、硝酸锰、二水草酸锰、碳酸锰或磷酸二氢锰中的至少一种。也就是说,锰源可以为乙酸锰、硝酸锰、二水草酸锰、碳酸锰或磷酸二氢锰中的一种,或者锰源可以为乙酸锰、硝酸锰、二水草酸锰、碳酸锰或磷酸二氢锰中的两种或两种的混合物。
过渡金属源可以但不限于为硝酸盐,该硝酸盐包括镁离子、铜离子、锌离子或钙离子的中的一种。或者,过渡金属源可以但不限于为草酸盐,该草酸盐包括镁离子、铜离子、锌离子或钙离子的中的一种。
磷源可以但不限于为磷酸二氢铵、磷酸二氢钠、磷酸氢二铵、磷酸氢二钠、磷酸钾或磷酸钠中的至少一种。也就是说,磷源可以为磷酸二氢铵、磷酸二氢钠、磷酸氢二铵、磷酸氢二钠、磷酸钾或磷酸钠中的一种,或者磷源可以为磷酸二氢铵、磷酸二氢钠、磷酸氢二铵、磷酸氢二钠、磷酸钾或磷酸钠中的两种或两种以上的混合物。
络合剂可以但不限于为草酸、抗坏血酸、一水合柠檬酸或苹果酸中的至少一种。也就是说,络合剂可以为草酸、抗坏血酸、一水合柠檬酸或苹果酸中的一种,或者络合剂可以为草酸、抗坏血酸、一水合柠檬酸或苹果酸中的两种或两种以上的混合物。
碳源可以但不限于为草酸、抗坏血酸、柠檬酸、蔗糖、葡萄糖、蔗糖或苹果酸中的至少一种。也就是说,碳源可以为草酸、抗坏血酸、柠檬酸、蔗糖、葡萄糖、蔗糖或苹果酸中的一种,或者碳源可以为草酸、抗坏血酸、柠檬酸、蔗糖、葡萄糖、蔗糖或苹果酸中的两种或两种以上的混合物。
溶剂可以但不限于为水、丙酮、乙醇或乙二醇中的至少一种。也就是说,溶剂可以为水、丙酮、乙醇或乙二醇中的一种,或者溶剂可以为水、丙酮、乙醇或乙二醇中的两种或两种以上的混合物。
本申请提供的正极材料的制备方法中,在对前驱液进行干燥形成凝胶状物质的过程中,可将前驱液放置在60℃~80℃的温度中进行干燥,其干燥时间例如可以为5h~20h,直至形成凝胶状物质。在本申请一个可能的实现方式中,可以将上述前驱液放置在80℃的温度中干燥10h,以在能够得到凝胶状物质的基础上,减少干燥时间,从而降低制备成本。
另外,在对凝胶状物质进行干燥形成前驱体的过程中,可将凝胶状物质放置在100℃~200℃的温度中进行干燥,其干燥时间例如可为5h~20h,直至形成固态的前驱体。在本申请一个可能的实现方式中,可以将凝胶状物质放置在150℃的温度中干燥5h,以在能够形成前驱体的基础上,减少干燥时间,从而降低制备成本。
在对前驱体进行烧结时,可将前驱体放置在惰性气体中,且在700℃~800℃的温度下进行烧结,其烧结时间例如可为5h~10h。之后可对上述烧结产物进行冷却即可得到碳包覆的Na4-xAxVMn1-yBy(PO4)3。在本申请一个可能的实现方式中,可以将前驱体放置在惰性气体中,且在750℃下烧结8h,并冷却后得到碳包覆的Na4-xAxVMn1-yBy(PO4)3。
在本申请中,不对惰性气体的类型进行限定,其示例性的可为氮气或者氩气,只要能够有效的降低前驱体中的成分的氧化即可。
采用本申请上述实施例提供的制备方法得到的正极材料,可通过碱金属元素离子和过渡金属元素离子的协同作用来抑制Mn3+带来的姜泰勒效应,并降低Na+的迁移能,从而可在使正极材料具有较高的比容量的同时,还可以有效的提升正极材料的循环稳定性,其展现出了良好的应用前景。
第三方面,本申请还提供一种正极极片,该正极极片可以包括正极集流体以及设置于正极集流体一侧表面的正极附加层。其中,正极附加层为一体混合层,正极附加层可以包括正极粘接剂以及第一方面的正极材料。
本申请提供的正极极片在应用于电池时,可在电池的长期循环使用的过程中,使电池具有较高的比容量,从而使电池具有较高的循环稳定性和倍率性能。
第四方面,本申请还提供一种电池,该电池包括负极极片、隔膜以及第三方面的正极极片。其中,隔膜位于正极极片和负极极片之间。
本申请提供的电池在长期循环使用的过程中具有较高的比容量,从而使电池具有较高的循环稳定性和倍率性能。
第五方面,本申请还提供一种电池包,该电池包包括功率转换器以及第四方面的电池,该电池与功率转换器电连接,功率变换器可用于对电池的电压和/或电流进行功率变换处理。在该电池包中,由于其电池的倍率性能和循环稳定性得到了有效的提升,从而可使电池包的倍率性能和循环稳定性得以提升。
第六方面,本申请还提供一种储能设备,该储能设备可以包括容纳腔以及第四方面所述的电池,且该电池可容置于该容纳腔内。该储能设备可作为用电设备的供电装置,以用于为用电设备进行供电。由于该储能设备的电池的倍率性能和循环稳定性得到了有效的提升,则其有利于该储能设备的倍率性能和循环稳定性的提升。
第七方面,本申请还提供一种储能系统,该储能系统可包括功率变换器以及第六方面的储能设备。功率变换器可用于对电压和/或电流进行功率变换处理,并将变换后的电压和/或电流输入至储能设备,从而使储能设备能够满足用电设备的用电要求。由于储能系统中的储能设备的倍率性能和循环稳定性较佳,则其可有利于提升该储能系统的运行稳定性。
附图说明
图1为本申请实施例提供的正极材料的制备方法流程图;
图2为本申请提供的实施例一与三个对比例的电池在5C倍率下的循环性能对比图;
图3为本申请提供的实施例一与三个对比例的电池的倍率性能对比图。
