WO2024109121A1 - 电风机和终端设备 - Google Patents

电风机和终端设备 Download PDF

Info

Publication number
WO2024109121A1
WO2024109121A1 PCT/CN2023/108165 CN2023108165W WO2024109121A1 WO 2024109121 A1 WO2024109121 A1 WO 2024109121A1 CN 2023108165 W CN2023108165 W CN 2023108165W WO 2024109121 A1 WO2024109121 A1 WO 2024109121A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
diffuser
impeller
stator
mesh structure
Prior art date
Application number
PCT/CN2023/108165
Other languages
English (en)
French (fr)
Inventor
莫赛法
戴龙珍
胡小文
胡斯特
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2024109121A1 publication Critical patent/WO2024109121A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • the present application relates to the technical field of electric blowers, and in particular to an electric blower and a terminal device.
  • an electric blower includes an impeller assembly, a diffuser and a motor.
  • the motor drives the impeller in the impeller assembly to rotate to inhale external gas.
  • the gas flows in from the air inlet of the impeller assembly and is accelerated by the action of the impeller.
  • the accelerated gas flows into the diffuser from the air outlet of the impeller assembly, and the gas diffused by the diffuser flows out from the air outlet of the diffuser.
  • the motor or the electric control board in the motor is usually set downstream of the diffuser. After the gas flows out of the diffuser outlet, it will hit the motor surface or the electric control board surface at a certain flow rate, and then the gas is forced to turn vertically and diffuse to both sides, so that when the gas hits the motor surface or the electric control board surface, additional impact noise will be generated, resulting in an increase in the working noise of the electric blower.
  • the embodiment of the present application provides an electric blower and a terminal device, which can solve the problem in the related art that the working noise of the electric blower increases due to gas impacting the surface of the motor or the surface of the electric control board.
  • the technical solution is as follows:
  • the present application provides an electric blower, the electric blower comprising: a motor assembly, an impeller assembly, a diffuser assembly and a mesh structure, the motor assembly comprising an output shaft, a bracket and a stator and rotor assembly;
  • the bracket and the stator-rotor assembly are sleeved on the output shaft, the bracket has a receiving area, the stator-rotor assembly is located in the receiving area and is connected to the bracket;
  • the impeller assembly is located on one side of the stator-rotor assembly and is sleeved on the output shaft;
  • the diffuser assembly is located on a side of the impeller assembly close to the stator and rotor assembly and is The wheel assembly is connected;
  • the mesh structure is located on a side of the diffuser assembly away from the impeller assembly and is connected to the diffuser assembly.
  • stator-rotor assembly is located on a side of the mesh structure away from the diffuser assembly, and the mesh structure is also connected to the bracket.
  • the stator-rotor assembly includes a rotor and a stator
  • the rotor is sleeved on the output shaft, and the stator is sleeved outside the rotor.
  • the orthographic projection of the air outlet of the diffuser assembly at least partially overlaps with the orthographic projection of the stator.
  • the orthographic projection of the air outlet is a first projection
  • the orthographic projection of the stator and the portion of the bracket connected to the stator is a second projection
  • an area where the first projection overlaps with the second projection is greater than or equal to half of an area of the smaller projection between the first projection and the second projection.
  • the motor assembly further includes an electric control board
  • the electric control board is located on a side of the mesh structure away from the pressure diffuser assembly and opposite to the air outlet of the pressure diffuser assembly, and is respectively connected to the mesh structure and the bracket.
  • the porosity of the network structure ranges from 60% to 85%.
  • the diameter of the through holes of the mesh structure is positively correlated with the thickness of the mesh structure.
  • the impeller assembly includes an impeller assembly housing, a first impeller, a return flow device, and a second impeller;
  • the first impeller, the return flow device and the second impeller are all located in the impeller assembly housing, and the first impeller, the return flow device and the second impeller are sequentially sleeved on the output shaft, the first impeller has a first flow channel, and a return flow channel is formed between the return flow device and the inner wall of the impeller assembly housing.
  • the second impeller has a second flow channel, and the first flow channel, the return flow channel and the second flow channel are connected in sequence.
  • the diffuser assembly includes a first axial flow diffuser and a second axial flow diffuser
  • the first axial flow diffuser and the second axial flow diffuser are distributed along the axial direction of the output shaft, the first axial flow diffuser is sealed and connected to the second axial flow diffuser, and are communicated with each other, and one end of the first axial flow diffuser away from the second axial flow diffuser is sealed and connected to the impeller assembly, and is communicated with the impeller assembly.
  • the present application provides a terminal device, wherein the terminal device comprises an electric wind machine as described in any one of the first aspect and possible implementations thereof.
  • the terminal device is a vacuum cleaner
  • the vacuum cleaner further includes: an air intake device, a dust collection chamber, and an exhaust duct;
  • the air intake device, the dust collecting chamber, the electric blower and the exhaust duct are connected in sequence, and one end of the air intake device away from the dust collecting chamber is connected to the outside, and one end of the exhaust duct away from the electric blower is connected to the outside.
  • a mesh structure is provided on the side of the diffuser assembly away from the impeller assembly, and the mesh structure can adjust the velocity distribution of the gas at the air outlet of the diffuser assembly, so that the velocity distribution of the gas at the air outlet is uniform.
  • the mesh structure has the function of decelerating and adjusting the flow direction of the gas, thereby facilitating the reduction of the impact of the gas on the surface of the motor or the surface of the electric control board, and further, facilitating the reduction or even elimination of the impact noise, and facilitating the reduction of the working noise of the electric fan when it is working.
  • FIG1 is a schematic structural diagram of an electric blower provided in an embodiment of the present application.
  • FIG2 is a schematic cross-sectional view of an electric blower provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of gas flow without a mesh structure provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of gas flow when there is a mesh structure provided in an embodiment of the present application.
  • FIG5 is a schematic projection diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • FIG6 is a schematic structural diagram of an electric blower provided in an embodiment of the present application.
  • FIG7 is a schematic cross-sectional view of an electric blower provided in an embodiment of the present application.
  • FIG8 is a schematic structural diagram of a mesh structure provided in an embodiment of the present application when it is unfolded
  • FIG9 is a schematic structural diagram of a mesh structure provided in an embodiment of the present application when it is unfolded;
  • FIG. 10 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
  • FIG1 is a schematic diagram of the structure of an electric fan provided in an embodiment of the present application
  • FIG2 is a schematic diagram of the cross-sectional structure of an electric fan provided in an embodiment of the present application.
  • the electric fan includes a motor assembly 1, an impeller assembly 2, a diffuser assembly 3 and a mesh structure 5, wherein the motor assembly 1 includes an output shaft 11, a bracket 12 and a stator-rotor assembly 13.
  • the bracket 12 and the stator-rotor assembly 13 are both sleeved on the output shaft 11, and the bracket 12 and the stator-rotor assembly 13 are located at one end of the output shaft 11.
  • the bracket 12 has a receiving area 12A, the stator-rotor assembly 13 is located in the receiving area 12A, and the stator-rotor assembly 13 is fixedly connected to the bracket 12.
  • the stator-rotor assembly 13 includes a rotor 131 and a stator 132, the rotor 131 is fixed to the output shaft 11 by interference fit or key connection, and the stator 132 is fixedly connected to the inner wall of the bracket 12.
  • the stator 132 is sleeved outside the rotor 131, and there is an air gap between the stator 132 and the rotor 131, at this time, the inner wall of the stator 132 is opposite to the outer wall of the rotor 131.
  • stator 132 and the rotor 131 are both mounted on the output shaft 11, with a gap between the stator 132 and the output shaft 11, and an air gap between the stator 132 and the rotor 131 in the extension direction of the axis m of the output shaft 11.
  • the end face of the stator 132 is opposite to the end face of the rotor 131.
  • the impeller assembly 2 is located on one side of the stator-rotor assembly 13 and on the side of the first end surface 12B of the bracket 12 away from the bracket 12 , and the impeller assembly 2 is sleeved on the output shaft 11 and connected to the output shaft 11 .
  • the diffuser assembly 3 is located on a side of the impeller assembly 2 close to the stator-rotor assembly 13 and is connected to the impeller assembly 2. In other words, the diffuser assembly 3 and the stator-rotor assembly 13 are located on the same side of the impeller assembly 2.
  • the mesh structure 5 is located on the side of the diffuser assembly 3 away from the impeller assembly 2 and is connected to the diffuser assembly 3.
  • the gas flowing out of the air outlet 3A of the diffuser assembly 3 contacts the mesh structure 5.
  • the flow velocity and flow direction are adjusted under the action of the mesh structure 5 .
  • a mesh structure 5 is provided on the side of the diffuser assembly 3 away from the impeller assembly 2, and the mesh structure 5 can adjust the flow velocity distribution of the gas at the air outlet 3A of the diffuser assembly 3, so that the gas flow velocity distribution at the air outlet 3A is uniform.
