WO2024096101A1 - イオン伝導性物質、電解質及び電池 - Google Patents

イオン伝導性物質、電解質及び電池 Download PDF

Info

Publication number
WO2024096101A1
WO2024096101A1 PCT/JP2023/039612 JP2023039612W WO2024096101A1 WO 2024096101 A1 WO2024096101 A1 WO 2024096101A1 JP 2023039612 W JP2023039612 W JP 2023039612W WO 2024096101 A1 WO2024096101 A1 WO 2024096101A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
mol
ion
content
metal element
Prior art date
Application number
PCT/JP2023/039612
Other languages
English (en)
French (fr)
Inventor
篤典 土居
洋 陰山
Original Assignee
住友化学株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人京都大学 filed Critical 住友化学株式会社
Publication of WO2024096101A1 publication Critical patent/WO2024096101A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials

Definitions

  • This disclosure relates to ionically conductive materials, electrolytes, and batteries.
  • Solid electrolytes have been attracting attention as electrolytes for use in electrochemical devices such as lithium-ion batteries (Patent Documents 1 to 3).
  • solid electrolytes have superior high-temperature durability and high-voltage resistance, and are therefore considered useful for improving battery performance such as safety, high capacity, rapid charging and discharging, and pack energy density.
  • halide solid electrolytes containing lithium and metal elements other than lithium are known as materials used for the solid electrolyte of lithium ion batteries.
  • Halide solid electrolytes have advantages not found in oxide- or sulfide-based solid electrolytes, such as not needing sintering due to their high flexibility and being highly safe because they do not emit harmful substances such as H2S .
  • the present disclosure has been made in consideration of the above circumstances, and aims to provide an ion-conductive material with excellent ion conductivity, as well as an electrolyte and a battery using the same.
  • the present disclosure includes the following embodiments [1] to [9].
  • [1] Contains an alkali metal element, a metal element M, a halogen element, a dopant element X, and an oxygen element;
  • the metal element M is at least one of Ta and Nb,
  • the dopant element X is at least one element selected from the group consisting of Ga, In, Sb, Bi, Mg, Ca, Sr, and Ba.
  • [3] The ion-conductive material according to [1] or [2], wherein the dopant element X contains at least one element of In and Bi.
  • An electrolyte comprising any one of the compounds according to [1] to [7].
  • a battery comprising the electrolyte of [8].
  • the present disclosure provides an ion-conductive material with excellent ion conductivity, as well as an electrolyte and a battery using the same.
  • FIG. 1 shows X-ray diffraction charts obtained for the ion-conductive materials of each of the Examples and Comparative Examples.
  • FIG. 2 is a diagram showing Arrhenius plots obtained for the ion-conductive materials of Examples 1, 4, and 7 and Comparative Example 1.
  • FIG. 3 shows the results of the charge/discharge test of the secondary battery of Example 3.
  • FIG. 4 shows the results of DC current density evaluation using a symmetric cell using the ion-conductive material of Example 1.
  • the ion-conductive material of this embodiment contains an alkali metal element, a metal element M, a halogen element, a dopant element X, and an oxygen element, where the metal element M is at least one of Ta and Nb, and the dopant element X is at least one element selected from the group consisting of Ga, In, Sb, Bi, Mg, Ca, Sr, and Ba.
  • the alkali metal element contained in the ion conductive material of this embodiment may be any of Li, Na, K, Rb, and Cs, but may contain at least one of Li, Na, and K, may contain at least one of Li and Na, or may contain Li.
  • the proportion of one type of alkali metal element may be 80 mol% or more, 90 mol% or more, or 95 mol% or more.
  • the one type of alkali metal element may be at least one of Li, Na, and K, at least one of Li and Na, or Li.
  • the content of the alkali metal element in the ionically conductive material may be 6 to 30 mol%, 8 to 27 mol%, 10 to 25 mol%, or 11 to 23 mol%, based on the total amount of atoms contained in the ionically conductive material.
  • the metal element M may be at least one of Ta and Nb, with Ta being preferred.
  • the content of the metal element M in the ion conductive material may be 5 to 20 mol%, 6 to 18 mol%, 8 to 15 mol%, or 9 to 13 mol% relative to the total amount of atoms contained in the ion conductive material.
  • the total content of Ta and Nb may be greater than 50 mol%, 60 mol% or more, 70 mol% or more, 75 mol% or more, 80 mol% or more, 85 mol% or more, or 90 mol% or more.
  • the valences of Ta and Nb may each be 5.
  • the total content of Ta and Nb refers to the content of Ta or Nb alone when the ion conductive material contains only one of Ta and Nb.
  • the content of Ta may be greater than 50 mol%, may be 60 mol% or more, may be 70 mol% or more, may be 75 mol% or more, may be 80 mol% or more, may be 85 mol% or more, or may be 90 mol% or more.
  • the valence of Ta and Nb may each be 5.
  • the dopant element X contained in the ion-conductive material of this embodiment may be at least one element selected from the group consisting of Ga, In, Sb, Bi, and Mg, may contain at least one of In and Bi, may contain Bi, may contain In, or may contain Sb.
  • the content of the dopant element X in the ion-conductive material may be 0.01 to 3 mol %, 0.05 to 2.5 mol %, 0.08 to 2 mol %, or 0.1 to 1.5 mol %, based on the total amount of atoms contained in the ion-conductive material.
  • the content of the dopant element X in the ion conductive material is 25 mol % or less, may be 0.1 to 15 mol %, may be 0.5 to 10 mol %, or may be 1 to 5 mol %, based on the content of the metal element M.
  • the content of the dopant element X in the ion conductive material may be 20 mol % or less, may be 18 mol % or less, may be 15 mol % or less, or may be 13 mol % or less of the content of the metal element M.
  • the halogen element contained in the ion conductive material of this embodiment may be any one of F, Cl, Br, and I, but may contain at least one of Cl, Br, and I, may contain at least one of Cl and Br, or may contain Cl.
  • the ion conductive material may contain only one type of halogen element, but may also contain two or more types of halogen elements.
  • the content of halogen elements in the ion conductive material may be 40 to 70 mol%, 45 to 65 mol%, or 50 to 60 mol%, based on the total amount of atoms contained in the ion conductive material.
  • the content of Cl in the ion conductive material may be 50 mol% or more, 70 mol% or more, 80 mol% or more, 90 mol% or more, or 95 mol% or more, based on the total amount of halogen elements contained in the ion conductive material.
  • the content of halogen elements other than Cl in the ion conductive material may be 50 mol% or less, 30 mol% or less, 20 mol% or less, 10 mol% or less, or 5 mol% or less, based on the total amount of halogen elements contained in the ion conductive material.
  • the halogen element other than Cl may be Br.
  • the content of the oxygen element in the ion conductive material may be 1 to 30 mol%, 3 to 25 mol%, 5 to 25 mol%, 8 to 20 mol%, or 10 to 18 mol% relative to the total amount of atoms contained in the ion conductive material.
