WO2020070958A1 - ハロゲン化物固体電解質材料およびこれを用いた電池 - Google Patents

ハロゲン化物固体電解質材料およびこれを用いた電池

Info

Publication number
WO2020070958A1
WO2020070958A1 PCT/JP2019/029126 JP2019029126W WO2020070958A1 WO 2020070958 A1 WO2020070958 A1 WO 2020070958A1 JP 2019029126 W JP2019029126 W JP 2019029126W WO 2020070958 A1 WO2020070958 A1 WO 2020070958A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte material
halide solid
battery
halide
Prior art date
Application number
PCT/JP2019/029126
Other languages
English (en)
French (fr)
Inventor
勇祐 西尾
章裕 酒井
哲也 浅野
真志 境田
晃暢 宮崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020549981A priority Critical patent/JPWO2020070958A1/ja
Priority to CN201980034698.XA priority patent/CN112189239B/zh
Priority to EP19868283.3A priority patent/EP3863026B1/en
Publication of WO2020070958A1 publication Critical patent/WO2020070958A1/ja
Priority to US17/120,144 priority patent/US11855255B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a halide solid electrolyte material and a battery using the same.
  • Patent Document 1 discloses an all-solid-state battery using a sulfide solid electrolyte.
  • Patent Literature 2 discloses an all-solid battery using a halide containing indium as a solid electrolyte.
  • An object of the present disclosure is to provide a solid electrolyte material having high lithium ion conductivity and a battery using the halide solid electrolyte material.
  • a halide solid electrolyte material according to the present disclosure comprises: Represented by the following chemical formula (I), Li 6- (4 + a) b (Zr 1-a M a ) b X 6 (I) here, M is at least one element selected from the group consisting of Ta and Nb, X is a halogen element, The following equation: 0 ⁇ a ⁇ 1, and 0 ⁇ b ⁇ 1.5 Is satisfied.
  • a battery according to the present disclosure includes a positive electrode, a negative electrode, and an electrolyte layer provided between the positive electrode and the negative electrode, and at least one selected from the group consisting of the positive electrode, the negative electrode, and the electrolyte layer.
  • the present disclosure provides a solid electrolyte material having high lithium ion conductivity and a battery using the solid electrolyte material.
  • FIG. 1 shows a sectional view of a battery 1000 according to a second embodiment.
  • FIG. 2 is a schematic view of a pressing die 300 used for evaluating the ionic conductivity of the halide solid electrolyte material.
  • FIG. 3 is a Cole-Cole diagram of the impedance measurement result of the halide solid electrolyte material according to Example 1.
  • FIG. 4 is a graph showing the initial discharge characteristics of the battery according to Example 1.
  • the halide solid electrolyte material according to the first embodiment includes: Represented by the following chemical formula (I), Li 6- (4 + a) b (Zr 1-a M a ) b X 6 (I) here, M is at least one element selected from the group consisting of Ta and Nb, X is a halogen element, The following equation: 0 ⁇ a ⁇ 1, and 0 ⁇ b ⁇ 1.5 Is satisfied.
  • the halide solid electrolyte material according to the first embodiment has high lithium ion conductivity.
  • the molar fraction ⁇ of Li is equal to (6- (4 + a) b).
  • the molar fraction ⁇ of Zr is equal to (1-a) b.
  • the molar fraction ⁇ of M is equal to ab.
  • the values of ⁇ , ⁇ , and ⁇ may have an error of about 5% or less (preferably, about 3% or less). Even when the error is included, it is considered that the chemical formula (I) is satisfied.
  • A, B, and C are obtained by actually analyzing the halide solid electrolyte material by an analytical method such as atomic absorption spectrometry or inductively coupled plasma emission spectrometry (hereinafter, referred to as “ICP-AES method”).
  • ICP-AES method inductively coupled plasma emission spectrometry
  • the halide solid electrolyte material according to the first embodiment is a metal halide composite compound represented by Li 2 ZrX 6 , wherein a part of Li or Zr is substituted by M. is there.
  • the formula: 0.01 ⁇ a ⁇ 0.7 may be satisfied.
  • the formula: 0.01 ⁇ a ⁇ 0.4 may be satisfied.
  • the following formula: 0.5 ⁇ b ⁇ 1.3 may be satisfied.
  • the formula: 0.8 ⁇ b ⁇ 1.1 may be satisfied.
  • M may be Ta.
  • M may be Nb.
  • M may be a combination of Ta and Nb.
  • a halide solid electrolyte material according to the first embodiment, formula (II): Li 6- (4 + a) b (Zr 1-a M a) b Cl 6-x-y Br x I y ( wherein, 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6).
  • Such a halide solid electrolyte material has high lithium ion conductivity.
  • the all-solid-state battery may be a primary battery or a secondary battery.
  • an all-solid battery containing no sulfur can be obtained. Even when the halide solid electrolyte material according to the first embodiment is exposed to the atmosphere, hydrogen sulfide is not generated. Therefore, the all solid state battery using the halide solid electrolyte material according to the first embodiment is excellent in safety. Note that if the sulfide solid electrolyte disclosed in U.S. Patent No. 6,086,097 is exposed to the atmosphere, hydrogen sulfide may be generated.
  • the halide solid electrolyte material according to the first embodiment may be crystalline or amorphous.
  • the shape of the halide solid electrolyte material according to the first embodiment is not limited. Examples of such shapes are needles, spheres, or elliptical spheres.
  • the halide solid electrolyte material according to the first embodiment may be particles.
  • the halide solid electrolyte material according to the first embodiment may be formed to have a pellet or plate shape.
  • the halide solid electrolyte material according to the first embodiment when the halide solid electrolyte material according to the first embodiment is particulate (for example, spherical), the halide solid electrolyte material according to the first embodiment has a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. May be provided.
  • the median diameter means the particle diameter when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution can be measured by a laser diffraction measurement device or an image analysis device.
  • the median diameter is 0.5. It may be not less than micrometer and not more than 10 micrometers.
  • the halide solid electrolyte material according to the first embodiment may have a smaller median diameter than the active material.
  • the halide solid electrolyte material according to the first embodiment can be manufactured by the following method.
  • the target composition is Li 1.9 Zr 0.9 Ta 0.1 Cl 6
  • the LiCl raw material powder, the ZrCl 4 raw material powder, and the TaCl 5 raw material powder are approximately 1.9: 0.9. : 0.1 LiCl: ZrCl 4 : TaCl 5 molar ratio.
  • the raw powders may be mixed in a molar ratio that has been adjusted in advance to offset compositional changes that may occur in the synthesis process described in the next paragraph.
  • the raw material powders contained in the mixture are reacted with each other mechanochemically (that is, by a mechanochemical milling method) in a mixing device such as a planetary ball mill to obtain a reactant.
  • the reactants may be fired in vacuum or in an inert atmosphere.
  • the mixture may be fired in a vacuum or inert atmosphere to obtain a reactant.
  • Baking may be performed at a temperature of 100 to 400 degrees Celsius for 1 hour or more.
  • the reactants or mixture may be sealed in a closed vessel such as a quartz tube and then fired to reduce composition changes caused by firing. Thereby, a desired halide solid electrolyte material is obtained.
  • the battery according to the second embodiment includes a positive electrode, a negative electrode, and an electrolyte layer.
  • the electrolyte layer is provided between the positive electrode and the negative electrode.
  • At least one selected from the group consisting of a positive electrode, an electrolyte layer, and a negative electrode contains the halide solid electrolyte material according to the first embodiment.
  • the battery according to the second embodiment has excellent charge / discharge characteristics.
  • the battery may be an all solid state battery.
  • FIG. 1 shows a sectional view of a battery 1000 according to the second embodiment.
  • the battery 1000 includes a positive electrode 201, an electrolyte layer 202, and a negative electrode 203.
  • Positive electrode 201 contains positive electrode active material particles 204 and solid electrolyte particles 100.
  • the electrolyte layer 202 is provided between the positive electrode 201 and the negative electrode 203.
  • the electrolyte layer 202 contains an electrolyte material (for example, a halide solid electrolyte material).
  • the negative electrode 203 contains negative electrode active material particles 205 and solid electrolyte particles 100.
  • the solid electrolyte particles 100 are particles made of a halide solid electrolyte material or particles containing a halide solid electrolyte material as a main component.
  • the positive electrode 201 contains positive electrode active material particles 204 that can occlude and release metal ions (for example, lithium ions).
  • positive electrode active materials include lithium-containing transition metal oxides (eg, LiNi 1- df Co d Al f O 2 (where 0 ⁇ d, 0 ⁇ f, and 0 ⁇ (d + f) ⁇ 1) or LiCoO 2 ), transition metal fluoride, polyanion material, fluorinated polyanion material, transition metal sulfide, transition metal oxyfluoride, transition metal oxysulfide, or transition metal oxynitride.
  • lithium-containing transition metal oxides eg, LiNi 1- df Co d Al f O 2 (where 0 ⁇ d, 0 ⁇ f, and 0 ⁇ (d + f) ⁇ 1) or LiCoO 2
  • transition metal fluoride polyanion material
  • fluorinated polyanion material transition metal sulfide
  • transition metal oxyfluoride transition metal oxysulfide
  • transition metal oxynitride transition metal oxynitride
  • the positive electrode active material particles 204 preferably have a median diameter of 0.1 ⁇ m or more. Due to the good dispersion state, the charge and discharge characteristics of the battery 1000 are improved. In order to quickly diffuse lithium in the positive electrode active material particles 204, it is desirable that the positive electrode active material particles 204 have a median diameter of 100 micrometers or less. Due to the rapid diffusion of lithium, battery 1000 can operate at high power. As described above, the positive electrode active material particles 204 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode active material particles 204 may have a larger median diameter than the solid electrolyte particles 100.