  • the mesh structure 5 has the function of decelerating and adjusting the flow direction of the gas, thereby facilitating the reduction of the impact of the gas on the surface of the motor or the surface of the electric control board, and further, facilitating the reduction or even elimination of the impact noise, and facilitating the reduction of the working noise of the electric fan when it is working.
  • the stator-rotor assembly 13 is located on a side of the mesh structure 5 away from the diffuser assembly 3, and the mesh structure 5 is also connected to the bracket 12.
  • the diffuser assembly 3 and the stator-rotor assembly 13 are spaced apart along the extension direction of the axis m of the output shaft 11, and at this time, the mesh structure 5 covers the interval between the diffuser assembly 3 and the stator-rotor assembly 13, and the mesh structure 5 is respectively connected to the diffuser assembly 3 and the bracket 12.
  • FIG3 is a schematic diagram of gas flow without a mesh structure according to an embodiment of the present application
  • FIG4 is a schematic diagram of gas flow with a mesh structure according to an embodiment of the present application.
  • the gas flowing out of the air outlet 3A of the diffuser assembly 3 will impact the end surface of the stator-rotor assembly 13 at a relatively high speed, and the gas will diffuse to both sides (mainly diffuse to the side away from the output shaft 11) only after reaching the end surface of the stator-rotor assembly 13.
  • the gas has an airflow bending angle greater than or equal to 60 degrees when diffusing, and may even reach 90 degrees.
  • the gas flowing out of the air outlet 3A of the diffuser assembly 3 can be gradually decelerated under the action of the mesh structure 5, and under the action of the mesh structure 5, the gas will gradually diffuse toward the side away from the output shaft 11 before reaching the end face of the stator-rotor assembly 13.
  • the airflow bending angle of the gas is less than or equal to 45 degrees when diffusing.
  • the spacing between the diffuser assembly 3 and the stator-rotor assembly 13 may be equal to or more than twice the radial thickness of the stator 132; or, when the stator 132 and the rotor 131 are coaxially distributed along the axis of the output shaft, the spacing between the diffuser assembly 3 and the stator-rotor assembly 13 may be equal to the radius of the stator 132.
  • the above is just an example of the spacing between the diffuser assembly 3 and the stator-rotor assembly 13.
  • the spacing between the diffuser assembly 3 and the stator-rotor assembly 13 can be set according to the gas flow rate discharged by the diffuser assembly 3 in the actual product, and no limitation is made here.
  • the length of the mesh structure 5 in the extension direction of the axis m of the output shaft 11 can be greater than the spacing between the stator and rotor assembly 13 and the diffuser assembly 3.
  • the two ends of the mesh structure 5 can be respectively wrapped around the outer wall of the diffuser assembly 3 and the outer wall of the bracket 12, and the mesh structure 5 and the outer wall of the diffuser assembly 3, and the mesh structure 5 and the outer wall of the bracket 12 can be fixedly connected by welding, gluing or riveting, so as to improve the stability of the mesh structure 5 in the electric fan.
  • the mesh structure 5 and the outer wall of the diffuser assembly 3, and the mesh structure 5 and the outer wall of the bracket 12 can also be fixedly connected by snap-fitting, plug-in or threaded connection, so as to reduce the difficulty of assembly and facilitate the replacement of the mesh structure 5.
  • one end of the mesh structure 5 is connected to the end face where the air outlet 3A is located, and the other end is wrapped around the outer wall of the bracket 12; or, one end of the mesh structure 5 is wrapped around the outer wall of the diffuser assembly 3, and the other end is connected to the end face of the bracket 12 close to the diffuser assembly 3; or, the two ends of the mesh structure 5 are respectively connected to the end face where the air outlet 3A is located and the end face of the bracket 12 close to the diffuser assembly 3.
  • FIG5 is a projection schematic diagram of a local structure of an electric blower provided in an embodiment of the present application.
  • the bracket 12 has a first end face 12B, and the first end face 12B is opposite to the air outlet 3A.
  • the orthographic projection of the air outlet 3A is located within the total projection formed by the orthographic projection of the first end face 12B and the orthographic projection of the stator 132.
  • the orthographic projection of the air outlet 3A is the first projection
  • the orthographic projection of the stator 132 and the portion of the bracket 12 connected to the stator 132 i.e., the first end face 12B of the bracket 12
  • the area of the first projection and the second projection overlap is greater than or equal to half of the area of the smaller projection of the first projection and the second projection.
  • the area of the first projection is 10 square centimeters and the area of the second projection is 15 square centimeters, it is necessary to ensure that the area of the first projection and the second projection overlap is greater than or equal to 5 square centimeters, and so on.
  • the radial dimension of the diffuser assembly 3 is approximately equal to the radial dimension of the motor assembly 1.
  • the outer contour line of the orthographic projection of the air outlet 3A can just coincide with the outer contour line of the orthographic projection of the stator 132, and so on.
  • FIG6 is a schematic diagram of the structure of an electric blower provided in an embodiment of the present application
  • FIG7 is a schematic diagram of the cross-sectional structure of an electric blower provided in an embodiment of the present application.
  • the motor assembly 1 also includes an electric control board 18.
  • the stator and rotor assembly 13 is located on the inner side of the diffuser assembly 3, that is, the diffuser assembly 3 is sleeved on the bracket 12, and the inner wall of the diffuser assembly 3 is connected to the outer wall of the bracket 12.
  • the electric control board 18 is located on the side of the mesh structure 5 away from the diffuser assembly 3, and the electric control board 18 is opposite to the air outlet 3A of the diffuser assembly 3, and the electric control board 18 is respectively connected to the mesh structure 5 and the bracket 12.
  • the electric control board 18 is located on the side of the bracket 12 away from the impeller assembly 2, and in the extension direction of the axis m of the output shaft 11, there is a spacing between the air outlet 3A and the electric control board 18, and the mesh structure 5 covers the spacing.
  • the electric control board 18 can also be electrically connected to the stator-rotor assembly 13 to control the rotation of the rotor 131 in the stator-rotor assembly 13 , thereby driving the impeller in the impeller assembly 1 to work.
  • the spacing between the pressure diffuser assembly 3 and the electric control board 18 may be equal to or more than twice the radial thickness of the stator 132; or, when the stator 132 and the rotor 131 are coaxially distributed along the axis of the output shaft, the spacing between the stator-rotor assembly 3 and the electric control board 18 may be equal to the radius of the stator 132.
  • the above is only an example of the spacing between the pressure diffuser assembly 3 and the electric control board 18.
  • the spacing between the pressure diffuser assembly 3 and the electric control board 18 can be set according to the gas flow rate discharged by the pressure diffuser assembly 3 in the actual product, and no limitation is made here.
  • the pressure diffuser assembly 3 is sleeved outside the bracket 12, and it can be considered that the pressure diffuser assembly 3 is sleeved outside the entire motor assembly 1, which is conducive to reducing the length of the electric blower in the extension direction of the axis m of the output shaft 11. Moreover, before the gas flowing out of the air outlet 3A of the pressure diffuser assembly 3 reaches the electric control board 18, the flow velocity can be reduced and the flow direction can be adjusted under the action of the mesh structure 5, thereby reducing the impact of the gas on the stator and rotor assembly 13, thereby reducing the impact noise and the working noise of the electric blower.
  • the porosity of the mesh structure 5 provided in the embodiment of the present application is in the range of 60%-85%.
  • the total area occupied by the through holes is 60%-85% of the total area of the outer wall of the mesh structure 5.
  • the porosity of the mesh structure 5 is not limited here.
  • FIG8 is a schematic diagram of a mesh structure provided by an embodiment of the present application when it is unfolded.
  • the size structure of the through holes on the mesh structure 5 is the same, and the through holes are distributed at equal intervals.
  • the distance between two adjacent through holes is equal
  • the width direction Q shown in FIG8 the distance between two adjacent through holes is equal, and the above distances are equal to each other. The above distances are all equal.
  • the above distance may not be equal to the above distance.
  • FIG. 9 is a schematic diagram of the structure of a mesh structure provided in an embodiment of the present application when it is unfolded.
  • the distribution density of the through holes gradually increases from left to right. Specifically, the through hole density on the left side is less than the through hole density on the right side.
  • the left side of the mesh structure 5 shown in Figure 9 can be connected to the diffuser assembly 3, and the right side of the mesh structure 5 shown in Figure 9 is connected to the bracket 12 or the electric control board 18, or the left side of the mesh structure 5 shown in Figure 9 can be connected to the bracket 12 or the electric control board 18, and the right side of the mesh structure 5 shown in Figure 9 is connected to the diffuser assembly 3.
  • the position distribution and connection method of the mesh structure 5 in the electric blower can be determined based on actual product requirements and multiple tests, and no limitation is made here.
  • the cross-sectional shape of the through hole may be circular, square, rhombus, triangle, elliptical, etc. There is no limitation on the cross-sectional shape of the through hole.
  • the aperture of the through hole of the mesh structure 5 is positively correlated with the thickness of the mesh structure 5.
  • the thinner the mesh structure 5 i.e., the smaller the thickness
  • the smaller the aperture of the through hole, and the thicker the mesh structure 5 i.e., the greater the thickness