  • the ion conductive material may contain a molecular anion containing oxygen. Examples of the molecular anion containing oxygen include peroxide ions (O 2 ⁇ ) and hydroxide ions.
  • the ion conductive material may contain a hydrogen element.
  • the content of the hydrogen element may be 0.5 to 25 mol%, 1 to 20 mol%, or 3 to 15 mol% relative to the total amount of atoms contained in the ion conductive material.
  • the content of the hydrogen element may be 0.01 to 10 mol%, or 0.1 to 5 mol% relative to the total amount of atoms contained in the ion conductive material.
  • the ion conductive material may contain elements (other elements) other than the alkali metal element, the metal element M, the halogen element, the dopant element X, and the oxygen element.
  • Such elements may be at least one of divalent or higher metal elements, and may be at least one of divalent, trivalent, and tetravalent metal elements.
  • An example of a divalent metal is Zn.
  • metal elements include Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Y, and Al.
  • tetravalent metal elements include Zr, Ti, and Hf.
  • the content of other elements may be 30 mol% or less, 20 mol% or less, 15 mol% or less, or 10 mol% or less of the total amount of atoms contained in the ion conductive material.
  • a peak observed within a 2 ⁇ angle range of 10 to 20° refers to a peak whose peak position is within a 2 ⁇ angle range of 10 to 20°.
  • the half-width of the diffraction peak with the largest peak height within the 2 ⁇ angle range of 10 to 20° may be 0.1° or more and less than 1.5°.
  • the half-width may be 0.1 to 1.4°, or 0.2 to 1.3°.
  • the ion-conductive material of the present embodiment may contain a compound (also called an alkali metal-containing halide) represented by the following composition formula (1).
  • A is an alkali metal element
  • M is the above-mentioned metal element M
  • X is the above-mentioned dopant element X
  • Z is a halogen element
  • 0.9 ⁇ 1.8 may be satisfied, 1.0 ⁇ 1.8 may be satisfied, or 1.1 ⁇ 1.6 may be satisfied.
  • the upper and lower limits of ⁇ may be combined in any desired manner.
  • 0.5 ⁇ 1.4 may be satisfied, 0.6 ⁇ 1.4 may be satisfied, 0.7 ⁇ 1.4 may be satisfied, 0.8 ⁇ 1.2 may be satisfied, 0.85 ⁇ 1.1 may be satisfied, or 0.88 ⁇ 1.05 may be satisfied.
  • the upper and lower limits of ⁇ may be combined in any manner.
  • 0.001 ⁇ 0.25 may be satisfied, 0.005 ⁇ 0.2 may be satisfied, 0.008 ⁇ 0.15 may be satisfied, or 0.015 ⁇ 0.15 may be satisfied.
  • the upper and lower limits of ⁇ may be combined in any desired manner.
  • 3.5 ⁇ 5.5 may be satisfied, 3.7 ⁇ 5.0 may be satisfied, or 3.8 ⁇ 5.1 may be satisfied.
  • the upper and lower limits of ⁇ may be combined in any desired manner.
  • 0.7 ⁇ 1.8 may be satisfied, 0.8 ⁇ 1.6 may be satisfied, or 1.05 ⁇ 1.5 may be satisfied.
  • the upper and lower limits regarding ⁇ may be arbitrarily combined.
  • E is an element other than A, M, X, and Z (the other elements mentioned above). Examples of E include C, B, and N.
  • may be 0 to 0.1, 0 to 0.01, 0 to 0.001, or substantially 0.
  • the upper limit and the lower limit of ⁇ may be arbitrarily combined.
  • the method for producing the ion-conductive material of this embodiment is not particularly limited, but may be, for example, a production method that includes a step of ball milling the raw material.
  • the raw materials are not particularly limited.
  • alkali metal sources compounds containing alkali metals
  • metal halides examples of alkali metal halides, alkali metal oxides, alkali metal peroxides, and alkali metal hydroxides.
  • metal element M sources examples of metal element M
  • dopant element X sources examples of dopant element X.
  • the raw materials are preferably mixed before ball milling, and more preferably mixed in an inert atmosphere (e.g., an Ar atmosphere).
  • the conditions for the ball mill are not particularly limited, but may be 10 to 100 hours at a rotation speed of 200 to 700 rpm.
  • the grinding time may be 1 to 72 hours, 12 to 60 hours, or 20 to 60 hours.
  • the balls used in the ball mill are not particularly limited, but zirconia balls can be used.
  • the size of the balls used is not particularly limited, but balls of 2 mm to 10 mm can be used.
  • the product (ionically conductive material) obtained by ball milling may be annealed, but it is preferable not to do so. Annealing can be done, for example, by heating the product after ball milling at 100°C or higher, 100 to 300°C, or 150 to 250°C.
  • the ionically conductive material of this embodiment can be used as a material for electrochemical devices such as capacitors and batteries.
  • electrochemical devices such as capacitors and batteries.
  • Examples of such materials include electrolyte (solid electrolyte) materials.
  • Examples of batteries include lithium ion batteries, sodium ion batteries, and other batteries that charge and discharge by the movement of alkali metal ions between the positive and negative electrodes.
  • the ionically conductive material of this embodiment may be contained in the positive or negative electrodes of a battery.
  • the battery of this embodiment will be described below by taking a lithium ion battery as an example.
  • the lithium ion battery includes a positive electrode, a negative electrode, and an electrolyte (solid electrolyte) disposed between the positive electrode and the negative electrode.
  • the ion conductive material of this embodiment (alkali metal-containing halide (lithium-containing halide in this case)) may be included in the electrolyte of the lithium ion battery.
  • the positive electrode of the lithium ion battery is not particularly limited, and may contain a positive electrode active material and, as necessary, a conductive agent, a binder, and the like.
  • the positive electrode may be a layer containing these materials formed on a current collector.
  • the positive electrode active material examples include a lithium-containing composite metal oxide containing lithium (Li) and at least one transition metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and Cu.
  • lithium composite metal oxides include LiCoO2 , LiNiO2 , LiMn2O4 , LiNi0.5Mn1.5O4 , Li2MnO3, LiNi x Mn y Co1 -x-y O2 [0 ⁇ x+y ⁇ 1]), LiNi x Co y Al1 - x - y O2 [ 0 ⁇ x+y ⁇ 1], LiCr0.5Mn0.5O2 , LiFePO4 , Li2FeP2O7 , LiMnPO4 , LiFeBO3 , Li3V2 ( PO4 ) 3 , Li2CuO2 , and Li2FeSiO4. , Li2MnSiO4 , etc.
  • the negative electrode of a lithium ion battery is not particularly limited, and may contain a negative electrode active material and, if necessary, a conductive agent, a binder, etc.
  • a negative electrode active material such as Li, Si, P, Sn, Si-Mn, Si-Co, Si-Ni, In, and Au, as well as alloys or composites containing these elements, carbon materials such as graphite, and materials in which lithium ions are inserted between the layers of the carbon material.
  • the material of the current collector is not particularly limited, and may be a single metal or alloy such as Cu, Mg, Ti, Fe, Co, Ni, Zn, Al, Ge, In, Au, Pt, Ag, or Pd.
  • the solid electrolyte layer may have a plurality of layers.