  • the ratio of the volume Vca1 of the positive electrode active material particles 204 to the sum of the volume Vca1 of the positive electrode active material particles 204 and the volume Vce1 of the solid electrolyte particles 100 is 0.3 or more. It may be 0.95 or less. That is, the ratio of (Vca1) / (Vca1 + Vce1)) may be 0.3 or more and 0.95 or less.
  • the positive electrode 201 may have a thickness of 10 micrometers or more and 500 micrometers or less.
  • the electrolyte layer 202 contains an electrolyte material.
  • the electrolyte material may be the halide solid electrolyte material in the first embodiment.
  • the electrolyte layer 202 may be a solid electrolyte layer.
  • the electrolyte layer 202 has lithium ion conductivity, but does not have electron conductivity.
  • the electrolyte layer 202 may be composed of only the halide solid electrolyte material according to the first embodiment. Alternatively, the electrolyte layer 202 may be composed of only a solid electrolyte material different from the halide solid electrolyte material according to the first embodiment.
  • solid electrolyte materials different from the halide solid electrolyte material according to the first embodiment are Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , and Li 3 (Al, Ga, In).
  • X is a halogen element (ie, at least one element selected from the group consisting of F, Cl, Br, and I).
  • the halide solid electrolyte material according to the first embodiment is referred to as a first solid electrolyte material.
  • a solid electrolyte material different from the halide solid electrolyte material according to the first embodiment is called a second solid electrolyte material.
  • the electrolyte layer 202 may contain not only the first solid electrolyte material but also a second solid electrolyte material. In the electrolyte layer 202, the first solid electrolyte material and the second solid electrolyte material may be uniformly dispersed. The layer formed from the first solid electrolyte material and the layer formed from the second solid electrolyte material may be stacked along the stacking direction of the battery 1000.
  • the solid electrolyte layer may have a thickness of 1 micrometer or more and 100 micrometers or less.
  • the negative electrode 203 contains negative electrode active material particles 205 capable of occluding and releasing metal ions (for example, lithium ions).
  • Examples of the negative electrode active material are a metal material, a carbon material, an oxide, a nitride, a tin compound, and a silicon compound.
  • the metal material may be a single metal or an alloy.
  • Examples of metal materials are lithium metal or lithium alloy.
  • Examples of carbon materials are natural graphite, coke, graphitizing carbon, carbon fiber, spherical carbon, artificial graphite, or amorphous carbon. From the viewpoint of the capacity density, preferable examples of the negative electrode active material are silicon (ie, Si), tin (ie, Sn), a silicon compound, or a tin compound.
  • the negative electrode active material particles 205 may have a median diameter of 0.1 micrometers or more. Due to the good dispersion state, the charge / discharge characteristics of the battery are improved. In order to quickly diffuse lithium in the negative electrode active material particles 205, the negative electrode active material particles 205 may have a median diameter of 100 micrometers or less. Due to the rapid diffusion of lithium, the battery operates at high power. As described above, the negative electrode active material particles 205 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material particles 205 may have a larger median diameter than the solid electrolyte particles 100.
  • the ratio of the volume vaa1 of the negative electrode active material particles 205 to the sum of the volume va1 of the negative electrode active material particles 205 and the volume vae1 of the solid electrolyte particles 100 is 0.3 or more. It may be 0.95 or less. That is, the ratio of (vaa1) / (vaa1 + vae1)) may be 0.3 or more and 0.95 or less.
  • the negative electrode 203 may have a thickness of 10 micrometers or more and 500 micrometers or less.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 contains a second solid electrolyte material for the purpose of enhancing ion conductivity, chemical stability, and electrochemical stability. May be.
  • the second solid electrolyte material may be a halide solid electrolyte.
  • halide solid electrolytes are Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , or LiX.
  • X is a halogen element (ie, at least one element selected from the group consisting of F, Cl, Br, and I).
  • the second solid electrolyte material may be a sulfide solid electrolyte.
  • Examples of the sulfide solid electrolyte include Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , and Li 3.25 Ge 0.25 P 0 .75 S 4 , or Li 10 GeP 2 S 12 .
  • the second solid electrolyte material may be an oxide solid electrolyte.
  • oxide solid electrolytes are: (I) a NASICON-type solid electrolyte such as LiTi 2 (PO 4 ) 3 or an element substitution thereof, (Ii) a (LaLi) TiO 3 perovskite solid electrolyte, (Iii) a LISON type solid electrolyte such as Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 , or an element substitution thereof, (Iv) a garnet-type solid electrolyte such as Li 7 La 3 Zr 2 O 12 or an element substitution thereof, or (v) Li 3 PO 4 or an N-substitution thereof.
  • NASICON-type solid electrolyte such as LiTi 2 (PO 4 ) 3 or an element substitution thereof
  • a LISON type solid electrolyte such as Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 , or an element substitution thereof
  • a garnet-type solid electrolyte such as Li 7 La
  • the second solid electrolyte material may be an organic polymer solid electrolyte.
  • Examples of the organic polymer solid electrolyte are a polymer compound and a lithium salt compound.
  • the polymer compound may have an ethylene oxide structure. Since the polymer compound having an ethylene oxide structure can contain a large amount of lithium salt, the ionic conductivity can be further increased.
  • lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) or LiC (SO 2 CF 3 ) 3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • At least one selected from the group consisting of the positive electrode 201, the negative electrode 203, and the electrolyte layer 202 is a nonaqueous electrolyte, a gel electrolyte, or an ion It may contain a liquid.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • non-aqueous solvent examples include a cyclic carbonate solvent, a chain carbonate solvent, a cyclic ether solvent, a chain ether solvent, a cyclic ester solvent, a chain ester solvent, and a fluorine solvent.
  • cyclic carbonate solvents are ethylene carbonate, propylene carbonate, or butylene carbonate.
  • chain carbonate solvent examples include dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
  • cyclic ether solvents examples include tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
  • chain ether solvents are 1,2-dimethoxyethane or 1,2-diethoxyethane.
  • An example of a cyclic ester solvent is ⁇ -butyrolactone.
  • An example of a chain ester solvent is methyl acetate.
  • fluorine solvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
  • One non-aqueous solvent selected from these may be used alone, or a mixture of two or more non-aqueous solvents selected from these may be used.
  • lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) or LiC (SO 2 CF 3 ) 3 .
  • One lithium salt selected from these may be used alone, or a mixture of two or more lithium salts selected from these may be used.
  • the concentration of the lithium salt is, for example, in the range of 0.5 mol / liter to 2 mol / liter.
  • a polymer material impregnated with a non-aqueous electrolyte can be used.
  • polymeric materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, or polymers with ethylene oxide linkages.
  • Examples of cations contained in the ionic liquid are (I) aliphatic linear quaternary salts such as tetraalkylammonium or tetraalkylphosphonium, (Ii) an aliphatic cyclic ammonium such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums or piperidiniums, or (iii) a nitrogen-containing heterocycle such as pyridiniums or imidazoliums It is an aromatic cation.
  • aliphatic linear quaternary salts such as tetraalkylammonium or tetraalkylphosphonium
  • an aliphatic cyclic ammonium such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums or piperidiniums
  • a nitrogen-containing heterocycle such
  • Anions contained in the ionic liquid include PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , and N (SO 2 C 2 F 5 ) 2. — , N (SO 2 CF 3 ) (SO 2 C 4 F 9 ) — , or C (SO 2 CF 3 ) 3 — .
  • the ionic liquid may contain a lithium salt.
  • At least one selected from the group consisting of the positive electrode 201, the negative electrode 203, and the electrolyte layer 202 may contain a binder for the purpose of improving the adhesion between particles.
  • binder examples include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, and polyacrylic acid.
  • Copolymers can also be used as binders.
  • binders are tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid And a copolymer of two or more materials selected from the group consisting of hexadiene. A mixture of two or more selected from the above materials may be used as the binder.
  • At least one selected from the positive electrode 201 and the negative electrode 203 may contain a conductive additive for the purpose of enhancing electronic conductivity.
  • Examples of conductive aids are (I) graphite, such as natural graphite or artificial graphite; (ii) carbon black, such as acetylene black or Ketjen black; (Iii) conductive fibers such as carbon fibers or metal fibers, (Iv) carbon fluoride, (V) a metal powder such as aluminum powder; (Vi) conductive whiskers such as zinc oxide whiskers or potassium titanate whiskers; (Vii) a conductive metal oxide such as titanium oxide; or (viii) a conductive polymer compound such as polyaniline, polypyrrole, or polythiophene.