具体实施方式
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“具体的实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了方便理解本申请实施例提供的正极材料及其制备方法、正极极片、电池和电子设备,下面首先介绍一下其应用场景。电子设备在使用过程中,通常需要供电装置对其进行供电。目前,各类电子设备,例如户用储能设备、储能基站、数据中心备电设备、光伏发电设备、消费类电子产品(如手机、平板或者可穿戴设备)以及电动汽车等,通常选择二次电池作为其供电装置。其中,在本申请中,二次电池(rechargeable battery)又称为充电电池或蓄电池,其是指在电池放电后可通过充电的方式使活性物质激活而继续使用的电池。
钠离子电池原料丰富、价格低廉,随着钠离子电池技术日益成熟,其在上述各类电子设备中显现出了巨大的应用前景。加之当前锂离子电池的原材料成本大幅上涨,未来钠离子电池的发展将更加迅速,并且会在部分储能领域代替锂离子电池。
目前,钠离子电池多以具有快离子导体结构的钒基聚阴离子材料磷酸钒钠(Na3V2(PO4)3)作为其正极材料。但是,该类材料中包含的钒元素(V)的原材料价格昂贵且有毒。针对这一问题,目前的解决方案为利用便宜且无毒的锰元素(Mn)代替一半的V以得到磷酸钒锰钠(Na4MnV(PO4)3)作为正极材料,这样不仅可以使V的用量大幅度减少,还可以提高电池的比容量和工作电压。但由于锰离子(Mn3+)具有姜泰勒效应,其容易引发材料晶体结构的畸变和循环过程中的坍塌,导致材料的倍率性能和循环性能很差。其中,姜泰勒效应有时也被称为姜-泰勒变形,其描述了基态时有多个简并态的非线性分子的电子云在某些情形下发生的构型形变,为了消除简并,八面体配合物将会沿着轴向(也就是z轴)扭曲,八面体的扭曲会导致晶格的畸变,引发材料结构坍塌。
本申请提供的正极材料旨在解决上述问题,以通过采用元素掺杂的方式进行调控,来减少Mn3+带来的姜泰勒效应的影响,从而在不牺牲正极材料的比容量的基础上,提升其循环稳定性,进而提高应用有该正极材料的电池的循环稳定性以及倍率性能。
由上文的介绍可以知道,利用Mn代替Na3V2(PO4)3中的一半的V得到的Na4MnV(PO4)3作为正极材料可以提高电池的比容量和工作电压。基于此,本申请利用两种元素对Na4MnV(PO4)3进行掺杂改性,以通过双离子的协同效应来抑制Mn3+带来的姜泰勒效应,降低钠离子(Na+)的迁移能。其中,协同效应是指两种或两种以上的改性措施组合后,其效果大于每一种改性措施单独起到的作用效果的现象。
在本申请中,可利用碱金属离子A和过渡金属离子B对材料Na4MnV(PO4)3进行掺杂改性。具体实施时,碱金属离子A掺杂Na位,过渡金属离子B掺杂Mn位,以得到材料Na4-xAxVMn1-yBy(PO4)3。其中,碱金属离子A可以但不限于为钾离子(K+)或锂离子(Li+)中的一种,过渡金属离子B可以但不限于为镁离子(Mg2+)、铜离子(Cu2+)、锌离子(Zn2+)或钙离子(Ca2+)中的一种。
另外,0.02≤x≤0.15,0.05≤y≤0.2,示例性的,0.05≤x≤0.1;0.1≤y≤0.15。在本申请一个具体的实施例中,碱金属离子A可为K+,x可为0.05,过渡金属离子B可为Mg2+,y可为0.1,则得到的材料可为Na3.95K0.05VMn0.9Mg0.1(PO4)3。又或者,碱金属离子A可为Li+,x可为0.07,过渡金属离子B可为Mg2+,y为0.12,则得到的材料可为Na3.93Li0.07VMn0.88Mg0.12(PO4)3等。
在本申请中,通过利用碱金属离子A和过渡金属离子B对Na4MnV(PO4)3进行掺杂改性以得到正极材料Na4-xAxVMn1-yBy(PO4)3,从而通过碱金属元素离子和过渡金属元素离子的协同作用来抑制Mn3+带来的姜泰勒效应,并降低Na+的迁移能,其可在使正极材料具有较高的比容量的同时,还可以有效的提升正极材料的循环稳定性,其展现出了良好的应用前景。
在对本申请提供的正极材料的元素组成进行了介绍之后,为了便于对该正极材料有进一步的理解,接下来对该正极材料的制备方法进行说明。在本申请中,该正极材料可采用溶胶凝胶法制备,具体实施时,可参照图1,图1为本申请实施例提供的正极材料的制备方法流程图。该制备方法可以包括以下步骤:
步骤001:制备前驱液。
由上文对本申请提供的正极材料的化学式的介绍可以知道,该正极材料可包括钠、碱性金属、钒、锰、过渡金属以及磷。基于此,在该步骤001中可称取钠源、碱性金属源、钒源、锰源、过渡金属源以及磷源,并称取络合剂以及碳源,然后将上述材料一并混合于溶剂中。另外,为了能够制成前驱液,可以对上述混合物进行磁力搅拌,其搅拌的时长在本申请中不作具体限定,示例性的,可以搅拌2h~4h。
