WO2024111248A1 - 半導体パッケージ、光学装置、および、半導体パッケージの製造方法 - Google Patents

半導体パッケージ、光学装置、および、半導体パッケージの製造方法 Download PDF

Info

Publication number
WO2024111248A1
WO2024111248A1 PCT/JP2023/035682 JP2023035682W WO2024111248A1 WO 2024111248 A1 WO2024111248 A1 WO 2024111248A1 JP 2023035682 W JP2023035682 W JP 2023035682W WO 2024111248 A1 WO2024111248 A1 WO 2024111248A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
semiconductor package
semiconductor chip
sealing resin
package according
Prior art date
Application number
PCT/JP2023/035682
Other languages
English (en)
French (fr)
Inventor
直樹 栫山
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024111248A1 publication Critical patent/WO2024111248A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • This technology relates to semiconductor packages. More specifically, it relates to semiconductor packages with transparent members, optical devices, and methods for manufacturing semiconductor packages.
  • the stacked chips are sealed with resin to ensure the contact area between the resin and each chip, and to prevent the resin from peeling off.
  • the above-mentioned semiconductor package there is a risk of flare occurring due to stray light that travels through the glass.
  • This technology was developed in light of these circumstances, and aims to suppress flare in semiconductor packages in which a semiconductor chip is bonded to a transparent material.
  • the present technology has been made to solve the above-mentioned problems, and is a semiconductor package and its manufacturing method, the first side of which includes a transparent member having a first wiring formed on one of both sides, a second wiring formed on the other of the two sides, and a through via connecting the first wiring and the second wiring, a semiconductor chip having a bump formed on a light-receiving surface facing the other side, a sealing resin that seals the side surface of the semiconductor chip and the other side, and a conductive member that electrically connects the bump and the second wiring.
  • This has the effect of suppressing flare.
  • the conductive member may be an anisotropic conductive film or an anisotropic conductive paste. This has the effect of making it possible to miniaturize the semiconductor chip.
  • a wire may be further provided that is connected to the first wiring. This provides the effect of wire-bonding the semiconductor package to the substrate.
  • the sealing resin may further seal the surface of the semiconductor chip that faces the light receiving surface. This reduces the number of steps.
  • the sealing resin may include a third wiring and a through via that penetrates the sealing resin to connect the second wiring and the third wiring. This provides the effect of improving the degree of freedom in wiring design.
  • the first side may further include a solder ball connected to the third wiring. This provides the effect of mounting the side opposite the light receiving surface to the substrate.
  • the sealing resin may include multi-layer wiring. This provides the effect of improving the degree of freedom in wiring design.
  • the sealing resin may further include thermal vias that release heat generated in the semiconductor chip. This improves the heat dissipation characteristics.
  • the semiconductor chip may further include a through electrode that penetrates the semiconductor chip itself. This has the effect of increasing the number of wirings that can be taken out.
  • the transparent member may further include a light-shielding via that blocks a portion of the incident light. This provides the effect of sufficiently suppressing flare.
  • the transparent member may have a recess formed in the other side. This provides the effect of ensuring space above the pixel.
  • the semiconductor chip may be bonded to the periphery of the recess via the bump. This provides the effect of ensuring space above the pixel.
  • the transparent member may further include a light-shielding film that covers the side of the recess. This provides the effect of sufficiently suppressing flare.
  • the semiconductor chip may be bonded to the bottom surface of the recess via the bump. This provides the effect of making it possible to reduce the height.
  • a second aspect of the present technology is an optical device comprising a transparent member having a first wiring formed on one of both sides, a second wiring formed on the other of the two sides, and a through via connecting the first wiring and the second wiring, a semiconductor chip having a bump formed on a light receiving surface facing the other side, a sealing resin that seals the side surface and the other side of the semiconductor chip, a semiconductor package provided with a conductive member that electrically connects the bump and the second wiring, and a substrate on which the semiconductor package is mounted. This provides the effect of suppressing flare in the optical device.
  • 1 is a cross-sectional view showing a configuration example of a semiconductor package according to a first embodiment of the present technology
  • 1 is an example of a top view of a semiconductor package according to a first embodiment of the present technology
  • 1 is a cross-sectional view showing a configuration example of an optical device according to a first embodiment of the present technology.
  • 4A to 4C are diagrams for explaining a manufacturing process up to flip chip bonding in the first embodiment of the present technology.
  • 4A to 4C are diagrams for explaining a manufacturing process up to individualization in the first embodiment of the present technology.
  • 3 is a flowchart showing an example of a manufacturing method according to the first embodiment of the present technology.
  • FIG. 1 is a cross-sectional view showing a configuration example of an optical device according to a first modified example of the first embodiment of the present technology
  • 11 is a cross-sectional view showing a configuration example of a semiconductor package according to a second modified example of the first embodiment of the present technology
  • FIG. 11 is a cross-sectional view showing a configuration example of a semiconductor package according to a second embodiment of the present technology
  • FIG. 13A to 13C are diagrams for explaining a manufacturing process up to flip chip bonding in a second embodiment of the present technology.
  • 13A to 13C are diagrams for explaining a manufacturing process up to planarization in a second embodiment of the present technology.
  • 13A to 13C are diagrams for explaining a manufacturing process up to individualization according to a second embodiment of the present technology.
  • FIG. 13 is a cross-sectional view showing a configuration example of a semiconductor package according to a modified example of the second embodiment of the present technology
  • FIG. FIG. 13 is a cross-sectional view showing a configuration example of a semiconductor package according to a third embodiment of the present technology.
  • FIG. 13 is a cross-sectional view showing a configuration example of a semiconductor package according to a modified example of the third embodiment of the present technology.
  • FIG. 13 is a cross-sectional view showing a configuration example of a semiconductor package according to a fourth embodiment of the present technology.
  • FIG. 13 is a cross-sectional view showing a configuration example of a semiconductor package according to a fifth embodiment of the present technology.
  • FIG. 23 is an example of a top view of a semiconductor package according to a fifth embodiment of the present technology.
  • FIG. 23 is a cross-sectional view showing a configuration example of a semiconductor package according to a sixth embodiment of the present technology.
  • FIG. 23 is a cross-sectional view showing a configuration example of a semiconductor package according to a modified example of the sixth embodiment of the present technology.
  • FIG. 23 is a cross-sectional view showing a configuration example of a semiconductor package according to a seventh embodiment of the present technology.
  • 1 is a block diagram showing a schematic configuration example of a vehicle control system;
  • FIG. 4 is an explanatory diagram showing an example of an installation position of an imaging unit.
  • First embodiment (example in which wiring is provided on both sides of a transparent member and connected with through vias) 2.
  • Second embodiment example in which wiring is provided on both sides of a transparent member, connections are made with through vias, and wiring is also provided on the underside of the sealing resin) 3.
  • Third embodiment example in which wiring is provided on both sides of a transparent member, connections are made with through vias, and multi-layer wiring is formed in a sealing resin) 4.
  • Fourth embodiment example in which wiring is provided on both sides of a transparent member, connections are made with through vias, and through electrodes are provided on a semiconductor chip 5.
  • First embodiment [Example of semiconductor package configuration] 1 is a cross-sectional view showing an example of a configuration of a semiconductor package 100 according to a first embodiment of the present technology.
  • the semiconductor package 100 includes a semiconductor chip 110, glass 120, an anisotropic conductive film 130, a solder resist 140, and a sealing resin 150.
  • X-axis a specific axis parallel to the substrate plane of the semiconductor chip 110
  • Z-axis an axis perpendicular to the substrate plane
  • Y-axis an axis perpendicular to the X-axis and Z-axis
  • This figure shows a cross-sectional view seen from the Y-axis direction.
  • Glass 120 is a plate-like transparent member that transmits incident light. Light from an optical system (not shown) is incident on one of the two sides of glass 120. The arrow in the figure indicates the direction of light incidence. The direction toward the optical system is hereinafter referred to as the "up" direction.
  • Wiring 121 is formed on the light-receiving surface of glass 120, i.e., the upper surface, and wiring 122 is formed on the lower surface.
  • Glass 120 also has through-hole via 123 formed therein, penetrating glass 120. Wiring 121 and 122 are formed, for example, by plating with Cu (copper), and Cu plating is also formed on the side of through-hole via 123, so that wiring 121 and wiring 122 are electrically connected via through-hole via 123.
  • the glass 120 is an example of a transparent member as described in the claims.
  • the semiconductor chip 110 photoelectrically converts incident light to generate image data.
  • a CIS (CMOS Image Sensors) chip is used as the semiconductor chip 110.
  • a light receiving section 111 in which a plurality of pixels are arranged in a two-dimensional lattice pattern is formed on the light receiving surface of this semiconductor chip 110.
  • a predetermined number of bumps 112 are formed around the light receiving section 111 on the light receiving surface of the semiconductor chip 110.
  • the semiconductor chip 110 is flip-chip mounted on the underside of the glass 120 so that the light receiving surface faces the glass 120.
  • the anisotropic conductive film (ACF) 130 electrically connects the bumps 112 and the wiring 122 of the glass 120.
  • This anisotropic conductive film 130 is formed around the light receiving section 111, separating the light receiving section 111 from the sealing resin 150, and forming a space between the pixel and the glass 120.
  • anisotropic conductive paste (ACP) can also be used instead of the anisotropic conductive film 130.
  • the solder resist 140 is formed on the upper surface of the glass 120. However, the center of the upper surface of the glass 120 is used as a light receiving area, and the solder resist 140 has an opening at the location of the light receiving area. The solder resist 140 also has an opening at the location where the solder ball 160 is provided. For example, a light-shielding material (such as a black material) is used as the material for the solder resist 140.
  • the sealing resin 150 is a resin that seals the bottom surface of the glass 120 and the side surface of the semiconductor chip 110. However, the surface of the semiconductor chip 110 opposite the light receiving surface is exposed from the sealing resin 150, and the bottom surface of the sealing resin 150 and the bottom surface of the semiconductor chip 110 are on the same plane.
  • the solder balls 160 are mounted on the upper surface of the glass 120 and connected to the wiring 121.
  • the wiring 122 on the lower surface side connected to the semiconductor chip 110 is pulled out to the upper surface of the glass 120 via the through vias 123 and electrically connected to the outside via the solder balls 160.
  • glass 120 has wiring 121 formed on the upper surface, wiring 122 formed on the lower surface, and through via 123 connecting them.
  • wiring 121 is an example of the first wiring described in the claims
  • wiring 122 is an example of the second wiring described in the claims.
  • the semiconductor chip 110 also includes a light receiving portion 111 and bumps 112 formed on the light receiving surface.
  • the sealing resin 150 seals the side surface of the semiconductor chip 110 and the bottom surface of the glass 120.
  • the anisotropic conductive film 130 electrically connects the bumps 112 and the wiring 122.
  • the anisotropic conductive film 130 is an example of a conductive member as described in the claims.
  • FIG. 2 is an example of a top view of a semiconductor package 100 according to a first embodiment of the present technology. For convenience of illustration, wiring 121 and 122 and solder resist 140 are omitted in the figure.
  • an anisotropic conductive film 130 is formed around the light receiving portion 111 so as to surround it when viewed from the Z-axis direction.
  • a predetermined number of bumps 112 are arranged around the light receiving portion 111 and are connected to wiring 122 (not shown) via the anisotropic conductive film 130.
  • Through vias 123 are arranged around the anisotropic conductive film 130, and solder balls 160 are arranged around the through vias 123.