  • the aperture of the through hole is the diameter of the circular cross section
  • the aperture of the through hole can be the diameter of the smallest circumscribed circle of the through hole cross section.
  • the thickness of the mesh structure 5 is 1 mm
  • the aperture of the through hole is 1 mm
  • the aperture of the through hole is 0.1 mm
  • the aperture of the through hole is 0.1 mm, and so on.
  • the thickness of the mesh structure 5 should not be too large.
  • the thickness of the mesh structure 5 is just an example.
  • the thickness of the mesh structure 5 can be determined according to the gas flow rate and flow rate in the actual product, and the radial size of the electric blower, and no limitation is made here.
  • the mesh structure 5 can be made of metal materials, such as stainless steel, aluminum, copper, etc.
  • the thickness of the metal mesh is relatively thick, such as 2 mm, 3 mm, etc. Therefore, the aperture range of the through holes on the metal mesh can be controlled to be between 1 mm and 2 mm.
  • the mesh structure 5 can be made of non-metallic materials, such as fiber, nylon, cotton thread, etc.
  • the mesh structure 5 is a gauze mesh, and the thickness of the gauze mesh is relatively thin, such as 0.1 mm, 0.3 mm, etc. Therefore, the aperture range of the through holes on the gauze mesh can be controlled to be between 0.2 mm and 0.4 mm.
  • the apertures of the through holes in the mesh structure 5 may be different.
  • the thickness and the aperture size of the through hole are not described here.
  • the impeller assembly 2 may include an impeller assembly housing 21, a first impeller 22, a returner 23, and a second impeller 24.
  • the impeller assembly housing 21 has openings at both ends along the axis m, wherein the opening of the impeller assembly housing 21 away from the diffuser assembly 3 serves as an air inlet of the entire electric fan, and the opening of the impeller assembly housing 21 close to the diffuser assembly 3 is connected to the diffuser assembly 3.
  • the impeller assembly housing 21 is sealed and connected to the diffuser assembly 3 to ensure that the airflow accelerated by the impeller assembly 2 flows into the diffuser assembly 3 completely.
  • the first impeller 22, the return flow device 23 and the second impeller 24 are all located in the impeller assembly housing 21, and the first impeller 22, the return flow device 23 and the second impeller 24 are sequentially sleeved on the output shaft 11.
  • the first impeller 22 or the second impeller 24 is fixedly connected to the output shaft 11, and the return flow device 23 is rotationally connected to the output shaft 11.
  • the first impeller 22 and the impeller assembly housing 21 and the second impeller 24 and the impeller assembly housing 21 are filled with sealing cotton, which can prevent gas from flowing out from the gap between the first impeller 22 and the impeller assembly housing 21 and the gap between the second impeller 24 and the impeller assembly housing 21, which is beneficial to improve the gas flow efficiency, thereby improving the working efficiency of the electric fan.
  • the first impeller 22 has a first flow channel
  • the return flow channel is formed by the return flow channel formed by the return flow device 23 and the inner wall of the impeller assembly housing 21
  • the second impeller 24 has a second flow channel
  • the first flow channel, the return flow channel and the second flow channel are connected in sequence.
  • the gas enters the first flow channel from the air inlet of the above-mentioned electric blower (i.e., the opening of the impeller assembly housing 21 away from the diffuser assembly 3), enters the return flow channel after being accelerated by the first impeller 22, enters the second flow channel after being returned or guided by the return flow device, and enters the diffuser assembly 3 after being accelerated by the second impeller.
  • the impeller assembly housing 21 includes a first housing 211 and a second housing 212, wherein the second housing 212 is located between the first housing 211 and the diffuser assembly 3, and is sealed and connected to the first housing 211 and the diffuser assembly 3, respectively, wherein the second housing 212 and the first housing 211 can be detachably connected by welding, clamping, etc.
  • the first impeller 22 is located in the first housing 211, and the returner 23 and the second impeller 24 are located in the second housing 212.
  • the specific positional relationship is similar to that described above and will not be repeated here.
  • the use of a detachable connection between the first housing 211 and the second housing 212 is conducive to reducing the difficulty of assembling the impeller assembly 2, thereby improving production efficiency, and is also conducive to later maintenance.
  • first impeller 22 and the return flow device 23 are located in the first housing 211, and the second impeller 24 is located in the second housing 212. This structure will not be described in detail here.
  • the impeller assembly 2 may include only one impeller, or may include more than two impellers.
  • the impeller assembly 2 in these two cases is similar to the above case with the first impeller 22 and the second impeller 24, and will not be described in detail here.
  • the solution of adopting a multi-stage impeller is conducive to improving the suction force of the electric fan to meet the needs of product development, and is conducive to reducing the radial size of the electric fan under the same suction force, thereby helping to improve the applicability of the electric fan.
  • the diffuser assembly 3 may include a first axial flow diffuser 31 and a second axial flow diffuser 32.
  • the first axial flow diffuser 31 and the second axial flow diffuser 32 are distributed along the extension direction of the axis m of the output shaft 11.
  • the first axial flow diffuser 31 and the second axial flow diffuser 32 are both sleeved outside the stator and rotor assembly 13.
  • the first axial flow diffuser 31 and the second axial flow diffuser 32 can be sleeved outside the above-mentioned connecting member 14.
  • the first axial flow diffuser 31 is sealedly connected to the second axial flow diffuser 32 and communicated with each other.
  • One end of the first axial flow diffuser 31 away from the second axial flow diffuser 32 is sealedly connected to the impeller assembly 2 and communicated with the impeller assembly 2.
  • the first axial diffuser 31 includes a first diffuser impeller 311 and a first diffuser housing 312, and the second axial diffuser 32 includes a second diffuser impeller 321 and a second diffuser housing 322.
  • the first diffuser housing 312 and the second diffuser housing 322 are distributed along the extension direction of the axis m of the output shaft 11.
  • the first diffuser impeller 311 is located in the first diffuser housing 312, and the first diffuser impeller 311 is sleeved outside the connecting member 14, and the first diffuser impeller 311 and the inner wall of the first diffuser housing 312 form a first diffuser flow channel;
  • the second diffuser impeller 321 is located in the second diffuser housing 322, and the second diffuser impeller 321 is sleeved outside the connecting member 14, and the second diffuser impeller 321 and the inner wall of the second diffuser housing 322 form a second diffuser flow channel, and the second diffuser flow channel is connected to the first diffuser flow channel.
  • both ends of the first pressure diffuser shell 312 and the second pressure diffuser shell 322 have openings, one end of the first pressure diffuser shell 312 away from the second pressure diffuser shell 322 is sealed and connected to the impeller assembly 2, and the opening on the first pressure diffuser shell 312 away from the second pressure diffuser shell 322 is connected to the impeller assembly 2, the second pressure diffuser shell 322 is sealed and connected to the first pressure diffuser shell 312, and the opening of the second pressure diffuser shell 322 away from the first pressure diffuser shell 312 serves as the air outlet 3A.
  • the first diffuser housing 312 and the second diffuser housing 322 may be connected by threaded connection, welding, clamping, etc., or may be integrally formed.
  • the first diffuser housing 312 and the second diffuser housing 322 may be detachably connected, which is beneficial to reducing the assembly difficulty of the diffuser assembly 3, thereby improving production efficiency and facilitating later maintenance.
  • the gas accelerated by the impeller assembly 2 flows into the first diffuser flow channel, and then Then it enters the second diffuser flow channel, and after two diffusers, it flows from the air outlet of the electric fan (that is, the opening of the second diffuser shell 322 away from the first diffuser shell 312) to the stator and rotor assembly 13.
  • the diffuser assembly 3 may include only one axial flow diffuser, or may include more than two axial flow diffusers.
  • the distribution and connection relationship of the multiple axial flow diffusers are similar to the above-mentioned case of having the first axial flow diffuser 31 and the second axial flow diffuser 32, and will not be described in detail here.
  • the solution of adopting a multi-stage axial flow diffuser is beneficial to improving the pressure diffusion of the electric fan to meet the needs of product development, and is also beneficial to reducing the radial size of the electric fan under the same pressure diffusion capacity, thereby improving the applicability of the electric fan.
  • FIG. 10 is a structural schematic diagram of a terminal device provided by an embodiment of the present application, and the terminal device includes any electric blower 01 provided by an embodiment of the present application.
  • the terminal device can be a cleaning device, such as a vacuum cleaner, a sweeper, etc.
  • the terminal device is a vacuum cleaner, as shown in FIG10 , the vacuum cleaner may also include an air intake device 02, a dust collecting chamber 03 and an exhaust duct 04.
  • the air intake device 02, the dust collecting chamber 03, the electric fan 01 and the exhaust duct 04 are connected in sequence, wherein the end of the air intake device 02 away from the dust collecting chamber 03 (i.e., the end of the air intake device 02 not connected to the dust collecting chamber 03) is connected to the outside, and the end of the exhaust duct 04 away from the electric fan 01 (i.e., the end of the exhaust duct 04 not connected to the electric fan 01) is connected to the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种电风机和终端设备,属于电风机技术领域,该电风机包括:电机组件(1)、叶轮组件(2)、扩压组件(3)和网状结构(5),电机组件包括输出轴(11)、支架(12)和定转子合件(13);支架和定转子合件套设在输出轴上,支架具有容纳区(12A),定转子合件位于容纳区内,且与支架相连;叶轮组件位于定转子合件的一侧,且套设在输出轴上;扩压组件位于叶轮组件靠近定转子合件的一侧,且与叶轮组件相连;网状结构位于扩压组件远离叶轮组件的一侧,且与扩压组件相连。该电风机结构有利于减弱甚至消除冲击噪音,有利于降低电风机工作时的工作噪音。

