WO2023038031A1 - リチウム含有塩化物及びその製造方法、並びに固体電解質及び電池 - Google Patents
リチウム含有塩化物及びその製造方法、並びに固体電解質及び電池 Download PDFInfo
- Publication number
- WO2023038031A1 WO2023038031A1 PCT/JP2022/033461 JP2022033461W WO2023038031A1 WO 2023038031 A1 WO2023038031 A1 WO 2023038031A1 JP 2022033461 W JP2022033461 W JP 2022033461W WO 2023038031 A1 WO2023038031 A1 WO 2023038031A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- containing chloride
- compound according
- metal element
- tetravalent metal
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 107
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 239000007784 solid electrolyte Substances 0.000 title claims description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 title description 86
- 229910052751 metal Inorganic materials 0.000 claims abstract description 62
- 239000002184 metal Substances 0.000 claims abstract description 48
- 150000001875 compounds Chemical class 0.000 claims abstract description 37
- 239000000460 chlorine Substances 0.000 claims abstract description 21
- 239000002019 doping agent Substances 0.000 claims abstract description 18
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 16
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 11
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims description 39
- 239000013078 crystal Substances 0.000 claims description 38
- 229910052794 bromium Inorganic materials 0.000 claims description 11
- 229910052740 iodine Inorganic materials 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 9
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical class 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 7
- 238000000498 ball milling Methods 0.000 claims description 5
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 2
- 239000011630 iodine Substances 0.000 claims description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 20
- 238000012360 testing method Methods 0.000 description 19
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 16
- 229910001416 lithium ion Inorganic materials 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 12
- 229910007926 ZrCl Inorganic materials 0.000 description 10
- 238000002484 cyclic voltammetry Methods 0.000 description 10
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 241000209094 Oryza Species 0.000 description 8
- 235000007164 Oryza sativa Nutrition 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 230000000704 physical effect Effects 0.000 description 8
- 235000009566 rice Nutrition 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 238000007600 charging Methods 0.000 description 6
- 150000001805 chlorine compounds Chemical class 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000002203 sulfidic glass Substances 0.000 description 5
- 239000012300 argon atmosphere Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910008029 Li-In Inorganic materials 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- 229910006670 Li—In Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- -1 chlorides Halide Chemical class 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000010303 mechanochemical reaction Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014422 LiNi1/3Mn1/3Co1/3O2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910018598 Si-Co Inorganic materials 0.000 description 1
- 229910008071 Si-Ni Inorganic materials 0.000 description 1
- 229910008453 Si—Co Inorganic materials 0.000 description 1
- 229910006639 Si—Mn Inorganic materials 0.000 description 1
- 229910006300 Si—Ni Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910007932 ZrCl4 Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002593 electrical impedance tomography Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910000921 lithium phosphorous sulfides (LPS) Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/04—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G29/00—Compounds of bismuth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium-containing chloride, a method for producing the same, a solid electrolyte and a battery.
- Solid electrolytes have attracted attention as electrolytes used in electrochemical devices such as lithium ion batteries (Patent Documents 1 to 7 and Non-Patent Documents 1 to 3).
- solid electrolytes are superior in high-temperature durability and high-voltage resistance, so they are useful for improving battery performance such as safety, high capacity, rapid charge/discharge, and pack energy density. It is believed that.
- chlorides containing tetravalent metal elements such as lithium and Zr as materials used in solid electrolytes of lithium ion batteries, and the chlorides Halide-based solid electrolytes, such as compounds obtained by doping dopants in , are known.
- Halide-based solid electrolytes are superior to oxide-based or sulfide-based solid electrolytes because they are highly flexible and therefore do not require sintering and are highly safe because they do not release harmful substances such as H 2 S. It has advantages not found in
- lithium-containing chlorides containing a tetravalent metal element have room for improvement in ion conductivity (lithium ion conductivity) at high temperatures (eg, 100°C).
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lithium-containing chloride with improved ionic conductivity at high temperatures. Another object of the present invention is to provide a method for producing the lithium-containing chloride, and a solid electrolyte and a battery using such a lithium-containing chloride.
- the compound of the present invention contains lithium, a tetravalent metal element M, chlorine and a dopant element X, and has a 2 ⁇ angle of 15 to 17°, 31 to 32.5°, 41 to 42.5°, 48.5 to 50°, and 53 to 55°, and the highest peak height in the range of 15 to 17° is 0.35 to 3.00°.
- the compound preferably has a sea-island structure having an island-like crystal phase and a sea-like amorphous phase surrounding the crystal phase.
- the average equivalent circle diameter of the crystal phase is 10 to 100 nm.
- the compound of the present invention is a compound containing lithium, a tetravalent metal element M, chlorine, and a dopant element X, and has a sea-island structure having an island-like crystal phase and a sea-like amorphous phase surrounding the crystal phase. It may be provided.
- the activation energy of the compound is preferably 0.43 eV or less.
- the tetravalent metal element M is preferably Zr.
- the dopant element X preferably contains a halogen element X1 which is at least one of bromine and iodine.
- the lithium content is 15 to 30 mol%
- the tetravalent metal element M content is 8 to 15 mol%
- the chlorine content is 50 to 70 mol%
- the halogen element X1 is preferably 0.2 to 8 mol %.
- the dopant element X preferably contains at least one metal element X2 selected from the group consisting of divalent to tetravalent metal elements.
- the compound of the present invention is represented by the composition formula: Li ⁇ Zr ⁇ Cl 6- ⁇ X1 ⁇ , where 1.6 ⁇ 2.5, 0 ⁇ 1.1, 0 ⁇ 1, and the element X1 may be at least one of Br and I.
- the compound of the present invention is represented by a composition formula: Li ⁇ Zr ⁇ X2 ⁇ Cl 6- ⁇ X1 ⁇ , where 1.6 ⁇ 2.5, 0 ⁇ 1.1, 0 ⁇ 1, 0 ⁇ 1, element X1 is at least one of Br and I, element X2 is at least one metal element selected from the group consisting of divalent to tetravalent metal elements, and ⁇ and ⁇ At least one may be greater than zero.
- the solid electrolyte of the present invention contains the above compounds.
- the battery of the present invention contains the above compound.
- the method for producing the compound of the present invention comprises a step of subjecting raw materials to ball milling to obtain the above compound.
- the present invention it is possible to provide a lithium-containing chloride with improved ionic conductivity at high temperatures. Moreover, according to the present invention, it is possible to provide a method for producing the lithium-containing chloride, and a solid electrolyte and a battery using such a lithium-containing chloride.
- FIG. 1 is an X-ray diffraction chart of the lithium-containing chlorides of Examples 1-3.
- FIG. 2 is an X-ray diffraction chart of the lithium-containing chlorides of Examples 4-6.
- FIG. 3 is an X-ray diffraction chart of the lithium-containing chlorides of Comparative Examples 1-3.
- 4 is a TEM image of the lithium-containing chloride of Example 1.
- FIG. 5 is an enlarged TEM image of the crystal phase of the lithium-containing chloride of Example 1.
- FIG. FIG. 6 is a diagram showing the results of a charge/discharge test at 60° C. of a lithium ion battery using the lithium-containing chloride of Example 1 as a solid electrolyte.
- FIG. 1 is an X-ray diffraction chart of the lithium-containing chlorides of Examples 1-3.
- FIG. 2 is an X-ray diffraction chart of the lithium-containing chlorides of Examples 4-6.