可以理解的是,在本申请中钠源、碱性金属源、钒源、锰源、过渡金属源以及磷源可按照(4-x):x:1:(1-y):y:3的化学计量比进行称取。另外,碳源的质量可为钠源、碱性金属源、钒源、锰源、过渡金属源和磷源的总质量的10%~20%,其可有效的提升后续得到的正极材料的导电性能。在本申请中,不对络合剂的具体用量进行限定,只要使其能够起到将上述各源材料的离子进行络合的作用即可。
在本申请中,钠源可以但不限于为醋酸钠、硫酸钠、草酸钠或柠檬酸钠中的至少一种。也就是说,钠源可以为醋酸钠、硫酸钠、草酸钠或柠檬酸钠中的一种,或者钠源可以为醋酸钠、硫酸钠、草酸钠或柠檬酸钠中的两种或两种以上的混合物。
碱性金属源可以但不限于为醋酸钾、草酸钾、硝酸钾或碳酸钾中的至少一种。也就是说,碱性金属源可以为醋酸钾、草酸钾、硝酸钾或碳酸钾中的一种,或者碱性金属源可以为醋酸钾、草酸钾、硝酸钾或碳酸钾中的两种或两种以上的混合物。
钒源可以但不限于为偏钒酸铵、偏钒酸钠或乙酰丙酮钒中的至少一种。也就是说,钒源可以为偏钒酸铵、偏钒酸钠或乙酰丙酮钒中的一种,或者钒源可以为偏钒酸铵、偏钒酸钠或乙酰丙酮钒中的两种或两种以上的混合物。
锰源可以但不限于为乙酸锰、硝酸锰、二水草酸锰、碳酸锰或磷酸二氢锰中的至少一种。也就是说,锰源可以为乙酸锰、硝酸锰、二水草酸锰、碳酸锰或磷酸二氢锰中的一种,或者锰源可以为乙酸锰、硝酸锰、二水草酸锰、碳酸锰或磷酸二氢锰中的两种或两种的混合物。
过渡金属源可以但不限于为硝酸盐,该硝酸盐包括镁离子、铜离子、锌离子或钙离子的中的一种。或者,过渡金属源可以但不限于为草酸盐,该草酸盐包括镁离子、铜离子、锌离子或钙离子的中的一种。
磷源可以但不限于为磷酸二氢铵、磷酸二氢钠、磷酸氢二铵、磷酸氢二钠、磷酸钾或磷酸钠中的至少一种。也就是说,磷源可以为磷酸二氢铵、磷酸二氢钠、磷酸氢二铵、磷酸氢二钠、磷酸钾或磷酸钠中的一种,或者磷源可以为磷酸二氢铵、磷酸二氢钠、磷酸氢二铵、磷酸氢二钠、磷酸钾或磷酸钠中的 两种或两种以上的混合物。
络合剂可以但不限于为草酸、抗坏血酸、一水合柠檬酸或苹果酸中的至少一种。也就是说,络合剂可以为草酸、抗坏血酸、一水合柠檬酸或苹果酸中的一种,或者络合剂可以为草酸、抗坏血酸、一水合柠檬酸或苹果酸中的两种或两种以上的混合物。
碳源可以但不限于为草酸、抗坏血酸、柠檬酸、蔗糖、葡萄糖、蔗糖或苹果酸中的至少一种。也就是说,碳源可以为草酸、抗坏血酸、柠檬酸、蔗糖、葡萄糖、蔗糖或苹果酸中的一种,或者碳源可以为草酸、抗坏血酸、柠檬酸、蔗糖、葡萄糖、蔗糖或苹果酸中的两种或两种以上的混合物。
溶剂可以但不限于为水、丙酮、乙醇或乙二醇中的至少一种。也就是说,溶剂可以为水、丙酮、乙醇或乙二醇中的一种,或者溶剂可以为水、丙酮、乙醇或乙二醇中的两种或两种以上的混合物。
步骤002:对前驱液进行干燥形成凝胶状物质。在该步骤中,可将上述步骤001中得到的前驱液放置在60℃~80℃的温度中进行干燥,其干燥时间例如可以为5h~20h,直至形成凝胶状物质。在本申请一个具体的实施例中,可以将上述前驱液放置在80℃的温度中干燥10h,以在能够得到凝胶状物质的基础上,减少干燥时间,从而降低制备成本。
步骤003:对凝胶状物质进行干燥形成前驱体。在该步骤中,可将上述步骤002中得到的凝胶状物质放置在100℃~200℃的温度中进行干燥,其干燥时间例如可为5h~20h,直至形成固态的前驱体。在本申请一个具体的实施例中,可以将凝胶状物质放置在150℃的温度中干燥5h,以在能够形成前驱体的基础上,减少干燥时间,从而降低制备成本。
步骤004:对前驱体进行烧结。在该步骤中,可将上述步骤003中得到的前驱体放置在惰性气体中,且在700℃~800℃的温度下进行烧结,其烧结时间例如可为5h~10h。之后可对上述烧结产物进行冷却即可得到碳包覆的Na4-xAxVMn1-yBy(PO4)3。在本申请一个具体的实施例中,可以将前驱体放置在惰性气体中,且在750℃下烧结8h,并冷却后得到碳包覆的Na4-xAxVMn1-yBy(PO4)3。
可以理解的是,通过将前驱体放置在惰性气体氛围内进行烧结,可以有效的避免前驱体中的成分的氧化。在本申请中,不对惰性气体的类型进行具体限定,其示例性的可为氮气或者氩气等。
采用本申请上述实施例提供的制备方法得到的正极材料,可通过碱金属元素离子和过渡金属元素离子的协同作用来抑制Mn3+带来的姜泰勒效应,并降低Na+的迁移能,从而可在使正极材料具有较高的比容量的同时,还可以有效的提升正极材料的循环稳定性,其展现出了良好的应用前景。
本申请上述实施例中提供的正极材料在应用于电池时,其具体可用于形成电池的正极极片。该正极极片除了可以包括本申请上述实施例提供的正极材料外,还可以包括正极集流体、正极导电剂以及正极粘接剂等。其中,正极集流体可作为正极极片中的其它物质的承载体,其材质可以但不限于为铂箔、铜箔或铝箔等。
正极导电剂可以使电子能够在正极活性材料与正极集流体之间更好的传递,以用于提升电池的导电性能。在本申请中,不对正极导电剂的具体类型进行限定,其示例性的可为导电炭黑、导电石墨粉、科琴黑、乙炔黑、碳纳米管、纳米碳纤维或碳纳米管中的至少一种。