Description

电风机和终端设备
本申请要求于2022年11月22日提交的申请号为202211465809.2、发明名称为“电风机和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电风机技术领域,特别涉及一种电风机和终端设备。
背景技术
由于电风机具有通风换气效果好等特点,被广泛应用在以吸尘器为代表的终端设备中。
通常,电风机包括叶轮组件、扩压器和电机,电风机工作时,电机带动叶轮组件中的叶轮旋转以吸入外部气体,气体从叶轮组件的进风口流入并在叶轮的作用下加速,加速后的气体由叶轮组件的出风口流入扩压器,经扩压器扩压后的气体由扩压器的出风口流出。
在电风机中,电机或电机中的电控板通常会被设置在扩压器下游。气体由扩压器的出风口流出后,会以一定的流速冲击电机表面或电控板表面,随后气体被迫垂直转向并向两侧扩散,从而气体冲击电机表面或电控板表面时会产生额外的冲击噪音,导致电风机工作时的工作噪音增加。
发明内容
本申请实施例提供了一种电风机和终端设备,能解决相关技术中由于气体冲击电机表面或电控板表面导致电风机的工作噪音增加的问题。技术方案如下:
第一方面,本申请提供了一种电风机,所述电风机包括:电机组件、叶轮组件、扩压组件和网状结构,所述电机组件包括输出轴、支架和定转子合件;
所述支架和所述定转子合件套设在所述输出轴上,所述支架具有容纳区,所述定转子合件位于所述容纳区内,且与所述支架相连;
所述叶轮组件位于所述定转子合件的一侧,且套设在所述输出轴上;
所述扩压组件位于所述叶轮组件靠近所述定转子合件的一侧,且与所述叶 轮组件相连;
所述网状结构位于所述扩压组件远离所述叶轮组件的一侧,且与所述扩压组件相连。
在一种可能的实现方式中,所述定转子合件位于所述网状结构远离所述扩压组件的一侧,所述网状结构还与所述支架相连。
在一种可能的实现方式中,所述定转子合件包括转子和定子;
所述转子套设在所述输出轴上,所述定子套在所述转子外,在所述输出轴的轴线的延伸方向上,所述扩压组件的出风口的正投影与所述定子的正投影的至少部分重合。
在一种可能的实现方式中,在所述输出轴的轴线的延伸方向上,所述出风口的正投影为第一投影,所述定子以及所述支架上与所述定子相连的部分的正投影为第二投影,所述第一投影与所述第二投影重合的面积大于或等于所述第一投影和所述第二投影中面积更小的投影的面积的一半。
在一种可能的实现方式中,所述电机组件还包括电控板;
所述电控板位于所述网状结构远离所述扩压组件的一侧,且与所述扩压组件的出风口相对,并分别与所述网状结构、所述支架相连。
在一种可能的实现方式中,所述网状结构的孔隙率范围为60%-85%。
在一种可能的实现方式中,所述网状结构的通孔的孔径与所述网状结构的厚度呈正相关关系。
在一种可能的实现方式中,所述叶轮组件包括叶轮组件壳体、第一叶轮、回流器和第二叶轮;
所述第一叶轮、所述回流器和所述第二叶轮均位于所述叶轮组件壳体内,且所述第一叶轮、所述回流器和所述第二叶轮依次套在所述输出轴上,所述第一叶轮内具有第一流道,所述回流器与所述叶轮组件壳体的内壁之间形成回流 流道,所述第二叶轮内具有第二流道,所述第一流道、所述回流流道和所述第二流道依次连通。
在一种可能的实现方式中,所述扩压组件包括第一轴流扩压器和第二轴流扩压器;
所述第一轴流扩压器和所述第二轴流扩压器沿所述输出轴的轴线方向分布,所述第一轴流扩压器与所述第二轴流扩压器密封相连,且相互连通,所述第一轴流扩压器远离所述第二轴流扩压器的一端与所述叶轮组件密封相连,且与所述叶轮组件相连通。
第二方面,本申请提供了一种终端设备,所述终端设备包括如第一方面及其可能的实现方式中任一项所述的电风机。
在一种可能的实现方式中,所述终端设备为吸尘器,所述吸尘器还包括:进气装置、集尘室和排气管道;
所述进气装置、所述集尘室、所述电风机和所述排气管道依次连通,且所述进气装置远离所述集尘室的一端与外部连通,且所述排气管道远离所述电风机的一端与外部连通。
本申请实施例提供的技术方案带来的有益效果是:
本申请实施例提供的方案中,扩压组件远离叶轮组件的一侧设置网状结构,网状结构可以调整扩压组件的出风口处气体的流速分布,使得在出风口处气体流速分布均匀。并且,网状结构对气体具有减速和调整流向的作用,从而,有利于减弱气体对电机表面或电控板表面的冲击,进而,有利于减弱甚至消除冲击噪音,有利于降低电风机工作时的工作噪音。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电风机的结构示意图;
图2是本申请实施例提供一种电风机的剖面结构示意图;
图3是本申请实施例提供的一种无网状结构时气体流向示意图;
图4是本申请实施例提供的有网状结构时气体流向示意图;
图5是本申请实施例提供的一种电风机的局部结构的投影示意图;
图6是本申请实施例提供的一种电风机的结构示意图;
图7是本申请实施例提供的一种电风机的剖面结构示意图;
图8是本申请实施例提供的一种网状结构展开时的结构示意图;
图9是本申请实施例提供的一种网状结构展开时的结构示意图;
图10是本申请实施例提供的一种终端设备的结构示意图。
图例说明
1、电机组件;2、叶轮组件;3、扩压组件;5、网状结构;
11、输出轴;12、支架;13、定转子合件;18、电控板;21、叶轮组件壳
体;22、第一叶轮;23、回流器;24、第二叶轮;31、第一轴流扩压器;32、第二轴流扩压器;3A、出风口;
12A、容纳区;12B、第一端面;131、转子;132、定子;211、第一壳体;
212、第二壳体;311、第一扩压叶轮;312、第一扩压壳体;321、第二扩压叶轮;322、第二扩压壳体;
m、轴线;
01、电风机;02、进气装置;03、集尘室;04、排气管道。
具体实施方式
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含” 等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1是本申请实施例提供的一种电风机的结构示意图,图2是本申请实施例提供一种电风机的剖面结构示意图。参考图1和图2所示,该电风机包括电机组件1、叶轮组件2、扩压组件3和网状结构5,其中,电机组件1包括输出轴11、支架12和定转子合件13。
在电机组件1中,参考图2所示,支架12和定转子合件13均套设在输出轴11上,且支架12和定转子合件13位于输出轴11的一端。支架12具有容纳区12A,定转子合件13位于容纳区12A内,并且定转子合件13与支架12固定相连。定转子合件13包括转子131和定子132,转子131通过过盈配合或键连接等方式与输出轴11固定,定子132则与支架12的内壁固定相连。作为示例,如图2所示,定子132套设在转子131外,且定子132与转子131之间具有气隙,此时,定子132的内壁与转子131的外壁相对。