- FIG. 3 is an X-ray dif
- FIG. 7 is a diagram showing the results of a charge/discharge test at 60° C. of a lithium ion battery using the lithium-containing chloride of Comparative Example 1 as a solid electrolyte.
- FIG. 8 is a diagram showing the results of a charge/discharge test at 25° C. of a lithium ion battery using the lithium-containing chloride of Example 1 as a solid electrolyte.
- FIG. 9 is a diagram showing the results of a charge/discharge test at 60° C. of a lithium ion battery using the lithium-containing chloride of Example 1 as a solid electrolyte.
- FIG. 10 is a diagram showing the results of a cycle test of a lithium ion battery using the lithium-containing chloride of Example 1 as a solid electrolyte.
- FIG. 11 is a diagram showing the results of a cyclic voltammetry test of a lithium ion battery using the lithium-containing chloride of Example 1 as a solid electrolyte.
- the compound of the present embodiment (hereinafter also referred to as lithium-containing chloride) satisfies at least one of the following conditions (1) to (4).
- the 2 ⁇ angle has a reflection peak in each range of 15 to 17 °, 31 to 32.5 °, 41 to 42.5 °, 48.5 to 50 °, and 53 to 55 °, and 15 to 17
- the half width of the reflection peak with the largest peak height in the range of degrees is 0.35 to 3.00 degrees.
- Composition formula represented by Li ⁇ Zr ⁇ X2 ⁇ Cl 6- ⁇ X1 ⁇ , where 1.6 ⁇ ⁇ ⁇ 2.5, 0 ⁇ ⁇ ⁇ 1.1, 0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ ⁇ 1, the element X1 is at least one of Br and I, the element X2 is at least one metal element selected from the group consisting of divalent to tetravalent metal elements, and at least one of ⁇ and ⁇ is 0 bigger than
- a material that satisfies at least one of the above conditions (1) to (4) may be an ion conductive material or an electrolyte material.
- Such compounds have high ionic conductivity (lithium ion conductivity) at high temperatures such as 60°C to 100°C.
- the meaning of the half-value width is the full width at half maximum (FWHM).
- X1 and X2 in the conditions (3) and (4) correspond to the dopant element X as described later.
- the half width of the reflection peak having the highest peak height at a 2 ⁇ angle of 15 to 17° is preferably 0.35 to 2.00°, more preferably 0.35 to 1.00°.
- the above reflection peak of the lithium-containing chloride according to the present embodiment is broader than that of conventional lithium-containing chlorides (eg Comparative Examples 1 and 2).
- the present inventors added a dopant element X to a lithium-containing chloride containing a tetravalent metal element M, and further adjusted the half width of the reflection peak to a range of 0.35 to 3.00 °. It was found that the ionic conductivity at high temperature is improved by this.
- the lithium-containing chloride of the present embodiment has high ionic conductivity in a wide range from room temperature (eg, 25° C.) to high temperature (eg, 60° C. to 100° C.).
- the half width of the reflection peak having the highest peak height at 53 to 55° is preferably 1.40° or more, more preferably 1.50° or more, and still more preferably 1.60° or more. is preferably By controlling the half-value width of the reflection peak, which has the largest peak height at 53 to 55°, within the above preferred half-value width range, it is possible to achieve even higher ionic conductivity in a wide temperature range. be.
- the lithium-containing compound may have a trigonal crystal structure, and may have a crystal structure belonging to the space group P-3m1.
- the 2 ⁇ angle is 15 to 17°, 31 to 32.5°, Reflection peaks are observed in the ranges of 41-42.5°, 48.5-50°, and 53-55°.
- the crystal phase may have a trigonal crystal structure, and may have a crystal structure belonging to the space group P-3m1.
- the activation energy of the lithium-containing chloride of the present embodiment is preferably 0.43 eV or less.
- the activation energy is obtained by curve fitting the graph obtained by measuring the conductivity of the lithium-containing chloride while changing the temperature T based on the following formula (i.e., from the Arrhenius plot). be able to.
- Formula: ⁇ T A exp (-E a /k b T)
- ⁇ ionic conductivity (S/cm)
- T absolute temperature (K)
- A is frequency factor
- Ea activation energy
- kb Boltzmann's constant.
- the content of lithium in the lithium-containing chloride is preferably 15-30 mol%, more preferably 18-25 mol%, based on all elements contained in the lithium-containing chloride.
- the chlorine content in the lithium-containing chloride is preferably 50 to 70 mol%, more preferably 56 to 68 mol%, based on all elements contained in the lithium-containing chloride.
- the tetravalent metal element M includes Zr, Ti and Hf, with Zr being preferred.
- the lithium-containing chloride may contain one or more tetravalent metal elements M.
- the content of the tetravalent metal in the lithium-containing chloride is preferably 8 to 15 mol%, more preferably 8 to 13 mol%, based on all elements contained in the lithium-containing chloride, and 9 to 12 More preferably, it is mol %.
- the dopant element X includes (1) a halogen element X1 which is at least one of bromine and iodine, and (2) at least one metal element X2 selected from the group consisting of divalent to tetravalent metal elements. .
- the metal element X2 is a tetravalent metal element
- the metal element X2 is an element different from the tetravalent metal element M contained in the lithium-containing chloride.
- the content of the tetravalent metal element that is the metal element X2 in the lithium-containing chloride is smaller than the content of the tetravalent metal element M.
- the tetravalent metal element that is the metal element X2 may be a metal element that accounts for 5 mol % or less based on all elements contained in the lithium-containing chloride.
- the tetravalent metal element that is the metal element X2 may be a metal element that is 20 mol% or less based on the total amount of the tetravalent metal element contained in the lithium-containing chloride, and the metal element is 15 mol% or less It can be an element.
- one of the metal elements may account for 50 mol% or more of the total amount of the tetravalent metal elements, and 60 mol% or more. may occupy 80 mol % or more.
- Bromine is preferable as the halogen element X1.
- the content of the halogen element X1 in the lithium-containing chloride is preferably 0.2 to 8 mol%, more preferably 3 to 7 mol%, based on all elements contained in the lithium-containing chloride, and 4 to 6 mol % is more preferable.
- Examples of trivalent metal elements include Bi, Al, Ga, In, Sc, Sm, Sb, and La, with Bi or La being preferred.
- Examples of the divalent metal element include Zn and alkaline earth metals, with Zn being preferred.
- Examples of alkaline earth metals include Mg, Ca, Sr and Ba.
- the lithium-containing chloride may contain one or more metal elements X2.
- the tetravalent metal element as the metal element X2 may be Sn.
- the content of the metal element X2 in the lithium-containing chloride is preferably 0.05 to 3 mol%, more preferably 0.1 to 2 mol%, based on all elements contained in the lithium-containing chloride.
- the lithium-containing chloride of the present embodiment may be represented by the following compositional formula (3) or (4).
- composition formula Li ⁇ Zr ⁇ X2 ⁇ Cl 6- ⁇ X1 ⁇
- element X1 is at least one of Br and I
- the element X2 is at least one metal element X2 selected from the group consisting of divalent to tetravalent metal elements, and at least one of ⁇ and ⁇ is greater than zero.
- composition formula (3) 2 ⁇ 2.5 is preferable, and 2.1 ⁇ 2.4 is more preferable.
- 0.5 ⁇ 1 is preferable, and 0.8 ⁇ 1 is more preferable.
