WO2024109021A1 - 一种改性聚硅氧烷及其制备方法 - Google Patents

一种改性聚硅氧烷及其制备方法 Download PDF

Info

Publication number
WO2024109021A1
WO2024109021A1 PCT/CN2023/102594 CN2023102594W WO2024109021A1 WO 2024109021 A1 WO2024109021 A1 WO 2024109021A1 CN 2023102594 W CN2023102594 W CN 2023102594W WO 2024109021 A1 WO2024109021 A1 WO 2024109021A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified polysiloxane
formula
compound represented
alkyl
preparing
Prior art date
Application number
PCT/CN2023/102594
Other languages
English (en)
French (fr)
Inventor
黄思辰
罗恪
程则袁
林飞
覃雁南
罗威
谭鸿博
景录如
Original Assignee
武汉鼎业安环科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉鼎业安环科技集团有限公司 filed Critical 武汉鼎业安环科技集团有限公司
Publication of WO2024109021A1 publication Critical patent/WO2024109021A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages

Definitions

  • the invention relates to the technical field of organic silicon, and in particular to a modified polysiloxane and a preparation method thereof.
  • Polysiloxane also known as silicone polymer, is a polymer with a main chain dominated by silicon-oxygen bonds. It can be a linear, cyclic or cross-linked polymer, usually called silicone or polysilicon ether. It has a unique structure of siloxane and has the dual properties of inorganic compounds and organic polymers. It has good heat resistance, water resistance, electrical insulation and mechanical properties.
  • conventional polysiloxane generally requires a high temperature of 250-300°C to cure, and the curing time is long, which brings inconvenience to large-scale construction. It has poor adhesion and flame retardant properties, and the mechanical strength of the material is low at high temperatures. Therefore, silicone is greatly limited as a heat-resistant protective material.
  • the object of the present invention is to overcome one or more deficiencies in the prior art and to provide a method for preparing a modified polysiloxane having the advantages of good temperature resistance (resistant to high temperatures of 400° C.), low curing temperature, high bonding strength and good flame retardancy.
  • the present invention also provides a modified polysiloxane prepared by the method.
  • the present invention adopts a technical solution: a method for preparing a modified polysiloxane, the method comprising: subjecting alkoxysilane to alcoholysis reaction and pre-condensation reaction in water to generate a first intermediate, and then adopting method (a) or method (b) to prepare the modified polysiloxane;
  • R 1 is selected from C 3-6 alkyl
  • R 2 is selected from C 3-6 alkyl.
  • the alkoxysilane comprises at least one selected from the structure represented by formula (III); (III), R 3 and R 4 are independently selected from C 1-6 alkyl, phenyl, and phenyl substituted with C 1-6 alkyl, and R 5 is selected from C 1-6 alkyl.
  • the alkoxysilane further comprises at least one selected from the structure represented by formula (IV); (IV), R6 is selected from C1-6 alkyl, and R7 is selected from phenyl, phenyl substituted with C1-6 alkyl, and C2-6 alkenyl.
  • the alkoxysilane further comprises at least one selected from the structure represented by formula (V);
  • R 8 , R 9 , R 10 , R 11 , R 12 , and R 13 are independently selected from C 1-6 alkyl, phenyl, phenyl substituted with C 1-6 alkyl, and C 2-6 alkenyl.
  • the alkoxysilane includes: (1) diphenyldimethoxysilane and/or dimethyldimethoxysilane; (2) optionally including vinyltrimethoxysilane and/or phenyltrimethoxysilane; (3) at least one of divinyltetramethyldisiloxane, hexaphenyldisiloxane and hexamethyldisiloxane.
  • the C 1-6 alkyl group can be methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, neopentyl, isopentyl, n-hexyl, isohexyl, etc.;
  • the C 2-6 alkenyl group can be vinyl, methyl vinyl, ethyl vinyl, propyl vinyl, isopropyl vinyl, etc.
  • R 1 is n-propyl, isopropyl, n-butyl or isobutyl
  • R 2 is n-propyl, n-butyl or n-pentyl
  • the compound represented by formula (I) may be aluminum isopropoxide. In some embodiments of the present invention, the compound represented by formula (II) may be n-butyl titanate.
  • the alcoholysis reaction or the precondensation reaction in the process of preparing the first intermediate, is controlled to be carried out at a temperature of 80-95° C.
  • the temperature of each reaction in method (a) or method (b), is controlled to be 75-85° C.
  • the molar ratio of the compound represented by formula (I) to the compound represented by formula (II) is 1:0.2-5. Further, the molar ratio of the compound represented by formula (I) to the compound represented by formula (II) is 1:0.5-2.
  • the molar ratio of silicon to aluminum in the modified polysiloxane is controlled to be 3-10:1. Further, the molar ratio of silicon to aluminum in the modified polysiloxane is controlled to be 4-9:1.
  • the method for preparing the modified polysiloxane includes: adding water and a hydrolysis catalyst into a reactor, heating to a preset reaction temperature, adding alkoxysilane dropwise, refluxing the reaction and removing the generated alcohol, then adding the compound represented by formula (I), continuing the refluxing reaction and removing the generated alcohol, then adding the compound represented by formula (II), continuing the refluxing reaction and removing the generated alcohol, cooling to room temperature after the reaction is completed, extracting with an organic solvent, removing the water layer, and separating the modified polysiloxane from the organic layer.
  • the hydrolysis catalyst may be glacial acetic acid or trifluoroacetic acid.
  • the water may be distilled water.
  • the alkoxysilane is added dropwise within 15-30 min.
  • the organic solvent is xylene and/or acetylacetone.
  • the method for separating the modified polysiloxane from the organic layer may be reduced pressure distillation to remove xylene or acetylacetone and low molecular weight substances.
  • reaction process of the method for preparing the modified polysiloxane is basically as follows:
  • One, M is titanium dioxide, and titanium dioxide is connected to silicon hydroxyl group, aluminum hydroxyl group or titanium hydroxyl group through hydrogen bonds through hydroxyl groups on the surface;
  • a, b, c, d, e are independently selected from 0-20, and are not 0 when the group contains aluminum or titanium.
  • a, b, c, d, and e are independently selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20.
  • Another technical solution provided by the present invention is a modified polysiloxane prepared by the above-mentioned preparation method.
  • the average molecular weight of the modified polysiloxane is 1000-5000.
  • the average molecular weight of the modified polysiloxane is 1500-4500.
  • the modified polysiloxane of the present invention may be in the form of a highly viscous liquid or a paste.
  • the present invention has the following advantages compared with the prior art: the present invention innovatively uses the compound represented by formula (I) and the compound represented by formula (II) to modify the hydrolyzed precondensate of alkoxysilane respectively, and the two can be co-condensed with the precondensate after hydrolysis, so that the polymer contains chain links such as Al-O-Al and Ti-O-Ti, and can also connect part of the titanium compound presented as titanium dioxide through hydrogen bonds.
  • this modified polysiloxane can have the advantages of good temperature resistance (resistant to high temperature of 400°C), low curing temperature (curing can be achieved at 200°C), high bonding strength and good flame retardant properties, which effectively solves the shortcomings of conventional polysiloxanes in the prior art and enables silicone materials to be more widely used in heat-resistant protective materials.
  • FIG1 is a 1 H-NMR spectrum of the modified polysiloxane prepared in Example 1;
  • FIG2 is a 1 H-NMR spectrum of the modified polysiloxane prepared in Example 2.
  • FIG3 is a 1 H-NMR spectrum of the modified polysiloxane prepared in Example 9;
  • FIG. 4 is a 1 H-NMR spectrum of the modified polysiloxane prepared in Example 10.