  • the anisotropic conductive film 130 not only functions as an electrical connection, but also functions as a dam that prevents the flow of the sealing resin 150 onto the pixels. Furthermore, since the anisotropic conductive film 130 can be formed by film attachment or printing, a pattern can be formed with higher precision than when it is applied with a dispenser. In this way, since the anisotropic conductive film 130 that functions as a dam can be patterned with high precision, no space is required on the upper surface of the semiconductor chip 110 to provide a dam, and the semiconductor chip 110 can be made smaller.
  • the thickness of the anisotropic conductive film 130 can be controlled with high precision by applying the film or by printing, the gap between the glass 120 and the pixels can be kept constant, and the light guided from the glass 120 to the pixels can be controlled with high precision. This reduces variation in optical characteristics.
  • FIG. 3 is a cross-sectional view showing an example of the configuration of an optical device 200 in a first embodiment of the present technology.
  • This optical device 200 includes a substrate 210 (such as a motherboard) having an opening, and a semiconductor package 100.
  • the configuration of the semiconductor package 100 is similar to that shown in FIG. 1.
  • the semiconductor package 100 is mounted on the underside of the substrate 210 around the opening.
  • the solder balls 160 are formed on the top surface of the glass 120, so the electrical output side and the light input side can be oriented in the same direction, allowing for layout flexibility to meet such mounting requirements.
  • bumps 112 are formed on the light-receiving surface of the semiconductor chip 110.
  • a through via 123 is formed in the glass 120, wiring 121 and 122 are formed on both sides of the glass 120, and a solder resist 140 is formed.
  • an anisotropic conductive film 130 is formed around the light receiving area of the glass 120 by film attachment or printing.
  • the semiconductor chip 110 is flip-chip bonded, as shown in FIG. d.
  • the semiconductor chip 110 is sealed by laminating the sealing resin 150.
  • laminating for lamination, for example, ABF (Ajinomoto Build-up Film), which is used in build-up boards, etc. Note that instead of lamination, sealing can also be performed by molding.
  • the sealing resin 150 is polished and flattened until the bottom surface of the semiconductor chip 110 is exposed. This allows the semiconductor package 100 to be made thinner.
  • solder balls 160 are mounted and the semiconductor package 100 is completed after being singulated.
  • FIG. 6 is a flow chart showing an example of a manufacturing method in the first embodiment of the present technology.
  • Bumps 112 are formed on the light-receiving surface of the semiconductor chip 110 (step S901). Furthermore, through vias 123 are formed in the glass 120, wiring 121 and 122 are formed on both sides of the glass 120, and solder resist 140 is formed (step S902). Next, an anisotropic conductive film 130 is formed around the light-receiving area of the glass 120 (step S903). Then, the semiconductor chip 110 is flip-chip bonded (step S904).
  • step S905 the semiconductor chip 110 is sealed with sealing resin 150 (step S905), and the sealing resin 150 is flattened (step S906).
  • step S907 solder balls 160 are mounted (step S907), and the semiconductor package 100 is completed by dividing the semiconductor package 100 into individual pieces (step S908).
  • wiring is provided on both sides of the glass 120 and connected by the through vias 123, so that the through vias 123 and the solder resist 140 can cut stray light and suppress flare.
  • the anisotropic conductive film 130 that functions as a dam is formed, no space is required on the top surface of the semiconductor chip 110 to provide a dam, and the semiconductor chip 110 can be made smaller.
  • the solder balls 160 are mounted on the light receiving side of the glass 120, but this configuration requires an opening in the mounting substrate 210.
  • the optical device 200 in the first modified example of the first embodiment differs from the first embodiment in that the semiconductor package 100 is wire bonded to the substrate 210.
  • FIG. 7 is a cross-sectional view showing an example of the configuration of an optical device 200 in a first modified example of the first embodiment of the present technology.
  • the optical device 200 in the first modified example of the first embodiment differs from the first embodiment in that the semiconductor package 100 is connected to the upper surface of the substrate 210 by wires 161 instead of solder balls 160. This eliminates the need for an opening in the substrate 210.
  • the semiconductor package 100 is wire-bonded to the substrate 210, eliminating the need for an opening in the substrate 210.
  • the semiconductor package 100 is thinned by flattening the sealing resin 150 until the semiconductor chip 110 is exposed, but if the thickness constraint is satisfied without thinning, flattening is not necessary.
  • the semiconductor package 100 in the second modified example of the first embodiment differs from the first embodiment in that the semiconductor chip 110 is sealed without exposing the underside thereof.
  • FIG. 8 is a cross-sectional view showing an example configuration of a semiconductor package 100 in a second modified example of the first embodiment of the present technology.
  • the distance dZs from the bottom surface of the glass 120 to the bottom surface of the sealing resin 150 is greater than the distance dZc from the bottom surface of the glass 120 to the bottom surface of the semiconductor chip 110.
  • its bottom surface is also sealed with the sealing resin 150. This eliminates the need for a planarization process.
  • the first variant can be applied to the second variant of the first embodiment.
  • the side and bottom surfaces of the semiconductor chip 110 are sealed with the sealing resin 150, eliminating the need for a planarization process.
  • Second embodiment In the first embodiment described above, wiring is provided on both sides of the glass 120, but this configuration may result in insufficient freedom in wiring design.
  • the semiconductor package 100 in the second embodiment differs from the first embodiment in that wiring is also provided on the underside of the sealing resin 150.
  • FIG. 9 is a cross-sectional view showing an example of a configuration of a semiconductor package 100 in a second embodiment of the present technology.
  • the semiconductor package 100 in the second embodiment differs from the first embodiment in that through electrodes 151 and 153 and wiring 152 are further formed in the sealing resin 150.
  • the wiring 152 is formed on the underside of the sealing resin 150, and this wiring 152 is covered by the solder resist 141. However, it is preferable that the solder resist 141 does not cover the underside of the semiconductor chip 110.
  • the wiring 152 is an example of the third wiring described in the claims.
  • the through electrode 151 penetrates the sealing resin 150 and connects the wiring 122 on the underside of the glass 120 to the wiring 152.
  • the through electrode 153 penetrates the sealing resin 150 and the glass 120 and connects the wiring 121 on the upper surface to the wiring 152.
  • the through electrode 153 is provided as necessary, and a configuration without the through electrode 153 is also possible.
  • wiring can be provided on the underside of the sealing resin 150 in addition to both sides of the glass 120. This increases the number of wiring layers, improving the freedom of wiring design.
  • bumps 112 are formed on the light-receiving surface of the semiconductor chip 110. Furthermore, as shown in FIG. 10B, through vias 123, wiring 121 and 122, and solder resist 140 are formed. Next, as shown in FIG. 10C, an anisotropic conductive film 130 is formed, and as shown in FIG. 10D, the semiconductor chip 110 is flip-chip bonded.
  • the semiconductor chip 110 is sealed, and as shown in FIG. 11B, the sealing resin 150 is flattened.
  • through holes are formed by a laser or the like, and through electrodes 151 and wiring 152 are formed by plating.
  • solder balls 160 are mounted and the semiconductor package 100 is completed after being singulated.
  • first and second variants of the first embodiment can be applied to the second embodiment.
  • the through electrodes 151 are provided in the sealing resin 150, and wiring is also provided on the underside of the sealing resin 150, thereby improving the degree of freedom in wiring design.
  • the solder balls 160 are mounted on the light receiving side of the glass 120, but this configuration requires an opening in the mounting substrate 210.
  • the optical device 200 in this modified example of the second embodiment differs from the second embodiment in that the solder balls 160 are mounted on the sealing resin 150 and the underside of the semiconductor chip 110.
  • FIG. 13 is a cross-sectional view showing an example of a configuration of a semiconductor package 100 in a modified example of the second embodiment of the present technology.
  • the semiconductor package 100 in this modified example of the second embodiment differs from the second embodiment in that wiring 152 is formed on the underside of each of the sealing resin 150 and the semiconductor chip 110, and solder balls 160 are mounted thereon.
  • an opening in the substrate 210 (not shown) is not required.
  • the second modified example of the first embodiment can be applied to the modified example of the second embodiment.
  • wiring is provided on the underside of each of the sealing resin 150 and the semiconductor chip 110, and solder balls 160 are mounted on the underside, eliminating the need for an opening in the substrate 210.
  • wiring is provided on both sides of the glass 120, but this configuration may result in insufficient freedom in wiring design.
  • the semiconductor package 100 in the third embodiment differs from the first embodiment in that multi-layer wiring is formed in the sealing resin 150.
  • FIG. 14 is a cross-sectional view showing an example of a configuration of a semiconductor package 100 in a third embodiment of the present technology.
  • the semiconductor package 100 in this third embodiment differs from the first embodiment in that two or more layers of multilayer wiring 155 are formed in the sealing resin 150.
  • the multi-layer wiring 155 includes, for example, wirings 152 and 154 formed in different wiring layers, a through electrode 151 connecting wirings 122 and 152, and a through electrode 153 connecting wirings 152 and 154.
  • wiring 152 is wired inside sealing resin 150
  • wiring 154 is wired on the lower surface of sealing resin 150.
  • the lower surface of sealing resin 150 is covered with solder resist 141.
  • solder resist 141 In addition to the side surfaces of semiconductor chip 110, its lower surface is also sealed with sealing resin 150.
  • multi-layer wiring 155 has two wiring layers, it may have three or more layers.
  • the degree of freedom in wiring design can be improved compared to the first embodiment.
  • first modified example of the first embodiment and the modified example of the second embodiment can be applied to the third embodiment.
  • multi-layer wiring 155 is formed within the sealing resin 150, which improves the design freedom of the wiring.
  • the multi-layer wiring 155 is formed in the sealing resin 150, but this may result in insufficient heat dissipation performance of the semiconductor chip 110.
  • the semiconductor package 100 in this modified example of the third embodiment differs from the third embodiment in that thermal vias are further arranged under the semiconductor chip 110.
  • FIG. 15 is a cross-sectional view showing an example of a configuration of a semiconductor package 100 in a modified example of the third embodiment of the present technology.
  • the semiconductor package 100 in this modified example of the third embodiment differs from the third embodiment in that a predetermined number of thermal vias 156 are further arranged under the semiconductor chip 110.
  • the solder resist 141 is not formed in the area of the underside where the thermal vias 156 are arranged, but is instead opened.
  • One end of the thermal via 156 contacts the underside of the semiconductor chip 110, and the other end is connected to the wiring 154 on the underside of the sealing resin 150. Heat generated in the semiconductor chip 110 is released through the thermal via 156, improving the heat dissipation characteristics of the semiconductor package 100.
  • the first modified example of the first embodiment can be applied to the modified example of the third embodiment.
  • Thermal vias 156 can also be arranged in the second modified example of the first embodiment.
  • the thermal vias 156 are arranged under the semiconductor chip 110, thereby improving the heat dissipation characteristics of the semiconductor package 100.
  • the wiring is taken out via the bumps 112 on the upper surface of the semiconductor chip 110, but with this configuration, the number of wiring that can be taken out may be insufficient.
  • the semiconductor package 100 in this fourth embodiment differs from the first embodiment in that a through electrode is provided in the semiconductor chip 110.
  • FIG. 16 is a cross-sectional view showing an example of a configuration of a semiconductor package 100 in a fourth embodiment of the present technology.
  • the semiconductor package 100 in this fourth embodiment differs from the first embodiment in that a through electrode 113 that penetrates the semiconductor chip 110 is further disposed in the chip. Furthermore, a through electrode 151 and wiring 152 are further formed in the sealing resin 150. Furthermore, the wiring 152 is covered with a solder resist 141.
  • One end of the through electrode 113 is connected to the wiring 152. Furthermore, the through electrode 151 connects the wiring 152 to the wiring 122. This allows wiring to be taken out from the bottom surface of the semiconductor chip 110, in addition to the top surface of the semiconductor chip 110, via the through electrode 113. This increases the number of wirings that can be taken out, improving design freedom.
  • first modified example of the first embodiment, the modified example of the second embodiment, the third embodiment, and the modified example of the third embodiment can each be applied to the fourth embodiment.
  • the through vias 123 and the solder resist 140 are formed, but this configuration may not be able to completely block stray light.
  • the semiconductor package 100 in the fifth embodiment differs from the first embodiment in that a light-shielding via is further disposed in the glass 120.
  • FIG. 17 is a cross-sectional view showing an example of a configuration of a semiconductor package 100 in a fourth embodiment of the present technology.
  • the semiconductor package 100 in this fourth embodiment differs from the first embodiment in that a predetermined number of light-shielding vias 124 are further arranged in the glass 120.
  • the light-shielding vias 124 penetrate the glass 120, and solder resist 140 is filled in the vias.
  • the solder resist 140 is made of a material having light-shielding properties (such as a black material).
  • FIG. 18 is an example of a top view of a semiconductor package 100 in a fifth embodiment of the present technology.
  • the light-shielding vias 124 are arranged around the light-receiving portion 111.
  • the through vias 123 are arranged around the light-shielding vias 124.
  • the light-shielding vias 124 are arranged inside the through vias 123.
  • the light-shielding vias 124 are filled with solder resist 140 having light-shielding properties, and therefore can block stray light that enters from the side of the glass 120 or passes through the glass 120 by being totally reflected within the glass 120. This makes it possible to sufficiently suppress flare.
  • the light-shielding via 124 it is preferable to place the light-shielding via 124 directly above the bump 112 or inside the bump 112. This is because it is possible to prevent light from reaching the bump 112 and the anisotropic conductive film 130 and to suppress flare caused by reflection from them.
  • the figure shows an example in which the light-shielding via 124 is placed inside the bump 112.
  • the light-shielding vias 124 are arranged inside the through vias 123, the light-shielding vias 124 can also be arranged outside the through vias 123 so as to surround the through vias 123. This arrangement can prevent light from reaching the through vias 123 and suppress flare caused by reflected light from the through vias 123.
  • first and second variations of the first embodiment, the second embodiment, the variation of the second embodiment, the third embodiment, and the fourth embodiment can each be applied to the fifth embodiment.
  • the light-shielding vias 124 that block stray light are further arranged, so flare can be sufficiently suppressed.
  • the semiconductor chip 110 is flip-chip mounted on the underside of the glass 120, but this configuration may result in an insufficient gap between the pixels and the underside of the glass 120.
  • the semiconductor package 100 in this sixth embodiment differs from the first embodiment in that a recess is formed on the underside of the glass 120.
  • FIG. 19 is a cross-sectional view showing an example of a configuration of a semiconductor package 100 in a sixth embodiment of the present technology.
  • the semiconductor package 100 in this sixth embodiment differs from the first embodiment in that a recess 125 that is recessed upward is formed on the lower surface of the glass 120.
  • the thick line indicates the outline of the recess 125.
  • the semiconductor chip 110 is bonded to the periphery of the recess 125 via bumps 112.
  • through electrodes 151 and 153, wiring 152, and solder resist 141 are also formed.
  • the gap between the bottom surface of the recess 125 and the pixel is kept constant. This gap ensures a specified amount of space above the pixel. Therefore, the volume of the space can mitigate the effects of outgassing that occurs during the manufacturing process and remains in the space above the pixel, and moisture that enters from the outside via the sealing resin 150. In addition, because there is more space above the pixel, it is possible to prevent the pixel surface from being damaged by unintended collisions caused by handling during manufacturing, or contact due to warping of the semiconductor chip 110 or glass 120.
  • the sixth embodiment can also be applied to the first and second modified versions of the first embodiment, the modified version of the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment.
  • a recess 125 is formed in the lower part of the glass 120, so a sufficient amount of space can be secured above the pixel.
  • the recess 125 is formed on the lower surface of the glass 120, but this configuration may not be able to completely block stray light.
  • the semiconductor package 100 in this modified example of the sixth embodiment differs from the sixth embodiment in that a light-shielding film is formed on the side surface of the recess 125.
  • FIG. 20 is a cross-sectional view showing an example of a configuration of a semiconductor package 100 in a modified example of the sixth embodiment of the present technology.
  • the semiconductor package 100 in this modified example of the sixth embodiment differs from the sixth embodiment in that a light-shielding film 126 is formed on the side surface of the recess 125. This light-shielding film 126 can block stray light and sufficiently suppress flare.
  • the structure without the through electrode 151, the wiring 152, and the solder resist 141.
  • the first and second variations of the first embodiment, the variations of the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment can each be applied to the variation of the sixth embodiment.
  • the light-shielding film 126 is formed on the side surface of the recess 125, so flare can be sufficiently suppressed.
  • the semiconductor chip 110 is bonded to the periphery of the recess 125 via the bumps 112, but with this configuration, it is difficult to further reduce the height.
  • the semiconductor package 100 in the seventh embodiment differs from the first embodiment in that the semiconductor chip 110 is bonded to the bottom surface of the recess 125 via the bumps 112.
  • FIG. 21 is a cross-sectional view showing an example of a configuration of a semiconductor package 100 in a seventh embodiment of the present technology.
  • the semiconductor package 100 in this seventh embodiment differs from the sixth embodiment in that the semiconductor chip 110 is bonded to the bottom surface of the recess 125 via bumps 112.
  • the wiring 122 is also routed to the side surface of the recess 125.
  • the bottom surface of the semiconductor chip 110 is not exposed, but is covered with a sealing resin 150.
  • the semiconductor chip 110 By flip-chip bonding the semiconductor chip 110 to the bottom surface of the recess 125, the semiconductor chip 110 is present inside the recess 125, reducing the gap between the glass 120 and the bottom surface of the semiconductor chip 110. This allows for a low profile.
  • the seventh embodiment without the through electrode 151, the wiring 152, and the solder resist 141.
  • the first and second modified examples of the first embodiment, the modified example of the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment can each be applied to the seventh embodiment.
  • the semiconductor chip 110 is bonded to the bottom surface of the recess 125 via the bumps 112, making it possible to reduce the height.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility device, an airplane, a drone, a ship, or a robot.
  • FIG. 22 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology disclosed herein can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
  • Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
  • the body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs.
  • the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps.
  • radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020.
  • the body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
  • the outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image capturing unit 12031 is connected to the outside-vehicle information detection unit 12030.
  • the outside-vehicle information detection unit 12030 causes the image capturing unit 12031 to capture images outside the vehicle and receives the captured images.
  • the outside-vehicle information detection unit 12030 may perform object detection processing or distance detection processing for people, cars, obstacles, signs, or characters on the road surface based on the received images.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of light received.
  • the imaging unit 12031 can output the electrical signal as an image, or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light, or may be invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects information inside the vehicle.
  • a driver state detection unit 12041 that detects the state of the driver is connected.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
  • the microcomputer 12051 can calculate control target values for the driving force generating device, steering mechanism, or braking device based on information inside and outside the vehicle acquired by the outside-vehicle information detection unit 12030 or the inside-vehicle information detection unit 12040, and output control commands to the drive system control unit 12010.
  • the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an Advanced Driver Assistance System (ADAS), including vehicle collision avoidance or impact mitigation, following driving based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 can also perform cooperative control for the purpose of autonomous driving, which allows the vehicle to travel autonomously without relying on the driver's operation, by controlling the driving force generating device, steering mechanism, braking device, etc., based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040.
  • the microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
  • the audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • FIG. 23 shows an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at the front nose, side mirrors, rear bumper, back door, and upper part of the windshield inside the vehicle cabin of the vehicle 12100.
  • the imaging unit 12101 provided at the front nose and the imaging unit 12105 provided at the upper part of the windshield inside the vehicle cabin mainly acquire images of the front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided at the side mirrors mainly acquire images of the sides of the vehicle 12100.
  • the imaging unit 12104 provided at the rear bumper or back door mainly acquires images of the rear of the vehicle 12100.
  • the imaging unit 12105 provided at the upper part of the windshield inside the vehicle cabin is mainly used to detect leading vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, etc.
  • FIG. 23 shows an example of the imaging ranges of the imaging units 12101 to 12104.
  • Imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • imaging range 12114 indicates the imaging range of the imaging unit 12104 provided on the rear bumper or back door.
  • an overhead image of the vehicle 12100 viewed from above is obtained by superimposing the image data captured by the imaging units 12101 to 12104.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera consisting of multiple imaging elements, or an imaging element having pixels for detecting phase differences.
  • the microcomputer 12051 can obtain the distance to each solid object within the imaging ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest solid object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance information obtained from the imaging units 12101 to 12104, and can use the data to automatically avoid obstacles.
  • the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk, which indicates the risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by forcibly decelerating or steering to avoid a collision via the drive system control unit 12010.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. The recognition of such a pedestrian is performed, for example, by a procedure of extracting feature points in the captured image of the imaging units 12101 to 12104 as infrared cameras, and a procedure of performing pattern matching processing on a series of feature points that indicate the contour of an object to determine whether or not it is a pedestrian.
  • the audio/image output unit 12052 controls the display unit 12062 to superimpose a rectangular contour line for emphasis on the recognized pedestrian.
  • the audio/image output unit 12052 may also control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology disclosed herein can be applied to the imaging unit 12031.
  • the semiconductor package 100 in FIG. 1 can be applied to the imaging unit 12031.
  • flare can be suppressed and a captured image that is easier to see can be obtained, thereby reducing driver fatigue.
  • the present technology can also be configured as follows.
  • a transparent member including a first wiring formed on one surface of both surfaces, a second wiring formed on the other surface of the both surfaces, and a through via connecting the first wiring and the second wiring; a semiconductor chip having bumps formed on a light receiving surface opposite the other surface; a sealing resin that seals the side surface and the other surface of the semiconductor chip; a conductive member electrically connecting the bump and the second wiring;
  • the sealing resin is The semiconductor package according to any one of (1) to (4), further comprising: a third wiring; and a through via that penetrates the sealing resin to connect the second wiring and the third wiring.
  • the semiconductor package according to any one of (1) to (6), wherein the sealing resin has multi-layer wiring.
  • the sealing resin further includes a thermal via for dissipating heat generated in the semiconductor chip.
  • a semiconductor package including: a transparent member having a first wiring formed on one of both surfaces, a second wiring formed on the other surface of the two surfaces, and a through via connecting the first wiring and the second wiring; a semiconductor chip having a bump formed on a light-receiving surface facing the other surface; a sealing resin that seals a side surface of the semiconductor chip and the other surface; and a conductive member that electrically connects the bump and the second wiring; and a substrate on which the semiconductor package is mounted.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

透明部材に半導体チップを接合した半導体パッケージにおいて、フレアを抑制する。 透明部材は、両面の一方の面に形成された第1配線と両面のうち他方の面に形成された第2配線と第1配線および第2配線を接続する貫通ビアとを備える。半導体チップは、透明部材の他方の面に対向する受光面に形成されたバンプを備える。封止樹脂は、半導体チップの側面と透明部材の他方の面とを封止する。導電部材は、バンプと第2配線とを電気的に接続する。

Description

半導体パッケージ、光学装置、および、半導体パッケージの製造方法
 本技術は、半導体パッケージに関する。詳しくは、透明部材を設けた半導体パッケージ、光学装置、および、半導体パッケージの製造方法に関する。
 従来より、光を受光する半導体チップをパッケージングする際には、ガラスなどの透明部材が用いられる。例えば、2つの半導体チップを積層し、その積層チップを片面配線のガラスにフリップチップ接合し、樹脂で封止した構造の半導体パッケージが提案されている(例えば、特許文献1参照。)。この半導体チップでは、樹脂の受光側の面を上面として、樹脂を貫通する貫通電極を介して配線が下面側に取り出される。
国際公開第2014/083750号公報
 上述の従来技術では、積層チップを樹脂で封止することにより樹脂と各チップとの接触面積を確保し、樹脂の剥離防止を図っている。しかしながら、上述の半導体パッケージでは、ガラス内を経路とする迷光によりフレアが発生するおそれがある。
 本技術はこのような状況に鑑みて生み出されたものであり、透明部材に半導体チップを接合した半導体パッケージにおいて、フレアを抑制することを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、両面の一方の面に形成された第1配線と上記両面のうち他方の面に形成された第2配線と上記第1配線および第2配線を接続する貫通ビアとを備える透明部材と、上記他方の面に対向する受光面に形成されたバンプを備える半導体チップと、上記半導体チップの側面と上記他方の面とを封止する封止樹脂と、上記バンプと上記第2配線とを電気的に接続する導電部材とを具備する半導体パッケージ、および、その製造方法である。これにより、フレアが抑制されるという作用をもたらす。
 また、この第1の側面において、上記導電部材は、異方性導電膜または異方性導電ペーストであってもよい。これにより、半導体チップの小型化が可能になるという作用をもたらす。
 また、この第1の側面において、上記第1配線に接続されたワイヤをさらに具備してもよい。これにより、半導体パッケージが基板にワイヤボンディングされるという作用をもたらす。
 また、この第1の側面において、上記封止樹脂は、上記半導体チップの両面のうち上記受光面に対向する面をさらに封止してもよい。これにより、工程数が削減されるという作用をもたらす。
 また、この第1の側面において、上記封止樹脂は、第3配線と上記封止樹脂を貫通して上記第2配線および上記第3配線を接続する貫通ビアとを備えてもよい。これにより、配線の設計自由度が向上するという作用をもたらす。
 また、この第1の側面において、上記第3配線に接続された半田ボールをさらに具備してもよい。これにより、受光面と反対側が基板に実装されるという作用をもたらす。
 また、この第1の側面において、上記封止樹脂は、多層配線を備えてもよい。これにより、配線の設計自由度が向上するという作用をもたらす。
 また、この第1の側面において、上記封止樹脂は、上記半導体チップで生じた熱を放出するサーマルビアをさらに備えてもよい。これにより、放熱特性が向上するという作用をもたらす。
 また、この第1の側面において、上記半導体チップは、上記半導体チップ自身を貫通する貫通電極をさらに備えてもよい。これにより、取り出し可能な配線数が増大するという作用をもたらす。
 また、この第1の側面において、上記透明部材は、入射光の一部を遮光する遮光ビアをさらに備えてもよい。これにより、フレアが十分に抑制されるという作用をもたらす。
 また、この第1の側面において、上記透明部材は、上記他方の面に形成された凹部を備えてもよい。これにより、画素の上部の空間が確保されるという作用をもたらす。
 また、この第1の側面において、上記半導体チップは、上記バンプを介して上記凹部の周囲に接合されてもよい。これにより、画素の上部の空間が確保されるという作用をもたらす。
 また、この第1の側面において、上記透明部材は、上記凹部の側面を覆う遮光膜をさらに備えてもよい。これにより、フレアが十分に抑制されるという作用をもたらす。
 また、この第1の側面において、上記半導体チップは、上記バンプを介して上記凹部の底面に接合されてもよい。これにより、低背化が可能になるという作用をもたらす。
 また、本技術の第2の側面は、両面の一方の面に形成された第1配線と上記両面のうち他方の面に形成された第2配線と上記第1配線および第2配線を接続する貫通ビアとを備える透明部材と、上記他方の面に対向する受光面に形成されたバンプを備える半導体チップと、上記半導体チップの側面と上記他方の面とを封止する封止樹脂と、上記バンプと上記第2配線とを電気的に接続する導電部材とが設けられた半導体パッケージと、上記半導体パッケージが実装される基板とを具備する光学装置である。これにより、光学装置においてフレアが抑制されるという作用をもたらす。
本技術の第1の実施の形態における半導体パッケージの一構成例を示す断面図である。 本技術の第1の実施の形態における半導体パッケージの上面図の一例である。 本技術の第1の実施の形態における光学装置の一構成例を示す断面図である。 本技術の第1の実施の形態におけるフリップチップ接合までの製造工程を説明するための図である。 本技術の第1の実施の形態における個片化までの製造工程を説明するための図である。 本技術の第1の実施の形態における製造方法の一例を示すフローチャートである。 本技術の第1の実施の形態の第1の変形例における光学装置の一構成例を示す断面図である。 本技術の第1の実施の形態の第2の変形例における半導体パッケージの一構成例を示す断面図である。 本技術の第2の実施の形態における半導体パッケージの一構成例を示す断面図である。 本技術の第2の実施の形態におけるフリップチップ接合までの製造工程を説明するための図である。 本技術の第2の実施の形態における平坦化までの製造工程を説明するための図である。 本技術の第2の実施の形態における個片化までの製造工程を説明するための図である。 本技術の第2の実施の形態の変形例における半導体パッケージの一構成例を示す断面図である。 本技術の第3の実施の形態における半導体パッケージの一構成例を示す断面図である。 本技術の第3の実施の形態の変形例における半導体パッケージの一構成例を示す断面図である。 本技術の第4の実施の形態における半導体パッケージの一構成例を示す断面図である。 本技術の第5の実施の形態における半導体パッケージの一構成例を示す断面図である。 本技術の第5の実施の形態における半導体パッケージの上面図の一例である。 本技術の第6の実施の形態における半導体パッケージの一構成例を示す断面図である。 本技術の第6の実施の形態の変形例における半導体パッケージの一構成例を示す断面図である。 本技術の第7の実施の形態における半導体パッケージの一構成例を示す断面図である。 車両制御システムの概略的な構成例を示すブロック図である。 撮像部の設置位置の一例を示す説明図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(透明部材の両面に配線し、貫通ビアで接続した例)
 2.第2の実施の形態(透明部材の両面に配線し、貫通ビアで接続し、封止樹脂の下面にも配線した例)
 3.第3の実施の形態(透明部材の両面に配線し、貫通ビアで接続し、封止樹脂内に多層配線を形成した例)
 4.第4の実施の形態(透明部材の両面に配線し、貫通ビアで接続し、半導体チップに貫通電極を設けた例)
 5.第5の実施の形態(透明部材の両面に配線し、貫通ビアで接続し、遮光ビアを配置した例)
 6.第6の実施の形態(透明部材の両面に配線し、貫通ビアで接続し、透明部材の下面に凹部を形成した例)
 7.第7の実施の形態(透明部材の両面に配線し、貫通ビアで接続し、透明部材の凹部の底面に半導体チップを接合した例)
 8.移動体への応用例
 <1.第1の実施の形態>
 [半導体パッケージの構成例]
 図1は、本技術の第1の実施の形態における半導体パッケージ100の一構成例を示す断面図である。この半導体パッケージ100は、半導体チップ110、ガラス120、異方性導電膜130、ソルダーレジスト140、および、封止樹脂150を備える。
 以下、半導体チップ110の基板平面に平行な所定の軸を「X軸」とし、その基板平面に垂直な軸を「Z軸」とし、X軸およびZ軸に垂直な軸を「Y軸」とする。同図は、Y軸方向から見た断面図を示す。
 ガラス120は、入射光を透過する板状の透明部材である。このガラス120の両面の一方に、光学系(不図示)からの光が入射される。同図の矢印は、光の入射方向を示す。光学系への方向を以下、「上」の方向とする。ガラス120の受光面、すなわち上面には配線121が形成され、下面には配線122が形成される。また、ガラス120には、そのガラス120を貫通する貫通ビア123が形成される。配線121および122は、例えば、Cu(銅)のメッキにより形成され、貫通ビア123の側面にもCuメッキが形成されて、その貫通ビア123を介して配線121と配線122とが電気的に接続される。
 なお、ガラス120は、特許請求の範囲に記載の透明部材の一例である。
 半導体チップ110は、入射光を光電変換して画像データを生成するものである。例えば、CIS(CMOS Image Sensors)のチップが半導体チップ110として用いられる。この半導体チップ110の受光面には、複数の画素が二次元格子状に配列された受光部111が形成される。また、半導体チップ110の受光面には、受光部111の周囲に所定数のバンプ112形成される。受光面がガラス120と対抗するように、半導体チップ110はガラス120の下面にフリップチップ実装される。
 異方性導電膜(ACF:Anisotropic Conductive Film)130は、バンプ112と、ガラス120の配線122とを電気的に接続するものである。この異方性導電膜130は、受光部111の周囲に形成され、受光部111と封止樹脂150とを分断して、画素とガラス120との間に空間を形成している。なお、異方性導電膜130の代わりに、異方性導電ペースト(ACP:Anisotropic Conductive Paste)を用いることもできる。
 ソルダーレジスト140は、ガラス120の上面に形成される。ただし、ガラス120の上面において、その中央部が受光エリアとして用いられ、ソルダーレジスト140は、その受光エリアの箇所で開口している。また、半田ボール160が設けられる箇所においても、ソルダーレジスト140は開口している。ソルダーレジスト140の材料として、例えば、遮光性のある部材(黒色の材料など)が用いられる。
 封止樹脂150は、ガラス120の下面と、半導体チップ110の側面とを封止する樹脂である。ただし、半導体チップ110の受光面の反対側の面は、封止樹脂150から露出しており、封止樹脂150の下面と、半導体チップ110の下面とは同一平面上に存在している。
 半田ボール160は、ガラス120の上面に搭載され、配線121と接続される。半導体チップ110に接続された下面側の配線122は、貫通ビア123を介してガラス120の上面に引き出され、半田ボール160を介して外部と電気的に接続される。
 まとめると、ガラス120は、上面に形成された配線121と下面に形成された配線122と、それらを接続する貫通ビア123とを備える。なお、配線121は、特許請求の範囲に記載された第1配線の一例であり、配線122は、特許請求の範囲に記載された第2配線の一例である。
 また、半導体チップ110は、受光面に形成された受光部111およびバンプ112を備える。封止樹脂150は、その半導体チップ110の側面と、ガラス120の下面とを封止する。異方性導電膜130は、バンプ112と配線122とを電気的に接続する。なお、異方性導電膜130は、特許請求の範囲に記載の導電部材の一例である。
 図2は、本技術の第1の実施の形態における半導体パッケージ100の上面図の一例である。同図においては、記載の便宜上、配線121および122と、ソルダーレジスト140とを省略している。
 同図に例示するように、Z軸方向から見て、受光部111を取り囲むように、その周囲に異方性導電膜130が形成される。また、所定数のバンプ112が受光部111の周囲に配列され、異方性導電膜130を介して配線122(不図示)と接続される。異方性導電膜130の周囲に、貫通ビア123が配列され、その貫通ビア123の周囲に半田ボール160が配列される。
 異方性導電膜130を形成した領域内に、バンプ112が配置されるため、この異方性導電膜130は、電気的に接続する機能とともに、画素上への封止樹脂150の流入を防止するダムとしての機能も有する。また、異方性導電膜130は、フィルム貼り付けや、印刷により形成することができるため、ディスペンサにより塗布する場合よりも高精度でパターンを形成することができる。このように、ダムとして機能する異方性導電膜130を高精度にパターニングすることができるため、半導体チップ110の上面に、ダムを設けるためのスペースが不要になり、半導体チップ110を小型化することができる。
 また、フィルム貼り付け、または、印刷により異方性導電膜130の厚さを高精度で制御することができるため、ガラス120と画素との間のギャップを一定に保つことができ、ガラス120から画素に導く光を高精度で制御することができる。これにより、光学特性のばらつきを減らすことができる。
 また、遮光性の部材をソルダーレジスト140として用い、貫通ビア123を受光部111の周囲に配列することにより、ガラス120を透過する迷光をカットすることができる。これにより、フレアを抑制し、光学特性を向上させることができる。
 図3は、本技術の第1の実施の形態における光学装置200の一構成例を示す断面図である。この光学装置200は、開口部を有する基板210(マザーボードなど)と、半導体パッケージ100とを備える。半導体パッケージ100の構成は、図1に例示したものと同様である。基板210の下面において、開口部の周囲に半導体パッケージ100が実装される。
 半導体パッケージ100において、半田ボール160が、ガラス120の上面に形成されているため、電気の取り出し側と、光の取り込み側とを同じ向きにすることができ、そのような実装要求に対するレイアウトの自由度を持たせることができる。
 [半導体パッケージの製造方法]
 続いて、図4および図5を参照して、第1の実施の形態における半導体パッケージ100の製造方法について説明する。
 まず、図4におけるaに例示するように、半導体チップ110の受光面にバンプ112が形成される。
 また、同図におけるbに例示するように、ガラス120に貫通ビア123が形成され、ガラス120の両面に配線121および122が形成され、そしてソルダーレジスト140が形成される。
 次に、同図におけるcに例示するように、異方性導電膜130が、フィルム貼り付けや印刷により、ガラス120の受光エリアの周囲に形成される。
 次に、同図におけるdに例示するように、半導体チップ110がフリップチップ接合される。
 そして、図5におけるaに例示するように、封止樹脂150のラミネートにより、半導体チップ110が封止される。ラミネートにおいては、例えば、ビルドアップ基板等で使用されているABF(Ajinomoto Build-up Film)が用いられる。なお、ラミネートの代わりに、モールドにより封止することもできる。
 次に、同図におけるbに例示するように、半導体チップ110の底面が露出するまで封止樹脂150が研磨され、平坦化される。これにより、半導体パッケージ100を薄くすることができる。
 次に、同図におけるcに例示するように、半田ボール160が搭載され、個片化されて半導体パッケージ100が完成する。
 図6は、本技術の第1の実施の形態における製造方法の一例を示すフローチャートである。半導体チップ110の受光面にバンプ112が形成される(ステップS901)。また、ガラス120に貫通ビア123が形成され、ガラス120の両面に配線121および122が形成され、そしてソルダーレジスト140が形成される(ステップS902)。次に、異方性導電膜130がガラス120の受光エリアの周囲に形成される(ステップS903)。そして、半導体チップ110がフリップチップ接合される(ステップS904)。
 続いて、封止樹脂150により、半導体チップ110が封止され(ステップS905)、封止樹脂150が平坦化される(ステップS906)。次に、半田ボール160が搭載され(ステップS907)、個片化されて(ステップS908)、半導体パッケージ100が完成する。
 このように、本技術の第1の実施の形態によれば、ガラス120の両面に配線し、それらを貫通ビア123で接続したため、貫通ビア123およびソルダーレジスト140により迷光をカットしてフレアを抑制することができる。また、ダムとして機能する異方性導電膜130を形成したため、半導体チップ110の上面に、ダムを設けるためのスペースが不要になり、半導体チップ110を小型化することができる。
 [第1の変形例]
 上述の第1の実施の形態では、半田ボール160をガラス120の受光側に搭載していたが、この構成では、実装する基板210に開口部が必要になる。この第1の実施の形態の第1の変形例における光学装置200は、基板210に半導体パッケージ100をワイヤボンディングする点において第1の実施の形態と異なる。
 図7は、本技術の第1の実施の形態の第1の変形例における光学装置200の一構成例を示す断面図である。この第1の実施の形態の第1の変形例の光学装置200は、半導体パッケージ100が、半田ボール160の代わりにワイヤ161により基板210の上面に接続される点において第1の実施の形態と異なる。これにより、基板210の開口部が不要となる。
 このように、本技術の第1の実施の形態の第1の変形例によれば、半導体パッケージ100を基板210にワイヤボンディングするため、基板210の開口部が不要になる。
 [第2の変形例]
 上述の第1の実施の形態では、半導体チップ110が露出するまで封止樹脂150を平坦化することにより半導体パッケージ100を薄化していたが、薄化しなくても厚みの制約を満たす場合は、平坦化が不要である。この第1の実施の形態の第2の変形例における半導体パッケージ100は、半導体チップ110の下面を露出させずに封止した点において第1の実施の形態と異なる。
 図8は、本技術の第1の実施の形態の第2の変形例における半導体パッケージ100の一構成例を示す断面図である。この第1の実施の形態の第2の変形例において、ガラス120の下面から封止樹脂150の下面までの距離dZsは、ガラス120の下面から半導体チップ110の下面までの距離dZcより大きい。言い換えれば、半導体チップ110の側面に加えて、その下面も封止樹脂150により封止される。これにより、平坦化の工程が不要になる。
 なお、第1の実施の形態の第2の変形例に、第1の変形例を適用することができる。
 このように、本技術の第1の実施の形態の第2の変形例によれば、半導体チップ110の側面および下面を封止樹脂150により封止するため、平坦化の工程が不要になる。
 <2.第2の実施の形態>
 上述の第1の実施の形態では、ガラス120の両面に配線していたが、この構成では、配線の設計自由度が不足することがある。この第2の実施の形態における半導体パッケージ100は、封止樹脂150の下面にも配線した点において第1の実施の形態と異なる。
 図9は、本技術の第2の実施の形態における半導体パッケージ100の一構成例を示す断面図である。この第2の実施の形態における半導体パッケージ100は、封止樹脂150に貫通電極151および153と、配線152とがさらに形成される点において第1の実施の形態と異なる。
 配線152は、封止樹脂150の下面に形成され、この配線152はソルダーレジスト141により被覆される。ただし、ソルダーレジスト141は、半導体チップ110の下面を被覆しないことが好ましい。なお、配線152は、特許請求の範囲に記載の第3配線の一例である。
 また、貫通電極151は、封止樹脂150を貫通し、ガラス120下面の配線122と配線152とを接続する。貫通電極153は、封止樹脂150およびガラス120を貫通し、上面の配線121と配線152とを接続する。なお、貫通電極153は、必要に応じて設けられ、貫通電極153を形成しない構成とすることもできる。
 貫通電極151や153を設けることにより、ガラス120の両面に加えて、封止樹脂150の下面にも配線することができる。これにより、配線層数が増大するため、配線の設計自由度を向上させることができる。
 図10から図12を参照して、第2の実施の形態における半導体パッケージ100の製造方法について説明する。
 図10におけるaに例示するように、半導体チップ110の受光面にバンプ112が形成される。また、同図におけるbに例示するように、貫通ビア123、配線121および122や、ソルダーレジスト140が形成される。次に、同図におけるcに例示するように、異方性導電膜130が形成され、同図におけるdに例示するように、半導体チップ110がフリップチップ接合される。
 そして、図11におけるaに例示するように、半導体チップ110が封止され、同図におけるbに例示するように、封止樹脂150が平坦化される。
 上述の平坦化までの工程は、第1の実施の形態と同様である。
 平坦化後に、図12におけるaに例示するように、レーザーなどにより貫通孔が形成され、メッキにより貫通電極151や、配線152が形成される。
 そして、同図におけるbに例示するように半田ボール160が搭載され、個片化されて半導体パッケージ100が完成する。
 なお、第2の実施の形態に、第1の実施の形態の第1、第2の変形例を適用することができる。
 このように、本技術の第2の実施の形態によれば、封止樹脂150に貫通電極151を設け、封止樹脂150の下面にも配線したため、配線の設計自由度を向上させることができる。
 [変形例]
 上述の第2の実施の形態では、半田ボール160をガラス120の受光側に搭載していたが、この構成では、実装する基板210に開口部が必要になる。この第2の実施の形態の変形例における光学装置200は、封止樹脂150や半導体チップ110の下面に半田ボール160を搭載した点において第2の実施の形態と異なる。
 図13は、本技術の第2の実施の形態の変形例における半導体パッケージ100の一構成例を示す断面図である。この第2の実施の形態の変形例における半導体パッケージ100は、封止樹脂150および半導体チップ110のそれぞれの下面に、配線152が形成され、半田ボール160が搭載される点において第2の実施の形態と異なる。
 同図に例示するように、受光面と反対の下面側から配線を取り出すことにより、基板210(不図示)の開口部が不要になる。
 なお、第2の実施の形態の変形例に、第1の実施の形態の第2の変形例を適用することができる。
 このように、本技術の第2の実施の形態の変形例によれば、封止樹脂150および半導体チップ110のそれぞれの下面に配線し、その下面に半田ボール160を搭載したため、基板210の開口部が不要となる。
 <3.第3の実施の形態>
 上述の第1の実施の形態では、ガラス120の両面に配線していたが、この構成では、配線の設計自由度が不足することがある。この第3の実施の形態における半導体パッケージ100は、封止樹脂150内に多層配線を形成した点において第1の実施の形態と異なる。
 図14は、本技術の第3の実施の形態における半導体パッケージ100の一構成例を示す断面図である。この第3の実施の形態における半導体パッケージ100は、封止樹脂150内に、2層以上の多層配線155が形成されている点において第1の実施の形態と異なる。
 多層配線155は、例えば、互いに異なる配線層に形成された配線152および154と、配線122および152を接続する貫通電極151と、配線152および154を接続する貫通電極153とを備える。例えば、配線152は、封止樹脂150内に配線され、配線154は、封止樹脂150の下面に配線される。また、封止樹脂150の下面は、ソルダーレジスト141により被覆される。また、半導体チップ110の側面に加えて、その下面も封止樹脂150により封止される。なお、多層配線155の配線層を2層としているが、3層以上であってもよい。
 同図に例示するように、ガラス120の両面に加えて、封止樹脂150内の多層にも配線することにより、第1の実施の形態と比較して、配線の設計自由度を向上させることができる。
 なお、第3の実施の形態に、第1の実施の形態の第1の変形例や、第2の実施の形態の変形例を適用することができる。
 このように、本技術の第3の実施の形態によれば、封止樹脂150内に多層配線155を形成したため、配線の設計自由度を向上させることができる。
 [変形例]
 上述の第3の実施の形態では、封止樹脂150内に多層配線155を形成していたが、半導体チップ110の放熱性能が不足することがある。この第3の実施の形態の変形例における半導体パッケージ100は、半導体チップ110の下部にサーマルビアをさらに配置した点において第3の実施の形態と異なる。
 図15は、本技術の第3の実施の形態の変形例における半導体パッケージ100の一構成例を示す断面図である。この第3の実施の形態の変形例における半導体パッケージ100は、半導体チップ110の下部に、所定数のサーマルビア156がさらに配置される点において第3の実施の形態と異なる。また、下面のうち、サーマルビア156が配置された領域にはソルダーレジスト141が形成されず、開口される。
 サーマルビア156の一端は、半導体チップ110の下面に接し、他端は、封止樹脂150の下面の配線154に接続される。サーマルビア156を介して半導体チップ110で生じた熱が放出されるため、半導体パッケージ100の放熱特性を向上させることができる。
 なお、第3の実施の形態の変形例に、第1の実施の形態の第1の変形例を適用することができる。また、第1の実施の形態の第2の変形例に、サーマルビア156を配置することもできる。
 このように、本技術の第3の実施の形態の変形例によれば、半導体チップ110の下部にサーマルビア156を配置したため、半導体パッケージ100の放熱特性を向上させることができる。
 <4.第4の実施の形態>
 上述の第1の実施の形態では、半導体チップ110の上面のバンプ112を介して配線を取り出していたが、この構成では、取り出し可能な配線数が不足することがある。この第4の実施の形態における半導体パッケージ100は、半導体チップ110に貫通電極を設けた点において第1の実施の形態と異なる。
 図16は、本技術の第4の実施の形態における半導体パッケージ100の一構成例を示す断面図である。この第4の実施の形態における半導体パッケージ100は、半導体チップ110内に、そのチップを貫通する貫通電極113をさらに配置した点において第1の実施の形態と異なる。また、封止樹脂150内に貫通電極151および配線152がさらに形成される。また、配線152は、ソルダーレジスト141により被覆される。
 貫通電極113の一端は配線152に接続される。また、貫通電極151は、配線152と配線122とを接続する。これにより、半導体チップ110の上面に加えて、貫通電極113を介して、半導体チップ110の下面からも配線を取り出すことができる。このため、取り出し可能な配線数が増大し、設計自由度を向上させることができる。
 なお、第4の実施の形態に、第1の実施の形態の第1の変形例、第2の実施の形態の変形例、第3の実施の形態、第3の実施の形態の変形例のそれぞれを適用することができる。
 このように、本技術の第4の実施の形態によれば、半導体チップ110を貫通する貫通電極113を設けたため、その貫通電極113を介して、半導体チップ110の下面からも配線を取り出すことができる。このため、取り出し可能な配線数が増大し、設計自由度を向上させることができる。
 <5.第5の実施の形態>
 上述の第1の実施の形態では、貫通ビア123およびソルダーレジスト140を形成していたが、この構成では、迷光を遮断しきれないことがある。この第5の実施の形態における半導体パッケージ100は、ガラス120内に遮光ビアをさらに配置した点において第1の実施の形態と異なる。
 図17は、本技術の第4の実施の形態における半導体パッケージ100の一構成例を示す断面図である。この第4の実施の形態における半導体パッケージ100は、ガラス120内に所定数の遮光ビア124がさらに配置される点において第1の実施の形態と異なる。同図に例示するように遮光ビア124は、ガラス120を貫通し、そのビア内にソルダーレジスト140が充填される。このソルダーレジスト140は、前述のように遮光性を有する材料(黒色の材料など)で構成されている。
 図18は、本技術の第5の実施の形態における半導体パッケージ100の上面図の一例である。同図に例示するように、遮光ビア124は、受光部111の周囲に配列される。また、それらの遮光ビア124の周囲に貫通ビア123が配列される。言い換えれば、遮光ビア124は、貫通ビア123の内側に配列される。
 前述したように、遮光ビア124は、遮光性を有するソルダーレジスト140で充填されているため、ガラス120の側面から入射したり、ガラス120内で全反射したりしてガラス120内を通過する迷光を遮断することができる。これにより、フレアを十分に抑制することができる。遮光ビア124は、ピッチが狭いほど、また、その直径が大きいほど、光が通過可能な隙間が狭くなるため、遮光の効果が向上する。
 また、遮光ビア124は、バンプ112の直上か、バンプ112の内側に配置することが好ましい。バンプ112や異方性導電膜130への光の到達を抑制し、それらからの反射によるフレアを抑制することができるためである。同図は、バンプ112の内側に遮光ビア124を配置した例を示している。
 なお、遮光ビア124を貫通ビア123の内側に配列しているが、遮光ビア124を貫通ビア123の外側に、貫通ビア123を取り囲むように配列することもできる。この配列により、貫通ビア123への光の到達を抑制し、貫通ビア123からの反射光によるフレアを抑制することができる。
 また、第5の実施の形態に、第1の実施の形態の第1、第2の変形例、第2の実施の形態、第2の実施の形態の変形例、第3の実施の形態、第4の実施の形態のそれぞれを適用することができる。
 このように、本技術の第5の実施の形態によれば、迷光を遮断する遮光ビア124をさらに配列したため、フレアを十分に抑制することができる。
 <6.第6の実施の形態>
 上述の第1の実施の形態では、ガラス120の下面に半導体チップ110をフリップチップ実装していたが、この構成では、画素とガラス120の下面との間のギャップが不足することがある。この第6の実施の形態における半導体パッケージ100は、ガラス120の下面に凹部を形成した点において第1の実施の形態と異なる。
 図19は、本技術の第6の実施の形態における半導体パッケージ100の一構成例を示す断面図である。この第6の実施の形態における半導体パッケージ100は、ガラス120の下面において、上側に窪んだ凹部125が形成されている点において第1の実施の形態と異なる。同図において太線は、凹部125の輪郭を示す。また、凹部125の周囲に、バンプ112を介して半導体チップ110が接合される。また、第2の実施の形態と同様に、貫通電極151や153と、配線152と、ソルダーレジスト141とがさらに形成される。
 凹部125の底面と画素との間のギャップは、一定量に保たれている。このギャップにより、画素の上部に所定量の空間を確保することができる。このため、製造工程時に生じて画素の上部の空間に残存するアウトガスや、封止樹脂150を経由して外部から侵入する水分の影響を、空間の体積で緩和することができる。また、画素の上部の空間に余裕ができるため、製造時のハンドリングによる意図しない衝突や、半導体チップ110やガラス120の反りによる接触で、画素面が傷つくことを抑制することができる。
 なお、貫通電極151や153と、配線152と、ソルダーレジスト141とを設けない構成とすることもできる。また、第6の実施の形態に、第1の実施の形態の第1、第2の変形例、第2の実施の形態の変形例、第3の実施の形態、第4の実施の形態、第5の実施の形態のそれぞれを適用することができる。
 このように、本技術の第6の実施の形態によれば、ガラス120の下部に凹部125を形成したため、画素の上部に十分な量の空間を確保することができる。
 [変形例]
 上述の第6の実施の形態では、ガラス120の下面に凹部125を形成していたが、この構成では、迷光を遮断しきれないことがある。この第6の実施の形態の変形例における半導体パッケージ100は、凹部125の側面に遮光膜を形成した点において第6の実施の形態と異なる。
 図20は、本技術の第6の実施の形態の変形例における半導体パッケージ100の一構成例を示す断面図である。この第6の実施の形態の変形例における半導体パッケージ100は、凹部125の側面に遮光膜126が形成される点において第6の実施の形態と異なる。この遮光膜126により、迷光を遮光し、フレアを十分に抑制することができる。
 なお、貫通電極151と、配線152と、ソルダーレジスト141とを設けない構成とすることもできる。また、第6の実施の形態の変形例に、第1の実施の形態の第1、第2の変形例、第2の実施の形態の変形例、第3の実施の形態、第4の実施の形態、第5の実施の形態のそれぞれを適用することができる。
 このように、本技術の第6の実施の形態の変形例によれば、凹部125の側面に遮光膜126を形成したため、フレアを十分に抑制することができる。
 <7.第7の実施の形態>
 上述の第6の実施の形態では、凹部125の周囲にバンプ112を介して半導体チップ110を接合していたが、この構成では、さらに低背化することが困難である。この第7の実施の形態における半導体パッケージ100は、凹部125の底面にバンプ112を介して半導体チップ110を接合した点において第1の実施の形態と異なる。
 図21は、本技術の第7の実施の形態における半導体パッケージ100の一構成例を示す断面図である。この第7の実施の形態における半導体パッケージ100は、凹部125の底面に、バンプ112を介して半導体チップ110を接合した点において第6の実施の形態と異なる。また、配線122は、凹部125の側面にも配線される。また、半導体チップ110の下面は露出せず、封止樹脂150により被覆される。
 凹部125の底面に、半導体チップ110をフリップチップ接合することにより、凹部125内に半導体チップ110が存在することとなり、ガラス120と半導体チップ110の下面との間のギャップを減らすことができる。これにより、低背化が可能となる。
 なお、貫通電極151と、配線152と、ソルダーレジスト141とを設けない構成とすることもできる。また、第7の実施の形態に、第1の実施の形態の第1、第2の変形例、第2の実施の形態の変形例、第3の実施の形態、第4の実施の形態、第5の実施の形態のそれぞれを適用することができる。
 このように、本技術の第7の実施の形態によれば、凹部125の底面にバンプ112を介して半導体チップ110を接合したため、低背化が可能となる。
 <8.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図22は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図22に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図22の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図23は、撮像部12031の設置位置の例を示す図である。
 図23では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図23には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、図1の半導体パッケージ100は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、フレアを抑制して、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)両面の一方の面に形成された第1配線と前記両面のうち他方の面に形成された第2配線と前記第1配線および第2配線を接続する貫通ビアとを備える透明部材と、
 前記他方の面に対向する受光面に形成されたバンプを備える半導体チップと、
 前記半導体チップの側面と前記他方の面とを封止する封止樹脂と、
 前記バンプと前記第2配線とを電気的に接続する導電部材と
を具備する半導体パッケージ。
(2)前記導電部材は、異方性導電膜または異方性導電ペーストである
前記(1)記載の半導体パッケージ。
(3)前記第1配線に接続されたワイヤをさらに具備する
前記(1)または(2)に記載の半導体パッケージ。
(4)前記封止樹脂は、前記半導体チップの両面のうち前記受光面に対向する面をさらに封止する
前記(1)から(3)のいずれかに記載の半導体パッケージ。
(5)前記封止樹脂は、
 第3配線と
 前記封止樹脂を貫通して前記第2配線および前記第3配線を接続する貫通ビアと
を備える
前記(1)から(4)のいずれかに記載の半導体パッケージ。
(6)前記第3配線に接続された半田ボールをさらに具備する
前記(5)記載の半導体パッケージ。
(7)前記封止樹脂は、多層配線を備える
前記(1)から(6)のいずれかに記載の半導体パッケージ。
(8)前記封止樹脂は、前記半導体チップで生じた熱を放出するサーマルビアをさらに備える
前記(7)記載の半導体パッケージ。
(9)前記半導体チップは、前記半導体チップ自身を貫通する貫通電極をさらに備える
前記(1)から(8)のいずれかに記載の半導体パッケージ。
(10)前記透明部材は、入射光の一部を遮光する遮光ビアをさらに備える
前記(1)から(9)のいずれかに記載の半導体パッケージ。
(11)前記透明部材は、前記他方の面に形成された凹部を備える
前記(1)から(10)記載の半導体パッケージ。
(12)前記半導体チップは、前記バンプを介して前記凹部の周囲に接合される
前記(11)記載の半導体パッケージ。
(13)前記透明部材は、前記凹部の側面を覆う遮光膜をさらに備える
前記(11)または(12)記載の半導体パッケージ。
(14)前記半導体チップは、前記バンプを介して前記凹部の底面に接合される
前記(11)記載の半導体パッケージ。
(15)両面の一方の面に形成された第1配線と前記両面のうち他方の面に形成された第2配線と前記第1配線および第2配線を接続する貫通ビアとを備える透明部材と、前記他方の面に対向する受光面に形成されたバンプを備える半導体チップと、前記半導体チップの側面と前記他方の面とを封止する封止樹脂と、前記バンプと前記第2配線とを電気的に接続する導電部材とが設けられた半導体パッケージと、
 前記半導体パッケージが実装される基板と
を具備する光学装置。
(16)半導体チップの受光面にバンプを形成する手順と、
 透明部材の両面の一方の面に第1配線を形成し、前記両面のうち他方の面に第2配線を形成し、前記第1配線および第2配線を接続する貫通ビアを形成する手順と、
 前記バンプと前記第2配線とを電気的に接続する導電部材を形成する手順と、
 前記半導体チップを前記透明部材に接合する手順と、
 前記半導体チップの側面と前記他方の面とを封止する手順と
を具備する半導体パッケージの製造方法。
 100 半導体パッケージ
 110 半導体チップ
 111 受光部
 112 バンプ
 113 貫通電極
 120 ガラス
 121、122、152、154 配線
 123 貫通ビア
 124 遮光ビア
 125 凹部
 126 遮光膜
 130 異方性導電膜
 140、141 ソルダーレジスト
 150 封止樹脂
 151、153 貫通電極
 155 多層配線
 156 サーマルビア
 160 半田ボール
 161 ワイヤ
 200 光学装置
 210 基板
 12031 撮像部

Claims (16)

  1.  両面の一方の面に形成された第1配線と前記両面のうち他方の面に形成された第2配線と前記第1配線および第2配線を接続する貫通ビアとを備える透明部材と、
     前記他方の面に対向する受光面に形成されたバンプを備える半導体チップと、
     前記半導体チップの側面と前記他方の面とを封止する封止樹脂と、
     前記バンプと前記第2配線とを電気的に接続する導電部材と
    を具備する半導体パッケージ。
  2.  前記導電部材は、異方性導電膜または異方性導電ペーストである
    請求項1記載の半導体パッケージ。
  3.  前記第1配線に接続されたワイヤをさらに具備する
    請求項1記載の半導体パッケージ。
  4.  前記封止樹脂は、前記半導体チップの両面のうち前記受光面に対向する面をさらに封止する
    請求項1記載の半導体パッケージ。
  5.  前記封止樹脂は、
     第3配線と
     前記封止樹脂を貫通して前記第2配線および前記第3配線を接続する貫通ビアと
    を備える
    請求項1記載の半導体パッケージ。
  6.  前記第3配線に接続された半田ボールをさらに具備する
    請求項5記載の半導体パッケージ。
  7.  前記封止樹脂は、多層配線を備える
    請求項1記載の半導体パッケージ。
  8.  前記封止樹脂は、前記半導体チップで生じた熱を放出するサーマルビアをさらに備える
    請求項7記載の半導体パッケージ。
  9.  前記半導体チップは、前記半導体チップ自身を貫通する貫通電極をさらに備える
    請求項1記載の半導体パッケージ。
  10.  前記透明部材は、入射光の一部を遮光する遮光ビアをさらに備える
    請求項1記載の半導体パッケージ。
  11.  前記透明部材は、前記他方の面に形成された凹部を備える
    請求項1記載の半導体パッケージ。
  12.  前記半導体チップは、前記バンプを介して前記凹部の周囲に接合される
    請求項11記載の半導体パッケージ。
  13.  前記透明部材は、前記凹部の側面を覆う遮光膜をさらに備える
    請求項11記載の半導体パッケージ。
  14.  前記半導体チップは、前記バンプを介して前記凹部の底面に接合される
    請求項11記載の半導体パッケージ。
  15.  両面の一方の面に形成された第1配線と前記両面のうち他方の面に形成された第2配線と前記第1配線および第2配線を接続する貫通ビアとを備える透明部材と、前記他方の面に対向する受光面に形成されたバンプを備える半導体チップと、前記半導体チップの側面と前記他方の面とを封止する封止樹脂と、前記バンプと前記第2配線とを電気的に接続する導電部材とが設けられた半導体パッケージと、
     前記半導体パッケージが実装される基板と
    を具備する光学装置。
  16.  半導体チップの受光面にバンプを形成する手順と、
     透明部材の両面の一方の面に第1配線を形成し、前記両面のうち他方の面に第2配線を形成し、前記第1配線および第2配線を接続する貫通ビアを形成する手順と、
     前記バンプと前記第2配線とを電気的に接続する導電部材を形成する手順と、
     前記半導体チップを前記透明部材に接合する手順と、
     前記半導体チップの側面と前記他方の面とを封止する手順と
    を具備する半導体パッケージの製造方法。
PCT/JP2023/035682 2022-11-24 2023-09-29 半導体パッケージ、光学装置、および、半導体パッケージの製造方法 WO2024111248A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-187234 2022-11-24
JP2022187234 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024111248A1 true WO2024111248A1 (ja) 2024-05-30

Family

ID=91195398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035682 WO2024111248A1 (ja) 2022-11-24 2023-09-29 半導体パッケージ、光学装置、および、半導体パッケージの製造方法

Country Status (1)

Country Link
WO (1) WO2024111248A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242442A (ja) * 1997-02-26 1998-09-11 Fuji Photo Film Co Ltd 撮像素子のチップサイズパッケージ
JP2005005488A (ja) * 2003-06-12 2005-01-06 Dainippon Printing Co Ltd 半導体モジュールおよびそれらの製造方法
JP2007299929A (ja) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd 光学デバイス装置とそれを用いた光学デバイスモジュール
WO2014083746A1 (ja) * 2012-11-29 2014-06-05 パナソニック株式会社 光学装置および光学装置の製造方法
US20170317124A1 (en) * 2016-05-02 2017-11-02 Omnivision Technologies, Inc. Edge reflection reduction
WO2021014732A1 (ja) * 2019-07-23 2021-01-28 ソニーセミコンダクタソリューションズ株式会社 半導体パッケージ、電子装置、および、半導体パッケージの製造方法
JP2022022043A (ja) * 2020-07-24 2022-02-03 海華科技股▲分▼有限公司 携帯用電子装置及びその撮像モジュール
WO2022044848A1 (ja) * 2020-08-27 2022-03-03 ソニーセミコンダクタソリューションズ株式会社 パッケージ、及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242442A (ja) * 1997-02-26 1998-09-11 Fuji Photo Film Co Ltd 撮像素子のチップサイズパッケージ
JP2005005488A (ja) * 2003-06-12 2005-01-06 Dainippon Printing Co Ltd 半導体モジュールおよびそれらの製造方法
JP2007299929A (ja) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd 光学デバイス装置とそれを用いた光学デバイスモジュール
WO2014083746A1 (ja) * 2012-11-29 2014-06-05 パナソニック株式会社 光学装置および光学装置の製造方法
US20170317124A1 (en) * 2016-05-02 2017-11-02 Omnivision Technologies, Inc. Edge reflection reduction
WO2021014732A1 (ja) * 2019-07-23 2021-01-28 ソニーセミコンダクタソリューションズ株式会社 半導体パッケージ、電子装置、および、半導体パッケージの製造方法
JP2022022043A (ja) * 2020-07-24 2022-02-03 海華科技股▲分▼有限公司 携帯用電子装置及びその撮像モジュール
WO2022044848A1 (ja) * 2020-08-27 2022-03-03 ソニーセミコンダクタソリューションズ株式会社 パッケージ、及びその製造方法

Similar Documents

Publication Publication Date Title
US20230107566A1 (en) Imaging unit, method for manufacturing the same, and electronic apparatus
WO2018030139A1 (ja) 撮像素子パッケージおよびカメラモジュール
JP2018117027A (ja) 固体撮像素子、電子装置、および、固体撮像素子の製造方法
CN111886855B (zh) 摄像装置和电子设备
CN114127919A (zh) 半导体封装、电子装置和制造半导体封装的方法
WO2022044553A1 (ja) 半導体装置、および、半導体装置の製造方法
WO2024111248A1 (ja) 半導体パッケージ、光学装置、および、半導体パッケージの製造方法
US20240063244A1 (en) Semiconductor package, electronic device, and method of manufacturing semiconductor package
WO2021014731A1 (ja) 半導体パッケージ
JP7462620B2 (ja) 半導体パッケージ、半導体パッケージの製造方法、および、電子装置
WO2019176454A1 (ja) 半導体装置、撮像装置、および電子機器
WO2024024278A1 (ja) パッケージおよびパッケージの製造方法
JP7499242B2 (ja) 半導体パッケージ、および、電子装置
WO2024090027A1 (ja) パッケージおよびパッケージの製造方法
WO2024106011A1 (ja) 半導体パッケージ、電子装置、および、半導体パッケージの制御方法
WO2024095610A1 (ja) 電子デバイス
WO2024100994A1 (ja) ペルチェ素子および半導体パッケージ
WO2023007797A1 (ja) 固体撮像素子、撮像装置、および電子機器
WO2022196188A1 (ja) 撮像装置、撮像装置の製造方法、および電子機器
WO2023176122A1 (ja) 半導体パッケージ、および、半導体パッケージの製造方法
WO2024135493A1 (ja) 光検出装置
WO2024038757A1 (ja) 半導体装置および電子機器
WO2022239325A1 (ja) 固体撮像装置およびその製造方法、並びに電子機器
JP2024038720A (ja) 光検出装置
WO2024075398A1 (ja) カメラモジュール、および、撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894260

Country of ref document: EP

Kind code of ref document: A1