- the composition formula (3) preferably 0.01 ⁇ ⁇ ⁇ 0.8, more preferably 0.02 ⁇ ⁇ ⁇ 0.7, more preferably 0.1 ⁇ ⁇ ⁇ 0.6, More preferably, 0.2 ⁇ 0.6.
- ⁇ , ⁇ and ⁇ are selected so that the compound represented by composition formula (3) is electrically neutral.
- composition formula (4) 2 ⁇ 2.5 is preferable, and 2.1 ⁇ 2.4 is more preferable.
- 0.5 ⁇ 1 is preferred, and 0.8 ⁇ 1 is more preferred.
- 0 ⁇ 1, preferably 0.01 ⁇ 0.2, and more preferably 0.02 ⁇ 0.15. ⁇ may be zero if ⁇ is greater than zero.
- ⁇ , ⁇ , ⁇ and ⁇ are selected so that the compound represented by composition formula (4) is electrically neutral.
- the lithium-containing chloride of the present embodiment may have a sea-island structure having an island-like crystal phase and a sea-like amorphous phase surrounding the crystal phase.
- the crystal phase may satisfy the condition (1).
- the sea-island structure can be confirmed by observation with a transmission electron microscope (TEM).
- TEM transmission electron microscope
- FIB focused ion beam
- Observation conditions by TEM are not particularly limited, but dark field is preferable. It was found that the lithium-containing chloride has the sea-island structure, thereby achieving high ionic conductivity. Although the reason for this is not yet clear, the present inventors discovered that the amorphous phase exhibiting isotropic ion conduction forms a sea structure, and then the crystalline phase exhibiting anisotropic ion conduction forms an island structure. However, it is thought that the sea-island structure in which the two form a good interface forms a path for high-speed ion conduction, and as a result, the ion conductivity of the material as a whole is improved.
- the equivalent circle diameter of the island crystal phase is preferably 10 nm or more and 100 nm or less, more preferably 15 nm or more and 80 nm or less, and still more preferably 20 nm or more and 53 nm.
- the circle-equivalent diameter refers to the diameter when the crystal region is replaced with a circle having the same area.
- A is the area of the crystalline region
- the area A of the crystalline region is calculated by image analysis.
- the average equivalent circle diameter can be obtained for the entire crystal phase that can be recognized within the field of view (for example, the size of 1.862 ⁇ m ⁇ 1.862 ⁇ m), and the average equivalent circle diameter can be obtained. It is believed that an ion conduction path that achieves high ion conduction is formed when the equivalent circle diameter of the island-shaped crystal phase is within the above size range.
- the lithium-containing chloride of the present embodiment has high ionic conductivity, it can be used as a material for solid electrolytes. Moreover, the lithium-containing chloride of the present embodiment can be used as a positive electrode or negative electrode material by mixing with an active material. That is, it is possible to provide a battery (lithium ion battery, etc.) containing the lithium-containing chloride of the present embodiment.
- the lithium-containing chloride of the present embodiment can be used as a material for lithium ion batteries.
- the positive electrode of the lithium ion battery is not particularly limited, and may contain a positive electrode active material and, if necessary, a conductive aid, a binder, and the like. Moreover, the positive electrode may contain the lithium-containing chloride of the present embodiment.
- the positive electrode may be one in which a layer containing these materials is formed on a current collector.
- positive electrode active materials include lithium-containing composite metal oxides containing lithium (Li) and at least one transition metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and Cu. mentioned.
- lithium composite metal oxides examples include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 MnO 3 , LiNi x Mn y Co 1-xy O 2 [0 ⁇ x+y ⁇ 1]), LiNi x Co y Al 1-x-y O 2 [0 ⁇ x+y ⁇ 1]), LiCr 0.5 Mn 0.5 O 2 , LiFePO 4 , Li 2 FeP 2 O 7 , LiMnPO 4 , LiFeBO 3 , Li 3 V 2 (PO 4 ) 3 , Li 2 CuO 2 , Li 2 FeSiO 4 , Li 2 MnSiO 4 and the like.
- the negative electrode of the lithium ion battery is not particularly limited, and may contain a negative electrode active material and, if necessary, a conductive aid, a binder, and the like.
- a negative electrode active material such as Li, Si, Sn, Si—Mn, Si—Co, Si—Ni, In, and Au, alloys containing these metals, carbon materials such as graphite, and lithium ions inserted between layers of the carbon material and the like.
- the material of the current collector is not particularly limited, and may be a single metal or alloy such as Cu, Mg, Ti, Fe, Co, Ni, Zn, Al, Ge, In, Au, Pt, Ag, and Pd.
- the solid electrolyte layer may have a plurality of layers.
- a configuration having a sulfide solid electrolyte layer in addition to the solid electrolyte layer of the present embodiment may be used.
- a structure having a sulfide solid electrolyte layer between the solid electrolyte of the present embodiment and the negative electrode may be employed.
- the sulfide solid electrolyte is not particularly limited, but examples include Li 6 PS 5 Cl, Li 2 S—PS 5 , Li 10 GeP 2 S 12 , Li 9.6 P 3 S 12 , Li 9.54 Si 1. 74P1.44S11.7Cl0.3 , Li3PS4 and the like .
- a battery using the solid electrolyte of the present embodiment has high ionic conductivity and high electrochemical stability up to a high potential region, and therefore tends to have a high discharge capacity.
- the discharge capacity tends to improve in the high current density region (high C rate region).
- the method for producing the lithium-containing chloride of the present embodiment preferably includes a step of subjecting the raw material to ball milling to obtain the lithium-containing chloride.
- the raw material is not particularly limited, but the lithium source may be lithium chloride.
- the tetravalent metal element M source may be a chloride of the metal element M, specifically ZrCl4 or the like.
- As a raw material for introducing the dopant element X lithium bromide or lithium iodide is preferable when the halogen element X1 is introduced.
- a chloride salt of the metal element X2 is preferable, and specific examples include BiCl 3 , ZnCl 2 , SnCl 4 , LaCl 3 and the like. be done.
- the conditions for the ball mill are not particularly limited, but may be 200 to 700 rpm for 10 to 100 hours.
- the grinding time is preferably 24-72 hours, more preferably 36-60 hours.
- the balls used in the ball mill are not particularly limited, but zirconia balls can be used.
- the size of the ball to be used is not particularly limited, but a ball of 2 mm to 10 mm can be used.
- Annealing refers to, for example, a step of heating the lithium-containing chloride above 100°C.
- Example 1 ⁇ Preparation of lithium-containing chloride> Ball Mill In an argon atmosphere having a dew point of ⁇ 70° C. or less (hereinafter referred to as a dry argon atmosphere), 0.2245 g of LiCl, 0.8422 g of ZrCl 4 and 0.1536 g of LiBr were weighed to prepare raw materials. The raw material was placed in a 50 ml volume zirconia pot for the planetary ball mill described below, and 65 g of zirconia balls with a diameter of 4 mm were added. The compound of Example 1 (lithium-containing chloride) was obtained by mechanochemically reacting at 380 rpm for 48 hours.
- the ball mill was stopped for 1 minute as an interval every time it was rotated for 10 minutes, and the rotating direction was alternately switched clockwise and counterclockwise.
- the charged composition of the lithium-containing chloride is Li 2 ZrCl 5.5 Br 0.5 .