可选地,定子132和转子131均套在输出轴11上,定子132与输出轴11之间具有间隙,在输出轴11的轴线m的延伸方向上,定子132与转子131之间具有气隙,此时,定子132的端面与转子131的端面相对。
参考图2所示,叶轮组件2位于定转子合件13的一侧,且位于支架12的第一端面12B远离支架12的一侧,并且叶轮组件2套设在输出轴11上与输出轴11相连。
参考图2所示,扩压组件3位于叶轮组件2靠近定转子合件13的一侧,且与叶轮组件2相连。换言之,扩压组件3与定转子合件13位于叶轮组件2的同一侧。
参考图2所示,网状结构5位于扩压组件3远离叶轮组件2的一侧,且与扩压组件3相连。由扩压组件3的出风口3A流出的气体与网状结构5相接触, 并在网状结构5的作用下调整流速和流向。
本申请实施例提供的方案中,扩压组件3远离叶轮组件2的一侧设置网状结构5,网状结构5可以调整扩压组件3的出风口3A处气体的流速分布,使得在出风口3A处气体流速分布均匀。并且,网状结构5对气体具有减速和调整流向的作用,从而,有利于减弱气体对电机表面或电控板表面的冲击,进而,有利于减弱甚至消除冲击噪音,有利于降低电风机工作时的工作噪音。
在一些示例中,参考图2所示,定转子合件13位于网状结构5远离扩压组件3的一侧,网状结构5还与支架12相连。换句话说,扩压组件3和定转子合件13沿输出轴11的轴线m的延伸方向间隔分布,此时,网状结构5覆盖扩压组件3与定转子合件13之间的间距,且网状结构5分别与扩压组件3、支架12相连。
图3是本申请实施例提供的一种无网状结构时气体流向示意图,图4是本申请实施例提供的有网状结构时气体流向示意图。
如图3所示,在未设置有网状结构5的电风机中,当扩压组件3与定转子合件13之间的间距等于6毫米时,从扩压组件3的出风口3A流出的气体会以较高的速度冲击定转子合件13的端面,气体到达定转子合件13的端面后才会向两侧扩散(主要向远离输出轴11的一侧扩散),此时,气体在扩散时气流折弯角大于或等于60度,甚至是达到90度。
如图4所示,在设置有网状结构5的电风机中,且当扩压组件3与定转子合件13之间的间距等于6毫米时,从扩压组件3的出风口3A流出的气体可以在网状结构5的作用下逐渐减速,并且在网状结构5的作用下,气体在到达定转子合件13的端面前会逐渐向远离输出轴11的一侧扩散,此时,气体在扩散时气流折弯角小于或等于45度。
可选地,当定子132套在转子131外部时,扩压组件3与定转子合件13之间的间距可以等于定子132的径向厚度的两倍或两倍以上;或者,当定子132与转子131沿输出轴的轴线同轴分布时,扩压组件3与定转子合件13之间的间距可以等于定子132的半径。上述只是对扩压组件3和定转子合件13之间的间距进行举例,扩压组件3与定转子合件13之间的间距可以根据实际产品中扩压组件3排出的气体流量进行设定,此处不进行任何限定。
结合图3和图4可知,采用该方案,从扩压组件3的出风口3A流出的气体 在到达定转子合件13之前,可以在网状结构5的作用下降低流速。并且,可以在网状结构5的作用下调整流向,从而,减少气体对定转子合件13的冲击,从而,减弱冲击噪音和电风机的工作噪音。
作为示例,网状结构5在输出轴11的轴线m的延伸方向上的长度,可以大于定转子合件13与扩压组件3之间的间距。参考图2所示,网状结构5的两端可以分别包裹在扩压组件3的外壁、支架12的外壁上,并且网状结构5与扩压组件3的外壁之间、网状结构5与支架12的外壁之间可以通过焊接、胶接或铆接等方式固定相连,从而,有利于提高网状结构5在电风机内的稳定性。可选地,网状结构5与扩压组件3的外壁之间、网状结构5与支架12的外壁之间也可以通过卡接、插接或螺纹连接等方式开拆卸地固定相连,从而,有利于降低装配难度,还有利于对网状结构5进行替换。
可选地,网状结构5的一端与出风口3A所在端面相连,另一端包裹在支架12的外壁上;或者,网状结构5的一端包裹在扩压组件3的外壁上,另一端与支架12靠近扩压组件3的端面相连;再或者,网状结构5的两端分别与出风口3A所在端面、支架12靠近扩压组件3的端面相连。
在一些示例中,当定子132套在转子131外且与支架12相连时,定子132的部分可以与扩压组件3的出风口3A相对,也即,在输出轴11的轴线m的延伸方向上,出风口3A的正投影与定子132的正投影的至少部分重合。图5是本申请实施例提供的一种电风机的局部结构的投影示意图。作为示例,如图5所示,支架12具有第一端面12B,第一端面12B与出风口3A相对,在输出轴11的轴线m的延伸方向上,出风口3A的正投影位于第一端面12B的正投影和定子132的正投影组合成的总投影内。
作为示例,在输出轴11的轴线m的延伸方向上,出风口3A的正投影为第一投影,定子132以及支架12上与定子132相连的部分(即支架12的第一端面12B)的正投影为第二投影,第一投影与第二投影重合的面积大于或等于第一投影和第二投影中面积小的投影的面积的一半。例如,第一投影的面积为10平方厘米,第一投影的面积为15平方厘米,则需要保证第一投影与第二投影重合的面积大于或等于5平方厘米,等等。
可选地,扩压组件3的径向尺寸与电机组件1的径向尺寸近似相等,此时,在输出轴11的轴线m的延伸方向上,出风口3A的正投影的外轮廓线可以刚好与定子132的正投影的外轮廓线重合,等等。
图6是本申请实施例提供的一种电风机的结构示意图,图7是本申请实施例提供的一种电风机的剖面结构示意图。作为示例,如图7所示,电机组件1还包括电控板18。定转子合件13位于扩压组件3内侧,也即扩压组件3套设在支架12上,且扩压组件3的内壁与支架12的外壁相连。电控板18则位于网状结构5远离扩压组件3的一侧,且电控板18与扩压组件3的出风口3A相对,并且电控板18分别与网状结构5、支架12相连。换句话说,电控板18位于支架12远离叶轮组件2的一侧,并且,在输出轴11的轴线m的延伸方向上,出风口3A与电控板18之间具有间距,网状结构5则覆盖该间距。电控板18还可以与定转子合件13电性相连,用于控制定转子合件13中的转子131旋转,从而,带动叶轮组件1中的叶轮工作。
当定子132套在转子131外部时,扩压组件3与电控板18之间的间距可以等于定子132的径向厚度的两倍或两倍以上;或者,当定子132与转子131沿输出轴的轴线同轴分布时,定转子合件3与电控板18之间的间距可以等于定子132的半径。上述只是对扩压组件3和电控板18之间的间距进行举例,扩压组件3与电控板18之间的间距可以根据实际产品中扩压组件3排出的气体流量进行设定,此处不进行任何限定。
本申请实施例提供的电风机中,扩压组件3套设在支架12外,可以认为扩压组件3套在整个电机组件1外,这样,有利于降低电风机在输出轴11的轴线m的延伸方向上的长度。而且,从扩压组件3的出风口3A流出的气体在到达电控板18之前,可以在网状结构5的作用下降低流速并调整流向,从而,减少气体对定转子合件13的冲击,从而,减弱冲击噪音和电风机的工作噪音。