  • diphenyldimethoxysilane was purchased from Aite (Shandong) New Materials Co., Ltd.; dimethyldimethoxysilane was purchased from Hangzhou Guibao Chemical Co., Ltd.; vinyltrimethoxysilane was purchased from Nanjing Ron Silicon Materials Co., Ltd.; phenyltrimethoxysilane was purchased from Zhejiang Woxingman New Materials Technology Co., Ltd.; divinyltetramethyldisiloxane was purchased from Hangzhou Guibao New Materials Co., Ltd.; hexaphenyldisiloxane was purchased from Hangzhou Guibao New Materials Co., Ltd.; hexamethyldisiloxane was purchased from Hangzhou Guibao New Materials Co., Ltd.; aluminum isopropoxide was purchased from Yangzhou Zhongtianli New Materials Co., Ltd.; n-butyl titanate was purchased from Shandong Xinyingshun New Materials Co., Ltd.
  • This embodiment provides a method for preparing a modified polysiloxane and the modified polysiloxane prepared therefrom.
  • the raw material formula of the modified polysiloxane is shown in Table 1.
  • the aluminum hydroxyl group and the titanium dioxide particles are combined by hydrogen bonding through the hydroxyl groups on the titanium dioxide surface.
  • the Ti-OH on the main chain can also be combined with the titanium dioxide particles through the hydroxyl groups on the titanium dioxide surface by hydrogen bonding, and finally part of the titanium dioxide particles may be combined by hydrogen bonding.
  • the components may be combined by hydrogen bonds, or all of them may be combined with titanium dioxide particles, which is the same as the following embodiments.
  • the preparation method specifically comprises: adding a formula amount of distilled water and a hydrolysis catalyst (glacial acetic acid or trifluoroacetic acid) into a 1000 mL three-necked flask, heating to 85° C., adding a mixed solution of all alkoxysilanes in Table 1 dropwise with a dropping funnel, controlling the dripping to be completed in about 25 minutes, stirring and refluxing at 80° C. to remove the alcohol generated by the reaction, reacting for 2 hours, then adding a formula amount of aluminum isopropoxide into the flask, continuing to reflux and react to produce alcohol for 2 hours, then adding a formula amount of n-butyl titanate, continuing to reflux and react to produce alcohol for 2 hours, and ending the reaction.
  • a hydrolysis catalyst Glacial acetic acid or trifluoroacetic acid
  • This embodiment provides a method for preparing a modified polysiloxane and the modified polysiloxane prepared therefrom.
  • the raw material formula of the modified polysiloxane is shown in Table 2.
  • the preparation method specifically comprises:
  • the formulated amount of distilled water and a hydrolysis catalyst (glacial acetic acid or trifluoroacetic acid) are added to a 1000 mL three-necked flask, heated to 85° C., and a mixed solution of all alkoxysilanes in Table 2 is added dropwise using a dropping funnel, and the dripping is controlled to be completed in about 25 minutes.
  • the formulated amount of aluminum isopropoxide is added to the flask, and the reflux and alcohol-producing reaction is continued for 2 hours.
  • This embodiment provides a method for preparing a modified polysiloxane and the modified polysiloxane prepared therefrom.
  • the raw material formula of the modified polysiloxane is shown in Table 3.
  • the reaction process is basically the same as that of Example 2.
  • the raw materials in Table 3 are used for the preparation.
  • modified polysiloxane is obtained, 165.85 g, with a yield of 90.68% (theoretical yield is 182.89 g).
  • the average molecular weight measured by GPC is 1988, and it is a viscous liquid at 25°C.
  • This embodiment provides a method for preparing a modified polysiloxane and the modified polysiloxane prepared therefrom.
  • the raw material formula of the modified polysiloxane is shown in Table 4.
  • the reaction process is basically the same as that of Example 1.
  • the raw materials in Table 4 are used for preparation.
  • modified polysiloxane is obtained, 183.34 g, with a yield of 89.34% (theoretical yield is 205.22 g).
  • the average molecular weight measured by GPC is 1735, and it is a viscous liquid at 25°C.
  • This embodiment provides a method for preparing a modified polysiloxane and the modified polysiloxane prepared therefrom.
  • the raw material formula of the modified polysiloxane is shown in Table 5.
  • the reaction process is basically the same as that of Example 2.
  • the raw materials in Table 5 are used for the preparation.
  • modified polysiloxane is obtained, 135.28 g, with a yield of 89.79% (theoretical yield is 150.67 g).
  • the average molecular weight measured by GPC is 3568, and it is a paste at 25°C.
  • This embodiment provides a method for preparing a modified polysiloxane and the modified polysiloxane prepared therefrom.
  • the raw material formula of the modified polysiloxane is shown in Table 6.
  • the reaction process is basically the same as that of Example 2.
  • the raw materials in Table 6 are used for preparation.
  • modified polysiloxane is obtained, 134.38 g, with a yield of 89.77% (theoretical yield is 149.69 g).
  • the average molecular weight measured by GPC is 3492, and it is in a paste state at 25°C.
  • This embodiment provides a method for preparing a modified polysiloxane and the modified polysiloxane prepared therefrom.
  • the raw material formula of the modified polysiloxane is shown in Table 7.
  • the reaction process is basically the same as that of Example 2.
  • the raw materials in Table 7 are used for preparation.
  • modified polysiloxane is obtained, 163.45 g, with a yield of 90.67% (theoretical yield is 180.27 g).
  • the average molecular weight measured by GPC is 2023, and it is a viscous liquid at 25°C.
  • This embodiment provides a method for preparing a modified polysiloxane and the modified polysiloxane prepared therefrom.
  • the raw material formula of the modified polysiloxane is shown in Table 8.
  • the reaction process is basically the same as that of Example 2.
  • the raw materials in Table 8 are used for preparation.
  • modified polysiloxane is obtained, 130.87 g, with a yield of 90.4% (theoretical yield is 144.77 g).
  • the average molecular weight measured by GPC is 2786, and it is a paste at 25°C.
  • This embodiment provides a method for preparing a modified polysiloxane and the modified polysiloxane prepared therefrom.
  • the raw material formula of the modified polysiloxane is shown in Table 9.
  • the preparation process is basically the same as that in Example 1, and finally the modified polysiloxane is obtained, 165.64g, with a yield of 90.14% (theoretical yield is 183.75g).
  • Its 1H -NMR spectrum is shown in Figure 3.
  • the average molecular weight measured by GPC is 1886, and it is a viscous liquid at 25°C.
  • This embodiment provides a method for preparing a modified polysiloxane and the modified polysiloxane prepared therefrom.
  • the raw material formula of the modified polysiloxane is shown in Table 10.
  • Example 10 Using the raw materials in Table 10, the preparation process is basically the same as that in Example 9, and finally a modified polysiloxane of 154.29 g is obtained with a yield of 90.02% (theoretical yield is 171.39 g). Its 1 H-NMR spectrum is shown in FIG4 . The average molecular weight measured by GPC is 1839, and it is a viscous liquid at 25°C.
  • Example 5 It is basically the same as Example 5, except that aluminum isopropoxide and n-butyl titanate are not added during the reaction.
  • the prepared solvent-free polymer is added with an equal amount of xylene and stirred to dissolve evenly before measurement.
  • Measurement method Spray or brush evenly onto the surface of a polished metal specimen, dry at room temperature, and bake at 200°C for 8 hours;
  • the modified polysiloxane of the present invention has the advantages of good temperature resistance (resistant to high temperature of 400°C), low curing temperature (curing can be achieved at 200°C), high bonding strength and good flame retardant properties, which effectively solves the shortcomings of conventional polysiloxane in the prior art and enables silicone materials to be more widely used in heat-resistant protective materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明公开了一种改性聚硅氧烷及其制备方法,其制备方法包括:使烷氧基硅烷在水中进行醇解反应、预缩合反应,生成第一中间体,然后采用方法(a):向第一中间体中加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物中的一个,反应生成第二中间体,再加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物中的另一个,反应生成改性聚硅氧烷;或采用方法(b):向第一中间体中加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物,反应生成改性聚硅氧烷;(R1O)3Al(Ⅰ),R1选自C3-6烷基;(R2O)4Ti(Ⅱ),R2选自C3-6烷基;本发明方法制成的改性聚硅氧烷能够兼具耐温性好、固化温度低、粘接强度高和阻燃性能好等优点。

Description

一种改性聚硅氧烷及其制备方法 技术领域
本发明涉及有机硅技术领域,具体涉及一种改性聚硅氧烷及其制备方法。
背景技术
聚硅氧烷也称有机硅聚合物,是一种主链以硅氧键为主的聚合物,可以是线型、环状或交联的聚合物,习惯上称有机硅或聚硅醚,具有硅氧烷独特的结构,兼具无机化合物和有机聚合物的双重性能,具有较好的耐热性、耐水性、电绝缘性和机械性能,但目前常规的聚硅氧烷,一般需要250-300℃的高温才能实现固化,且固化时间长,给大面积施工带来不便,附着力、阻燃性能差,温度较高时材料的机械强度低,因此有机硅作为耐热保护材料受到了很大限制。
发明内容
本发明的目的是克服现有技术中的一个或多个不足,提供一种制备兼具耐温性好(可耐400℃高温)、固化温度低、粘接强度高和阻燃性能好等优点的改性聚硅氧烷的方法。
本发明同时还提供了一种上述方法制备的改性聚硅氧烷。
为达到上述目的,本发明采用的一种技术方案是:一种改性聚硅氧烷的制备方法,该制备方法包括:使烷氧基硅烷在水中进行醇解反应、预缩合反应,生成第一中间体,然后采用方法(a)或方法(b)制备所述改性聚硅氧烷;
方法(a):向第一中间体中加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物中的一个,反应生成第二中间体,再加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物中的另一个,反应生成所述改性聚硅氧烷;
方法(b):向第一中间体中加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物,反应生成所述改性聚硅氧烷;
(R1O)3Al(Ⅰ),R1选自C3-6烷基;(R2O)4Ti(Ⅱ),R2选自C3-6烷基。
根据本发明的一些优选方面,所述烷氧基硅烷包括选自式(Ⅲ)所示结构中的至少一种;(Ⅲ),R3、R4独立地选自C1-6烷基、苯基、C1-6烷基取代的苯基,R5选自C1-6烷基。
根据本发明的一些优选方面,所述烷氧基硅烷还包括选自式(Ⅳ)所示结构中的至少一种;(Ⅳ),R6选自C1-6烷基,R7选自苯基、C1-6烷基取代的苯基、C2-6烯基。
根据本发明的一些优选方面,所述烷氧基硅烷还包括选自式(Ⅴ)所示结构中的至少一种;R8、R9、R10、R11、R12、R13独立地选自C1-6烷基、苯基、C1-6烷基取代的苯基、C2-6烯基。
根据本发明的一些优选且具体的方面,所述烷氧基硅烷包括:(1)二苯基二甲氧基硅烷和/或二甲基二甲氧基硅烷;(2)选择性地包括乙烯基三甲氧基硅烷和/或苯基三甲氧基硅烷;(3)二乙烯基四甲基二硅氧烷、六苯基二硅氧烷和六甲基二硅氧烷中的至少一种。
本发明中,C1-6烷基可以为甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、新戊基、异戊基、正己基、异己基等等;C2-6烯基可以为乙烯基、甲基乙烯基、乙基乙烯基、丙基乙烯基、异丙基乙烯基等。
根据本发明的一些优选且具体的方面,R1为正丙基、异丙基、正丁基或异丁基,R2为正丙基、正丁基或正戊基。
在本发明的一些实施方式中,式(Ⅰ)所示的化合物可以为异丙醇铝。在本发明的一些实施方式中,式(Ⅱ)所示的化合物可以为钛酸正丁酯。
根据本发明的一些优选方面,在制备第一中间体的过程中,控制醇解反应或预缩合反应在温度80-95℃下进行。根据本发明的一些优选方面,在方法(a)或方法(b)中,控制各个反应的温度为75-85℃。
根据本发明的一些优选方面,所述式(Ⅰ)所示的化合物与所述式(Ⅱ)所示的化合物的投料摩尔比为1∶0.2-5。进一步地,所述式(Ⅰ)所示的化合物与所述式(Ⅱ)所示的化合物的投料摩尔比为1∶0.5-2。
根据本发明的一些优选方面,控制所述改性聚硅氧烷中,硅与铝的摩尔比为3-10∶1。进一步地,控制所述改性聚硅氧烷中,硅与铝的摩尔比为4-9∶1。
在本发明的一些优选实施方式中,制备该改性聚硅氧烷的实施方式包括:将水和水解催化剂加入反应器中,加热至预设反应温度,滴加烷氧基硅烷,回流反应并移除生成的醇类物质,然后加入式(Ⅰ)所示的化合物,继续回流反应并移除生成的醇类物质,然后加入式(Ⅱ)所示的化合物,继续回流反应并移除生成的醇类物质,反应完成后冷却至室温,采用有机溶剂萃取,除去水层,从有机层中分离出改性聚硅氧烷。
在本发明的一些实施方式中,水解催化剂可以是冰醋酸或三氟乙酸。在本发明的一些实施方式中,水可以为蒸馏水。在本发明的一些实施方式中,控制烷氧基硅烷在15-30min滴加完毕。在本发明的一些实施方式中,有机溶剂采用二甲苯和/或乙酰丙酮。在本发明的一些实施方式中,从有机层中分离出改性聚硅氧烷的方法可以为减压蒸馏,除去二甲苯或乙酰丙酮和低分子量的物质。
在本发明的一些实施方式中,所述改性聚硅氧烷的制备方法的反应过程基本如下:
其中,“A”、“B”、“C”、“D”、“E”分别独立地选自如下结构中的一个,且任意两个不重复,也即任意两个之间存在至少一个区别基团:
的一个,M为二氧化钛,二氧化钛通过表面含有的羟基与硅羟基、铝羟基或钛羟基通过氢键连接在一起;
“A”、“B”、“C”、“D”、“E”之间没有先后之分,可以以任意顺序组合;
a、b、c、d、e分别独立地选自0-20,且当基团含铝或钛时,不为0。
进一步地,a、b、c、d、e分别独立地选自0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20。
进一步地,“A”、“B”、“C”、“D”、“E”中至少包含
进一步地,“A”、“B”、“C”、“D”、“E”中至少包含中的一个。
本发明提供的又一技术方案:一种上述所述的制备方法制成的改性聚硅氧烷。
根据本发明的一些优选且具体的方面,所述改性聚硅氧烷的平均分子量为1000-5000。
在本发明的一些实施方式中,所述改性聚硅氧烷的平均分子量为1500-4500。
根据本发明,本发明的改性聚硅氧烷可以呈现高粘液体状或膏状。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明创新地通过采用式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物分别对烷氧基硅烷的水解预缩合物进行改性,该两者可水解后与预缩合物发生共缩合,实现聚合物中含有Al-O-Al、Ti-O-Ti等链节,同时还能够通过氢键连接部分以二氧化钛呈现的钛化合物,实践发现,该种改性聚硅氧烷能够兼具耐温性好(可耐400℃高温)、固化温度低(可在200℃即实现固化)、粘接强度高和阻燃性能好等优点,有效解决了现有技术中常规聚硅氧烷存在的不足,使有机硅材料在耐热保护材料中得以更宽广的应用。
附图说明
图1为实施例1制备的改性聚硅氧烷的1H-NMR谱图;
图2为实施例2制备的改性聚硅氧烷的1H-NMR谱图;
图3为实施例9制备的改性聚硅氧烷的1H-NMR谱图;
图4为实施例10制备的改性聚硅氧烷的1H-NMR谱图。
具体实施方式
以下结合具体实施例对上述方案做进一步说明;应理解,这些实施例是用于说明本发明的基本原理、主要特征和优点,而本发明不受以下实施例的范围限制;实施例中采用的实施条件可以根据具体要求做进一步调整,未注明的实施条件通常为常规实验中的条件。下述实施例中未作特殊说明,所有原料均来自于商购或通过本领域的常规方法制备而得。下述中,二苯基二甲氧基硅烷购自艾特(山东)新材料有限公司;二甲基二甲氧基硅烷购自杭州硅宝化工有限公司;乙烯基三甲氧基硅烷购自南京罗恩硅材料有限公司;苯基三甲氧基硅烷购自浙江沃兴曼新材料科技有限公司;二乙烯基四甲基二硅氧烷购自杭州硅宝新材料有限公司;六苯基二硅氧烷购自杭州硅宝新材料有限公司;六甲基二硅氧烷购自杭州硅宝新材料有限公司;异丙醇铝购自扬州中天利新材料股份有限公司;钛酸正丁酯购自山东鑫赢舜新材料有限公司。
实施例1
本实施例提供一种改性聚硅氧烷的制备方法及其制备的改性聚硅氧烷,该改性聚硅氧烷的原料配方如表1所示。
表1
采用表1的原料,该改性聚硅氧烷的反应示意过程如下:
上述示意的反应过程中,仅示例性地给出了铝羟基与二氧化钛粒子通过二氧化钛表面的羟基以氢键结合的方式,实际反应过程中,主链上Ti-OH也能够与二氧化钛粒子通过二氧化钛表面的羟基以氢键相结合,最终可能部 分会以氢键相结合,也可能全部结合有二氧化钛粒子,下述实施例相同。
其制备方法具体包括:将配方量的蒸馏水和水解催化剂(冰醋酸或三氟乙酸)加入到1000mL三颈烧瓶中,加热到85℃,用滴液漏斗逐滴加入表1中的所有烷氧基硅烷的混合液,控制在25min左右滴完,在80℃的条件下搅拌、回流反应并移除反应生成的醇,反应2h,随后在烧瓶中加入配方量的异丙醇铝,继续回流、出醇反应2h,再加入配方量的钛酸正丁酯,继续回流、出醇反应2h,反应结束,在产物冷却至室温后,使用过量的二甲苯或乙酰丙酮萃取,除去水层,最后将有机层在旋转蒸发仪中减压蒸馏,除去二甲苯或乙酰丙酮和低分子量的物质,获得改性聚硅氧烷,195.47g,收率为91.78%(理论产量为212.98g),其1H-NMR谱图如图1所示,GPC(凝胶渗透色谱)测得平均分子量为1620,在25℃时呈粘稠液体状。
实施例2
本实施例提供一种改性聚硅氧烷的制备方法及其制备的改性聚硅氧烷,该改性聚硅氧烷的原料配方如表2所示。
表2
采用表2的原料,该改性聚硅氧烷的反应示意过程如下:
其制备方法具体包括:
将配方量的蒸馏水和水解催化剂(冰醋酸或三氟乙酸)加入到1000mL三颈烧瓶中,加热到85℃,用滴液漏斗逐滴加入表2中的所有烷氧基硅烷的混合液,控制在25min左右滴完,在80℃的条件下搅拌、回流反应并移除反应生成的醇,反应2h,随后在烧瓶中加入配方量的异丙醇铝,继续回流、出醇反应2h,再加入配方量的钛酸正丁酯,继续回流、出醇反应2h,反应结束,在产物冷却至室温后,使用过量的二甲苯或乙酰丙酮萃取,除去水层,最后将有机层在旋转蒸发仪中减压蒸馏,除去二甲苯或乙酰丙酮和低分子量的物质,获得改性聚硅氧烷,133.05g,收率为90.76%(理论产量为146.6g),其1H-NMR谱图如图2所示,GPC测得平均分子量为2654,在25℃时为粘稠液体。
实施例3
本实施例提供一种改性聚硅氧烷的制备方法及其制备的改性聚硅氧烷,该改性聚硅氧烷的原料配方如表3所示。
表3

其反应过程基本同实施例2,制备采用表3的原料进行,最终制得改性聚硅氧烷,165.85g,收率为90.68%(理论产量为182.89g),GPC测得平均分子量为1988,在25℃时为粘稠液体。
实施例4
本实施例提供一种改性聚硅氧烷的制备方法及其制备的改性聚硅氧烷,该改性聚硅氧烷的原料配方如表4所示。
表4
其反应过程基本同实施例1,制备采用表4的原料进行,最终制得改性聚硅氧烷,183.34g,收率为89.34%(理论产量为205.22g),GPC测得平均分子量为1735,在25℃时为粘稠液体。
实施例5
本实施例提供一种改性聚硅氧烷的制备方法及其制备的改性聚硅氧烷,该改性聚硅氧烷的原料配方如表5所示。
表5
其反应过程基本同实施例2,制备采用表5的原料进行,最终制得改性聚硅氧烷,135.28g,收率为89.79%(理论产量为150.67g),GPC测得平均分子量为3568,在25℃时为膏状。
实施例6
本实施例提供一种改性聚硅氧烷的制备方法及其制备的改性聚硅氧烷,该改性聚硅氧烷的原料配方如表6所示。
表6
其反应过程基本同实施例2,制备采用表6的原料进行,最终制得改性聚硅氧烷,134.38g,收率为89.77%(理论产量为149.69g),GPC测得平均分子量为3492,在25℃时为膏状。
实施例7
本实施例提供一种改性聚硅氧烷的制备方法及其制备的改性聚硅氧烷,该改性聚硅氧烷的原料配方如表7所示。
表7
其反应过程基本同实施例2,制备采用表7的原料进行,最终制得改性聚硅氧烷,163.45g,收率为90.67%(理论产量为180.27g),GPC测得平均分子量为2023,在25℃时为粘稠液体。
实施例8
本实施例提供一种改性聚硅氧烷的制备方法及其制备的改性聚硅氧烷,该改性聚硅氧烷的原料配方如表8所示。
表8

其反应过程基本同实施例2,制备采用表8的原料进行,最终制得改性聚硅氧烷,130.87g,收率为90.4%(理论产量为144.77g),GPC测得平均分子量为2786,在25℃时为膏状。
实施例9
本实施例提供一种改性聚硅氧烷的制备方法及其制备的改性聚硅氧烷,该改性聚硅氧烷的原料配方如表9所示。
表9
该改性聚硅氧烷的反应示意过程如下:
采用表9的原料,其制备过程基本同实施例1,最终制得改性聚硅氧烷,165.64g,收率为90.14%(理论产量为183.75g),其1H-NMR谱图如图3所示,GPC测得平均分子量为1886,在25℃时为粘稠液体。
实施例10
本实施例提供一种改性聚硅氧烷的制备方法及其制备的改性聚硅氧烷,该改性聚硅氧烷的原料配方如表10所示。
表10
该改性聚硅氧烷的反应示意过程如下:
采用表10的原料,其制备过程基本同实施例9,最终制得改性聚硅氧烷,154.29g,收率为90.02%(理论产量为171.39g),其1H-NMR谱图如图4所示,GPC测得平均分子量为1839,在25℃时为粘稠液体。
对比例1
其基本同实施例5,区别仅在于:反应过程中不加异丙醇铝和钛酸正丁酯。
对比例2
其基本同实施例5,区别仅在于:反应过程中不加钛酸正丁酯。
性能测试
对实施例1-10以及对比例1-2所得产物进行如下性能测试:
制备的无溶剂聚合物加入等量二甲苯搅拌溶解均匀后进行测定。测定方法:喷涂或均匀刷涂到打磨过的金属试片表面,室温晾干后,于200℃烘焙8小时;
具体结果参见表11所示。
表11

由表1可知,本发明改性聚硅氧烷能够兼具耐温性好(可耐400℃高温)、固化温度低(可在200℃即实现固化)、粘接强度高和阻燃性能好等优点,有效解决了现有技术中常规聚硅氧烷存在的不足,使有机硅材料在耐热保护材料中得以更宽广的应用。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

Claims (21)

  1. 一种改性聚硅氧烷的制备方法,其特征在于,该制备方法包括:使烷氧基硅烷在水中进行醇解反应、预缩合反应,生成第一中间体,然后采用方法(a)或方法(b)制备所述改性聚硅氧烷;
    方法(a):向第一中间体中加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物中的一个,反应生成第二中间体,再加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物中的另一个,反应生成所述改性聚硅氧烷;
    方法(b):向第一中间体中加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物,反应生成所述改性聚硅氧烷;
    (R1O)3Al(Ⅰ),R1选自C3-6烷基;(R2O)4Ti(Ⅱ),R2选自C3-6烷基;
    所述式(Ⅰ)所示的化合物与所述式(Ⅱ)所示的化合物的投料摩尔比为1∶0.2-5;
    在制备第一中间体的过程中,控制醇解反应或预缩合反应在温度80-95℃下进行;
    在方法(a)或方法(b)中,控制各个反应的温度为75-85℃;
    所述烷氧基硅烷包括选自式(Ⅲ)所示结构中的至少一种、选自式(Ⅳ)所示结构中的至少一种、选自式(Ⅴ)所示结构中的至少一种;
    R3、R4独立地选自C1-6烷基、苯基、C1-6烷基取代的苯基,R5选自C1-6烷基;
    R6选自C1-6烷基,R7选自苯基、C1-6烷基取代的苯基、C2-6烯基;
    R8、R9、R10、R11、R12、R13独立地选自C1-6烷基、苯基、C1-6烷基取代的苯基、C2-6烯基。
  2. 一种改性聚硅氧烷的制备方法,其特征在于,该制备方法包括:使烷氧基硅烷在水中进行醇解反应、预缩合反应,生成第一中间体,然后采用方法(a)或方法(b)制备所述改性聚硅氧烷;
    方法(a):向第一中间体中加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物中的一个,反应生成第二中间体,再加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物中的另一个,反应生成所述改性聚硅氧烷;
    方法(b):向第一中间体中加入式(Ⅰ)所示的化合物和式(Ⅱ)所示的化合物,反应生成所述改性聚硅氧烷;
    (R1O)3Al(Ⅰ),R1选自C3-6烷基;(R2O)4Ti(Ⅱ),R2选自C3-6烷基。
  3. 根据权利要求2所述的改性聚硅氧烷的制备方法,其特征在于,所述烷氧基硅烷包括选自式(Ⅲ)所示结构中的至少一种;
    R3、R4独立地选自C1-6烷基、苯基、C1-6烷基取代的苯基,R5选自C1-6烷基。
  4. 根据权利要求3所述的改性聚硅氧烷的制备方法,其特征在于,所述烷氧基硅烷还包括选自式(Ⅳ)所示结构中的至少一种;
    R6选自C1-6烷基,R7选自苯基、C1-6烷基取代的苯基、C2-6烯基。
  5. 根据权利要求3或4所述的改性聚硅氧烷的制备方法,其特征在于,所述烷氧基硅烷还包括选自式(Ⅴ)所示结构中的至少一种;
    R8、R9、R10、R11、R12、R13独立地选自C1-6烷基、苯基、C1-6烷基取代的苯基、C2-6烯基。
  6. 根据权利要求2所述的改性聚硅氧烷的制备方法,其特征在于,所述烷氧基硅烷包括:
    (1)二苯基二甲氧基硅烷和/或二甲基二甲氧基硅烷;
    (2)选择性地包括乙烯基三甲氧基硅烷和/或苯基三甲氧基硅烷;
    (3)二乙烯基四甲基二硅氧烷、六苯基二硅氧烷和六甲基二硅氧烷中的至少一种。
  7. 根据权利要求2所述的改性聚硅氧烷的制备方法,其特征在于,R1为正丙基、异丙基、正丁基或异丁基,R2为正丙基、正丁基或正戊基。
  8. 根据权利要求2所述的改性聚硅氧烷的制备方法,其特征在于,在制备第一中间体的过程中,控制醇解反应或预缩合反应在温度80-95℃下进行。
  9. 根据权利要求2所述的改性聚硅氧烷的制备方法,其特征在于,在方法(a)或方法(b)中,控制各个反应的温度为75-85℃。
  10. 根据权利要求2所述的改性聚硅氧烷的制备方法,其特征在于,所述式(Ⅰ)所示的化合物与所述式(Ⅱ)所示的化合物的投料摩尔比为1∶0.2-5。
  11. 根据权利要求10所述的改性聚硅氧烷的制备方法,其特征在于,所述式(Ⅰ)所示的化合物与所述式(Ⅱ)所示的化合物的投料摩尔比为1∶0.5-2。
  12. 根据权利要求2所述的改性聚硅氧烷的制备方法,其特征在于,制备该改性聚硅氧烷的实施方式包括:将水和水解催化剂加入反应器中,加热至预设反应温度,滴加烷氧基硅烷,回流反应并移除生成的醇类物质,然后加入式(Ⅰ)所示的化合物,继续回流反应并移除生成的醇类物质,然后加入式(Ⅱ)所示的化合物,继续回流反应并移除生成的醇类物质,反应完成后冷却至室温,采用有机溶剂萃取,除去水层,从有机层中分离出改性聚硅氧烷。
  13. 根据权利要求12所述的改性聚硅氧烷的制备方法,其特征在于,所述水解催化剂为冰醋酸或三氟乙酸;
    控制烷氧基硅烷在15-30min滴加完毕;
    有机溶剂采用二甲苯和/或乙酰丙酮。
  14. 一种权利要求1-13中任一项权利要求所述的制备方法制成的改性聚硅氧烷。
  15. 根据权利要求14所述的改性聚硅氧烷,其特征在于,该改性聚硅氧烷具有式(Ⅵ)所示结构:
    其中,A、B、C、D、E分别独立地选自如下结构中的一个:

    且任意两个不重复,至少包含中的一个,M为二氧化钛,二氧化钛通过表面含有的羟基与硅羟基、铝羟基或钛羟基通过氢键连接在一起;
    a、b、c、d、e分别独立地选自0-20,且当基团含铝或钛时,不为0。
  16. 根据权利要求15所述的改性聚硅氧烷,其特征在于,A、B、C、D、E中至少包含
  17. 根据权利要求15或16所述的改性聚硅氧烷,其特征在于,A、B、C、D、E中至少包含 中的一个。
  18. 根据权利要求15所述的改性聚硅氧烷,其特征在于,所述改性聚硅氧烷中,硅与铝的摩尔比为3-10∶1。
  19. 根据权利要求18所述的改性聚硅氧烷,其特征在于,所述改性聚硅氧烷中,硅与铝的摩尔比为4-9∶1。
  20. 根据权利要求15所述的改性聚硅氧烷,其特征在于,所述改性聚硅氧烷的平均分子量为1000-5000。
  21. 根据权利要求20所述的改性聚硅氧烷,其特征在于,所述改性聚硅氧烷的平均分子量为1500-4500。
PCT/CN2023/102594 2022-11-23 2023-06-27 一种改性聚硅氧烷及其制备方法 WO2024109021A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211476715.5A CN115746306A (zh) 2022-11-23 2022-11-23 一种改性聚硅氧烷及其制备方法
CN202211476715.5 2022-11-23

Publications (1)

Publication Number Publication Date
WO2024109021A1 true WO2024109021A1 (zh) 2024-05-30

Family

ID=85336191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102594 WO2024109021A1 (zh) 2022-11-23 2023-06-27 一种改性聚硅氧烷及其制备方法

Country Status (2)

Country Link
CN (1) CN115746306A (zh)
WO (1) WO2024109021A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115746306A (zh) * 2022-11-23 2023-03-07 武汉鼎业环保工程技术有限公司 一种改性聚硅氧烷及其制备方法
CN116463052A (zh) * 2023-03-29 2023-07-21 武汉鼎业安环科技集团有限公司 一种有机硅防腐涂料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928515A (zh) * 2009-06-22 2010-12-29 比亚迪股份有限公司 一种溶胶和由该溶胶形成的薄膜材料
WO2013062303A1 (ko) * 2011-10-25 2013-05-02 대주전자재료 주식회사 변성 실리콘 수지 조성물
KR20160135884A (ko) * 2015-05-18 2016-11-29 주식회사 아이엠티에스 밀착력, 내열성 및 내화학성이 우수한 유무기 복합 실록산 수지 및 이를 함유하는 복합 유기막
CN110305259A (zh) * 2019-06-28 2019-10-08 武汉鼎业环保工程技术有限公司 一种纳米修复材料及其制备方法
WO2022137987A1 (ja) * 2020-12-24 2022-06-30 富士フイルム株式会社 積層体及び医療機器
CN115175970A (zh) * 2020-02-20 2022-10-11 Epg-F责任有限公司 用于金属、玻璃和塑料的装饰性和保护性涂料组合物
CN115746306A (zh) * 2022-11-23 2023-03-07 武汉鼎业环保工程技术有限公司 一种改性聚硅氧烷及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272232B (zh) * 2008-11-13 2013-08-07 国立大学法人信州大学 聚有机硅氧烷组合物及其制造方法、该组合物的固化体、该组合物在制备粘接剂中的用途
CN109694210A (zh) * 2018-11-22 2019-04-30 深圳陶金材料科技有限公司 一种改性硅酸盐复合粘结剂及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928515A (zh) * 2009-06-22 2010-12-29 比亚迪股份有限公司 一种溶胶和由该溶胶形成的薄膜材料
WO2013062303A1 (ko) * 2011-10-25 2013-05-02 대주전자재료 주식회사 변성 실리콘 수지 조성물
KR20160135884A (ko) * 2015-05-18 2016-11-29 주식회사 아이엠티에스 밀착력, 내열성 및 내화학성이 우수한 유무기 복합 실록산 수지 및 이를 함유하는 복합 유기막
CN110305259A (zh) * 2019-06-28 2019-10-08 武汉鼎业环保工程技术有限公司 一种纳米修复材料及其制备方法
CN115175970A (zh) * 2020-02-20 2022-10-11 Epg-F责任有限公司 用于金属、玻璃和塑料的装饰性和保护性涂料组合物
WO2022137987A1 (ja) * 2020-12-24 2022-06-30 富士フイルム株式会社 積層体及び医療機器
CN115746306A (zh) * 2022-11-23 2023-03-07 武汉鼎业环保工程技术有限公司 一种改性聚硅氧烷及其制备方法

Also Published As

Publication number Publication date
CN115746306A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024109021A1 (zh) 一种改性聚硅氧烷及其制备方法
WO2018223501A1 (zh) 一种无水合成有机硅氧烷树脂的方法及产品与应用
CN102516869B (zh) 基料组合物
JP6423821B2 (ja) ポリアリーレン材料
KR20090055641A (ko) 실란 코팅 물질 및 실란 코팅 제조 방법
WO2019096188A1 (zh) 硅氧烷桥基硅烷封端的硅氧烷桥基梯形聚硅氧烷及其制备方法
WO2022105249A1 (zh) 含硅氢的倍半硅氧烷及其相应聚合物的制备方法
CN110484197B (zh) 一种室温固化耐高温有机硅胶粘剂的制备方法
CN106883415B (zh) 一种聚硅氧烷改性含硅芳炔树脂的制备方法
JPH07278497A (ja) 被覆用塗料組成物
WO2024109020A1 (zh) 一种聚脲组合物及其制备方法和应用
JPH10251516A (ja) シランオリゴマー組成物
JP4162060B2 (ja) 低誘電率シリカ系被膜形成用塗布液および低誘電率被膜付基材
EP0994158B1 (en) Process for forming fired film using an organopolysiloxane composition
TWI358427B (zh)
CN101381463B (zh) 一种主链含硅-芳族二炔丙基醚结构的聚合物及其制备方法
JPH03188179A (ja) シリカ系被膜形成用塗布液,半導体基板の製造法および半導体デバイス
JP2002317049A (ja) ホウ素含有ポリマー組成物
WO2023087411A1 (zh) 粘接及可靠性优异的有机聚硅氧烷组合物及其制备方法
CN116655925A (zh) 一种改性聚硼硅氧烷聚合物及其制备方法
CN117624604B (zh) 一种钛酸酯-硅酸酯低聚物及其制备方法、含有该低聚物的底涂剂及应用
CN117417613B (zh) 一种防腐蚀绝缘复合包材及其制备方法和应用
JP3519871B2 (ja) 硬化性組成物、及びその製造方法
JPH0819380B2 (ja) 厚膜絶縁体形成用組成物の製造方法
CN104245798A (zh) 有机硅-聚酯组合物