- Planetary ball mill device PM 400 manufactured by Verder Scientific Co., Ltd.
- a pressure forming die comprising a frame form, a lower punch and an upper punch.
- the frame mold was made of insulating polycarbonate. Both the punch upper portion and the punch lower portion were made of electronically conductive stainless steel and electrically connected to terminals of an impedance analyzer (Sl1260 manufactured by Solatron Analytical).
- the ionic conductivity of the lithium-containing chloride of Example 1 was measured by the following method using the pressure molding die. First, in a dry argon atmosphere, the lithium-containing chloride powder of Example 1 was filled on the lower part of a punch vertically inserted into the hollow part of the frame. Then, a pressure of 200 MPa was applied to the lithium-containing chloride powder of Example 1 inside the pressure molding die by pressing the upper part of the punch into the hollow part of the frame form from above. After the pressure is applied, the punch is fixed by tightening it from above and below with a jig, and while a constant pressure is maintained, the lithium of Example 1 is measured by an electrochemical impedance measurement method using the impedance analyzer. Impedance of chloride content was measured.
- a Cole-Cole diagram was created from the impedance measurement results.
- the real value of the impedance at the measurement point where the absolute value of the phase of the complex impedance was the smallest was regarded as the resistance to ion conduction of the halide solid electrolyte material.
- the resistance value the ionic conductivity was calculated based on the following formula (III).
- ⁇ (R SE ⁇ S/t) ⁇ 1 (III) here, ⁇ is the ionic conductivity, S is the contact area of the lithium-containing chloride with the upper part of the punch (equal to the cross-sectional area of the hollow part of the frame); R SE is the resistance value of the solid electrolyte material in impedance measurement, t is the thickness of the lithium-containing chloride when pressure is applied.
- ionic conductivity was measured at five temperatures (25°C, 40°C, 60°C, 80°C and 100°C) including 25°C and 100°C within the temperature range of 25°C to 100°C.
- the activation energy (E a ) was calculated by performing curve fitting by the method of least squares based on the Arrhenius equation from the 5-point ionic conductivity data obtained. Table 2 shows the results. At each temperature point, after reaching the set temperature in the constant temperature bath, the measurement was carried out after holding for 90 minutes or more. Table 2 shows the calculated activation energies.
- the crystal corresponding to a specific diffraction spot can be visualized in real space.
- each crystal phase was numbered by coloring so that the brightly imaged portion became clear. In this way, the spatial distribution of the crystal phase was investigated.
- FIG. 5 is an enlarged image of one crystal grain in FIG. As shown in FIG. 5, lattice fringes were confirmed, and it was confirmed to be a crystalline phase.
- Example 1 60 mg of a sulfide solid electrolyte Li 6 PS 5 Cl was put in contact with the first solid electrolyte layer to obtain a laminate. A pressure of 200 MPa was applied to the laminate to form a second solid electrolyte layer. The first solid electrolyte layer was sandwiched between the first electrode and the second solid electrolyte layer. Next, 60 mg of In foil was put in contact with the second solid electrolyte layer, and 2 mg of Li foil was put in contact with the In foil to obtain a laminate. A pressure of 200 MPa was applied to the laminate to form a second electrode. Current collectors formed of stainless steel were attached to the first and second electrodes, and lead wires were then attached to the current collectors. All the members were placed in a desiccator and hermetically sealed, and thus the secondary battery of Example 1 was obtained.
- Example 1 was subjected to a charge/discharge test at 25°C. The results are shown in FIG. The charge/discharge test was performed under the same conditions as the charge/discharge test at 60° C. except for the temperature.
- Example 1 Further, the secondary battery of Example 1 was charged to 4.4 V at a C rate of 0.1 C at 60° C. with a constant current and constant voltage (CCCV charge). Discharge was performed to 9V.
- FIG. 9 shows the results of the charge/discharge test.
- Example 1 was subjected to a cycle test of 10 cycles at 60° C. under the following conditions. Charging: constant current constant voltage (CCCV charging), C rate of 1C, charging to 4.4V. Discharge: constant current (CC discharge), discharge to 1.9V under the condition of C rate of 1C.
- FIG. 10 shows the relationship between the electromotive force (battery voltage) and the number of cycles.
- a cell for cyclic voltammetry was prepared as described below.
- the cell for cyclic voltammetry was fabricated in a glove box that was replaced with an inert gas.
- the lithium-containing chloride of Example 1 was placed in an insulating cylinder with an inner diameter of 10 mm.
- a pressure of 200 MPa was applied to the lithium-containing chloride to form a first solid electrolyte layer (layer of the lithium-containing chloride).
- 60 mg of a sulfide solid electrolyte Li 6 PS 5 Cl
- a pressure of 200 MPa was applied to the laminate to form a second solid electrolyte layer on the first solid electrolyte layer.
- 60 mg of In foil was placed in contact with and covering the second solid electrolyte layer, and 2 mg of Li foil was placed in contact with and covering the In foil to obtain a laminate.
- a pressure of 200 MPa was applied to the laminate to form a reference electrode made of a Li—In alloy on the second solid electrolyte layer.
- a disc-shaped stainless steel plate having a diameter of 10 mm and a thickness of 0.1 mm was placed in contact with and covering the first solid electrolyte layer to obtain a laminate.
- a pressure of 200 MPa was applied to the obtained laminate to form a working electrode made of stainless steel on the first solid electrolyte layer.
- ⁇ Cyclic voltammetry test> For the cyclic voltammetry cell described above, the reference electrode and working electrode were electrically connected to an impedance analyzer Sl1260 and a potentiostat Sl1287A, and a cyclic voltammetry test was performed under the following conditions. That is, in the cyclic voltammetry test, the sweep rate was set to 1 mV/s, and the current value flowing when the potential of the working electrode was changed with respect to the reference electrode (Li + /Li-In) was measured. First, the potential of the working electrode with respect to the reference electrode was increased to 5 V with the open circuit voltage as the starting point, then turned back and decreased to -1 V. After that, the voltage was raised to 5 V again, turned back, and lowered to the same voltage as the initial open circuit voltage. The cyclic voltammetry test was performed at room temperature (25°C). The results are shown in FIG.
- Example 2 LiCl, ZrCl 4 , BiCl 3 and LiBr were used to produce a lithium-containing chloride in the same manner as in Example 1, except that the charge composition was changed to the composition shown in Table 2, and various physical properties were measured. Table 2 shows the results. Moreover, the X-ray diffraction pattern of the lithium-containing chloride of Example 2 is shown in FIG. As shown in FIG. 1, reflection peaks were observed in each range of 2 ⁇ angles of 15 to 17°, 31 to 32.5°, 41 to 42.5°, 48.5 to 50° and 53 to 55°. rice field.
- Example 3 A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl, ZrCl 4 , BiCl 3 , ZnCl 2 and LiBr were used to change the charged composition to the composition shown in Table 2, and various physical properties were measured. gone. Table 2 shows the results. Moreover, the X-ray diffraction pattern of the lithium-containing chloride of Example 3 is shown in FIG. As shown in FIG. 1, reflection peaks were observed in each range of 2 ⁇ angles of 15 to 17°, 31 to 32.5°, 41 to 42.5°, 48.5 to 50° and 53 to 55°. rice field.