参考图2和图7所示,本申请实施例提供的网状结构5的孔隙率范围为60%-85%。换句话说,在网状结构5的外壁(即网状结构5远离输出轴11的表面)上,通孔所占的总面积为网状结构5的外壁的总面积的60%-85%。对于网状结构5的孔隙率,此处不进行任何限定。
图8是本申请实施例提供的一种网状结构展开时的结构示意图。作为示例,如图8所示,网状结构5上的通孔的尺寸结构均相同,且通孔是等间距分布的,具体的,在图8中示出的长度方向P上,相邻两个通孔之间的距离均相等,在图8中示出的宽度方向Q上,相邻两个通孔之间的距离均相等,且上述距离与 上述距离均相等。
可选地,上述距离与上述距离也可以不相等。
可选地,网状结构5上的通孔是非均匀分布的。图9是本申请实施例提供的一种网状结构展开时的结构示意图。作为示例,如图9所示,在图9中,通孔的分布密度由左至右逐渐变大,具体的,左侧的通孔密度小于右侧的通孔密度。此时,图9示出的网状结构5的左侧可以与扩压组件3相连,图9示出的网状结构5的右侧则与支架12或电控板18相连,或者,图9示出的网状结构5的左侧可以与支架12或电控板18相连,图9示出的网状结构5的右侧则与扩压组件3相连。对于网状结构5在电风机中的位置分布和连接方式可以根据实际产品需求并进行多次试验确定,此处不进行任何限定。
在网状结构5中,通孔的截面形状可以是圆形、正方形、菱形、三角形、椭圆形等等。对于通孔的截面形状,此处不进行任何限定。
在一些示例中,网状结构5的通孔的孔径与网状结构5的厚度呈正相关关系。例如,网状结构5越薄(即厚度越小),通孔的孔径越小,网状结构5越厚(即厚度越大),通孔的孔径越大。其中,当通孔的截面形状为圆形时,通孔的孔径即为圆形截面的直径,而当通孔的截面形状不是圆形时,通孔的孔径可以为通孔截面最小外接圆的直径。作为示例,当网状结构5的厚度为1毫米时,通孔的孔径为1毫米,当网状结构5的厚度为0.1毫米时,通孔的孔径为0.1毫米,等等。
作为示例,网状结构5的厚度不宜过大,当网状结构5过厚时,网状结构5对气体的减速效果增加的不明显,反而会导致电风机的径向尺寸增加。因此,可以将网状结构5的厚度控制在3毫米以内。此处只是对网状结构5的厚度进行举例,网状结构5的厚度可以根据实际产品中气体流速和流量、以及电风机的径向尺寸进行确定,此处不进行任何限定。
在一些示例中,网状结构5可以由金属材料制成,如不锈钢、铝、铜等。通常,金属网的厚度相对来说偏厚,如,2毫米、3毫米等。因此,可以控制金属网上通孔的孔径范围在1毫米-2毫米之间。
在另一些示例中,网状结构5可以由非金属材料制成,如纤维、尼龙、棉线等。作为示例,该网状结构5为纱网,纱网的厚度相对来说偏薄,如0.1毫米、0.3毫米等。因此,可以控制纱网上的通孔的孔径范围在0.2毫米-0.4毫米之间。
可选地,网状结构5中通孔的孔径大小可以是各不相同的,对于网状结构5 的厚度和通孔的孔径尺寸,此处不再赘述。
在一些示例中,如图2所示,叶轮组件2可以包括叶轮组件壳体21、第一叶轮22、回流器23和第二叶轮24,叶轮组件壳体21沿轴线m方向的两端开口,其中,叶轮组件壳体21远离扩压组件3的开口作为整个电风机的进风口,叶轮组件壳体21靠近扩压组件3的开口与扩压组件3相连通。叶轮组件壳体21与扩压组件3密封相连,保证经叶轮组件2加速后的气流全部流入扩压组件3。
作为示例,如图2所示,第一叶轮22、回流器23和第二叶轮24均位于叶轮组件壳体21内,且第一叶轮22、回流器23和第二叶轮24依次套在输出轴11上。其中,第一叶轮22或第二叶轮24与输出轴11之间固定相连,回流器23与输出轴11之间转动相连。第一叶轮22与叶轮组件壳体21之间和第二叶轮24与叶轮组件壳体21之间均填充有密封棉,密封棉可以防止气体从第一叶轮22与叶轮组件壳体21之间的间隙、第二叶轮24与叶轮组件壳体21之间的间隙流出,有利于提高气体流动效率,从而有利于提高电风机的工作效率。对于第一叶轮22、回流器23、第二叶轮24分别与输出轴11之间的连接方式,此处不进行任何限定。
作为示例,如图2所示,第一叶轮22具有第一流道,回流器23与叶轮组件壳体21的内壁形成回流流道,第二叶轮24具有第二流道,第一流道、回流流道和第二流道依次连通。气体由上述电风机的进风口(即叶轮组件壳体21远离扩压组件3的开口)进入第一流道,经过第一叶轮22加速后进入回流流道,经过回流器回流或导流后进入第二流道,经第二叶轮加速后进入扩压组件3。
在一些示例中,叶轮组件壳体21包括第一壳体211和第二壳体212,第二壳体212位于第一壳体211与扩压组件3之间,且分别与第一壳体211、扩压组件3密封相连,其中,第二壳体212与第一壳体211之间可以通过焊接、卡接等方式可拆卸相连。第一叶轮22位于第一壳体211内,回流器23和第二叶轮24位于第二壳体212内,具体位置关系与上文相似,此处不进行赘述。采用第一壳体211与第二壳体212之间可拆卸相连的方案,有利于降低叶轮组件2的装配难度,从而,提高生产效率,也有利于后期的维修养护。
可选地,第一叶轮22和回流器23位于第一壳体211内,第二叶轮24位于第二壳体212内,对于此种结构,此处不进行赘述。
可选地,叶轮组件2可以只包括一个叶轮,也可以包括两个以上的叶轮, 对于这两种情况下的叶轮组件2,与上述具有第一叶轮22和第二叶轮24的情况相似,此处不进行赘述。
采用多级叶轮的方案,有利于提高电风机的吸力以满足产品开发需求,而且,有利于在相同吸力下减小电风机的径向尺寸,从而,有利于提高电风机的适用性。
在一些示例中,如图2所示,该扩压组件3可以包括第一轴流扩压器31和第二轴流扩压器32。第一轴流扩压器31和第二轴流扩压器32沿输出轴11的轴线m的延伸方向分布。第一轴流扩压器31和第二轴流扩压器32均套在定转子合件13外,具体的,第一轴流扩压器31和第二轴流扩压器32可以套在上述连接件14外。第一轴流扩压器31与第二轴流扩压器32密封相连,且相互连通。第一轴流扩压器31远离第二轴流扩压器32的一端与叶轮组件2密封相连,且与叶轮组件2相连通。
作为示例,参考图2所示,第一轴流扩压器31包括第一扩压叶轮311和第一扩压壳体312,第二轴流扩压器32包括第二扩压叶轮321和第二扩压壳体322。第一扩压壳体312和第二扩压壳体322沿输出轴11的轴线m的延伸方向分布。第一扩压叶轮311位于第一扩压壳体312内,且第一扩压叶轮311套在连接件14外,第一扩压叶轮311与第一扩压壳体312的内壁形成第一扩压流道;第二扩压叶轮321位于第二扩压壳体322内,且第二扩压叶轮321套在连接件14外,第二扩压叶轮321与第二扩压壳体322的内壁形成第二扩压流道,第二扩压器流道与第一扩压流道相连通。