正极粘接剂可以但不限于包括聚偏氟乙烯(poly(1,1-difluoroethylene),PVDF)、HSV900或聚四氟乙烯(poly tetra fluoroethylene,PTFE)中的至少一种。也就是说,正极粘接剂可以为聚偏氟乙烯或聚四氟乙烯中的一种,也可以包括由聚偏氟乙烯和聚四氟乙烯形成的混合物。
需要指出的是,在具体形成正极极片时,可将上述的正极材料、正极导电剂以及正极粘接剂混合后涂覆于正极集流体的至少一侧表面,并进行干燥后以在正极集流体的表面上形成正极附加层,该正极附加层为一体混合层,从而得到正极极片。
在本申请实施例中,正极活性材料、正极导电剂以及正极粘接剂混合的质量比可以为(8~9.8):(0.5~5):(1.0~1.5)。正极材料、正极导电剂以及正极粘接剂采用上述的质量比进行混合,可以使应用有该正极极片的电池的能量密度能够满足商用要求,并且可使正极附加层可靠的粘接于正极集流体,以提高正极极片的结构稳定性。
在将正极材料、正极导电剂以及正极导电剂以上述比例混合后,可将其溶于适量的溶剂以形成均匀混合的浆料,该溶剂可以示例性的为水、丙酮、乙醇或N-甲基吡咯烷酮(N-Methylpyrrolidone,NMP)中的一种,只要能够将上述的正极活性材料、正极导电剂以及正极导电剂溶解即可。
最后,可将该浆料涂于正极集流体上,待真空干燥后可裁成满足要求大小的正极极片。在本申请中,不对正极极片的形状进行限定,其示例性的可为圆形或者矩形等,例如,在一个具体的实施例中可使得 到的正极极片为直径为12mm的圆片。
在得到该正极极片后,可将其进行组装以形成电池。电池中除了包括上述的正极极片外,还可以包括正极壳、电解液、隔膜、负极极片以及负极壳等。在组装形成电池时,可首先将正极极片设置于正极壳内,并向正极壳内填充电解液。然后,用隔膜封堵正极壳的开口。之后,将负极极片设置于负极壳内,并向负极壳内填充电解液。最后,将上述组装有正极极片和电解液的正极壳,以及组装有负极极片和电解液的负极壳相扣合,此时隔膜位于正极极片和负极极片之间,以同时将正极壳和负极壳的开口封堵,且隔膜可被正极壳和负极壳内的电解液浸润,以形成密闭的电池结构。
需要说明的是,上述电池的组装过程只是本申请给出的一种示例性的说明,在一些可能的实施例中,可以对电池的组装步骤做一些适应性的调整,只要能够组装形成密闭的电池结构即可。
为了便于对本申请提供的正极材料的制备方法,以及包括应用有该正极材料的正极极片的电池进行理解,下面将结合具体的实施例对其进行说明。
实施例一:
首先,提供了一种具体的正极材料的制备方法,该制备方法包括:
步骤一:按照Na3.9K0.1VMn0.9Mg0.1(PO4)3中各离子的化学计量比称取醋酸钠、草酸钾、偏钒酸钠、硝酸锰、硝酸镁和磷酸钠,并称取草酸及葡萄糖,将上述材料一起混合于溶剂中,磁力搅拌4h以制成前驱液。其中,葡萄糖的含量为上述醋酸钠、草酸钾、偏钒酸钠、硝酸锰、硝酸镁和磷酸钠总质量的10%。
步骤二:将上述前驱液放置在80℃的温度中干燥15h,直至形成凝胶状物质。
步骤三:将上述凝胶状物质放置在200℃的烘箱中干燥10h,得到前驱体。
步骤四:将上述前驱体放置在惰性气体的氛围中,且在750℃的温度中烧结8h,冷却后得到碳包覆的Na3.9K0.1VMn0.9Mg0.1(PO4)3材料。
其次,将上述正极材料用于形成正极极片。具体实施时,将上述正极材料Na3.9K0.1VMn0.9Mg0.1(PO4)3与导电炭黑和聚偏氟乙烯按照质量比7:2:1的比例混合,并加入溶剂N-甲基吡咯烷酮,经制浆后涂于铝箔上,最后经过干燥得到正极极片。
最后,将正极极片按照上述实施例提供的电池的组装过程组装形成电池,在此不对其进行赘述。其中,在该实施例中,电池的电解液可为碳酸酯溶液。
实施例二:
首先,提供了一种具体的正极材料的制备方法,该制备方法包括:
步骤一:按照Na3.95K0.05VMn0.9Mg0.1(PO4)3中各离子的化学计量比称取醋酸钠、草酸钾、偏钒酸钠、硝酸锰、硝酸镁和磷酸钠,并称取草酸及葡萄糖,将上述材料一起混合于溶剂中,磁力搅拌4h以制成前驱液。其中,葡萄糖的含量为上述醋酸钠、草酸钾、偏钒酸钠、硝酸锰、硝酸镁和磷酸钠总质量的10%。
步骤二:将上述前驱液放置在80℃的温度中干燥15h,直至形成凝胶状物质。
步骤三:将上述凝胶状物质放置在200℃的烘箱中干燥10h,得到前驱体。
步骤四:将上述前驱体放置在惰性气体的氛围中,且在750℃的温度中烧结8h,冷却后得到碳包覆的Na3.95K0.05VMn0.9Mg0.1(PO4)3材料。
其次,将上述正极材料用于形成正极极片。具体实施时,将上述正极材料Na3.95K0.05VMn0.9Mg0.1(PO4)3与导电炭黑和聚偏氟乙烯按照质量比7:2:1的比例混合,并加入溶剂N-甲基吡咯烷酮,经制浆后涂于铝箔上,最后经过干燥得到正极极片。
最后,将正极极片按照上述实施例提供的电池的组装过程组装形成电池,在此不对其进行赘述。其中,在该实施例中,电池的电解液可为碳酸酯溶液。
实施例三:
首先,提供了一种具体的正极材料的制备方法,该制备方法包括:
步骤一:按照Na3.95K0.05VMn0.9Cu0.1(PO4)3中各离子的化学计量比称取醋酸钠、草酸钾、偏钒酸钠、硝酸锰、硝酸铜和磷酸钠,并称取草酸及葡萄糖,将上述材料一起混合于溶剂中,磁力搅拌4h以制成前驱液。其中,葡萄糖的含量为上述醋酸钠、草酸钾、偏钒酸钠、硝酸锰、硝酸铜和磷酸钠总质量的10%。
步骤二:将上述前驱液放置在80℃的温度中干燥15h,直至形成凝胶状物质。
步骤三:将上述凝胶状物质放置在200℃的烘箱中干燥10h,得到前驱体。
步骤四:将上述前驱体放置在惰性气体的氛围中,且在750℃的温度中烧结8h,冷却后得到碳包覆的Na3.95K0.05VMn0.9Cu0.1(PO4)3材料。
其次,将上述正极材料用于形成正极极片。具体实施时,将上述正极材料Na3.95K0.05VMn0.9Cu0.1(PO4)3与导电炭黑和聚偏氟乙烯按照质量比7:2:1的比例混合,并加入溶剂N-甲基吡咯烷酮,经制浆后涂于铝箔上,最后经过干燥得到正极极片。
最后,将正极极片按照上述实施例提供的电池的组装过程组装形成电池,在此不对其进行赘述。其中,在该实施例中,电池的电解液可为碳酸酯溶液。
实施例四:
首先,提供了一种具体的正极材料的制备方法,该制备方法包括:
步骤一:按照Na3.95K0.05VMn0.9Zn0.1(PO4)3中各离子的化学计量比称取醋酸钠、草酸钾、偏钒酸钠、硝酸锰、硝酸锌和磷酸钠,并称取草酸及葡萄糖,将上述材料一起混合于溶剂中,磁力搅拌4h以制成前驱液。其中,葡萄糖的含量为上述醋酸钠、草酸钾、偏钒酸钠、硝酸锰、硝酸锌和磷酸钠总质量的10%。
步骤二:将上述前驱液放置在80℃的温度中干燥15h,直至形成凝胶状物质。
步骤三:将上述凝胶状物质放置在200℃的烘箱中干燥10h,得到前驱体。
步骤四:将上述前驱体放置在惰性气体的氛围中,且在750℃的温度中烧结8h,冷却后得到碳包覆的Na3.95K0.05VMn0.9Zn0.1(PO4)3材料。
其次,将上述正极材料用于形成正极极片。具体实施时,将上述正极材料Na3.95K0.05VMn0.9Zn0.1(PO4)3与导电炭黑和聚偏氟乙烯按照质量比7:2:1的比例混合,并加入溶剂N-甲基吡咯烷酮,经制浆后涂于铝箔上,最后经过干燥得到正极极片。
最后,将正极极片按照上述实施例提供的电池的组装过程组装形成电池,在此不对其进行赘述。其中,在该实施例中,电池的电解液可为碳酸酯溶液。
另外,为了便于对本申请提供的电池的性能进行理解,本申请还提供了如下的对比例。
对比例一:
首先,提供了一种具体的正极材料的制备方法,该制备方法包括:
步骤一:按照Na4VMn(PO4)3中各离子的化学计量比称取醋酸钠、偏钒酸钠、硝酸锰和磷酸钠,并称取草酸及葡萄糖,将上述材料一起混合于溶剂中,磁力搅拌4h以制成前驱液。其中,葡萄糖的含量为上述醋酸钠、偏钒酸钠、硝酸锰和磷酸钠总质量的10%。
步骤二:将上述前驱液放置在80℃的温度中干燥15h,直至形成凝胶状物质。
步骤三:将上述凝胶状物质放置在200℃的烘箱中干燥10h,得到前驱体。
步骤四:将上述前驱体放置在惰性气体的氛围中,且在750℃的温度中烧结8h,冷却后得到碳包覆的Na4VMn(PO4)3材料。
其次,将上述正极材料用于形成正极极片。具体实施时,将上述正极材料Na4VMn(PO4)3与导电炭黑和聚偏氟乙烯按照质量比7:2:1的比例混合,并加入溶剂N-甲基吡咯烷酮,经制浆后涂于铝箔上,最后经过干燥得到正极极片。
最后,将正极极片按照上述实施例提供的电池的组装过程组装形成电池,在此不对其进行赘述。其中,在该实施例中,电池的电解液可为碳酸酯溶液。
对比例二:
首先,提供了一种具体的正极材料的制备方法,该制备方法包括:
步骤一:按照Na3.9K0.1VMn(PO4)3中各离子的化学计量比称取醋酸钠、草酸钾、偏钒酸钠、硝酸锰和磷酸钠,并称取草酸及葡萄糖,将上述材料一起混合于溶剂中,磁力搅拌4h以制成前驱液。其中,葡萄糖的含量为上述醋酸钠、草酸钾、偏钒酸钠、硝酸锰和磷酸钠总质量的10%。
步骤二:将上述前驱液放置在80℃的温度中干燥15h,直至形成凝胶状物质。
步骤三:将上述凝胶状物质放置在200℃的烘箱中干燥10h,得到前驱体。
步骤四:将上述前驱体放置在惰性气体的氛围中,且在750℃的温度中烧结8h,冷却后得到碳包覆的Na3.9K0.1VMn(PO4)3材料。
其次,将上述正极材料用于形成正极极片。具体实施时,将上述正极材料Na3.9K0.1VMn(PO4)3与 导电炭黑和聚偏氟乙烯按照质量比7:2:1的比例混合,并加入溶剂N-甲基吡咯烷酮,经制浆后涂于铝箔上,最后经过干燥得到正极极片。
最后,将正极极片按照上述实施例提供的电池的组装过程组装形成电池,在此不对其进行赘述。其中,在该实施例中,电池的电解液可为碳酸酯溶液。
对比例三:
首先,提供了一种具体的正极材料的制备方法,该制备方法包括:
步骤一:按照Na4VMn0.9Cu0.1(PO4)3中各离子的化学计量比称取醋酸钠、偏钒酸钠、硝酸锰、硝酸铜和磷酸钠,并称取草酸及葡萄糖,将上述材料一起混合于溶剂中,磁力搅拌4h以制成前驱液。其中,葡萄糖的含量为上述醋酸钠、偏钒酸钠、硝酸锰、硝酸铜和磷酸钠总质量的10%。