- Example 4 A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl, ZrCl 4 and SnCl 4 were used to change the charged composition to the composition shown in Table 2, and various physical properties were measured. Table 2 shows the results. Moreover, the X-ray diffraction pattern of the lithium-containing chloride of Example 4 is shown in FIG. As shown in FIG. 2, reflection peaks were observed in each range of 2 ⁇ angles of 15 to 17°, 31 to 32.5°, 41 to 42.5°, 48.5 to 50° and 53 to 55°. rice field.
- Example 5 A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl, ZrCl 4 and LaCl 3 were used and the charge composition was changed to the composition shown in Table 2, and various physical properties were measured. Table 2 shows the results. Moreover, the X-ray diffraction pattern of the lithium-containing chloride of Example 5 is shown in FIG. As shown in FIG. 2, reflection peaks were observed in each range of 2 ⁇ angles of 15 to 17°, 31 to 32.5°, 41 to 42.5°, 48.5 to 50° and 53 to 55°. rice field.
- Example 6 A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl, ZrCl 4 , BiCl 3 , and LiI were used to change the charged composition to the composition shown in Table 2, and various physical properties were measured. . Table 2 shows the results. Moreover, the X-ray diffraction pattern of the lithium-containing chloride of Example 6 is shown in FIG. As shown in FIG. 2, reflection peaks were observed in each range of 2 ⁇ angles of 15 to 17°, 31 to 32.5°, 41 to 42.5°, 48.5 to 50° and 53 to 55°. rice field.
- Example 1 A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl and ZrCl 4 were used and the charging composition was changed to the composition shown in Table 2, and various physical properties were measured. Table 2 shows the results. Moreover, the X-ray diffraction pattern of the lithium-containing chloride of Comparative Example 1 is shown in FIG. As shown in FIG. 3, reflection peaks were observed in each range of 2 ⁇ angles of 15 to 17°, 31 to 32.5°, 41 to 42.5°, 48.5 to 50° and 53 to 55°. rice field. In addition, a charge/discharge test was performed under the same conditions as in Example 1. The results are shown in FIG.
- Example 2 A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl, ZrCl 4 and LiBr were used and the charge composition was changed to the composition shown in Table 2, and various physical properties were measured. Table 2 shows the results.
- the lithium-containing chloride of Comparative Example 2 has the same composition as Example 21 in WO2020/070955.
- the X-ray diffraction pattern of the lithium-containing chloride of Comparative Example 2 is shown in FIG. As shown in FIG. 3, reflection peaks were observed in each range of 2 ⁇ angles of 15 to 17°, 31 to 32.5°, 41 to 42.5°, 48.5 to 50° and 53 to 55°. rice field.
- Example 3 A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl, ZrCl 4 , and ZnCl 2 were used to change the charge composition to the composition shown in Table 2, and various physical properties were measured. Table 2 shows the results. Moreover, the X-ray diffraction pattern of the lithium-containing chloride of Comparative Example 3 is shown in FIG. As shown in FIG. 3, reflection peaks were observed in the 2 ⁇ angle range of 48.5 to 50°, but no reflection peaks were observed in the other three ranges.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
Abstract
Description
(1)リチウム、4価の金属元素M、塩素及びドーパント元素Xを含有し、25℃においてCuKα線を用いて測定したX線回折チャートにおいて、25℃においてCuKα線を用いて測定したX線回折チャートにおいて、2θ角が15~17°、31~32.5°、41~42.5°、48.5~50°、及び53~55°の各範囲に反射ピークを有すると共に、15~17°の範囲における最も大きいピーク高さを有する反射ピークの半値幅が0.35~3.00°である。
(2)リチウム、4価の金属元素M、塩素及びドーパント元素Xを含有し、島状の結晶相と、当該結晶相を囲む海状のアモルファス相を有する海島構造を備える。
(3)組成式:LiαZrβCl6-γX1γで表され、1.6≦α≦2.5、0<β≦1.1、0<γ<1であり、元素X1はBr及びIの少なくとも一方である。
(4)組成式:LiαZrβX2εCl6-γX1γで表され、1.6≦α≦2.5、0<β≦1.1、0≦γ<1、0≦ε<1を満たし、元素X1はBr及びIの少なくとも一方であり、元素X2は2~4価の金属元素からなる群から選択される少なくとも1種の金属元素であり、γ及びεの少なくとも一方は0よりも大きい。
なお、上記(1)~(4)のうち少なくとも一つの条件を満たすものは、イオン伝導性材料又は電解質材料であってもよい。
式:σT=Aexp(-Ea/kbT)
ここで、σはイオン伝導度(S/cm)、Tは絶対温度(K)、Aは頻度因子、Eaは活性化エネルギー、kbはボルツマン定数を表す。
(3)組成式:LiαZrβCl6-γX1γ
組成式(3)において、1.6≦α≦2.5、0<β≦1.1、0<γ<1であり、元素X1はBr及びIの少なくとも一方である)。
(4)組成式:LiαZrβX2εCl6-γX1γ
組成式(4)において、1.6≦α≦2.5、0<β≦1.1、0≦γ<1、0≦ε<1を満たし、元素X1はBr及びIの少なくとも一方であり、元素X2は2価~4価の金属元素からなる群から選択される少なくとも1種の金属元素X2であり、γ及びεの少なくとも一方は0よりも大きい。)。
観察前の前処理としては、不活性雰囲気中において、集束イオンビーム(FIB)による断面加工を行うことが好ましい。特に、本実施形態の試料は熱によるダメージが入りやすいことから、クライオスタットによる冷却を行いながらFIBによる断面加工を行うことが好ましい。