其中,第一扩压壳体312、第二扩压壳体322的两端均具有开口,第一扩压壳体312远离第二扩压壳体322的一端与叶轮组件2密封相连,且第一扩压壳体312上远离第二扩压壳体322的开口与叶轮组件2相连通,第二扩压壳体322与第一扩压壳体312密封相连且相连通,第二扩压壳体322远离第一扩压壳体312的开口作为出风口3A。
第一扩压壳体312和第二扩压壳体322可以通过螺纹连接、焊接、卡接等方式相连,也可以是一体成型的。其中,第一扩压壳体312和第二扩压壳体322之间可以可拆卸地相连,有利于降低扩压组件3的装配难度,从而,提高生产效率,也有利于后期的维修养护。
在电风机工作过程中,由叶轮组件2加速后的气体流入第一扩压流道,然 后进入第二扩压流道,经过两次扩压后由上述电风机的出气口(即第二扩压壳体322远离第一扩压壳体312的开口)流向定转子组件13。
可选地,扩压组件3可以只包括一个轴流扩压器,也可以包括两个以上的轴流扩压器。扩压组件3包括两个以上轴流扩压器时,多个轴流扩压器的分布情况和连接关系与上述具有第一轴流扩压器31和第二轴流扩压器32的情况相似,此处不进行赘述。
采用多级轴流扩压器的方案,有利于提高电风机的扩压以满足产品开发需求,而且,有利于在相同扩压能力下减小电风机的径向尺寸,从而,有利于提高电风机的适用性。
基于相同的技术构思,本申请实施例提供了一种终端设备。图10是本申请实施例提供的一种终端设备的结构示意图,该终端设备包括本申请实施例提供的任一种电风机01。该终端设备可以是清洁设备,如吸尘器、扫地机等。
作为示例,该终端设备为吸尘器,参考图10所示,该吸尘器还可以包括进气装置02、集尘室03和排气管道04。进气装置02、集尘室03、电风机01和排气管道04依次连通,其中,进气装置02远离集尘室03的一端(即进气装置02未与集尘室03相连的一端)与外部连通,并且排气管道04远离电风机01的一端(即排气管道04未与电风机01相连的一端)与外部连通。采用本方案,有利于减弱气流冲击电机组件1以消除因气流冲击电机组件1所产生的冲击噪音,从而,有利于降低电风机在工作过程中的工作噪音并降低终端设备工作时产生的噪音。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种电风机,其特征在于,所述电风机包括:电机组件(1)、叶轮组件(2)、扩压组件(3)和网状结构(5),所述电机组件(1)包括输出轴(11)、支架(12)和定转子合件(13);
    所述支架(12)和所述定转子合件(13)套设在所述输出轴(11)上,所述支架(12)具有容纳区(12A),所述定转子合件(13)位于所述容纳区(12A)内,且与所述支架(12)相连;
    所述叶轮组件(2)位于所述定转子合件(13)的一侧,且套设在所述输出轴(11)上;
    所述扩压组件(3)位于所述叶轮组件(2)靠近所述定转子合件(13)的一侧,且与所述叶轮组件(2)相连;
    所述网状结构(5)位于所述扩压组件(3)远离所述叶轮组件(2)的一侧,且与所述扩压组件(3)相连。
  2. 根据权利要求1所述的电风机,其特征在于,所述定转子合件(13)位于所述网状结构(5)远离所述扩压组件(3)的一侧,所述网状结构(5)还与所述支架(12)相连。
  3. 根据权利要求2所述的电风机,其特征在于,所述定转子合件(13)包括转子(131)和定子(132);
    所述转子(131)套设在所述输出轴(11)上,所述定子(132)套在所述转子(131)外,在所述输出轴(11)的轴线(m)的延伸方向上,所述扩压组件(3)的出风口(3A)的正投影与所述定子(132)的正投影的至少部分重合。
  4. 根据权利要求3所述的电风机,其特征在于,在所述输出轴(11)的轴线(m)的延伸方向上,所述出风口(3A)的正投影为第一投影,所述定子(132)以及所述支架(12)上与所述定子(132)相连的部分的正投影为第二投影,所述第一投影与所述第二投影重合的面积大于或等于所述第一投影和所述第二投影中面积更小的投影的面积的一半。
  5. 根据权利要求1所述的电风机,其特征在于,所述电机组件(1)还包括电控板(18);
    所述电控板(18)位于所述网状结构(5)远离所述扩压组件(3)的一侧,且与所述扩压组件(3)的出风口(3A)相对,并分别与所述网状结构(5)、所述支架(12)相连。
  6. 根据权利要求1-5任一项所述的电风机,其特征在于,所述网状结构(5)的孔隙率范围为60%-85%。
  7. 根据权利要求6所述的电风机,其特征在于,所述网状结构(5)的通孔的孔径与所述网状结构(5)的厚度呈正相关关系。
  8. 根据权利要求1-5、7任一项所述的电风机,其特征在于,所述叶轮组件(2)包括叶轮组件壳体(21)、第一叶轮(22)、回流器(23)和第二叶轮(24);
    所述第一叶轮(22)、所述回流器(23)和所述第二叶轮(24)均位于所述叶轮组件壳体(21)内,且所述第一叶轮(22)、所述回流器(23)和所述第二叶轮(24)依次套在所述输出轴(12)上,所述第一叶轮(22)内具有第一流道,所述回流器(23)与所述叶轮组件壳体(21)的内壁之间形成回流流道,所述第二叶轮(24)内具有第二流道,所述第一流道、所述回流流道和所述第二流道依次连通。
  9. 根据权利要求1-5、7任一项所述的电风机,其特征在于,所述扩压组件(3)包括第一轴流扩压器(31)和第二轴流扩压器(32);
    所述第一轴流扩压器(31)和所述第二轴流扩压器(32)沿所述输出轴(11)的轴线方向分布,所述第一轴流扩压器(31)与所述第二轴流扩压器(32)密封相连,且相互连通,所述第一轴流扩压器(31)远离所述第二轴流扩压器(32)的一端与所述叶轮组件(2)密封相连,且与所述叶轮组件(2)相连通。
  10. 一种终端设备,其特征在于,所述终端设备包括如权利要求1-9任一项所述的电风机(01)。
  11. 根据权利要求10所述的终端设备,其特征在于,所述终端设备为吸尘器,所述吸尘器还包括:进气装置(02)、集尘室(03)和排气管道(04);
    所述进气装置(02)、所述集尘室(03)、所述电风机(01)和所述排气管道(04)依次连通,且所述进气装置(02)远离所述集尘室(03)的一端与外部连通,且所述排气管道(04)远离所述电风机(01)的一端与外部连通。
PCT/CN2023/108165 2022-11-22 2023-07-19 电风机和终端设备 WO2024109121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211465809.2A CN115898909A (zh) 2022-11-22 2022-11-22 电风机和终端设备
CN202211465809.2 2022-11-22