  • the battery is a coin battery, a cylindrical battery, a square battery, a sheet battery, a button battery (that is, a button cell), a flat battery, or a stacked battery. .
  • Example 1 (Preparation of halide solid electrolyte material) Argon atmosphere having the following dewpoint Celsius 90 degrees (. Hereinafter referred to as dry argon atmosphere) at, LiCl powder, ZrCl 4 powder, and TaCl 5 powder, 1.9: 0.9: 0.1 of LiCl : ZrCl 4 : TaCl 5 molar ratio. These powders were ground in a mortar and mixed. Thus, a mixture was obtained. The mixture was then milled in a planetary ball mill for 25 hours at 600 rpm to react mechanochemically. Thus, a powder of the halide solid electrolyte material according to Example 1 was obtained.
  • the halide solid electrolyte material according to Example 1 had a composition represented by a composition formula of Li 1.9 Zr 0.9 Ta 0.1 Cl 6 . That is, in Example 1, the values of a and b were equal to 0.10 and 1, respectively.
  • the Li content per unit mass of the halide solid electrolyte material according to Example 1 was measured by atomic absorption spectrometry.
  • the Zr content and Ta content of the halide solid electrolyte material according to Example 1 were measured by high frequency inductively coupled plasma emission spectroscopy. Based on the Li: Zr: Ta content obtained from these measurement results, the molar ratio of Li: Zr: Ta was calculated.
  • the halide solid electrolyte material according to Example 1 has an atomic ratio of Li: Zr: Ta of 1.9: 0.9: 1.0 (that is, a molar ratio of Li: Zr: Ta).
  • Example 1 the molar ratio of Li: Zr: Ta of the halide solid electrolyte material according to Example 1 was such that the LiCl powder, the ZrCl 4 powder, and the Li: Zr of the TaCl 5 powder contained in the mixture. : The same as the molar ratio of Ta.
  • FIG. 2 is a schematic view of a pressing die 300 used for evaluating the ionic conductivity of the halide solid electrolyte material.
  • the pressure forming die 300 was provided with a frame die 301, a punch lower part 302, and a punch upper part 303.
  • the frame mold 301 was formed from insulating polycarbonate.
  • Each of the punch upper portion 303 and the punch lower portion 302 was made of electron conductive stainless steel.
  • the ionic conductivity of the halide solid electrolyte material according to Example 1 was measured by the following method.
  • the powder of the halide solid electrolyte material according to Example 1 was filled into the inside of the pressing die 300.
  • FIG. 3 shows a graph of a Cole-Cole diagram of the impedance measurement result.
  • the real value of the impedance at the measurement point where the absolute value of the phase of the complex impedance is the smallest is regarded as the resistance value to the ionic conduction of the halide solid electrolyte material. See arrow RSE shown in FIG. 3 for the real values.
  • R SE is the resistance value of the solid electrolyte material in the impedance measurement
  • t is the thickness of the solid electrolyte material under pressure (equal to the thickness of the layer formed from the solid electrolyte particles 100 in FIG. 2). is there.
  • the ionic conductivity of the halide solid electrolyte material according to Example 1 measured at 22 degrees Celsius was 51 ⁇ 10 ⁇ 5 S / cm.
  • the halide solid electrolyte material according to Example 1 100 milligrams
  • the above mixture 9.9 milligrams
  • aluminum metal powder 14.7 milligrams
  • a pressure of 300 MPa was applied to the laminate to form a first electrode and a solid electrolyte layer.
  • the first electrode was formed from aluminum.
  • the solid electrolyte layer was formed from the powder of the halide solid electrolyte material according to Example 1 and LiCoO 2 .
  • the metal indium foil was brought into contact with the solid electrolyte layer.
  • the solid electrolyte layer was sandwiched between the metal indium foil and the first electrode.
  • the metal indium foil had a thickness of 200 micrometers.
  • a pressure of 80 MPa was applied to the metal indium foil.
  • the second electrode formed from the metal indium foil was formed.
  • a current collector formed of stainless steel was attached to the first electrode and the second electrode, and then a current collecting lead was attached to the current collector. Finally, using an insulating ferrule, the inside of the insulating tube was shut off from the outside atmosphere, and the inside of the insulating tube was sealed. Thus, a secondary battery according to Example 1 was obtained.
  • the battery according to Example 1 was charged at a current density of 0.068 mA / cm 2 until a voltage of 3.6 volts was reached.
  • the current density corresponds to a 0.05C rate.
  • the battery according to Example 1 was then discharged at a current density of 0.068 mA / cm 2 until a voltage of 1.9 volts was reached.
  • FIG. 4 is a graph showing initial discharge characteristics of the secondary battery according to Example 1.
  • Example 2 to 24 In Examples 2 to 24, the LiCl powder, the ZrCl 4 powder, and the MCl 5 powder had a (6- (4 + a) b) :( 1-a) b: ab molar ratio of LiCl: ZrCl 4 : MCl of 5 %.
  • the same experiment as in Example 1 was performed, except that it was prepared to have.
  • the elements of M are shown in Table 1.
  • the values of a and b are also shown in Table 1.
  • Example 25 In Example 25, except that LiBr powder, ZrBr 4 powder, and TaBr 5 powder were prepared to have a LiBr: ZrBr 4 : TaBr 5 molar ratio of 2.265: 0.765: 0.135. The same experiment as in Example 1 was performed.
  • Example 26 In Example 26, the LiBr powder, the ZrCl 4 powder, the ZrBr 4 powder, and the TaCl 5 powder had a LiBr: ZrCl 4 : ZrBr 4 : TaCl 5 molar ratio of 2.265: 0.581: 0.184: 0.135. The same experiment as in Example 1 was performed except that the sample was prepared to have
  • Example 27 In Example 27, the LiBr powder, the ZrCl 4 powder, the ZrBr 4 powder, and the NbCl 5 powder were a 2.22: 0.525: 0.195: 0.18 LiBr: ZrCl 4 : ZrBr 4 : NbCl 5 molar ratio. The same experiment as in Example 1 was performed except that the sample was prepared to have
  • Example 28 In Example 28, a LiI powder, a LiBr powder, a ZrCl 4 powder, a ZrBr 4 powder, and a TaCl 5 powder were prepared as follows: 2: 0.265: 0.331: 0.434: 0.135 LiI: LiBr: ZrCl 4 : An experiment similar to that of Example 1 was performed, except that the sample was prepared to have a ZrBr 4 : TaCl 5 molar ratio.
  • Example 29 LiI powder, LiBr powder, ZrCl 4 powder, ZrBr 4 powder, and NbCl 5 powder were prepared as follows: LiI: LiBr: ZrCl 4 of 2: 0.22: 0.275: 0.445: 0.18: An experiment similar to that of Example 1 was performed, except that the sample was prepared to have a ZrBr 4 : NbCl 5 molar ratio.
  • a secondary battery was obtained in the same manner as in Example 1 using the halide solid electrolytes of Examples 2 to 29.
  • the batteries according to Examples 2 to 29 had good charge / discharge characteristics similarly to the battery according to Example 1.
  • Comparative Example 1 Comparative Example 1, the LiBr powder and the InBr 3 powder were prepared to have a 3: 1 LiBr: InBr 3 molar ratio. The prepared powder was crushed in a mortar to obtain a mixture. Pressure was applied to the resulting mixture to form a pellet. The pellets were sealed in glass tubes under vacuum and then fired at 200 degrees Celsius for one week. Thus, a solid electrolyte material according to Comparative Example 1 was obtained. The solid electrolyte material according to Comparative Example 1 had a composition represented by Li 3 InBr 6 . The ionic conductivity of the solid electrolyte material according to Comparative Example 1 was measured in the same manner as in Example 1. As a result, the ionic conductivity measured at 22 degrees Celsius was less than 1 ⁇ 10 ⁇ 7 S / cm.
  • Comparative Example 2 (Comparative Example 2) In Comparative Example 2, the LiCl powder and the FeCl 2 powder were prepared to have a LiCl: FeCl 2 molar ratio of 2: 1. The prepared powder was mechanochemically mixed as in Example 1. Thus, a solid electrolyte material according to Comparative Example 2 was obtained. The solid electrolyte material according to Comparative Example 2 had a composition represented by Li 2 FeCl 4 . The ionic conductivity of the solid electrolyte material according to Comparative Example 1 was measured in the same manner as in Example 1. As a result, the ionic conductivity measured at 22 degrees Celsius was 9 ⁇ 10 ⁇ 6 S / cm.
  • a secondary battery was obtained in the same manner as in Example 1 using the solid electrolyte material according to Comparative Example 2.
  • the secondary battery according to Comparative Example 2 was subjected to a charge / discharge test.
  • the secondary battery according to Comparative Example 2 had an initial discharge capacity of 1 ⁇ Ah or less.
  • the secondary battery according to Comparative Example 2 was neither charged nor discharged. In other words, the secondary battery according to Comparative Example 2 did not function as a battery.
  • Table 1 shows the measurement results of the ionic conductivity in Examples 1 to 29.
  • the measurement results of the ionic conductivity in Comparative Example 1 and Comparative Example 2 are shown in Table 2.
  • the halide solid electrolytes according to Examples 1 to 29 have a high ionic conductivity of 1 ⁇ 10 ⁇ 5 S / cm or more at room temperature.
  • the solid halide electrolytes according to Comparative Examples 1 and 2 have low ionic conductivities of less than 1 ⁇ 10 ⁇ 7 S / cm and 9 ⁇ 10 ⁇ 6 S / cm or less, respectively.
  • the value of b represents the amount of Li deficiency from the stoichiometric ratio (ie, deviation from the stoichiometric ratio of Li).
  • the value of b is 0.5 or more and 1.3 or less, the ionic conductivity is high.
  • the halide solid electrolyte material according to the present disclosure is suitable for providing a battery that does not generate hydrogen sulfide, has high lithium ion conductivity, and can be charged and discharged well.
  • the halide solid electrolyte material according to the present disclosure is used in an electrochemical device such as a battery (for example, an all-solid battery).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

本開示によるハロゲン化物固体電解質材料は、化学式Li6-(4+a)b(Zr1-aにより表され、ここで、Mは、TaおよびNbからなる群より選択される少なくとも1種の元素であり、Xはハロゲン元素であり、かつ2つの数式:0<a<1および0<b<1.5が充足される。

Description

ハロゲン化物固体電解質材料およびこれを用いた電池
 本開示は、ハロゲン化物固体電解質材料およびこれを用いた電池に関する。
 特許文献1は、硫化物固体電解質を用いた全固体電池を開示している。特許文献2は、インジウムを含むハロゲン化物を固体電解質として用いた全固体電池を開示している。
特開2011-129312号公報 特開2006-244734号公報
 本開示の目的は、高いリチウムイオン伝導性を有する固体電解質材料および当該ハロゲン化物固体電解質材料が用いられた電池を提供することにある。
 本開示によるハロゲン化物固体電解質材料は、
 以下の化学式(I)により表され、
  Li6-(4+a)b(Zr1-a   (I)
  ここで、
  Mは、TaおよびNbからなる群より選択される少なくとも1種の元素であり、
  Xは、ハロゲン元素であり、
  以下の数式
  0<a<1、かつ
  0<b<1.5
  が充足される。
 本開示による電池は、正極と、負極と、前記正極および前記負極との間に設けられている電解質層を備え、かつ前記正極、前記負極、および前記電解質層からなる群から選択される少なくとも1つは、上記固体電解質材料を含有する。
 本開示は、高いリチウムイオン伝導性を有する固体電解質材料および当該固体電解質材料が用いられた電池を提供する。
図1は、第2実施形態による電池1000の断面図を示す。 図2は、ハロゲン化物固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。 図3は、実施例1によるハロゲン化物固体電解質材料のインピーダンス測定結果のCole-Cole線図のグラフを示す。 図4は、実施例1による電池の初期放電特性を示すグラフである。
 以下、本開示の実施形態が、図面を参照しながら説明される。
 (第1実施形態)
 第1実施形態に係るハロゲン化物固体電解質材料は、
 以下の化学式(I)により表され、
  Li6-(4+a)b(Zr1-a   (I)
  ここで、
  Mは、TaおよびNbからなる群より選択される少なくとも1種の元素であり、
  Xは、ハロゲン元素であり、
  以下の数式
  0<a<1、かつ
  0<b<1.5
  が充足される。
 第1実施形態によるハロゲン化物固体電解質材料は、高いリチウムイオン伝導性を有する。
 化学式(I)において、Liのモル分率αは、(6-(4+a)b)に等しい。Zrのモル分率βは、(1-a)bに等しい。Mのモル分率γは、abに等しい。固体電解質材料の実際の分析において、α、β、およびγの値は、およそ5%以下(望ましくは、およそ3%以下)の誤差を有してもよい。当該誤差が含まれていても、化学式(I)が充足されていると見做される。
 言い換えれば、以下の3つの数式が充足されてもよい。
 0.95≦A/α≦1.05、
 0.95≦B/β≦1.05、および
 0.95≦C/γ≦1.05
  ここで、
  A、B、およびCは、それぞれ、原子吸光分析法または誘導結合プラズマ発光分析法(以下、「ICP-AES法」という)のような分析法によってハロゲン化物固体電解質材料を実際に分析することによって得られるLi、Zr、およびMのモル分率である。
 望ましくは、以下3つの数式が充足される。
 0.97≦A/α≦1.03、
 0.97≦B/β≦1.03、および
 0.97≦C/γ≦1.03.
 換言すれば、第1実施形態によるハロゲン化物固体電解質材料は、Li2ZrXで示されるハロゲン化金属複合化合物であって、LiまたはZrの一部がMで置換されたハロゲン化金属複合化合物である。
 ハロゲン化物固体電解質材料のリチウムイオン伝導性を高めるために、数式:0.01≦a≦0.7が充足されてもよい。望ましくは、数式:0.01≦a≦0.4が充足されてもよい。
 ハロゲン化物固体電解質材料のリチウムイオン伝導性をさらに高めるために、数式:0.5≦b≦1.3が充足されてもよい。望ましくは、数式:0.8≦b≦1.1が充足されてもよい。
 MはTaでもよい。MはNbでもよい。MはTaおよびNbの組み合わせでもよい。
 一例として、第1実施形態によるハロゲン化物固体電解質材料は、化学式(II):Li6-(4+a)b(Zr1-aCl6-x-yBr(ここで、0≦x≦6、0≦y≦6、かつ(x+y)≦6)により表される。このようなハロゲン化物固体電解質材料は、高いリチウムイオン伝導性を有する。
 ハロゲン化物固体電解質材料のリチウムイオン伝導性をさらに高めるために、数式:(x+y)<6が充足されてもよい。
 ハロゲン化物固体電解質材料のリチウムイオン伝導性をさらに高めるために、数式:(x+y)≦1.2が充足されてもよい。すなわち、化学式(I)において、Xの80原子%以上は、Clで占められてもよい。ハロゲン化物固体電解質材料のリチウムイオン伝導性をさらに高めるために、数式:x=y=0が充足されてもよい。すなわち、化学式(I)において、Xの全体がClであってもよい。
 第1実施形態によるハロゲン化物固体電解質材料を用いて、充放電特性に優れた全固体電池が得られる。全固体電池は、一次電池でもよく、二次電池でもよい。第1実施形態によるハロゲン化物固体電解質材料を用いることで、硫黄を含有しない全固体電池が得られる。第1実施形態によるハロゲン化物固体電解質材料が大気に曝露されても、硫化水素は発生しないので、第1実施形態によるハロゲン化物固体電解質材料が用いられた全固体電池は安全性に優れている。特許文献1に開示された硫化物固体電解質が大気中に曝露されると、硫化水素が発生し得ることに留意せよ。
 第1実施形態によるハロゲン化物固体電解質材料は、結晶質であっても、非晶質であってもよい。
 第1実施形態によるハロゲン化物固体電解質材料の形状は、限定されない。当該形状の例は、針状、球状、または楕円球状である。第1実施形態によるハロゲン化物固体電解質材料は、粒子であってもよい。第1実施形態によるハロゲン化物固体電解質材料は、ペレットまたは板の形状を有するように形成されてもよい。
 一例として、第1実施形態によるハロゲン化物固体電解質材料が粒子状(例えば、球状)である場合、第1実施形態によるハロゲン化物固体電解質材料は、0.1マイクロメートル以上100マイクロメートル以下のメジアン径を有していてもよい。メジアン径とは、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、レーザ回折式測定装置または画像解析装置により測定され得る。
 第1実施形態によるハロゲン化物固体電解質材料のリチウムイオン伝導性をさらに高め、かつ第1実施形態によるハロゲン化物固体電解質材料および後述される活物質を良好に分散させるために、メジアン径は0.5マイクロメートル以上10マイクロメートル以下であってもよい。
 第1実施形態によるハロゲン化物固体電解質材料および活物質をさらに良好に分散させるために、第1実施形態によるハロゲン化物固体電解質材料は、活物質よりも小さいメジアン径を有していてもよい。
 <ハロゲン化物固体電解質材料の製造方法>
 第1実施形態によるハロゲン化物固体電解質材料は、下記の方法により製造され得る。
 まず、目的の組成を有するように、2種類以上のハロゲン化物の原料粉が混合される。このようにして、混合物を得る。
 一例として、目的とされる組成がLi1.9Zr0.9Ta0.1Clである場合、LiCl原料粉、ZrCl原料粉、TaCl原料粉が、およそ1.9:0.9:0.1のLiCl:ZrCl:TaClモル比で混合される。
 次の段落において説明される合成プロセスにおいて生じ得る組成変化を相殺するように予め調整されたモル比で原料粉は混合されてもよい。
 上記混合物に含有される原料粉を遊星型ボールミルのような混合装置内でメカノケミカル的に(すなわち、メカノケミカルミリング処理の方法により)互いに反応させ、反応物を得る。反応物は、真空中または不活性雰囲気中で焼成されてもよい。あるいは、混合物を真空中もしくは不活性雰囲気中で焼成し、反応物を得てもよい。
 焼成は、摂氏100度~摂氏400度の温度で1時間以上、行ってもよい。焼成によって生じる組成変化を抑えるために、反応物または混合物は、石英管のような密閉容器に封入され、次いで焼成されてもよい。これにより、所望のハロゲン化物固体電解質材料が得られる。
 (第2実施形態)
 以下、第2実施形態が説明される。第1実施形態において説明された事項は、省略され得る。
 第2実施形態では、第1実施形態によるハロゲン化物固体電解質が用いられた電気化学デバイスが説明される。
 第2実施形態による電気化学デバイスの一例として、以下、電池が説明される。第2実施形態による電池は、正極、負極、および電解質層を具備する。電解質層は、正極および負極の間に設けられる。正極、電解質層、および負極からなる群から選択される少なくとも1つは、第1実施形態によるハロゲン化物固体電解質材料を含有する。第2実施形態による電池は、優れた充放電特性を有する。当該電池は、全固体電池であってもよい。
 図1は、第2実施形態による電池1000の断面図を示す。電池1000は、正極201、電解質層202、および負極203を具備する。正極201は、正極活物質粒子204および固体電解質粒子100を含有する。電解質層202は、正極201および負極203の間に設けられている。電解質層202は、電解質材料(例えば、ハロゲン化物固体電解質材料)を含有する。負極203は、負極活物質粒子205および固体電解質粒子100を含有する。
 固体電解質粒子100は、ハロゲン化物固体電解質材料からなる粒子、または、ハロゲン化物固体電解質材料を主たる成分として含有する粒子である。
 正極201は、金属イオン(例えば、リチウムイオン)を吸蔵および放出可能な正極活物質粒子204を含有する。
 正極活物質の例は、リチウム含有遷移金属酸化物(例えば、LiNi1-d-fCoAl(ここで、0<d、0<f、かつ0<(d+f)<1)またはLiCoO)、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシフッ化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物である。
 正極201において正極活物質粒子204および固体電解質粒子100の良好な分散状態を形成するために、正極活物質粒子204は、0.1マイクロメートル以上のメジアン径を有することが望ましい。当該良好な分散状態により、電池1000の充放電特性が向上する。正極活物質粒子204内でリチウムを速やかに拡散させるために、正極活物質粒子204は、100マイクロメートル以下のメジアン径を有することが望ましい。リチウムの速やかな拡散のため、電池1000は高い出力で動作できる。上記の通り、正極活物質粒子204は、0.1マイクロメートル以上100マイクロメートル以下のメジアン径を有していてもよい。
 正極活物質粒子204および固体電解質粒子100の良好な分散状態を容易に形成するために、正極活物質粒子204は、固体電解質粒子100よりも大きいメジアン径を有していてもよい。
 電池のエネルギー密度および出力の観点から、正極201において、正極活物質粒子204の体積Vca1および固体電解質粒子100の体積Vce1の合計に対する、正極活物質粒子204の体積Vca1の比は、0.3以上0.95以下であってもよい。すなわち、(Vca1)/(Vca1+Vce1))の比は、0.3以上0.95以下であってもよい。
 電池のエネルギー密度および出力の観点から、正極201は、10マイクロメートル以上500マイクロメートル以下の厚みを有していてもよい。
 電解質層202は、電解質材料を含有する。電解質材料は、第1実施形態におけるハロゲン化物固体電解質材料であってもよい。電解質層202は、固体電解質層であってもよい。一般的に、電解質層202は、リチウムイオン伝導性を有するが、電子伝導性は有さない。
 電解質層202は、第1実施形態によるハロゲン化物固体電解質材料のみから構成されていてもよい。もしくは、電解質層202は、第1実施形態によるハロゲン化物固体電解質材料とは異なる固体電解質材料のみから構成されていてもよい。
 第1実施形態によるハロゲン化物固体電解質材料とは異なる固体電解質材料の例は、LiMgX、LiFeX、Li(Al,Ga,In)X、Li(Al,Ga,In)X、またはLiXである。Xは、ハロゲン元素(すなわち、F、Cl、Br、およびIからなる群より選択される少なくとも1種の元素)である。
 以下、第1実施形態によるハロゲン化物固体電解質材料は、第1固体電解質材料と呼ばれる。第1実施形態によるハロゲン化物固体電解質材料とは異なる固体電解質材料は、第2固体電解質材料と呼ばれる。
 電解質層202は、第1固体電解質材料だけでなく、第2固体電解質材料をも含有していてもよい。電解質層202において、第1固体電解質材料および第2固体電解質材料は、均一に分散していてもよい。第1固体電解質材料から形成される層および第2固体電解質材料から形成される層が、電池1000の積層方向に沿って積層されていてもよい。
 正極201および負極203の間の短絡の抑制および電池の高い出力の観点から、固体電解質層は、1マイクロメートル以上100マイクロメートル以下の厚みを有していてもよい。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵および放出可能な負極活物質粒子205を含有する。
 負極活物質の例は、金属材料、炭素材料、酸化物、窒化物、錫化合物、または珪素化合物である。金属材料は、単体の金属であってもよく、合金であってもよい。金属材料の例は、リチウム金属またはリチウム合金である。炭素材料の例は、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、または非晶質炭素である。容量密度の観点から、負極活物質の好適な例は、珪素(すなわち、Si)、錫(すなわち、Sn)、珪素化合物、または錫化合物である。
 負極203において負極活物質粒子205および固体電解質粒子100の良好な分散状態を形成するために、負極活物質粒子205は、0.1マイクロメートル以上のメジアン径を有していてもよい。当該良好な分散状態により、電池の充放電特性が向上する。負極活物質粒子205内でリチウムを速やかに拡散させるために、負極活物質粒子205は、100マイクロメートル以下のメジアン径を有していてもよい。リチウムの速やかな拡散のため、電池は高い出力で動作する。上記の通り、負極活物質粒子205は、0.1マイクロメートル以上100マイクロメートル以下のメジアン径を有していてもよい。
 負極活物質粒子205および固体電解質粒子100の良好な分散状態を容易に形成するために、負極活物質粒子205は、固体電解質粒子100よりも大きいメジアン径を有していてもよい。
 電池のエネルギー密度および出力の観点から、負極203において、負極活物質粒子205の体積vaa1および固体電解質粒子100の体積vae1の合計に対する、負極活物質粒子205の体積vaa1の比は、0.3以上0.95以下であってもよい。すなわち、(vaa1)/(vaa1+vae1))の比は、0.3以上0.95以下であってもよい。
 電池のエネルギー密度および出力の観点から、負極203は、10マイクロメートル以上500マイクロメートル以下の厚みを有していてもよい。
 イオン伝導性、化学的安定性、および電気化学的安定性を高める目的で、正極201、電解質層202、および負極203からなる群から選択される少なくとも1つは、第2固体電解質材料を含有していてもよい。
 上述されたように、第2固体電解質材料は、ハロゲン化物固体電解質であってもよい。ハロゲン化物固体電解質の例は、LiMgX、LiFeX、Li(Al,Ga,In)X、Li(Al,Ga,In)X、またはLiXである。Xは、ハロゲン元素(すなわち、F、Cl、Br、およびIからなる群より選択される少なくとも1種の元素)である。
 第2固体電解質材料は、硫化物固体電解質であってもよい。
 硫化物固体電解質の例は、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、またはLi10GeP12である。
 第2固体電解質材料は、酸化物固体電解質であってもよい。
 酸化物固体電解質の例は、
 (i) LiTi(POまたはその元素置換体のようなNASICON型固体電解質、
 (ii) (LaLi)TiO系のペロブスカイト型固体電解質、
 (iii) Li14ZnGe16、LiSiO、LiGeO、またはその元素置換体のようなLISICON型固体電解質、
 (iv) LiLaZr12またはその元素置換体のようなガーネット型固体電解質、または
 (v) LiPOまたはそのN置換体
 である。
 第2固体電解質材料は、有機ポリマー固体電解質であってもよい。
 有機ポリマー固体電解質の例は、高分子化合物およびリチウム塩の化合物である。高分子化合物は、エチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができるので、イオン導電率をさらに高めることができる。
 リチウム塩の例は、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、またはLiC(SOCFである。これらから選択される1種のリチウム塩が単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
 正極201、負極203、および電解質層202からなる群から選ばれる少なくとも1つは、リチウムイオンの授受を容易にし、電池1000の出力特性を向上する目的で、非水電解液、ゲル電解質、又はイオン液体を含有していてもよい。
 非水電解液は、非水溶媒および当該非水溶媒に溶けたリチウム塩を含む。
 非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。
 環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。
 鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。
 環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソランである。
 鎖状エーテル溶媒の例は、1,2-ジメトキシエタンまたは1,2-ジエトキシエタンである。
 環状エステル溶媒の例は、γ-ブチロラクトンである。
 鎖状エステル溶媒の例、酢酸メチルである。
 フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。
 これらから選択される1種の非水溶媒が単独で使用されてもよいし、これらから選ばれる2種以上の非水溶媒の混合物が使用されてもよい。
 リチウム塩の例は、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、またはLiC(SOCFである。
 これらから選ばれる1種のリチウム塩が単独で使用されてもよいし、これらから選ばれる2種以上のリチウム塩の混合物が使用されてもよい。
 リチウム塩の濃度は、例えば、0.5mol/リットル以上2mol/リットル以下の範囲にある。
 ゲル電解質として、非水電解液を含浸しているポリマー材料が使用されうる。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、またはエチレンオキシド結合を有するポリマーである。
 イオン液体に含まれるカチオンの例は、
 (i) テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
 (ii) ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類またはピペリジニウム類のような脂肪族環状アンモニウム、または
 (iii) ピリジニウム類またはイミダゾリウム類のような含窒素ヘテロ環芳香族カチオン
 である。
 イオン液体に含まれるアニオンは、PF 、BF 、SbF 、AsF 、SOCF 、N(SOCF 、N(SO 、N(SOCF)(SO、またはC(SOCF である。
 イオン液体はリチウム塩を含有していてもよい。
 正極201、負極203、および電解質層202からなる群から選ばれる少なくとも1つには、粒子同士の密着性を向上させる目的で、結着剤が含まれてもよい。
 結着剤の例は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリロニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、またはカルボキシメチルセルロースである。
 共重合体もまた、結着剤として用いられ得る。このような結着剤の例は、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、及びヘキサジエンからなる群から選ばれる2種以上の材料の共重合体である。
 上記の材料から選ばれる2種以上の混合物を結着剤として使用してもよい。
 正極201及び負極203から選ばれる少なくとも1つには、電子導電性を高める目的で、導電助剤が含まれていてもよい。
 導電助剤の例は、
 (i) 天然黒鉛または人造黒鉛のようなグラファイト
 (ii) アセチレンブラックまたはケッチェンブラックのようなカーボンブラック、
 (iii) 炭素繊維または金属繊維のような導電性繊維、
 (iv) フッ化カーボン、
 (v) アルミニウム粉末のような金属粉末、
 (vi) 酸化亜鉛ウィスカーまたはチタン酸カリウムウィスカーのような導電性ウィスカー、
 (vii) 酸化チタンのような導電性金属酸化物、または
 (viii) ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物
 である。
 第2実施形態による電池の形状について、電池は、コイン型電池、円筒型電池、角型電池、シート型電池、ボタン型電池(すなわち、ボタン型セル)、扁平型電池、または積層型電池である。
 (実施例)
 本開示が、以下の実施例を参照しながらより詳細に説明される。
 (実施例1)
 (ハロゲン化物固体電解質材料の調製]
 摂氏マイナス90度以下の露点を有するアルゴン雰囲気(以下、乾燥アルゴン雰囲気と称する。)中で、LiCl粉末、ZrCl粉末、およびTaCl粉末が、1.9:0.9:0.1のLiCl:ZrCl:TaClモル比を有するように用意された。これらの粉末が、乳鉢で粉砕され、混合された。このようにして、混合物を得た。その後、混合物は、遊星型ボールミルで、25時間、600rpmでメカノケミカル的に反応するようにミリング処理された。このようにして、実施例1によるハロゲン化物固体電解質材料の粉末が得られた。実施例1によるハロゲン化物固体電解質材料は、Li1.9Zr0.9Ta0.1Clの組成式により表される組成を有していた。すなわち、実施例1においては、aおよびbの値は、それぞれ、0.10および1に等しかった。