リチウム含有塩化物は、上記海島構造を持つことで、高いイオン伝導度を実現することが分かった。この理由については未だ明らかではないが、本発明者らは、等方的なイオン伝導を示すアモルファス相が海構造を形成した上で、異方的なイオン伝導を示す結晶相が島構造を形成し、両者が良好な界面を形成した海島構造となることによって、高速にイオン伝導するパスが形成され、結果として材料全体としてのイオン伝導度が向上していると考えている。
島状の結晶相の円相当径が上記の大きさの範囲にあることで、高いイオン伝導を実現するイオン伝導パスが形成されると考えている。
本実施形態のリチウム含有塩化物は上述のとおり、リチウムイオン電池の材料として使用することができる。
リチウムイオン電池の正極としては、特に限定されず、正極活物質を含み、且つ必要に応じて導電助剤、結合剤等を含むものであってよい。また、正極は、本実施形態のリチウム含有塩化物を含むものであっても良い。
正極は、これらの材料を含む層が集電体上に形成されたものであってよい。正極活物質としては、例えば、リチウム(Li)と、V、Cr、Mn、Fe、Co、Ni、Cuからなる群から選択される少なくとも1種の遷移金属とを含むリチウム含有複合金属酸化物が挙げられる。このようなリチウム複合金属酸化物としては、例えば、LiCoO2、LiNiO2、LiMn2O4、Li2MnO3、LiNixMnyCo1-x-yO2[0<x+y<1])、LiNixCoyAl1-x-yO2[0<x+y<1])、LiCr0.5Mn0.5O2、LiFePO4、Li2FeP2O7、LiMnPO4、LiFeBO3、Li3V2(PO4)3、Li2CuO2、Li2FeSiO4、Li2MnSiO4などが挙げられる。
本実施形態の固体電解質を用いた電池は、高いイオン伝導度を有しており、また高電位領域までの高い電気化学的な安定性を有することから、高い放電容量が得られる傾向がある。特に、高い電流密度領域(高いCレートの領域)において、放電容量が向上する傾向がある。
ボールミルに用いるボールとしては、特に限定はされないが、ジルコニアボールを用い得ることができる。用いるボールの大きさとしては特に限定はされないが、2mm~10mmのボールを用いることができる。
ボールミルを上記の時間で行うことで充分に各原料が混合され、メカノケミカル反応が促進されることによって、得られる化合物のイオン伝導度を向上させることが可能である。
<リチウム含有塩化物の調製>
・ボールミル
-70℃以下の露点を有するアルゴン雰囲気中(以下、乾燥アルゴン雰囲気と記載する)で、LiClを0.2245g、ZrCl4を0.8422g、LiBr0.1536g秤量し、原料を用意した。
下記の遊星ボールミル用の50mlの容積のジルコニアポットに上記原料を入れ、直径4mmのジルコニアボールを65g投入した。48時間、380rpmの条件でメカノケミカル的に反応するように処理することにより、実施例1の化合物(リチウム含有塩化物)を得た。ボールミルは、10分間回転させる毎に、インターバルとして1分間停止させ、回転方向を時計回りと反時計回り交互に切り替えるモードで実施した。当該リチウム含有塩化物の仕込み組成は、Li2ZrCl5.5Br0.5である。
遊星ボールミル装置:ヴァーダー・サイエンティフィック株式会社製 PM 400
得られた実施例1の化合物について、25℃での粉末X線回折測定により、結晶構造の評価を行った。粉末X線回折測定の測定条件について、下記の条件にて実施した。
測定装置: Ultima IV (株式会社 リガク 製)
X線発生器: CuKα線源 電圧40kV、電流40mA
X線検出器: シンチレーションカウンター又は半導体検出器
測定範囲: 回折角2θ=10°~80°
スキャンスピード:4°/分
測定によって得られたX線回折パターンを図1に示す。図1に示すように、2θ角が15~17°、31~32.5°、41~42.5°、48.5~50°及び53~55°である各範囲に反射ピークが観測された。
解析の結果、結晶構造は、三方晶の空間群P-3m1に帰属された。また、表2に示すとおり、2θが15.5~17°の範囲における最も大きいピーク高さを有する反射ピークの半値幅は0.82°であった。同様に、2θが53~55°の範囲における最も大きいピーク高さを有する反射ピークの半値幅を計算したところ、表2に示すとおり1.62°であった。
枠型、パンチ下部及びパンチ上部を備える加圧成形ダイスを用意した。なお、枠型は、絶縁性ポリカーボネートから形成されていた。また、パンチ上部及びパンチ下部は、いずれも、電子伝導性のステンレスから形成されており、インピーダンスアナライザー(Solatron Analytical社製 Sl1260)の端子にそれぞれ電気的に接続されていた。
σ=(RSE×S/t)-1・・・(III)
ここで、
σはイオン伝導度であり、
Sは、リチウム含有塩化物のパンチ上部との接触面積(枠型の中空部の断面積に等しい)であり、
RSEは、インピーダンス測定における固体電解質材料の抵抗値であり、
tは、圧力が印加された際のリチウム含有塩化物の厚みである。
以下の測定条件で、実施した。
装置:分析電子顕微鏡 ARM200F 日本電子株式会社製
測定条件: 加速電圧 200kV
試料調整:集束イオンビーム(FIB)により、クライオスタットによる冷却を行いながら、不活性雰囲気中で加工
図4に、実施例1のリチウム含有塩化物のTEM像を示す。図4に示すように、島構造を結晶相とし、それを取り囲むようにアモルファス相の海構造が形成された、海島構造が形成されていることが分かった。ここで、透過型電子顕微鏡観察で得られる電子回折図形において、回折斑点が制限視野の絞り内に存在する結晶について結像させることによって、特定の回折斑点に対応する結晶を、実空間上で周囲のアモルファス相よりも明るく結像させることができる。これにより実空間上における結晶相の分布が分かる。
図4において、明るく結像した部分が明確になるように着色を行い、各結晶相についてナンバリングした。このようにして結晶相の空間分布について調べた。
図5は、図4における一つの結晶粒を拡大した画像である。図5に示すように、格子縞が確認されており、結晶相であることが確認された。
乾燥アルゴン雰囲気中で、実施例1のリチウム含有塩化物、及びLiNi1/3Mn1/3Co1/3O2、及びアセチレンブラックをそれぞれ29質量部、67質量部、及び4質量部秤量し、乳鉢で混合することで、混合物を得た。
内径10mmの絶縁性の筒の中で、実施例1のリチウム含有塩化物を100mg、上記の混合物を15mgを順に積層して、積層体を得た。積層体に200MPaの圧力を印加し、第1電極(上記混合物の層)及び第1の固体電解質層(上記リチウム含有塩化物の層)が形成された。
次に、第1の固体電解質層に、硫化物固体電解質Li6PS5Clを接触させるようにして60mg入れ、積層体を得た。積層体に200MPaの圧力を印加し、第2の固体電解質層が形成された。第1の固体電解質層は、第1の電極と第2の固体電解質層に挟まれていた。
次に、In箔60mgを第二の固体電解質層に接触させるようにして入れ、さらにLi箔2mgをIn箔と接触させるように入れ、積層体を得た。積層体に200MPaの圧力を印加し、第2電極が形成された。
ステンレス鋼で形成された集電体が第1電極及び第2電極に取り付けられ、次いで、当該集電体にリード線が取り付けられた。全ての部材はデシケータ中に配置され、密閉されており、このようにして実施例1の二次電池が得られた。
充放電試験機としては、下記の製品を用いて実施した。
充放電試験機:東洋システム株式会社 TOSCAT-3100
60℃において、0.1C、1C及び3Cの3通りのCレートで充放電試験を実施した。
それぞれのCレートにおける放電容量は、表1の通りである。
定電流定電圧(CCCV充電)で、それぞれのCレートに対応した電流密度で3.7Vまで充電を行った。それぞれのCレートに対応した電流密度を表1に示す。
放電は、それぞれのCレートに対応した電流密度で、1.9Vまで放電した。
図6及び図7にそれぞれ実施例1と比較例1の充放電試験の結果(起電力(電池電圧)と容量との関係)を示す。また、表1に、実施例1と比較例1の各Cレートにおける放電容量示す。
実施例1において、いずれのCレートにおいても高い放電容量が得られた。
充電:定電流定電圧(CCCV充電)、1CのCレートで、4.4Vまでの充電。
放電:定電流(CC放電)、1CのCレートの条件で1.9Vまでの放電。
起電力(電池電圧)とサイクル数との関係を図10に示す。
以下に説明するとおり、サイクリックボルタンメトリー用セルの作製を行った。なお、サイクリックボルタンメトリー用セルの作製は、不活性気体で置換したグローブボックス内で行った。
まず、内径10mmの絶縁性の筒の中に実施例1のリチウム含有塩化物を入れた。当該リチウム含有塩化物に、200MPaの圧力を印加し、第1の固体電解質層(上記リチウム含有塩化物の層)が形成された。
次に、60mgの硫化物固体電解質(Li6PS5Cl)を、第1の固体電解質層に接触し且つ覆うように配置し、積層体を得た。当該積層体に200MPaの圧力を印加し、第1の固体電解質層上に第2の固体電解質層が形成された。
次に、60mgのIn箔を第2の固体電解質層に接触し且つ覆うように配置し、さらにLi箔2mgをIn箔と接触し且つ覆うように配置し、積層体を得た。当該積層体に200MPaの圧力を印加し、第2の固体電解質層上にLi-In合金からなる参照電極が形成された。
さらに、ステンレス鋼から成る直径10mm、厚み0.1mmの円板状の板を第1の固体電解質層に接触し且つ覆うように配置し、積層体を得た。得られた積層体に200MPaの圧力を印加し、第1の固体電解質層上にステンレス鋼からなる作用電極が形成された。
ステンレス鋼で形成された集電体が参照電極及び作用電極に取り付けられ、次いで、当該集電体にリード線が取り付けられた。全ての部材は、グローブボックス内で密閉されたデシケータ中に配置された。このようにして実施例1のサイクリックボルタンメトリー用セルが得られた。