Publications (1)

Publication Number Publication Date
WO2024109121A1 true WO2024109121A1 (zh) 2024-05-30

Family

ID=86479056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108165 WO2024109121A1 (zh) 2022-11-22 2023-07-19 电风机和终端设备

Country Status (2)

Country Link
CN (1) CN115898909A (zh)
WO (1) WO2024109121A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115898909A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454587A (zh) * 2014-11-12 2015-03-25 华为技术有限公司 一种风扇
US20200400148A1 (en) * 2019-06-21 2020-12-24 Lg Electronics Inc. Motor assembly and method for manufacturing the same
CN213360481U (zh) * 2020-09-16 2021-06-04 苏州市润豪电机有限公司 一种吸尘器用无刷电风机
CN113775544A (zh) * 2021-09-06 2021-12-10 广东威灵电机制造有限公司 一种电风机及清洁设备
CN216060402U (zh) * 2021-01-19 2022-03-18 宁波方太厨具有限公司 一种用于清洁机的风机组件及清洁机
CN114607626A (zh) * 2021-08-25 2022-06-10 北京石头世纪科技股份有限公司 一种风机及清洁设备
CN114680706A (zh) * 2020-12-25 2022-07-01 广东美的白色家电技术创新中心有限公司 风机组件和吸尘器
CN114776614A (zh) * 2022-06-01 2022-07-22 广东威灵电机制造有限公司 风机及清洁设备
CN115788962A (zh) * 2022-11-22 2023-03-14 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898911A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898909A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454587A (zh) * 2014-11-12 2015-03-25 华为技术有限公司 一种风扇
US20200400148A1 (en) * 2019-06-21 2020-12-24 Lg Electronics Inc. Motor assembly and method for manufacturing the same
CN213360481U (zh) * 2020-09-16 2021-06-04 苏州市润豪电机有限公司 一种吸尘器用无刷电风机
CN114680706A (zh) * 2020-12-25 2022-07-01 广东美的白色家电技术创新中心有限公司 风机组件和吸尘器
CN216060402U (zh) * 2021-01-19 2022-03-18 宁波方太厨具有限公司 一种用于清洁机的风机组件及清洁机
CN114607626A (zh) * 2021-08-25 2022-06-10 北京石头世纪科技股份有限公司 一种风机及清洁设备
CN113775544A (zh) * 2021-09-06 2021-12-10 广东威灵电机制造有限公司 一种电风机及清洁设备
CN114776614A (zh) * 2022-06-01 2022-07-22 广东威灵电机制造有限公司 风机及清洁设备
CN115788962A (zh) * 2022-11-22 2023-03-14 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898911A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898909A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备

Also Published As

Publication number Publication date
CN115898909A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2024109123A1 (zh) 电风机和终端设备
WO2024109121A1 (zh) 电风机和终端设备
WO2024109122A1 (zh) 电风机和终端设备
US7179053B2 (en) Air-blowing apparatus of cleaner
CN114616426B (zh) 扩散器、扩散器组件和具有该扩散器的空调
JP4647441B2 (ja) 空気調和機
CN115898910A (zh) 电风机和终端设备
JPS6035198A (ja) 電動送風機
CN110848777B (zh) 油烟净化装置
CN210688483U (zh) 空气净化装置和空调器
JP2564889B2 (ja) 軸流フアン
JP3460642B2 (ja) 遠心ファン装置
CN113708561A (zh) 无刷电机及其叶轮
CN221442878U (zh) 风机及清洁设备
US4662818A (en) Tangential blower
CN215949944U (zh) 混流风机及空调设备及家用电器
CN219654913U (zh) 一种圆形离心轴流式风机
CN219062075U (zh) 扩压组件、电风机和终端设备
CN219733693U (zh) 风机和吸尘器
CN221071986U (zh) 烘道组件及衣物处理设备
CN218495125U (zh) 新风组件及新风空调
CN218030796U (zh) 一种轴流风机
JP2014081147A (ja) 空気調和機の室外ユニット
WO2024113660A1 (zh) 通风部件和具有其的空气处理设备
CN219472372U (zh) 风机、新风系统和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893221

Country of ref document: EP

Kind code of ref document: A1