步骤二:将上述前驱液放置在80℃的温度中干燥15h,直至形成凝胶状物质。
步骤三:将上述凝胶状物质放置在200℃的烘箱中干燥10h,得到前驱体。
步骤四:将上述前驱体放置在惰性气体的氛围中,且在750℃的温度中烧结8h,冷却后得到碳包覆的Na4VMn0.9Cu0.1(PO4)3材料。
其次,将上述正极材料用于形成正极极片。具体实施时,将上述正极材料Na4VMn0.9Cu0.1(PO4)3与导电炭黑和聚偏氟乙烯按照质量比7:2:1的比例混合,并加入溶剂N-甲基吡咯烷酮,经制浆后涂于铝箔上,最后经过干燥得到正极极片。
最后,将正极极片按照上述实施例提供的电池的组装过程组装形成电池,在此不对其进行赘述。其中,在该实施例中,电池的电解液可为碳酸酯溶液。
参照图2,图2为实施例一中的电池与三个对比例的电池在5C倍率下的循环性能的对比图。由图2可以看出,在5C倍率下,实施例一中提供的电池在循环1000圈后,其比容量仍没有明显的下降。而对比例一、对比例二和对比例三的电池在循环很少的圈数(例如100圈)后,其比容量已呈现下降的趋势,而在循环1000圈后,其比容量下降的幅度非常明显。
另外,可参照表1,表1展示了实施例一中的电池与三个对比例的电池的性能的对比。通过对本申请提供的实施例一中的电池与三个对比例的电池在5C倍率下的循环性能的对比可以看出:本申请实施例一中的电池在5C倍率下具有较高的比容量(112.3mAh/g),且其在循环1000圈后的容量保持率高达91.1%。而对比例一的电池在5C倍率下的比容量为88mAh/g,其在循环1000圈后的容量保持率为40.0%;对比例二的电池在5C倍率下的比容量为95.5mAh/g,其在循环1000圈后的容量保持率为58%;对比例三的电池在5C倍率下的比容量为97.5mAh/g,其在循环1000圈后的容量保持率为76.2%。因此,本申请提供的电池具有较好的循环性能,则通过双离子对Na4VMn(PO4)3进行掺杂得到的正极材料,其循环稳定性可以得到有效的提升。
表1
参照图3,图3为实施例一的电池与三个对比例的电池的倍率性能对比图。由图3可以看出,在不同的倍率下进行循环的过程中,实施一的电池均具有较高的比容量,例如表1中所展示的0.5C倍率下,其比容量为118.8mAh/g;而在20C倍率下其比容量为102mAh/g。
另外,可一并参照图3和表1,对比例一的电池在不同的倍率下进行循环的过程中,其比容量相差较多,例如在0.5C倍率下,其比容量为110.5mAh/g;而在20C倍率下其比容量为60.2mAh/g。对比例二的电池在不同的倍率下进行循环的过程中,其比容量也相差较多,例如在0.5C倍率下,其比容量为109.3mAh/g;而在20C倍率下其比容量为73mAh/g。对比例三的电池在不同的倍率下进行循环的过程中,其比容量也相差较多,例如在0.5C倍率下,其比容量为115mAh/g;而在20C倍率下其比容量为72.9mAh/g。通过上述对比可以看出,本申请提供的电池呈现出了更好的倍率性能。
综上,本申请提供的电池具有较好的循环性能和倍率性能,则通过双离子对Na4VMn(PO4)3进行掺杂得到的正极材料,其循环稳定性以及倍率性能可以得到有效的提升。
本申请上述实施例中组装形成的电池可形成电池包,该电池包中可包括功率转换器和多个电池,其中,电池可与功率转换器电连接,功率变换器可用于对电池的电压和/或电流进行功率变换处理。在该电池包中,由于其电池的倍率性能和循环稳定性得到了有效的提升,从而可使电池包的倍率性能和循环稳定性得以提升。
另外,本申请上述实施例中组装形成的电池可以但不限于应用于电子装置、电动车辆或电力储存系统等的储能设备中。其中,电子装置例如可为使用二次电池作为驱动电源的各种电脑、手机或显示器等设备。电动车辆例如可为利用二次电池作为驱动电源的电动汽车、电动三轮车或电动自行车等。电力储存系统例如可以为利用二次电池作为电力储存源的电力储存系统。
在储能设备中,可以包括一容纳腔,且该电池可容置于该容纳腔内。该储能设备可作为用电设备的供电装置,以用于为用电设备进行供电。由于本申请提供的电池的倍率性能得到了有效的提升,且电池具有较高的比容量,电池的循环稳定性较佳,从而可满足储能设备的大倍率应用场景,并可提升储能设备的运行稳定性。
另外,在将上述储能设备用于各类储能系统时,储能系统还可以包括功率变换器。功率变换器可用于对电压和/或电流进行功率变换处理,并将变换后的电压和/或电流输入至储能设备,从而使储能设备能够满足用电设备的用电要求。由于储能系统中的储能设备的倍率性能和循环稳定性较佳,则其可有利于提升该储能系统的运行稳定性
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种正极材料,其特征在于,包括Na4-xAxVMn1-yBy(PO4)3,其中:A为碱性金属离子,B为过渡金属离子,且0.02≤x≤0.15,0.05≤y≤0.2。
  2. 如权利要求1所述的正极材料,其特征在于,0.05≤x≤0.1,0.1≤y≤0.15。
  3. 如权利要求1或2所述的正极材料,其特征在于,A为钾离子或锂离子。
  4. 如权利要求1~3任一项所述的正极材料,其特征在于,B为镁离子、铜离子、锌离子或钙离子中的一种。
  5. 一种正极材料的制备方法,其特征在于,包括:
    将钠源、碱性金属源、钒源、锰源、过渡金属源、磷源、络合剂和碳源混合于溶剂中制成前驱液;
    对所述前驱液进行干燥形成凝胶状物质;
    对所述凝胶状物质进行干燥形成前驱体;
    对所述前驱体进行烧结,并冷却后得到碳包覆的Na4-xAxVMn1-yBy(PO4)3。
  6. 如权利要求5所述的制备方法,其特征在于,所述钠源、所述碱性金属源、所述钒源、所述锰源、所述过渡金属源和所述磷源的化学计量比为(4-x):x:1:(1-y):y:3。
  7. 如权利要求5或6所述的制备方法,其特征在于,所述碳源的质量为所述钠源、所述碱性金属源、所述钒源、所述锰源、所述过渡金属源和所述磷源的总质量的10%~20%。
  8. 如权利要求5~7任一项所述的制备方法,其特征在于,所述钠源为醋酸钠、硫酸钠、草酸钠或柠檬酸钠中的至少一种。
  9. 如权利要求5~8任一项所述的制备方法,其特征在于,所述碱性金属源为醋酸钾、草酸钾、硝酸钾或碳酸钾中的至少一种。
  10. 如权利要求5~9任一项所述的制备方法,其特征在于,所述钒源为偏钒酸铵、偏钒酸钠或乙酰丙酮钒中的至少一种。
  11. 如权利要求5~10任一项所述的制备方法,其特征在于,所述锰源为乙酸锰、硝酸锰、二水草酸锰、碳酸锰或磷酸二氢锰中的至少一种。
  12. 如权利要求5~11任一项所述的制备方法,其特征在于,所述过渡金属源为硝酸盐,所述硝酸盐包括镁离子、铜离子、锌离子或钙离子中的一种;或所述过渡金属源为草酸盐,所述草酸盐包括镁离子、铜离子、锌离子或钙离子中的一种。
  13. 一种电池,其特征在于,包括负极极片、隔膜以及正极极片,所述隔膜位于所述负极极片和所述正极极片之间,其中,所述正极极片包括正极集流体以及设置于所述正极集流体的至少一侧表面的正极附加层,所述正极附加层为一体混合层,所述正极附加层包括正极粘接剂以及如权利要求1~4任一项所述的正极材料。
  14. 一种储能设备,其特征在于,包括容纳腔以及如权利要求13所述的电池,所述电池容置于所述容纳腔内。
  15. 一种储能系统,其特征在于,包括功率变换器以及如权利要求14所述的储能设备,所述功率变换器用于对电压和/或电流进行功率变换处理,并将变换后的电压和/或电流输入至所述储能设备。
PCT/CN2023/129676 2022-12-09 2023-11-03 一种正极材料及其制备方法、电池、储能设备和储能系统 WO2024120092A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211584977.3 2022-12-09
CN202211584977.3A CN116111084A (zh) 2022-12-09 2022-12-09 一种正极材料及其制备方法、正极极片、电池和电子设备

Publications (1)

Publication Number Publication Date
WO2024120092A1 true WO2024120092A1 (zh) 2024-06-13

Family

ID=86258791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129676 WO2024120092A1 (zh) 2022-12-09 2023-11-03 一种正极材料及其制备方法、电池、储能设备和储能系统

Country Status (2)

Country Link
CN (1) CN116111084A (zh)
WO (1) WO2024120092A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116111084A (zh) * 2022-12-09 2023-05-12 华为数字能源技术有限公司 一种正极材料及其制备方法、正极极片、电池和电子设备
CN117810431B (zh) * 2024-02-29 2024-05-28 钠思科(溧阳)新材料有限责任公司 一种k掺杂的聚阴离子正极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058202A (zh) * 2016-07-29 2016-10-26 华南理工大学 一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠复合正极材料及其制备方法与应用
CN107819115A (zh) * 2017-10-13 2018-03-20 北京科技大学 一种掺杂改性的氟磷酸钒钠正极材料及其制备方法
CN111564605A (zh) * 2020-05-07 2020-08-21 中国科学院化学研究所 层状氧化物正极及制备方法和应用及含其的钠离子电池