  • a configuration having a sulfide solid electrolyte layer may be used.
  • a configuration having a sulfide solid electrolyte layer between the solid electrolyte containing the ion conductive material of the present embodiment and the negative electrode may be used.
  • the sulfide solid electrolyte is not particularly limited, but examples thereof include Li 6 PS 5 Cl, Li 2 S-PS 5 , Li 10 GeP 2 S 12 , Li 9.6 P 3 S 12 , Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 , and Li 3 PS 4 .
  • Examples 1 to 20 and Comparative Example 1 In an argon atmosphere having a dew point of ⁇ 70° C. or less (hereinafter referred to as a dry argon atmosphere), a lithium source, a tantalum source, and a dopant element source were weighed out so as to obtain the charge composition shown in Table 1, and raw materials were prepared. A total of 1.2 g of the above raw materials was placed in a 50 ml zirconia pot for a planetary ball mill described below, and 65 g of zirconia balls with a diameter of 4 mm were added. The mixture was treated for 24 hours at 300 rpm so as to undergo a mechanochemical reaction, thereby obtaining an ionically conductive material.
  • a dry argon atmosphere an argon atmosphere having a dew point of ⁇ 70° C. or less
  • Example 1 Li2O2 , TaCl5 , BiCl3
  • Example 2 Li2O2 , TaCl5 , BiOCl
  • Example 3 Li2O2 , TaCl5 , InCl3
  • Example 4 Li2O2 , TaCl5 , BiCl3
  • Example 5 Li2O2 , TaCl5 , InCl3
  • Example 6 Li2O , TaCl5 , InCl3
  • Example 7 Li2O2 , TaCl5 , BiCl3
  • Example 8 Li2O2 , TaCl5 , BiOCl
  • Example 9 Li2O2 , TaCl5 , BiOCl
  • Example 10 Li2O2 , TaCl5 , InCl3
  • Example 11 Li2O2 , TaCl5 , InCl3
  • Example 12 Li2O2 , TaCl5 , InCl3
  • Example 13 Li2O2 , TaCl5 , InCl3
  • ⁇ Powder X-ray diffraction> The obtained ion-conductive material was subjected to powder X-ray diffraction measurement at 25° C. to evaluate the diffraction peaks observed within the range of 10 to 20° in 2 ⁇ . The results are shown in Table 1.
  • FIG. 1 shows X-ray diffraction charts obtained for the ion-conductive materials of the respective Examples and Comparative Examples. The half-width of the peak was determined by subtracting the background signal and performing fitting.
  • a pressure molding die including a frame, a lower punch, and an upper punch was prepared.
  • the frame was made of insulating polycarbonate.
  • the upper punch and the lower punch were both made of electronically conductive stainless steel and were electrically connected to the terminals of an impedance analyzer (S11260 manufactured by Solatron Analytical Co., Ltd.).
  • the ionic conductivity of the ionic conductive material was measured by the following method. First, in a dry argon atmosphere, powder of the ionic conductive material was filled onto the lower part of the punch, which was inserted vertically from below into the hollow part of the frame mold. Then, the upper part of the punch was pressed into the hollow part of the frame mold from above, applying a pressure of 370 MPa to the powder of the ionic conductive material inside the pressure molding die.
  • the punch was clamped from above and below with a jig to fix it, and while a constant pressure was maintained, the impedance of the ionic conductive material was measured by the electrochemical impedance measurement method using the above impedance analyzer.
  • a Cole-Cole diagram was created from the impedance measurement results.
  • the real value of the impedance at the measurement point where the absolute value of the phase of the complex impedance was the smallest was regarded as the resistance value to the ionic conduction of the ion-conductive material.
  • the ionic conductivity was calculated based on the following formula (III). The results are shown in Table 2.
  • FIG. 2 is a diagram showing Arrhenius plots obtained for the ion-conductive materials of Examples 1, 4, and 7 and Comparative Example 1.
  • Example 3 60 mg of sulfide solid electrolyte Li 6 PS 5 Cl was put in contact with the first solid electrolyte layer to obtain a laminate. A pressure of 370 MPa was applied to the laminate to form a second solid electrolyte layer. The first solid electrolyte layer was sandwiched between the first electrode and the second solid electrolyte layer. Next, 60 mg of In foil was placed in contact with the second solid electrolyte layer, and 2 mg of Li foil was placed in contact with the In foil to obtain a laminate. A pressure of 370 MPa was applied to the laminate to form a second electrode. A current collector made of stainless steel was attached to the first electrode and the second electrode, and then a lead wire was attached to the current collector. All the members were placed in a desiccator and sealed, and thus a secondary battery of Example 3 was obtained.
  • the charge/discharge test was carried out using the following product.
  • Charge/discharge tester Toyo Systems Co., Ltd. TOSCAT-3100
  • a charge-discharge test was carried out at three C rates of 0.1 C, 1 C, and 3 C at 60° C.
  • the discharge capacities at each C rate are shown in Table 2.
  • the cells were charged to 3.7 V using a constant current constant voltage (CCCV charging) at a current density corresponding to each C rate, and discharged to 1.9 V at a current density corresponding to each C rate.
  • 3 shows the results of the charge/discharge test of the secondary battery of Example 3.
  • Table 2 shows the discharge capacity at each C rate. For the secondary battery of Example 3, a high discharge capacity was obtained at all C rates.
  • a cell for evaluating DC current density was prepared as described below.
  • the preparation of the cell for evaluating DC current density was carried out in a glove box purged with an inert gas.
  • 100 mg of the ion-conductive material of Example 1 was placed in an insulating cylinder having an inner diameter of 10 mm.
  • a pressure of 370 MPa was applied to the ion-conductive material to form a solid electrolyte layer (a layer of the ion-conductive material).
  • 60 mg of Li 6 PS 5 Cl was laminated on both the upper and lower surfaces of the solid electrolyte layer, and then a pressure of 370 MPa was applied to form separator layers on both the upper and lower surfaces of the solid electrolyte layer.
  • the solid electrolyte layer was sandwiched between two separator layers.
  • 60 mg of In foil was placed in contact with each separator layer, and 2 mg of Li foil was placed in contact with the In foil to obtain a laminate.
  • a pressure of 370 MPa was applied to the laminate, and an electrode was formed on the surface of each separator layer opposite to the solid electrolyte layer.
  • a current collector made of stainless steel was attached to each electrode, and then a lead wire was attached to the current collector. All the members were placed in a desiccator sealed in a glove box. In this way, a cell for evaluating direct current density was obtained.
  • the DC current density evaluation was carried out as follows. After applying 250 mV for 20 minutes, the voltage was stopped for 5 minutes.
  • Fig. 4 shows the results of DC current density evaluation using a symmetric cell using the ion-conductive material of Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Conductive Materials (AREA)

Abstract

アルカリ金属元素、金属元素M、ハロゲン元素、ドーパント元素X及び酸素元素を含有し、前記金属元素Mは、Ta及びNbの少なくとも一方であり、前記ドーパント元素Xは、Ga、In、Sb、Bi、Mg、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素である、イオン伝導性物質。

Description

イオン伝導性物質、電解質及び電池
 本開示は、イオン伝導性物質、電解質及び電池に関する。
 近年、リチウムイオン電池等の電気化学デバイスに使用される電解質として、固体電解質が注目されている(特許文献1~3)。固体電解質は、従来の電解液と比較して、高温耐久性、高電圧耐性等に優れるため、安全性、高容量化、急速充放電、パックエネルギー密度などの電池の性能の向上に有用であると考えられている。
 特許文献1~3に記載されるように、リチウムイオン電池の固体電解質に使用される材料としてリチウム及びリチウム以外の金属元素を含むハロゲン化物の固体電解質が知られている。ハロゲン化物固体電解質は、柔軟性が高いため焼結を必要としないこと、HS等の有害な物質を放出しないため安全性が高いことなど、酸化物系又は硫化物系の固体電解質にはない利点を備えている。
国際公開第2020/137153号 国際公開第2021/220578号 国際公開第2021/220577号
 しかしながら、ハロゲン化物固体電解質には、未だにイオン伝導度について改善の余地がある。
 本開示は、上述の事情に鑑みなされたものであって、イオン伝導度に優れるイオン伝導性物質、並びにそれを用いた電解質、及び電池を提供することを目的とする。
 本開示は、以下の実施形態[1]~[9]を含む。
 [1]
 アルカリ金属元素、金属元素M、ハロゲン元素、ドーパント元素X及び酸素元素を含有し、
 前記金属元素Mは、Ta及びNbの少なくとも一方であり、
 前記ドーパント元素Xは、Ga、In、Sb、Bi、Mg、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素である、イオン伝導性物質。
 [2]
 前記ハロゲン元素がClを含む、[1]のイオン伝導性物質。
 [3]
 前記ドーパント元素Xは、In、及びBiの少なくとも一方の元素を含む、[1]又は[2]のイオン伝導性物質。
 [4]
 前記金属元素Mに対する前記ドーパント元素Xの含有量が25モル%以下である、[1]~[3]のいずれか一つのイオン伝導性物質。
 [5]
 イオン伝導性物質に含まれる総原子数を基準として、前記アルカリ金属元素の含有量が6~25モル%、前記金属元素Mの含有量が5~16モル%、前記ハロゲン元素の含有量が40~70モル%、前記ドーパント元素Xの含有量が0.1~1.5モル%である、[1]~[4]のいずれか一つのイオン伝導性物質。
 [6]
 25℃においてCuKα線を用いて測定したX線回折チャートにおいて、2θ角が10~20°の範囲内に半値幅が1.5~10°である回折ピークを少なくとも1つ有する、[1]~[5]のいずれか一つのイオン伝導性物質。
 [7]
 25℃においてCuKα線を用いて測定したX線回折チャートにおいて、2θ角が10~20°の範囲内の最もピーク高さが大きい回折ピークの半値幅が0.1以上1.5°未満である、[1]~[5]のいずれか一つのイオン伝導性物質。
 [8]
 [1]~[7]のいずれか一つの化合物を含む、電解質。
 [9]
 [8]の電解質を含む、電池。
 本開示によれば、イオン伝導度に優れるイオン伝導性物質、並びにそれを用いた電解質、及び電池を提供することができる。
図1は各実施例及び比較例のイオン伝導性物質について得られたX線回折チャートを示す図である 図2は、実施例1、4及び7並びに比較例1のイオン伝導性物質について得られたアレーニウスプロットを示す図である 図3に実施例3の二次電池の充放電試験結果を示す。 図4は、実施例1のイオン伝導性物質を用いた対称セルによる直流電流密度評価の結果である。
 本実施形態のイオン伝導性物質は、アルカリ金属元素、金属元素M、ハロゲン元素、ドーパント元素X及び酸素元素を含有し、金属元素Mは、Ta及びNbの少なくとも一方であり、ドーパント元素Xは、Ga、In、Sb、Bi、Mg、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素である。
 本実施形態のイオン伝導性物質に含まれるアルカリ金属元素は、Li、Na、K、Rb及びCsのいずれであってもよいが、Li、Na及びKの少なくとも一種を含んでいてよく、Li及びNaの少なくとも一方を含んでいてよく、Liを含んでいてよい。
 イオン伝導性物質に含まれるアルカリ金属元素のうち、1種のアルカリ金属元素の割合が80モル%以上であってよく、90モル%以上であってよく、95モル%以上であってよい。当該1種のアルカリ金属元素はLi、Na及びKの少なくとも一種であってよく、Li及びNaの少なくとも一方であってよく、Liであってよい。
 イオン伝導性物質におけるアルカリ金属元素の含有量は、イオン伝導性物質に含まれる原子の総量に対して、6~30モル%であってよく、8~27モル%であってよく、10~25モル%であってよく、11~23モル%であってよい。
 金属元素Mは、Ta、及びNbの少なくとも一方であってよく、Taが好ましい。イオン伝導性物質における金属元素Mの含有量は、イオン伝導性物質に含まれる原子の総量に対して、5~20モル%であってよく、6~18モル%であってよく、8~15モル%であってよく、9~13モル%であってよい。イオン伝導性物質に含まれるアルカリ金属元素以外の金属元素のうち、Ta及びNbの合計含有量は50モル%より大きくてよく、60モル%以上であってよく、70モル%以上であってよく、75モル%以上であってよく、80モル%以上であってよく、85モル%以上であってよく、90モル%以上であってよい。Ta、及びNbの価数はそれぞれ5であってよい。なお、Ta及びNbの合計含有量は、イオン伝導性物質がTa及びNbのいずれか一方しか含まない場合、Ta又はNb単独の含有量を指す。イオン伝導性物質に含まれるアルカリ金属元素以外の金属元素のうち、Taの含有量は50モル%より大きくてよく、60モル%以上であってよく、70モル%以上であってよく、75モル%以上であってよく、80モル%以上であってよく、85モル%以上であってよく、90モル%以上であってよい。Ta、及びNbの価数はそれぞれ5であってよい。
 本実施形態のイオン伝導性物質に含まれるドーパント元素Xは、Ga、In、Sb、Bi及びMgからなる群から選択される少なくとも1種の元素であってよく、In及びBiの少なくとも一方を含んでいてよく、Biを含んでいてよく、Inを含んでいてよく、Sbを含んでいてよい。
 イオン伝導性物質におけるドーパント元素Xの含有量は、イオン伝導性物質に含まれる原子の総量に対して、0.01~3モル%であってよく、0.05~2.5モル%であってよく、0.08~2モル%であってよく、0.1~1.5モル%であってよい。
 イオン伝導性物質におけるドーパント元素Xの含有量は、金属元素Mの含有量に対して25モル%以下であり、0.1~15モル%であってよく、0.5~10モル%であってよく、1~5モル%であってよい。イオン伝導性物質におけるドーパント元素Xの含有量は、金属元素Mの含有量の20モル%以下であってよく、18モル%以下であってよく、15モル%以下であってよく、13モル%以下であってよい。
 本実施形態のイオン伝導性物質に含まれるハロゲン元素は、F、Cl、Br、及びIのうちいずれであってもよいが、Cl、Br、及びIの少なくとも一種を含んでいてよく、Cl及びBrの少なくとも一方を含んでいてよく、Clを含んでいてよい。イオン伝導性物質は、1種のみのハロゲン元素を含んでいてもよいが、2種以上のハロゲン元素を含んでいてもよい。
 イオン伝導性物質におけるハロゲン元素の含有量は、イオン伝導性物質に含まれる原子の総量に対して、40~70モル%であってよく、45~65モル%であってよく、50~60モル%であってよい。イオン伝導性物質におけるClの含有量は、イオン伝導性物質に含まれるハロゲン元素の総量に対して、50モル%以上であってよく、70モル%以上であってよく、80モル%以上であってよく、90モル%以上であってよく、95モル%以上であってよい。イオン伝導性物質におけるCl以外のハロゲン元素の含有量は、イオン伝導性物質に含まれるハロゲン元素の総量に対して、50モル%以下であってよく、30モル%以下であってよく、20モル%以下であってよく、10モル%以下であってよく、5モル%以下であってよい。Cl以外のハロゲン元素は、Brであってよい。
 イオン伝導性物質における酸素元素の含有量は、イオン伝導性物質に含まれる原子の総量に対して、1~30モル%であってよく、3~25モル%であってよく、5~25モル%であってよく、8~20モル%であってよく、10~18モル%であってよい。イオン伝導性物質は、酸素を含む分子性アニオンを含んでいてよい。酸素を含む分子性アニオンとしては、過酸化物イオン(O )、水酸化物イオン等が挙げられる。イオン伝導性物質は水素元素を含んでいてよい。イオン伝導性物質が水素元素を含む場合、水素元素の含有量は、イオン伝導性物質に含まれる原子の総量に対して、0.5~25モル%であってよく、1~20モル%であってよく、3~15モル%であってよい。イオン伝導性物質が水素元素を含む場合、水素元素の含有量は、イオン伝導性物質に含まれる原子の総量に対して、0.01~10モル%であってよく、0.1~5モル%であってよい。
 イオン伝導性物質は、アルカリ金属元素、金属元素M、ハロゲン元素、ドーパント元素X及び酸素元素以外の元素(そのほかの元素)を含んでよい。そのような元素としては、2価以上の金属元素のうち少なくとも一種であってよく、2価、3価、及び4価の金属元素のうち少なくとも一種であってよい。2価の金属としては、Zn等が挙げられる。金属元素としては、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu、Y、Al等が挙げられる。4価の金属元素としては、Zr、Ti、Hf等が挙げられる。その他の元素の含有量は、イオン伝導性物質に含まれる原子の総量に対して30モル%以下であってよく、20モル%以下であってよく、15モル%以下であってよく、10モル%以下であってよい。
 本実施形態のイオン伝導性物質について25℃においてCuKα線を用いて測定したX線回折チャートにおいて、2θ角が10~20°の範囲内に半値幅が1.5~10°である回折ピークが少なくとも一つ観測されると好ましい。半値幅が1.5~10°である回折ピークは、2θ角が10~20°の範囲内において、最も幅が広い(半値幅が大きい)回折ピーク又は最もピーク高さが大きい回折ピークであってよい。当該半値幅は、1.5~8°であってよく、2.0~6.0°であってよい。なお、本明細書において半値幅は特に断らない限り、半値全幅(FWHM)である。また、本明細書において2θ角が10~20°の範囲内に観測されるピークとは、ピーク位置が2θ角が10~20°の範囲内であるピークを指す。
 本実施形態のイオン伝導性物質について25℃においてCuKα線を用いて測定したX線回折チャートにおいて、2θ角が10~20°の範囲内の最もピーク高さが大きい回折ピークの半値幅が0.1°以上1.5°未満であってよい。当該半値幅は、0.1~1.4°であってよく、0.2~1.3°であってよい。半値幅がかかる範囲であると、イオン伝導性物質の耐熱性が向上し、具体的には、加熱された際の、構造安定性が向上するため、高温領域での動作の安定性に寄与する傾向にある。
 本実施形態のイオン伝導性物質は、下記組成式(1)で表される化合物(アルカリ金属含有ハロゲン化物とも呼ぶ。)を含んでいてもよい。
αβγδηεζ・・・(1)
(式中、Aはアルカリ金属元素であり、Mは上述の金属元素M、Xは上述のドーパント元素X、Zはハロゲン元素であり、0.8≦α≦2、0.5≦β≦1.5、0.005≦γ≦0.5、3≦δ≦6、0.5≦ε≦2である。)
 αについて、0.9≦α≦1.8であってよく、1.0≦α≦1.8であってよく、1.1≦α≦1.6であってよい。αについての上限と下限とは任意に組み合わせることができる。
 βについて、0.5<β≦1.4であってよく、0.6≦β≦1.4であってよく、0.7≦β≦1.4であってよく、0.8≦β≦1.2であってよく0.85≦β≦1.1であってよく、0.88≦β≦1.05であってよい。βについての上限と下限とは任意に組み合わせることができる。
 γについて、0.001≦γ≦0.25であってよく、0.005≦γ≦0.2であってよく、0.008≦γ≦0.15であってよく、0.015≦γ≦0.15であってよい。γについての上限と下限とは任意に組み合わせることができる。
 δについて、3.5≦δ≦5.5であってよく、3.7≦δ≦5.0であってよく、3.8≦δ≦5.1であってよい。δについての上限と下限とは任意に組み合わせることができる。
 εについて、0.7≦ε≦1.8であってよく、0.8≦ε≦1.6であってよく、1.05≦ε≦1.5であってよい。εについての上限と下限とは任意に組み合わせることができる。
 Eは、A、M、X、及びZ以外の元素(上述のその他の元素)である。Eとしては、例えば、C、B、N等が挙げられる。ηは0~0.1であってよく、0~0.01であってよく、0~0.001であってよく、実質的に0であってもよい。
 0≦ζ≦2.0であってよく、0.01≦ζ≦1.5であってよく、0.1≦ζ≦1.0であってよい。ζについての上限と下限とは任意に組み合わせることができる。
 本実施形態のイオン伝導性物質の製造方法としては、特に限定されないが、例えば、原料に対してボールミルを行う工程を備える製造方法が挙げられる。
 原料としては、特に限定されない。例えば、アルカリ金属源(アルカリ金属を含む化合物)としては、アルカリ金属ハロゲン化物、アルカリ金属の酸化物、アルカリ金属の過酸化物、アルカリ金属の水酸化物等が挙げられる。金属元素M源(金属元素Mを含む化合物)としては、金属元素Mのハロゲン化物が挙げられる。ドーパント元素X源(ドーパント元素を含む化合物)としては、ドーパント元素Xのハロゲン化物などが挙げられる。原料はボールミルを行う前に混合することが好ましく、不活性雰囲気(例えばAr雰囲気)下で混合することがより好ましい。
 ボールミルの条件としては特に限定されないが、回転数200~700rpmで10~100時間とすることができる。粉砕時間は、1時間~72時間であってよく、12~60時間であってよく、20~60時間であってよい。
 ボールミルに用いるボールとしては、特に限定はされないが、ジルコニアボールを用い得ることができる。用いるボールの大きさとしては特に限定はされないが、2mm~10mmのボールを用いることができる。
 ボールミルを上記の時間で行うことで充分に各原料が混合され、メカノケミカル反応が促進されることによって、得られる化合物のイオン伝導度を向上させることが可能である。
 ボールミルを行って得られた生成物(イオン伝導性物質)にはアニーリングを行ってもよいが、行わないほうが好ましい。アニーリングとしては、例えば、100℃以上、100~300℃、又は150~250℃でボールミル後の生成物を加熱することが挙げられる。
 本実施形態のイオン伝導性物質は、例えば、キャパシタ、電池等の電気化学デバイスの材料として使用することができる。そのような材料としては、例えば、電解質(固体電解質)の材料が挙げられる。電池としては、リチウムイオン電池、ナトリウムイオン電池等の正極及び負極の間をアルカリ金属イオンが移動することにより充放電を行う電池が挙げられる。また、本実施形態のイオン伝導性物質は、電池の正極、又は負極に含まれていても良い。
 以下、本実施形態の電池について、リチウムイオン電池を例にとって説明する。リチウムイオン電池は、正極及び負極と、当該正極及び負極の間に配置された電解質(固体電解質)とを含む。本実施形態のイオン伝導性物質(アルカリ金属含有ハロゲン化物(この場合、リチウム含有ハロゲン化物である))は、リチウムイオン電池の電解質に含まれていてよい。
 リチウムイオン電池の正極としては、特に限定されず、正極活物質を含み、且つ必要に応じて導電助剤、結合剤等を含むものであってよい。
 正極は、これらの材料を含む層が集電体上に形成されたものであってよい。正極活物質としては、例えば、リチウム(Li)と、V、Cr、Mn、Fe、Co、Ni、Cuからなる群から選択される少なくとも1種の遷移金属とを含むリチウム含有複合金属酸化物が挙げられる。このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiNiO、LiMn、LiNi0.5Mn1.5、LiMnO、LiNiMnCo1-x-y[0<x+y<1])、LiNiCoAl1-x-y[0<x+y<1])、LiCr0.5Mn0.5、LiFePO、LiFeP、LiMnPO、LiFeBO、Li(PO、LiCuO、LiFeSiO、LiMnSiOなどが挙げられる。
 リチウムイオン電池の負極としては特に限定されず、負極活物質を含み、且つ必要に応じて導電助剤、結合剤等を含むものであってよい。例えば、Li、Si、P、Sn、Si-Mn、Si-Co、Si-Ni、In、Auなどの単体及びこれらの元素を含む合金、又は複合体、グラファイト等の炭素材料、当該炭素材料の層間にリチウムイオンが挿入された物質などを挙げることができる。
 集電体の材質は特に限定されず、Cu、Mg、Ti、Fe、Co、Ni、Zn、Al、Ge、In、Au、Pt、Ag、Pd等の金属の単体又は合金であってよい。
 固体電解質層としては、複数の層を有していて良い。例えば、本実施形態のイオン伝導性物質を含む固体電解質層に加え、硫化物固体電解質層を有する構成であっても良い。本実施形態のイオン伝導性物質を含む固体電解質と負極の間に硫化物固体電解質層を有する構成であっても良い。硫化物固体電解質としては特に限定はされないが、例えば、LiPSCl、LiS-PS、Li10GeP12、Li9.612、Li9.54Si1.741.4411.7Cl0.3、LiPSなどが挙げられる。
(実施例1~20及び比較例1)
 -70℃以下の露点を有するアルゴン雰囲気中(以下、乾燥アルゴン雰囲気と記載する)で、表1に記載の仕込み組成となるようにリチウム源、タンタル源及びドーパント元素源を秤量し、原料を用意した。
 下記の遊星ボールミル用の50mlの容積のジルコニアポットに合計1.2gの上記原料を入れ、直径4mmのジルコニアボールを65g投入した。24時間、300rpmの条件でメカノケミカル的に反応するように処理することにより、イオン伝導性物質を得た。表1に示すように、ボールミル後、一部のイオン伝導物質にはアニーリングを行った。アニーリングは、イオン伝導物質をアルゴン雰囲気中、200℃で5時間加熱することにより行った。
 ボールミルは、10分間回転させる毎に、インターバルとして1分間停止させ、回転方向を時計回りと反時計回り交互に切り替えるモードで実施した。これにより、実施例及び比較例の各イオン伝導物質(リチウム含有塩化物)が得られた。
遊星ボールミル装置:ヴァーダー・サイエンティフィック株式会社製 PM 400
 なお、リチウム源、タンタル源及びドーパント元素源としては、以下の化合物を使用した。
実施例1:Li、TaCl、BiCl
実施例2:Li、TaCl、BiOCl
実施例3:Li、TaCl、InCl
実施例4:Li、TaCl、BiCl
実施例5:Li、TaCl、InCl
実施例6:LiO、TaCl、InCl
実施例7:Li、TaCl、BiCl
実施例8:Li、TaCl、BiOCl
実施例9:Li、TaCl、BiOCl
実施例10:Li、TaCl、InCl
実施例11:Li、TaCl、InCl
実施例12:Li、TaCl、InCl
実施例13:Li、TaCl、InCl、BiCl
実施例14:Li、TaCl、MgCl、BiCl
実施例15:Li、TaCl、SbCl
実施例16:Li、TaCl、MgCl
実施例17:LiOH、TaCl、BiCl
実施例18:LiOH、TaCl、BiCl
実施例19:Li、LiBr、TaCl、BiCl
実施例20:Li、LiBr、TaCl、BiCl
比較例1:Li、TaCl、YCl
<粉末X線回折>
 得られたイオン伝導性物質について、25℃での粉末X線回折測定により、2θで10~20°の範囲内に観測された回折ピークの評価を行った。結果を表1に示す。粉末X線回折測定は、下記の条件にて実施した。
測定装置:  Ultima IV (株式会社 リガク 製)
 X線発生器: CuKα線源 電圧40kV、電流40mA
 X線検出器: シンチレーションカウンター又は半導体検出器
 測定範囲:  回折角2θ=5°~80°
 スキャンスピード:4°/分
 図1は各実施例及び比較例のイオン伝導性物質について得られたX線回折チャートを示す図である。
 ピークの半値幅はバックグラウンドシグナルを除去し、フィッティングを行うことで求めた。
<イオン伝導度の評価>
 枠型、パンチ下部及びパンチ上部を備える加圧成形ダイスを用意した。なお、枠型は、絶縁性ポリカーボネートから形成されていた。また、パンチ上部及びパンチ下部は、いずれも、電子伝導性のステンレスから形成されており、インピーダンスアナライザー(Solatron Analytical社製 Sl1260)の端子にそれぞれ電気的に接続されていた。
 上記加圧成形ダイスを用いて、下記の方法により、イオン伝導性物質のイオン伝導度が測定された。まず、乾燥アルゴン雰囲気中で、イオン伝導性物質の粉末を、枠型の中空部に鉛直下方から挿入されたパンチ下部上に充填した。そして、パンチ上部を枠型の中空部に上から押し込むことにより、加圧成形ダイスの内部で、イオン伝導性物質の粉末に370MPaの圧力が印加された。圧力が印加された後、治具でパンチを上下から締め付けて固定し、一定圧力が保持されたままの状態で、上記インピーダンスアナライザーを用いて、電気化学的インピーダンス測定法により、イオン伝導性物質のインピーダンスが測定された。
 インピーダンス測定結果から、Cole-Cole線図のグラフを作成した。Cole-Cole線図において、複素インピーダンスの位相の絶対値が最も小さい測定点でのインピーダンスの実数値を、イオン伝導性物質のイオン伝導に対する抵抗値と見なした。当該抵抗値を用いて、以下の数式(III)に基づいてイオン伝導度が算出された。結果を表2に示す。
σ=(RSE×S/t)-1・・・(III)
ここで、
σはイオン伝導度であり、
Sは、イオン伝導性物質のパンチ上部との接触面積(枠型の中空部の断面積に等しい)であり、
SEは、インピーダンス測定におけるイオン伝導性物質の層の抵抗値であり、
tは、圧力が印加された際のイオン伝導性物質の層の厚みである。図2は、実施例1、4及び7並びに比較例1のイオン伝導性物質について得られたアレーニウスプロットを示す図である。
<二次電池の作製>
 乾燥アルゴン雰囲気中で、実施例3のイオン伝導性物質、及びLiNi1/3Mn1/3Co1/3、及びアセチレンブラックをそれぞれ29質量部、67質量部、4質量部秤量し、乳鉢で混合することで、混合物を得た。
 内径10mmの絶縁性の筒の中で、実施例3のイオン伝導性物質を100mg、上記の混合物を15mgを順に積層して、積層体を得た。積層体に370MPaの圧力を印加し、第1電極(上記混合物の層)及び第1の固体電解質層(上記イオン伝導性物質の層)が形成された。
 次に、第1の固体電解質層に、硫化物固体電解質LiPSClを接触させるようにして60mg入れ、積層体を得た。積層体に370MPaの圧力を印加し、第2の固体電解質層が形成された。第1の固体電解質層は、第1の電極と第2の固体電解質層に挟まれていた。
 次に、第二の固体電解質層にIn箔60mg、を接触させるようにして入れ、さらにLi箔2mgをIn箔と接触させるように入れ、積層体を得た。積層体に370MPaの圧力を印加し、第2電極が形成された。
 ステンレス鋼で形成された集電体が第1電極及び第2電極に取り付けられ、次いで、当該集電体にリード線が取り付けられた。全ての部材はデシケータ中に配置され、密閉されており、このようにして実施例3の二次電池が得られた。
<充放電試験>
 充放電試験機としては、下記の製品を用いて実施した。
 充放電試験機:東洋システム株式会社 TOSCAT-3100
 60℃において、0.1C、1C及び3Cの3通りのCレートで充放電試験を実施した。それぞれのCレートにおける放電容量は、表2のとおりである。
 定電流定電圧(CCCV充電)で、それぞれのCレートに対応した電流密度で3.7Vまで充電を行った。放電は、それぞれのCレートに対応した電流密度で、1.9Vまで放電した。
 図3に実施例3の二次電池の充放電試験結果を示す。また、表2に各Cレートにおける放電容量を示す。
 実施例3の二次電池について、いずれのCレートにおいても高い放電容量が得られた。
<対称セルによる直流電流密度評価>
 以下に説明するとおり、直流電流密度評価用セルの作製を行った。なお、直流電流密度評価用セルの作製は、不活性気体で置換したグローブボックス内で行った。
 まず、内径10mmの絶縁性の筒の中に実施例1のイオン伝導性物質を100mg入れた。当該イオン伝導性物質に、370MPaの圧力を印加し、固体電解質層(上記イオン伝導性物質の層)が形成された。
 次に、60mgのLiPSClを固体電解質層の上下の両側の面にそれぞれ積層した後に、370MPaの圧力を印加することで、固体電解質層の上下の両側の面上にセパレーター層を形成した。すなわち、固体電解質層は、2層のセパレーター層に挟まれていた。
 次に、In箔60mgを各セパレーター層に接触させるようにして入れ、さらにLi箔2mgをIn箔と接触させるように入れ、積層体を得た。積層体に370MPaの圧力を印加し、各セパレーター層の固体電解質層とは反対側の面に電極が形成された。
 ステンレス鋼で形成された集電体が各電極に取り付けられ、次いで、当該集電体にリード線が取り付けられた。全ての部材は、グローブボックス内で密閉されたデシケータ中に配置された。このようにして直流電流密度評価用セルが得られた。
 直流電流密度評価は以下の内容で実施した。
 20分間、250mV印加後、5分停止した。次に先ほどとは逆方向に20分間250mVを印加した。その際に流れた単位面積当たりの電流密度を測定した。
その後、同様の手順で、500mV、750mV、1000mVと段階的に電圧を印加し、各電圧を印加した際の電流密度を測定した。図4は、実施例1のイオン伝導性物質を用いた対称セルによる直流電流密度評価の結果である。