上記のサイクリックボルタンメトリー用セルについて、参照電極と作用電極とをインピーダンスアナライザーSl1260、及びポテンショスタットSl1287Aとに電気的に接続し、以下の条件でサイクリックボルタンメトリー試験を実施した。
すなわち、サイクリックボルタンメトリー試験では、掃引速度を1mV/sとし、参照電極(Li+/Li-In)に対して作用電極の電位を変化させた際に流れる電流値を計測した。
まず、参照電極に対して作用電極の電位を、開回路電圧を始点として5Vまで昇圧した後に折り返し、-1Vまで降圧した。その後、再び5Vまで昇圧した後に折り返し、初めの開回路電圧と同じ電圧まで降圧した。
なお、サイクリックボルタンメトリー試験は、室温(25℃)で行った。結果を図11に示す。
LiCl、ZrCl4、BiCl3及びLiBrを用いて、仕込み組成を表2に示す組成に変更したこと以外は、実施例1と同様にリチウム含有塩化物を製造し、各種物性の測定を行った。結果を表2に示す。
また、実施例2のリチウム含有塩化物のX線回折パターンを図1に示す。図1に示すように、2θ角が15~17°、31~32.5°、41~42.5°、48.5~50°及び53~55°である各範囲に反射ピークが観測された。
LiCl、ZrCl4、BiCl3、ZnCl2及びLiBrを用いて、仕込み組成を表2に示す組成に変更したこと以外は、実施例1と同様にリチウム含有塩化物を製造し、各種物性の測定を行った。結果を表2に示す。
また、実施例3のリチウム含有塩化物のX線回折パターンを図1に示す。図1に示すように、2θ角が15~17°、31~32.5°、41~42.5°、48.5~50°及び53~55°である各範囲に反射ピークが観測された。
LiCl、ZrCl4及びSnCl4を用いて、仕込み組成を表2に示す組成に変更したこと以外は、実施例1と同様にリチウム含有塩化物を製造し、各種物性の測定を行った。結果を表2に示す。
また、実施例4のリチウム含有塩化物のX線回折パターンを図2に示す。図2に示すように、2θ角が15~17°、31~32.5°、41~42.5°、48.5~50°及び53~55°である各範囲に反射ピークが観測された。
LiCl、ZrCl4及びLaCl3を用いて、仕込み組成を表2に示す組成に変更したこと以外は、実施例1と同様にリチウム含有塩化物を製造し、各種物性の測定を行った。結果を表2に示す。
また、実施例5のリチウム含有塩化物のX線回折パターンを図2に示す。図2に示すように、2θ角が15~17°、31~32.5°、41~42.5°、48.5~50°及び53~55°である各範囲に反射ピークが観測された。
LiCl、ZrCl4、BiCl3、及びLiIを用いて、仕込み組成を表2に示す組成に変更したこと以外は、実施例1と同様にリチウム含有塩化物を製造し、各種物性の測定を行った。結果を表2に示す。
また、実施例6のリチウム含有塩化物のX線回折パターンを図2に示す。図2に示すように、2θ角が15~17°、31~32.5°、41~42.5°、48.5~50°及び53~55°である各範囲に反射ピークが観測された。
LiCl及びZrCl4を用いて、仕込み組成を表2に示す組成に変更したこと以外は、実施例1と同様にリチウム含有塩化物を製造し、各種物性の測定を行った。結果を表2に示す。
また、比較例1のリチウム含有塩化物のX線回折パターンを図3に示す。図3に示すように、2θ角が15~17°、31~32.5°、41~42.5°、48.5~50°及び53~55°である各範囲に反射ピークが観測された。
また、実施例1と同様の条件で、充放電試験を実施した。その結果を、図7に示す。
LiCl、ZrCl4及びLiBrを用いて、仕込み組成を表2に示す組成に変更したこと以外は、実施例1と同様にリチウム含有塩化物を製造し、各種物性の測定を行った。結果を表2に示す。なお、比較例2のリチウム含有塩化物は、国際公開第2020/070955号における実施例21と同一の組成である。
また、比較例2のリチウム含有塩化物のX線回折パターンを図3に示す。図3に示すように、2θ角が15~17°、31~32.5°、41~42.5°、48.5~50°及び53~55°である各範囲に反射ピークが観測された。
LiCl、ZrCl4、及びZnCl2を用いて、仕込み組成を表2に示す組成に変更したこと以外は、実施例1と同様にリチウム含有塩化物を製造し、各種物性の測定を行った。結果を表2に示す。
また、比較例3のリチウム含有塩化物のX線回折パターンを図3に示す。図3に示すように、2θ角が48.5~50°の範囲に反射ピークが観測されたものの、それ以外の3つの範囲に反射ピークは観測されなかった。
Claims (14)
- リチウム、4価の金属元素M、塩素及びドーパント元素Xを含有し、
25℃においてCuKα線を用いて測定したX線回折チャートにおいて、2θ角が15~17°、31~32.5°、41~42.5°、48.5~50°、及び53~55°の各範囲に反射ピークを有すると共に、15~17°の範囲における最も大きいピーク高さを有する反射ピークの半値幅が0.35~3.00°である、化合物。 - 島状の結晶相と、当該結晶相を囲む海状のアモルファス相を有する海島構造を備える、請求項1に記載の化合物。
- 前記結晶相の平均円相当径が10~100nmである、請求項2に記載の化合物。
- リチウム、4価の金属元素M、塩素及びドーパント元素Xを含有する化合物であって、島状の結晶相と、当該結晶相を囲む海状のアモルファス相を有する海島構造を備える、化合物。
- 活性化エネルギーが0.43eV以下である、請求項1~4のいずれか一項に記載の化合物。
- 前記4価の金属元素MがZrである、請求項1~5のいずれか一項に記載の化合物。
- 前記ドーパント元素Xが、臭素及びヨウ素の少なくとも一方であるハロゲン元素X1を含む、請求項1~6のいずれか一項に記載の化合物。
- リチウムの含有量が15~30モル%であり、前記4価の金属元素Mの含有量が8~15モル%であり、塩素の含有量が50~70モル%であり、前記ハロゲン元素X1の含有量が0.2~8モル%である、請求項7に記載の化合物。
- 前記ドーパント元素Xが、2価~4価の金属元素からなる群から選択される少なくとも1種の金属元素X2を含む、請求項1~8のいずれか1項に記載の化合物。
- 組成式:LiαZrβCl6-γX1γで表され、1.6≦α≦2.5、0<β≦1.1、0<γ<1であり、元素X1はBr及びIの少なくとも一方である、化合物。
- 組成式:LiαZrβX2εCl6-γX1γで表され、1.6≦α≦2.5、0<β≦1.1、0≦γ<1、0≦ε<1を満たし、元素X1はBr及びIの少なくとも一方であり、元素X2は2価~4価の金属元素からなる群から選択される少なくとも1種の金属元素であり、γ及びεの少なくとも一方は0より大きい、化合物。
- 請求項1~11のいずれか一項に記載の化合物を含む固体電解質。
- 請求項1~11のいずれか一項に記載の化合物を含む電池。
- 請求項1~11のいずれか一項に記載の化合物の製造方法であって、原料に対してボールミルを行って前記化合物を得る工程を備える、製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247010455A KR20240052961A (ko) | 2021-09-07 | 2022-09-06 | 리튬 함유 염화물 및 그 제조 방법, 그리고 고체 전해질 및 전지 |
EP22867353.9A EP4389708A1 (en) | 2021-09-07 | 2022-09-06 | Lithium-containing chloride, method for producing same, solid electrolyte and battery |
CN202280060333.6A CN117916201A (zh) | 2021-09-07 | 2022-09-06 | 含锂氯化物及其制造方法、以及固体电解质及电池 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-145618 | 2021-09-07 | ||
JP2021145618 | 2021-09-07 | ||
JP2022-040461 | 2022-03-15 | ||
JP2022040461A JP7174875B1 (ja) | 2021-09-07 | 2022-03-15 | リチウム含有塩化物及びその製造方法、並びに固体電解質及び電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023038031A1 true WO2023038031A1 (ja) | 2023-03-16 |
Family
ID=84100546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/033461 WO2023038031A1 (ja) | 2021-09-07 | 2022-09-06 | リチウム含有塩化物及びその製造方法、並びに固体電解質及び電池 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4389708A1 (ja) |
JP (1) | JP7174875B1 (ja) |
KR (1) | KR20240052961A (ja) |
CN (1) | CN117916201A (ja) |
WO (1) | WO2023038031A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019135321A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
WO2020070956A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
WO2020070958A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
WO2020070957A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