CN113921809A (zh) * 2021-09-25 2022-01-11 天津理工大学 一种p2型层状钠离子电池正极材料及其制备方法
CN114156453A (zh) * 2021-12-01 2022-03-08 北京理工大学重庆创新中心 一种双位点掺杂改性磷酸钒钠正极材料及其制备方法和应用
CN114408892A (zh) * 2022-01-05 2022-04-29 北京科技大学 一种离子掺杂磷酸盐正极材料的制备及应用方法
CN116111084A (zh) * 2022-12-09 2023-05-12 华为数字能源技术有限公司 一种正极材料及其制备方法、正极极片、电池和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058202A (zh) * 2016-07-29 2016-10-26 华南理工大学 一种利用冷冻干燥法制备的碳包覆金属离子掺杂磷酸钒钠复合正极材料及其制备方法与应用
CN107819115A (zh) * 2017-10-13 2018-03-20 北京科技大学 一种掺杂改性的氟磷酸钒钠正极材料及其制备方法
CN111564605A (zh) * 2020-05-07 2020-08-21 中国科学院化学研究所 层状氧化物正极及制备方法和应用及含其的钠离子电池
CN113921809A (zh) * 2021-09-25 2022-01-11 天津理工大学 一种p2型层状钠离子电池正极材料及其制备方法
CN114156453A (zh) * 2021-12-01 2022-03-08 北京理工大学重庆创新中心 一种双位点掺杂改性磷酸钒钠正极材料及其制备方法和应用
CN114408892A (zh) * 2022-01-05 2022-04-29 北京科技大学 一种离子掺杂磷酸盐正极材料的制备及应用方法
CN116111084A (zh) * 2022-12-09 2023-05-12 华为数字能源技术有限公司 一种正极材料及其制备方法、正极极片、电池和电子设备

Also Published As

Publication number Publication date
CN116111084A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN109301242B (zh) 一种锂离子电池正极补锂材料Li5FeO4的制备方法及应用
CN113036106A (zh) 一种复合补锂添加剂及其制备方法和应用
WO2024120092A1 (zh) 一种正极材料及其制备方法、电池、储能设备和储能系统
CN107634207B (zh) 一种硅镶嵌氧化还原石墨烯/石墨相氮化碳复合材料及其制备和应用
CN108539171B (zh) 一种硫化锌与氧化石墨烯复合物的制备方法及其在锂硫电池正极材料中的应用
US20090023069A1 (en) Type of Lithium Iron Phosphate Cathode Active Material and Its Method of Synthesis
CN110350198B (zh) 一种磷酸钠表面修饰钠离子电池正极材料的制备方法
CN107978738B (zh) 一种焦磷酸锰钠/碳的复合正极材料及其制备和应用
CN112133909B (zh) 一种锂离子电池用硫化锑基负极材料及其制备方法
CN112701281B (zh) 复合橄榄石结构正极材料及其制备方法与应用
KR20120089197A (ko) 전기화학 장치용 전해액 및 전기화학 장치
CN113539694B (zh) 一种降低负极预金属化氧化电势的方法及其应用、电化学储能装置
CN101752562A (zh) 一种复合掺杂改性锂离子电池正极材料及其制备方法
CN111193018A (zh) 锂电池正极活性材料及其制备方法和应用
CN112952047A (zh) 一种碳负载钒酸钾的制备方法及其在钾离子电池中的应用
CN111883765A (zh) 锂电池正极活性材料及其制备方法和锂电池
CN113299897B (zh) 一种Na3V2(PO4)3@C为正极材料的混合离子全电池
CN114284476A (zh) 一种碳复合钠离子电池正极材料的制备方法
CN117012925A (zh) 稀土金属或过渡金属掺杂的钼酸锂/碳复合材料及其制备方法和应用
CN115799761A (zh) 二次离子电池容量补偿功能性隔膜、制备方法和应用及电池
CN115799465A (zh) 一种富钠掺钌层状氧化物及其制备方法与应用
CN115440955A (zh) 一种钠电正极复合材料及其制备方法
CN111261866B (zh) 一种胶囊结构ZnO/C纳米复合微球材料的制备方法
CN112751014A (zh) 一种基于层状钒氧化合物负极的水系储能电池
Chen et al. Lithium-Ion Battery Development with High Energy Density