 実施例1によるハロゲン化物固体電解質材料の単位質量あたりのLi含有量が、原子吸光分析法で測定された。実施例1によるハロゲン化物固体電解質材料のZr含有量およびTa含有量が、高周波誘導結合プラズマ発光分光分析法で測定された。これらの測定結果から得られたLi:Zr:Taの含有量を元に、Li:Zr:Taのモル比が算出された。その結果、実施例1によるハロゲン化物固体電解質材料は、1.9:0.9:1.0のLi:Zr:Taの原子比(すなわち、Li:Zr:Taのモル比)を有していた。このように、実施例1では、実施例1によるハロゲン化物固体電解質材料のLi:Zr:Taのモル比は、混合物に含有されていたLiCl粉末、ZrCl粉末、およびTaCl粉末のLi:Zr:Taのモル比と同じであった。
 (イオン伝導度の評価)
 図2は、ハロゲン化物固体電解質材料のイオン伝導度を評価するために用いられた加圧成形ダイス300の模式図を示す。加圧成形ダイス300は、枠型301、パンチ下部302、およびパンチ上部303を具備していた。枠型301は、絶縁性ポリカーボネートから形成されていた。パンチ上部303およびパンチ下部302は、いずれも、電子伝導性のステンレスから形成されていた。
 図2に示される加圧成形ダイス300を用いて、下記の方法により、実施例1によるハロゲン化物固体電解質材料のイオン伝導度が測定された。
 乾燥アルゴン雰囲気中で、実施例1によるハロゲン化物固体電解質材料の粉末を加圧成形ダイス300の内部に充填した。
 加圧成形ダイス300の内部で、実施例1によるハロゲン化物固体電解質材料に、パンチ上部303を用いて400MPaの圧力が印加された。
 圧力が印加されたまま、パンチ下部302およびパンチ上部303を介して、ポテンショスタット(Princeton Applied Research社製、商品名「VersaSTAT4」)を用いて、電気化学的インピーダンス測定法により、室温において、実施例1によるハロゲン化物固体電解質材料のインピーダンスが測定された。
 図3は、インピーダンス測定結果のCole-Cole線図のグラフを示す。
 図3において、複素インピーダンスの位相の絶対値が最も小さい測定点でのインピーダンスの実数値が、ハロゲン化物固体電解質材料のイオン伝導に対する抵抗値と見なされた。当該実数値については、図3において示される矢印RSEを参照せよ。当該抵抗値を用いて以下の数式(III)に基づいてイオン伝導度が算出された。
 σ=(RSE×S/t)-1 ・・・(III)
 ここで、
 σはイオン伝導度であり、
 Sは、固体電解質材料のパンチ上部303との接触面積(図2において、枠型301の中空部の断面積に等しい)であり、
 RSEは、インピーダンス測定における固体電解質材料の抵抗値であり、かつ
 tは、圧力が印加された固体電解質材料の厚み(図2において、固体電解質粒子100から形成される層の厚みに等しい)である。
 摂氏22度で測定された実施例1によるハロゲン化物固体電解質材料のイオン伝導度は、51×10-5S/cmであった。
 (二次電池の作製)
 乾燥アルゴン雰囲気中で、実施例1によるハロゲン化物固体電解質材料の粉末およびLiCoOを、30:70の体積比率で用意した。用意されたこれらの材料をメノウ乳鉢で混合することで混合物を得た。LiCoOは、活物質として機能した。
 9.5ミリメートルの内径を有する絶縁性の筒の中で、実施例1によるハロゲン化物固体電解質材料(100ミリグラム)、上記の混合物(9.9ミリグラム)、およびアルミニウム金属粉末(14.7ミリグラム)を、順に積層して、積層体を得た。積層体に300MPaの圧力が印加され、第1電極および固体電解質層が形成された。第1電極はアルミニウムから形成されていた。固体電解質層は、実施例1によるハロゲン化物固体電解質材料の粉末およびLiCoOから形成されていた。
 次に、固体電解質層に金属インジウム箔を接触させた。固体電解質層は、金属インジウム箔および第1電極の間に挟まれていた。金属インジウム箔は、200マイクロメートルの厚みを有していた。次に、金属インジウム箔に80MPaの圧力を印加した。このようにして、金属インジウム箔から形成された第2電極が形成された。
 ステンレス鋼から形成された集電体が第1電極および第2電極に取り付けられ、次いで、当該集電体に集電リードが取り付けられた。最後に、絶縁性フェルールを用いて、絶縁性の筒の内部を外気雰囲気から遮断し、絶縁性の筒の内部を密閉した。このようにして、実施例1による二次電池が得られた。
 [充放電試験]
 得られた二次電池は、摂氏25度に維持された恒温槽に配置された。
 0.068mA/cmの電流密度で、3.6ボルトの電圧に達するまで、実施例1による電池を充電した。当該電流密度は、0.05Cレートに相当する。
 次いで、0.068mA/cmの電流密度で、1.9ボルトの電圧に達するまで、実施例1による電池を放電した。
 充放電試験の結果、実施例1による二次電池は、274μAhの初期放電容量を有していた。
 図4は、実施例1による二次電池の初期放電特性を示すグラフである。
 (実施例2~実施例24)
 実施例2~実施例24では、LiCl粉末、ZrCl粉末、およびMCl粉末が、(6-(4+a)b):(1-a)b:abのLiCl:ZrCl:MClモル比を有するように用意されたこと以外は、実施例1と同様の実験が行われた。Mの元素は、表1に示される。aおよびbの値も、表1に示される。
 (実施例25)
 実施例25では、LiBr粉末、ZrBr粉末、およびTaBr粉末が、2.265:0.765:0.135のLiBr:ZrBr:TaBrモル比を有するように用意されたこと以外は、実施例1と同様の実験が行われた。
 (実施例26)
 実施例26では、LiBr粉末、ZrCl粉末、ZrBr粉末、およびTaCl粉末が、2.265:0.581:0.184 :0.135のLiBr:ZrCl:ZrBr:TaClモル比を有するように用意されたこと以外は、実施例1と同様の実験が行われた。
 (実施例27)
 実施例27では、LiBr粉末、ZrCl粉末、ZrBr粉末、およびNbCl粉末が、2.22:0.525:0.195 :0.18のLiBr:ZrCl:ZrBr:NbClモル比を有するように用意されたこと以外は、実施例1と同様の実験が行われた。
 (実施例28)
 実施例28では、LiI粉末、LiBr粉末、ZrCl粉末、ZrBr粉末、およびTaCl粉末が、2:0.265:0.331:0.434:0.135のLiI:LiBr:ZrCl:ZrBr:TaClモル比を有するように用意されたこと以外は、実施例1と同様の実験が行われた。
 (実施例29)
 実施例29では、LiI粉末、LiBr粉末、ZrCl粉末、ZrBr粉末、およびNbCl粉末が、2:0.22:0.275:0.445:0.18のLiI:LiBr:ZrCl:ZrBr:NbClモル比を有するように用意されたこと以外は、実施例1と同様の実験が行われた。
 実施例2~実施例29によるハロゲン化物固体電解質のイオン伝導度が、実施例1の場合と同様に測定された。結果は表1に示される。
 実施例2~実施例29によるハロゲン化物固体電解質を用いて、実施例1の場合と同様に、二次電池を得た。実施例2~実施例29による電池は、実施例1による電池と同様に、良好な充放電特性を有していた。
 (比較例1)
 比較例1では、LiBr粉末およびInBr粉末が、3:1のLiBr:InBrモル比を有するように用意された。用意された粉末は、乳鉢中で粉砕し、混合物を得た。得られた混合物に圧力を印加して、ペレットを形成した。ペレットは、真空下でガラス管に封入され、次いで摂氏200度で1週間焼成された。このようにして、比較例1による固体電解質材料を得た。比較例1による固体電解質材料は、LiInBrで表される組成を有していた。比較例1による固体電解質材料のイオン伝導度が、実施例1の場合と同様に測定された。その結果、摂氏22度で測定されたイオン伝導度は、1×10-7S/cm未満であった。
 (比較例2)
 比較例2では、LiCl粉末およびFeCl粉末が、2:1のLiCl:FeClモル比を有するように用意された。用意された粉末は、実施例1の場合と同様にメカノケミカル的に混合された。このようにして、比較例2による固体電解質材料が得られた。比較例2による固体電解質材料は、LiFeClで表される組成を有していた。比較例1による固体電解質材料のイオン伝導度が、実施例1の場合と同様に測定された。その結果、摂氏22度で測定されたイオン伝導度は、9×10-6S/cmであった。
 比較例2による固体電解質材料を用い、実施例1の場合と同様に、二次電池を得た。比較例2による二次電池は充放電試験に供された。比較例2による二次電池は、1μAh以下の初期放電容量を有していた。その結果、比較例2による二次電池は、充電も放電もされなかった。言い換えれば、比較例2による二次電池は、電池として機能しなかった。
 実施例1~実施例29におけるイオン伝導度の測定結果は、表1に示される。比較例1および比較例2におけるイオン伝導度の測定結果は、表2に示される。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1~表2から明らかなように、実施例1~実施例29によるハロゲン化物固体電解質は、室温において、1×10-5S/cm以上の高いイオン伝導度を有する。一方、比較例1および比較例2によるハロゲン化物固体電解質は、それぞれ、1×10-7S/cm未満および9×10-6S/cm以下という低いイオン伝導度を有する。
 数式:0.01≦a≦0.7が充足される場合、イオン伝導度がさらに向上する。
 実施例1~実施例7によるハロゲン化物固体電解質を互いに比較すると明らかなように、数式:0.01≦a≦0.4(望ましくは0.05≦a≦0.4)が充足される場合、イオン伝導度がさらに高くなる。
 bの値は、化学量論比からのLi欠損量(すなわち、Liの化学量論比からのずれ)を表す。bの値が0.5以上1.3以下である場合には、イオン伝導度が高い。
 実施例9~実施例11によるハロゲン化物固体電解質を、実施例8および実施例12によるハロゲン化物固体電解質と比較すると明らかなように、bの値が0.8以上1.1以下である場合には、イオン伝導度がさらに高くなる。このことは、実施例21~実施例23によるハロゲン化物固体電解質を、実施例20および実施例24によるハロゲン化物固体電解質との比較からも支持される。
 全ての実施例1~実施例29において、室温において電池は充電および放電された。一方、比較例2では、電池は充電も放電もされなかった。
 実施例1~実施例29によるハロゲン化物固体電解質は、硫黄を含有しないため、硫化水素が発生しない。
 以上のように、本開示に係るハロゲン化物固体電解質材料は、硫化水素を発生せず、高いリチウムイオン伝導度を有し、かつ良好に充電および放電可能な電池を提供するために適切である。
 本開示に係るハロゲン化物固体電解質材料は、電池(例えば、全固体電池)のような電気化学デバイスにおいて利用される。
100 固体電解質粒子
201 正極
202 電解質層
203 負極
204 正極活物質粒子
205 負極活物質粒子
300 加圧成形用ダイス
301 枠型
302 パンチ下部
303 パンチ上部
1000 電池
 

Claims (8)

  1.  以下の化学式(I)により表され、
      Li6-(4+a)b(Zr1-a   (I)
      ここで、
      Mは、TaおよびNbからなる群より選択される少なくとも1種の元素であり、
      Xは、ハロゲン元素であり、
      以下の数式
      0<a<1、かつ
      0<b<1.5
      が充足される、
     ハロゲン化物固体電解質材料。
  2.  請求項1に記載のハロゲン化物固体電解質材料であって、
     以下の数式
      0.01≦a≦0.7
     が充足される、
     ハロゲン化物固体電解質材料。
  3.  請求項2に記載のハロゲン化物固体電解質材料であって、
     以下の数式
      0.01≦a≦0.4
     が充足される、
     ハロゲン化物固体電解質材料。
  4.  請求項1~3のいずれか1項に記載のハロゲン化物固体電解質材料であって、
     以下の数式
      0.5≦b≦1.3
     が充足される、
     ハロゲン化物固体電解質材料。
  5.  請求項4に記載のハロゲン化物固体電解質材料であって、
     以下の数式
      0.8≦b≦1.1
     が充足される、
     ハロゲン化物固体電解質材料。
  6.  請求項1~5のいずれか1項に記載のハロゲン化物固体電解質材料であって、
     以下の化学式(II)により表され、
      Li6-(4+a)b(Zr1-aCl6-x-yBr   (II)
     ここで、以下の数式、
      0≦x≦6、
      0≦y≦6、および
      (x+y)≦6
     が充足される、
     ハロゲン化物固体電解質材料。
  7.  請求項6に記載のハロゲン化物固体電解質材料であって、
     以下の数式
      (x+y)<6
     が充足される、
     ハロゲン化物固体電解質材料。
  8.  電池であって、
      正極、
      負極、および
      前記正極および前記負極の間に設けられている電解質層、
     を備え、
     前記正極、前記負極、および前記電解質層からなる群から選択される少なくとも1つは、請求項1~7のいずれか1項に記載のハロゲン化物固体電解質材料を含有する、
     電池。
PCT/JP2019/029126 2018-10-01 2019-07-25 ハロゲン化物固体電解質材料およびこれを用いた電池 WO2020070958A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020549981A JPWO2020070958A1 (ja) 2018-10-01 2019-07-25 ハロゲン化物固体電解質材料およびこれを用いた電池
CN201980034698.XA CN112189239B (zh) 2018-10-01 2019-07-25 卤化物固体电解质材料和使用该材料的电池
EP19868283.3A EP3863026B1 (en) 2018-10-01 2019-07-25 Halide solid electrolyte material and battery using same
US17/120,144 US11855255B2 (en) 2018-10-01 2020-12-12 Halide solid electrolyte material and battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-186928 2018-10-01
JP2018186928 2018-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/120,144 Continuation US11855255B2 (en) 2018-10-01 2020-12-12 Halide solid electrolyte material and battery including the same

Publications (1)

Publication Number Publication Date
WO2020070958A1 true WO2020070958A1 (ja) 2020-04-09

Family

ID=70055479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029126 WO2020070958A1 (ja) 2018-10-01 2019-07-25 ハロゲン化物固体電解質材料およびこれを用いた電池

Country Status (5)

Country Link
US (1) US11855255B2 (ja)
EP (1) EP3863026B1 (ja)
JP (1) JPWO2020070958A1 (ja)
CN (1) CN112189239B (ja)
WO (1) WO2020070958A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080083A1 (ja) 2020-10-16 2022-04-21 マクセル株式会社 電気化学素子用電極活物質およびその製造方法、電気化学素子用電極材料、電気化学素子用電極、電気化学素子、並びに移動体
WO2022190933A1 (ja) 2021-03-11 2022-09-15 マクセル株式会社 電気化学素子用電極活物質、電気化学素子用電極材料、電気化学素子用電極、電気化学素子および移動体
WO2023038031A1 (ja) 2021-09-07 2023-03-16 住友化学株式会社 リチウム含有塩化物及びその製造方法、並びに固体電解質及び電池
WO2023042640A1 (ja) 2021-09-14 2023-03-23 マクセル株式会社 電池およびその使用方法、並びに電池のシステム
WO2023042579A1 (ja) 2021-09-14 2023-03-23 マクセル株式会社 電池
WO2023054333A1 (ja) 2021-09-30 2023-04-06 マクセル株式会社 全固体電池
WO2023054293A1 (ja) 2021-09-30 2023-04-06 マクセル株式会社 全固体電池
US11735765B2 (en) 2021-01-08 2023-08-22 Samsung Electronics Co., Ltd. Solid ion conductor, solid electrolyte including the solid ion conductor, electrochemical device including the solid electrolyte, and method of preparing the solid ion conductor
US11961962B2 (en) 2020-07-02 2024-04-16 Samsung Electronics Co., Ltd. Solid ion conductor compound, solid electrolyte including the same, electrochemical cell including the same, and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240062478A (ko) * 2022-11-01 2024-05-09 삼성에스디아이 주식회사 고체전해질, 이를 포함하는 리튬전지, 및 고체전해질 제조방법
CN117410553A (zh) * 2023-12-14 2024-01-16 深圳欣视界科技有限公司 卤化物固态电解质及其制备方法和应用
CN118073640A (zh) * 2024-04-17 2024-05-24 宁德时代新能源科技股份有限公司 掺杂型卤化物固态电解质及其制备方法、全固态电池和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028608A1 (fr) * 1998-11-10 2000-05-18 Matsushita Electric Industrial Co., Ltd. Pile secondaire au lithium
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
JP2017107665A (ja) * 2015-12-07 2017-06-15 トヨタ自動車株式会社 複合固体電解質
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076134B2 (ja) 2004-06-08 2012-11-21 国立大学法人東京工業大学 リチウム電池素子
WO2017159665A1 (ja) 2016-03-14 2017-09-21 出光興産株式会社 ハロゲン化アルカリ金属の製造方法、及び硫化物系固体電解質の製造方法
EP3327837A1 (en) * 2016-11-23 2018-05-30 Eidgenössische Materialprüfungs- und Forschungsanstalt EMPA Li-ion based electrochemical energy storage cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028608A1 (fr) * 1998-11-10 2000-05-18 Matsushita Electric Industrial Co., Ltd. Pile secondaire au lithium
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
JP2017107665A (ja) * 2015-12-07 2017-06-15 トヨタ自動車株式会社 複合固体電解質
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOHNSACK, A. ET AL.: "Ternäre Halogenide vom Typ A3MX6. VI [I] Ternäre Chloride der Selten-Erd-Elemente mit Lithium, Li3MCl6 (M = Tb-Lu, Y, Sc): Synthese, Kristallstruktur, Ionenbeweglichkeit Ternary Halides of the A3MX6 Type. VI. Ternary Chlorides of the Rare-Earth Elements with Lithium, Li3LnCl6 (Ln: Tb-Lu, Y, Sc): Syn", ZEITSCHRIFT FÜR ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 623, no. 7, 1 July 1997 (1997-07-01), pages 1067 - 1073, XP055600040, ISSN: 1521-3749, DOI: 10.1002/chin.199739018 *
BOHNSACK, A. ET AL.: "Ternäre Halogenide vom Typ A3MX6. VII [1]. Die Bromide Li3MBr6 (M=SmLu, Y): Synthese, Kristallstruktur, Ionenbeweglichkeit", ZEITSCHRIFT FÜR ANORGANISCHE ALLGEMEINE CHEMIE, vol. 623, no. 9, 1 September 1997 (1997-09-01), pages 1352 - 1356, XP055600030, ISSN: 1521-3749 *
See also references of EP3863026A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11961962B2 (en) 2020-07-02 2024-04-16 Samsung Electronics Co., Ltd. Solid ion conductor compound, solid electrolyte including the same, electrochemical cell including the same, and preparation method thereof
WO2022080083A1 (ja) 2020-10-16 2022-04-21 マクセル株式会社 電気化学素子用電極活物質およびその製造方法、電気化学素子用電極材料、電気化学素子用電極、電気化学素子、並びに移動体
US11735765B2 (en) 2021-01-08 2023-08-22 Samsung Electronics Co., Ltd. Solid ion conductor, solid electrolyte including the solid ion conductor, electrochemical device including the solid electrolyte, and method of preparing the solid ion conductor
WO2022190933A1 (ja) 2021-03-11 2022-09-15 マクセル株式会社 電気化学素子用電極活物質、電気化学素子用電極材料、電気化学素子用電極、電気化学素子および移動体
WO2023038031A1 (ja) 2021-09-07 2023-03-16 住友化学株式会社 リチウム含有塩化物及びその製造方法、並びに固体電解質及び電池
KR20240052961A (ko) 2021-09-07 2024-04-23 스미또모 가가꾸 가부시키가이샤 리튬 함유 염화물 및 그 제조 방법, 그리고 고체 전해질 및 전지
WO2023042640A1 (ja) 2021-09-14 2023-03-23 マクセル株式会社 電池およびその使用方法、並びに電池のシステム
WO2023042579A1 (ja) 2021-09-14 2023-03-23 マクセル株式会社 電池
WO2023054333A1 (ja) 2021-09-30 2023-04-06 マクセル株式会社 全固体電池
WO2023054293A1 (ja) 2021-09-30 2023-04-06 マクセル株式会社 全固体電池

Also Published As

Publication number Publication date
US11855255B2 (en) 2023-12-26
CN112189239B (zh) 2022-08-12
US20210098824A1 (en) 2021-04-01
EP3863026B1 (en) 2022-06-15
EP3863026A4 (en) 2021-12-08
EP3863026A1 (en) 2021-08-11
JPWO2020070958A1 (ja) 2021-09-02
CN112189239A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2020070955A1 (ja) ハロゲン化物固体電解質材料およびこれを用いた電池
WO2020070958A1 (ja) ハロゲン化物固体電解質材料およびこれを用いた電池
WO2020070956A1 (ja) ハロゲン化物固体電解質材料およびこれを用いた電池
JP7432897B2 (ja) 固体電解質材料およびそれを用いた電池
US20220209291A1 (en) Solid electrolyte material and battery using same
JP7418014B2 (ja) 固体電解質材料およびそれを用いた電池
WO2020070957A1 (ja) ハロゲン化物固体電解質材料およびこれを用いた電池
US20210391594A1 (en) Solid electrolyte material and battery using the same
US20220209290A1 (en) Solid electrolyte material and battery using same
US20210391593A1 (en) Solid electrolyte material and battery using the same
US20230019493A1 (en) Solid electrolyte material and battery using same
US20230023022A1 (en) Solid electrolyte material and battery using same
US20210391595A1 (en) Solid electrolyte material and battery using the same
US20230006247A1 (en) Solid electrolyte material and battery using same
WO2023013232A1 (ja) 固体電解質材料およびそれを用いた電池
WO2020137356A1 (ja) 固体電解質材料およびそれを用いた電池
US20240113329A1 (en) Solid electrolyte material and battery
US20240097185A1 (en) Solid electrolyte material and battery
US20240079645A1 (en) Solid electrolyte material and battery using the same
WO2023195212A1 (ja) オキシハロゲン化物材料、電池、および電池システム
US20230327194A1 (en) Solid electrolyte material and battery
US20230018441A1 (en) Solid electrolyte material and battery using same
US20230083305A1 (en) Solid electrolyte material and battery using same
US20240213523A1 (en) Solid electrolyte material and battery using same
US20230021952A1 (en) Solid electrolyte material and battery using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019868283

Country of ref document: EP

Effective date: 20210503