Claims (9)

  1.  アルカリ金属元素、金属元素M、ハロゲン元素、ドーパント元素X及び酸素元素を含有し、
     前記金属元素Mは、Ta及びNbの少なくとも一方であり、
     前記ドーパント元素Xは、Ga、In、Sb、Bi、Mg、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素である、イオン伝導性物質。
  2.  前記ハロゲン元素がClを含む、請求項1に記載のイオン伝導性物質。
  3.  前記ドーパント元素Xは、In、及びBiの少なくとも一方の元素を含む、請求項1又は2に記載のイオン伝導性物質。
  4.  前記金属元素Mに対する前記ドーパント元素Xの含有量が25モル%以下である、請求項1又は2に記載のイオン伝導性物質。
  5.  イオン伝導性物質に含まれる総原子数を基準として、前記アルカリ金属元素の含有量が6~25モル%、前記金属元素Mの含有量が5~16モル%、前記ハロゲン元素の含有量が40~70モル%、前記ドーパント元素Xの含有量が0.1~1.5モル%である、請求項1又は2に記載のイオン伝導性物質。
  6.  25℃においてCuKα線を用いて測定したX線回折チャートにおいて、2θ角が10~20°の範囲内に半値幅が1.5~10°である回折ピークを少なくとも1つ有する、請求項1又は2に記載のイオン伝導性物質。
  7.  25℃においてCuKα線を用いて測定したX線回折チャートにおいて、2θ角が10~20°の範囲内の最もピーク高さが大きい回折ピークの半値幅が0.1°以上1.5°未満である、請求項1又は2に記載のイオン伝導性物質。
  8.  請求項1又は2に記載のイオン伝導性物を含む、電解質。
  9.  請求項8に記載の電解質を含む、電池。
PCT/JP2023/039612 2022-11-04 2023-11-02 イオン伝導性物質、電解質及び電池 WO2024096101A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022177637 2022-11-04
JP2022-177637 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024096101A1 true WO2024096101A1 (ja) 2024-05-10

Family

ID=90930652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039612 WO2024096101A1 (ja) 2022-11-04 2023-11-02 イオン伝導性物質、電解質及び電池

Country Status (1)

Country Link
WO (1) WO2024096101A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516438A (ja) * 2015-06-01 2018-06-21 ニューマティコート テクノロジーズ リミティド ライアビリティ カンパニー アノード活物質、カソード活物質及び固体電解質のためのナノ加工コーティング並びにナノ加工コーティングを含む電池の製造方法
WO2020137153A1 (ja) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516438A (ja) * 2015-06-01 2018-06-21 ニューマティコート テクノロジーズ リミティド ライアビリティ カンパニー アノード活物質、カソード活物質及び固体電解質のためのナノ加工コーティング並びにナノ加工コーティングを含む電池の製造方法
WO2020137153A1 (ja) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池

Similar Documents

Publication Publication Date Title
WO2019135328A1 (ja) 固体電解質材料、および、電池
JP6611949B2 (ja) 固体電解質用材料
US10218032B2 (en) Li-ion conductive oxide ceramic material including garnet-type or similar crystal structure
US11670798B2 (en) Solid electrolyte for a lithium-ion electrochemical cell
WO2020045633A1 (ja) 硫化物固体電解質及び全固体電池
EP3736832B1 (en) Solid electrolyte material, and battery
EP4145559A1 (en) Positive electrode material, and battery
US11735765B2 (en) Solid ion conductor, solid electrolyte including the solid ion conductor, electrochemical device including the solid electrolyte, and method of preparing the solid ion conductor
JP5420132B2 (ja) 電解質層にセラミック粒子を有する電気化学素子
JP2003531466A5 (ja)
JP2021163522A (ja) 固体電解質、固体電解質層および固体電解質電池
WO2024096101A1 (ja) イオン伝導性物質、電解質及び電池
EP4238938A1 (en) Solid electrolyte material, and battery in which same is used
KR102353564B1 (ko) 니켈 복합 산화물 및 리튬 니켈 복합 산화물 제조방법
WO2024058052A1 (ja) イオン伝導性物質、電解質、及び電池
WO2023038031A1 (ja) リチウム含有塩化物及びその製造方法、並びに固体電解質及び電池
WO2023002989A1 (ja) リチウム含有塩化物及びその製造方法、並びに固体電解質及び電池
WO2024096110A1 (ja) 負極材料、負極、及び電池
JP3613025B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法
WO2024096107A1 (ja) 電池
WO2024096113A1 (ja) 電池及び積層体
WO2024096108A1 (ja) 電池材料、正極、及び電池
JP7203200B2 (ja) 全固体二次電池
WO2024058053A1 (ja) アルカリ金属含有ハロゲン化物、電解質、電池及びハロゲン化物固体電解質の製造方法
WO2023162669A1 (ja) リチウムイオン伝導性固体電解質