WO2020070955A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
WO2020188913A1 (ja) | 2019-03-15 | 2020-09-24 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
WO2020188914A1 (ja) | 2019-03-15 | 2020-09-24 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
WO2020188915A1 (ja) | 2019-03-15 | 2020-09-24 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
WO2021024876A1 (ja) | 2019-08-07 | 2021-02-11 | Tdk株式会社 | 固体電解質、固体電解質層及び固体電解質電池 |
WO2021024783A1 (ja) * | 2019-08-07 | 2021-02-11 | Tdk株式会社 | 固体電解質、固体電解質層および固体電解質電池 |
-
2022
- 2022-03-15 JP JP2022040461A patent/JP7174875B1/ja active Active
- 2022-09-06 EP EP22867353.9A patent/EP4389708A1/en active Pending
- 2022-09-06 WO PCT/JP2022/033461 patent/WO2023038031A1/ja active Application Filing
- 2022-09-06 KR KR1020247010455A patent/KR20240052961A/ko unknown
- 2022-09-06 CN CN202280060333.6A patent/CN117916201A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019135321A1 (ja) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
WO2020070956A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
WO2020070958A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
WO2020070957A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
WO2020070955A1 (ja) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | ハロゲン化物固体電解質材料およびこれを用いた電池 |
WO2020188913A1 (ja) | 2019-03-15 | 2020-09-24 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
WO2020188914A1 (ja) | 2019-03-15 | 2020-09-24 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
WO2020188915A1 (ja) | 2019-03-15 | 2020-09-24 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
WO2021024876A1 (ja) | 2019-08-07 | 2021-02-11 | Tdk株式会社 | 固体電解質、固体電解質層及び固体電解質電池 |
WO2021024783A1 (ja) * | 2019-08-07 | 2021-02-11 | Tdk株式会社 | 固体電解質、固体電解質層および固体電解質電池 |
Non-Patent Citations (3)
Title |
---|
G. J. KIPOUROS ET AL.: "ECS Proceedings Volumes, Proc", vol. 1990, 1990, IOP PUBLISHING, article "On the Mechanism of the Production of Zirconium and Hafnium Metals by Fused Salt Electrolysis", pages: 626 |
H. KWAK: "Advanced Energy Material", vol. 11, 2021, WILEY,, article ""New Cost-Effective Halide Solid Electrolytes for All-Solid-State Batteries:Mechanochemically Prepared Fe3+-Substituted LiiZrCle"", pages: 18 2003190 |
S. N. FLENGAS ET AL.: "Canadian Journal of Chemistry", vol. 46, 1968, CANADIAN SCIENCE PUBLISHING, article "Properties of the solutions of the alkali-chlorozirconate compounds in alkali-chloride melts", pages: 495 - 502 |
Also Published As
Publication number | Publication date |
---|---|
EP4389708A1 (en) | 2024-06-26 |
JP7174875B1 (ja) | 2022-11-17 |
JP2023038890A (ja) | 2023-03-17 |
CN117916201A (zh) | 2024-04-19 |
KR20240052961A (ko) | 2024-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics | |
JP7435452B2 (ja) | 硫化物固体電解質の製造方法、硫化物固体電解質、全固体電池、及び硫化物固体電解質の製造に用いる原料化合物の選択方法 | |
JP6611949B2 (ja) | 固体電解質用材料 | |
WO2019146218A1 (ja) | 固体電解質材料、および、電池 | |
KR102637919B1 (ko) | 리튬 이온 전기화학셀용 고체 전해질 | |
JPWO2019135318A1 (ja) | 固体電解質材料、および、電池 | |
JPWO2019135316A1 (ja) | 固体電解質材料、および、電池 | |
Redel et al. | High-performance Li-rich layered transition metal oxide cathode materials for Li-ion batteries | |
JP6742031B2 (ja) | 硫化物固体電解質 | |
US20190237801A1 (en) | Sulfide solid electrolyte | |
EP4001218A1 (en) | Solid ion conductor compound, solid electrolyte comprising the same, electrochemical cell comprising the same, and method of preparing the same | |
WO2024058052A1 (ja) | イオン伝導性物質、電解質、及び電池 | |
JP7174875B1 (ja) | リチウム含有塩化物及びその製造方法、並びに固体電解質及び電池 | |
JP7203200B2 (ja) | 全固体二次電池 | |
JP7174181B1 (ja) | リチウム含有塩化物及びその製造方法、並びに固体電解質及び電池 | |
JP2021132019A (ja) | 固体電解質材料、その製造方法及び電池 | |
WO2024096101A1 (ja) | イオン伝導性物質、電解質及び電池 | |
WO2024058053A1 (ja) | アルカリ金属含有ハロゲン化物、電解質、電池及びハロゲン化物固体電解質の製造方法 | |
EP3649082B1 (en) | New lithium mixed metal sulfide with high ionic conductivity | |
Zhou | Lithium ion conducting inorganic solid electrolytes and all solid-state lithium batteries | |
JP2024040103A (ja) | アルカリ金属含有ハロゲン化物、電解質、電池及びハロゲン化物固体電解質の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22867353 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280060333.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022867353 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022867353 Country of ref document: EP Effective date: 20240320 |
|
ENP | Entry into the national phase |
Ref document number: 20247010455 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |