WO2023162669A1 - リチウムイオン伝導性固体電解質 - Google Patents

リチウムイオン伝導性固体電解質 Download PDF

Info

Publication number
WO2023162669A1
WO2023162669A1 PCT/JP2023/003939 JP2023003939W WO2023162669A1 WO 2023162669 A1 WO2023162669 A1 WO 2023162669A1 JP 2023003939 W JP2023003939 W JP 2023003939W WO 2023162669 A1 WO2023162669 A1 WO 2023162669A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
solid electrolyte
lithium
ion conductive
conductive solid
Prior art date
Application number
PCT/JP2023/003939
Other languages
English (en)
French (fr)
Inventor
晃史 炭谷
駿介 倉橋
建燦 李
良輔 清
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023162669A1 publication Critical patent/WO2023162669A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion conductive solid electrolyte.
  • components such as Co, P, and S diffuse at the interface between the positive electrode active material and the sulfide-based solid electrolyte by arranging a coating film containing a lithium ion conductor on the surface of the positive electrode.
  • a positive electrode is disclosed that reduces interfacial resistance by inhibiting and preventing lithium depletion formation.
  • a first lithium ion conductor with good Li ion conductivity such as LiNbO3 and a second lithium ion conductor with high electrochemical stability are included on the surface of the positive electrode active material.
  • a positive electrode active material is disclosed that can suppress an increase in the interfacial resistance between the positive electrode active material and the sulfide solid electrolyte material over time by providing a reaction suppressing portion.
  • an oxide-based solid electrolyte is preferable to a sulfide-based solid electrolyte from the viewpoint of safety.
  • Patent Document 1 exemplifies lithium zirconium oxide, lithium titanium oxide, lithium niobium oxide, etc. as the lithium ion conductor, specific compounds other than Li 2 O—ZrO 2 Composition is not disclosed.
  • examples of the first lithium ion conductor include niobium oxides such as LiNbO3 and Li-containing oxides such as tantalum oxides such as LiTaO3 .
  • Li comprising a polyanion structure having at least one of B, Si, P, Al, and W, including Li 2 Ti 2 O 5 , Li 2 Ti 2 O 3 , Li 4 Ti 5 O 12 , etc.
  • Including compounds are exemplified.
  • these documents neither describe nor suggest how to improve the ion conductivity of an oxide-based solid electrolyte as a lithium ion conductor.
  • SUMMARY OF THE INVENTION In view of the above situation, an object of the present invention is to provide an oxide-based lithium ion conductive solid electrolyte with high ionic conductivity and a lithium ion secondary battery using the solid electrolyte.
  • the present invention includes the configurations shown below.
  • the M1 is at least one metal element selected from the group consisting of niobium and tantalum elements, 0.05 ⁇ x ⁇ 0.15; Lithium ion conductive solid electrolyte.
  • the lithium ion conductive solid electrolyte according to the above [1] which is confirmed to have a monoclinic crystal structure in X-ray diffraction measurement.
  • the lithium ion conductive solid electrolyte according to the above [1] or [2] which has a total lithium ion conductivity ⁇ total (25° C.) of 1.0 ⁇ 10 ⁇ 6 (S/cm) or more.
  • a lithium ion secondary battery comprising the lithium ion conductive solid electrolyte according to any one of [1] to [3] as a solid electrolyte.
  • the present invention it is possible to provide an oxide-based lithium ion conductive solid electrolyte with high ionic conductivity and a lithium ion secondary battery using the solid electrolyte.
  • lithium ion conductive solid electrolyte for example, a high output and high capacity lithium ion secondary battery can be obtained.
  • Example 1 shows X-ray diffraction patterns of lithium ion conductive solid electrolytes (1) to (3) produced in Example 1 and Comparative Examples 1 and 2, respectively.
  • a lithium ion conductive solid electrolyte (hereinafter also referred to as the present electrolyte) that is one embodiment of the present invention is a compound represented by the composition formula Li 2-x Ti 1-x M1 x O 3 , wherein M1 is It is at least one metal element selected from the group consisting of niobium and tantalum elements and satisfies 0.05 ⁇ x ⁇ 0.15. More specifically, the present electrolyte is a lithium-containing titanium oxide represented by the composition formula Li 2 TiO 3 partially substituted with the M1 element doped with a titanium element.
  • the lithium element when the M1 element replaces the tetravalent titanium ion as a pentavalent ion, the lithium element does not exist in the compound from the viewpoint of charge compensation, as shown in the lithium composition 2-x. Lithium vacancies are introduced into the crystal structure, making it easier for lithium ions to move, which is thought to improve lithium ion conductivity.
  • the present electrolyte has at least lithium, titanium, M1 and oxygen as constituent elements, and M1 is at least one metal element selected from the group consisting of niobium and tantalum elements.
  • the present electrolyte can also be said to be a lithium ion conductive solid electrolyte made of a specific oxide containing lithium. However, this does not strictly exclude the presence of impurities in the lithium ion conductive solid electrolyte.
  • the lithium ion conductive solid electrolyte may contain unavoidable impurities resulting from raw materials and/or manufacturing processes, and impurities having other crystal systems as long as they do not deteriorate the lithium ion conductivity.
  • the ratio of the number of atoms of the respective constituent elements of lithium, titanium, M1 and oxygen constituting the lithium ion conductive solid electrolyte in the preferred embodiment of the present invention is, for example, Mn, Co and Ni at a ratio of 1:1:1. It can be measured by Auger Electron Spectroscopy (AES) using absolute intensity quantification using standard powder samples contained. Examples of standard powder samples include lithium-containing transition metal oxides such as LiCoO 2 .
  • the compositional formula of this electrolyte is represented by the following formula (1).
  • Li 2-x Ti 1-x M1 x O 3 Formula (1) The content of M1 contained in the present electrolyte, represented by x in the above formula (1), is 0.05 or more and 0.15 or less. The range of this content is 5% or more and 15% or less when expressed as a percentage of the number of atoms of M1 with respect to the total number of atoms of the elements of titanium and M1.
  • the lower limit of the M1 content is preferably 0.06, more preferably 0.07, and particularly preferably 0.08.
  • the upper limit of the M1 content is preferably 0.13, more preferably 0.12, and still more preferably 0.10.
  • the M1 content is within the above range, the improvement in lithium ion conductivity is large.
  • the M1 content can be obtained by conventionally known quantitative analysis as a percentage of the number of atoms of M1 with respect to the total number of atoms of titanium and M1.
  • the M1 content can be obtained by adding an acid to a sample, thermally decomposing the sample, fixing the volume of the thermally decomposed product, and using a high frequency inductively coupled plasma (ICP) emission spectrometer.
  • ICP inductively coupled plasma
  • the percentage of the number of atoms of M1 with respect to the total number of atoms of titanium and M1, which represents the doping amount of M1, is simply can be calculated from the charged amount of raw materials.
  • M1 contained in the present electrolyte is at least one metal element selected from the group consisting of niobium and tantalum elements. Focusing on the valences of the constituent elements of the lithium ion conductive solid electrolyte, M1 is doped as pentavalent ions, and therefore differs by 1 from the valences of titanium. Therefore, the number of lithium ions contained in the lithium ion conductive solid electrolyte is reduced by the number x of doped M1 atoms in order to balance the charge neutrality of the overall electrolyte.
  • the present electrolyte is preferably confirmed to contain a monoclinic crystal structure in X-ray diffraction measurements.
  • the M1 is doped to replace the titanium element, occupies the position of the titanium element, and is in a solid solution state in the lithium-containing titanium oxide, the monoclinic crystal structure of the original Li 2 TiO 3 is confirmed. be.
  • the monoclinic crystal structure of Li 2 TiO 3 is preferably confirmed, identified as LiM1O 3 with doped M1 with no or low ionic conductivity. It is not preferable to confirm other crystal structures such as
  • the lattice constant particularly the angle of ⁇
  • the angle of ⁇ varies depending on the doping amount of M1
  • the monoclinic crystal structure is maintained.
  • the angle of ⁇ varies depending on the doping amount and approaches 90°, it can be said that the crystal becomes a cubic crystal.
  • the total lithium ion conductivity ⁇ total of the present electrolyte at 25° C. is preferably 1.0 ⁇ 10 ⁇ 6 (S/cm) or more, more preferably 1.5 ⁇ 10 ⁇ 6 (S/cm) or more. and more preferably 2.0 ⁇ 10 ⁇ 6 (S/cm) or more.
  • the total lithium ion conductivity can be measured by the method described in Examples below.
  • the production method of the present electrolyte is not particularly limited as long as the lithium ion conductive solid electrolyte within the range of the constitution described above can be obtained.
  • a solid phase reaction, a liquid phase reaction, or the like can be employed.
  • the production method by solid phase reaction will be described in detail below.
  • a manufacturing method using a solid phase reaction includes a manufacturing method having at least one mixing step and a firing step.
  • the compound containing a lithium atom is not particularly limited, but an inorganic compound is preferable from the viewpoint of ease of handling.
  • examples of the inorganic compound containing a lithium atom include lithium carbonate (Li 2 CO 3 ) and lithium oxide (Li 2 O).
  • Lithium compounds such as These lithium compounds may be used singly or in combination of two or more. Lithium carbonate (Li 2 CO 3 ) is preferably used because it is easily decomposed and reacted.
  • the compound containing a titanium atom is not particularly limited, but titanium compounds such as titanium dioxide (TiO 2 ) and titanium tetraethoxide can be mentioned, and inorganic compounds are preferred because of ease of handling. These titanium compounds may be used singly or in combination of two or more. Titanium dioxide (TiO 2 ) is preferably used in terms of cost and ease of handling.
  • the compound containing the M1 atom is not particularly limited, it is preferably an inorganic compound because it is easy to handle, and compounds such as oxides and nitrates of M1 can be mentioned. These compounds may be used singly or in combination of two or more. It is preferable to use an oxide from the point of cost.
  • niobium pentoxide Nb 2 O 5
  • niobium pentoxide Nb 2 O 5
  • examples of oxides include tantalum compounds such as tantalum pentoxide (Ta 2 O 5 ) and tantalum nitrate (Ta(NO 3 ) 5 ). These tantalum compounds may be used singly or in combination of two or more. It is preferable to use tantalum pentoxide (Ta 2 O 5 ) from the point of cost.
  • Mixing of the raw materials described above can be performed using a roll rolling mill, ball mill, small-diameter ball mill (bead mill), medium stirring mill, airflow pulverizer, mortar, automatic kneading mortar, dissolving machine, jet mill, or the like.
  • the ratio of the raw materials to be mixed is conveniently stoichiometric so as to give the composition of formula (1) above. More specifically, since lithium atoms tend to flow out of the system in the firing step described later, the above-described compound containing lithium atoms may be added in excess of about 10% to 20% for adjustment.
  • the mixing step may be performed in an air atmosphere. A gas atmosphere of nitrogen gas and/or argon gas with an adjusted oxygen gas content is more preferable.
  • the mixture obtained in the mixing process is fired.
  • a ball mill or mortar is used between the firing processes for the purpose of pulverizing the primary fired product or reducing the particle size.
  • a crushing step using may be provided.
  • the firing process may be performed in an air atmosphere.
  • a gas atmosphere of nitrogen gas and/or argon gas with an adjusted oxygen gas content is more preferable.
  • the firing temperature is preferably in the range of 800 to 1200°C, more preferably in the range of 850 to 1100°C, and even more preferably in the range of 900 to 1000°C. Firing at 800° C. or higher causes sufficient solid solution of the metal element M1 to improve ion conductivity, while firing at 1200° C. or lower is preferable because lithium atoms are less likely to flow out of the system.
  • the firing time is preferably 1 to 16 hours, more preferably 3 to 12 hours. When the firing time is within the above range, the total lithium ion conductivity tends to be large, which is preferable. If the baking time is longer than the above range, lithium atoms tend to flow out of the system.
  • the firing time and firing temperature are adjusted in conjunction with each other.
  • the low-temperature firing may be performed at 400 to 800° C. for 2 to 12 hours.
  • high-temperature firing may be performed twice.
  • the firing temperature is preferably in the range of 800 to 1200°C, more preferably in the range of 850 to 1100°C, and even more preferably in the range of 900 to 1000°C.
  • the firing time for each firing step is preferably 1 to 8 hours, more preferably 2 to 6 hours.
  • the fired product obtained after firing is left in the atmosphere, it may absorb moisture or react with carbon dioxide and deteriorate.
  • the fired product obtained after firing is preferably transferred to a dehumidified inert gas atmosphere and stored when the temperature of the fired product drops below 200° C. after firing.
  • the present electrolyte can be obtained.
  • One preferred embodiment of the present electrolyte is its use as a solid electrolyte in a lithium ion secondary battery.
  • lithium ion secondary battery containing the present electrolyte as a solid electrolyte.
  • the structure of the lithium ion secondary battery is not particularly limited.
  • the positive electrode current collector, positive electrode layer, solid electrolyte layer, negative electrode layer and negative electrode current collector are arranged in this order. It has a laminated structure.
  • the positive electrode current collector and the negative electrode current collector are not particularly limited as long as the material conducts electrons without causing an electrochemical reaction.
  • it is composed of a conductor such as a metal element or alloy such as copper, aluminum or iron, or a conductive metal oxide such as antimony-doped tin oxide (ATO) or tin-doped indium oxide (ITO).
  • ATO antimony-doped tin oxide
  • ITO tin-doped indium oxide
  • a current collector in which a conductive adhesive layer is provided on the surface of a conductor can also be used.
  • the conductive adhesive layer can be configured to contain a granular conductive material, a fibrous conductive material, or the like.
  • the positive electrode layer and the negative electrode layer can be obtained by a known powder molding method.
  • a positive electrode current collector, a positive electrode layer powder, a solid electrolyte layer powder, a negative electrode layer powder, and a negative electrode current collector are layered in this order and powder-molded at the same time to form a positive electrode.
  • the layer formation of each of the layer, the solid electrolyte layer and the negative electrode layer and the connection between each of the positive electrode current collector, the positive electrode layer, the solid electrolyte layer, the negative electrode layer and the negative electrode current collector can also be performed simultaneously.
  • each layer can be powder compacted sequentially.
  • the obtained powder molded article may be subjected to heat treatment such as firing, if necessary.
  • a solvent is added to the powder to form a slurry, the slurry is applied to a current collector, dried, and then pressurized (doctor blade method), and the slurry is molded into a liquid-absorbing mold.
  • a centrifugal force method which involves compacting and molding powder by centrifugal force
  • a roll forming method which involves feeding powder to a roll press and roll forming, powder can be formed into a predetermined shape cold isostatic pressing, which involves placing the powder in a flexible bag and placing it in a pressure medium to apply isostatic pressure;
  • a hot isostatic pressing method including applying an isostatic pressure with a pressure medium can be mentioned.
  • the powder is put into the fixed lower punch and the fixed die, and the powder is pressed by the movable upper punch.
  • Put the powder in the fixed lower punch and the movable die apply pressure to the powder with the movable upper punch, move the movable die when the pressure exceeds a predetermined value
  • the fixed lower punch Floating die method which includes making it relatively enter into the movable die, put the powder in the fixed lower punch and the movable die, apply pressure to the powder with the movable upper punch, and move the movable die to move the fixed lower punch can include the withdrawing method, which involves allowing the to move into a relatively movable die, and the like.
  • the thickness of the positive electrode layer is preferably 10-200 ⁇ m, more preferably 30-150 ⁇ m, still more preferably 50-100 ⁇ m.
  • the thickness of the solid electrolyte layer is preferably 50 nm to 1000 ⁇ m, more preferably 100 nm to 100 ⁇ m.
  • the thickness of the negative electrode layer is preferably 10-200 ⁇ m, more preferably 30-150 ⁇ m, and even more preferably 50-100 ⁇ m.
  • Active materials for negative electrodes include lithium alloys, metal oxides, graphite, hard carbon, soft carbon, silicon, silicon alloys, silicon oxide SiO n (0 ⁇ n ⁇ 2), silicon/carbon composites, porous Examples include those containing at least one selected from the group consisting of a composite material containing silicon domains in carbon pores, lithium titanate, and graphite coated with lithium titanate. Silicon/carbon composites and composites containing silicon domains within the pores of porous carbon are preferred because they have high specific capacity and can increase energy density and battery capacity.
  • the silicon domain is amorphous, the size of the silicon domain is 10 nm or less, and the porous carbon-derived pores are present in the vicinity of the silicon domain. It is an encapsulating composite material.
  • Active materials for the positive electrode include LiCo oxide, LiNiCo oxide, LiNiCoMn oxide, LiNiMn oxide, LiMn oxide, LiMn spinel, LiMnNi oxide, LiMnAl oxide, LiMnMg oxide, LiMnCo oxide, LiMnFe oxide, LiMnZn oxide, LiCrNiMn oxide, LiCrMn oxide, lithium titanate, lithium metal phosphate, transition metal oxide, titanium sulfide, graphite, hard carbon, lithium nitride containing transition metal, silicon oxide, lithium silicate , lithium metal, lithium alloys, Li-containing solid solutions, and lithium-storing intermetallic compounds.
  • LiNiCoMn oxide LiNiCo oxide, LiNiCo oxide or LiCo oxide is preferred, and LiNiCoMn oxide is more preferred.
  • LiNiCoMn oxide has good affinity with solid electrolytes, and has an excellent balance of macro-conductivity, micro-conductivity and ionic conductivity.
  • the LiNiCoMn oxide has a high average potential, and can increase the energy density and the battery capacity in terms of the balance between the specific capacity and the stability.
  • the surface of the positive electrode active material may be coated with the present solid electrolyte, lithium niobate, lithium phosphate, lithium borate, or the like.
  • the active material in one embodiment of the present invention is preferably particulate.
  • the 50% diameter in the volume-based particle size distribution is preferably from 0.1 ⁇ m to 30 ⁇ m, more preferably from 0.3 ⁇ m to 20 ⁇ m, even more preferably from 0.4 ⁇ m to 10 ⁇ m, and most preferably from 0.5 ⁇ m to 3 ⁇ m.
  • the ratio of the length of the major axis to the length of the minor axis (length of major axis/length of minor axis), that is, the aspect ratio is preferably less than 3, more preferably less than 2.
  • the active material in one embodiment of the present invention may form secondary particles.
  • the 50% diameter in the number-based particle size distribution of the primary particles is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 0.3 ⁇ m or more and 15 ⁇ m or less, further preferably 0.4 ⁇ m or more and 10 ⁇ m or less, and 0.5 ⁇ m or more and 2 ⁇ m.
  • the active material is preferably primary particles.
  • the active material is primary particles, the electron conduction path or hole conduction path is less likely to be damaged even when compression molding is performed.
  • Example 1 ( 1 ) Production of Lithium Ion Conductive Solid Electrolyte (manufactured by Wako Pure Chemical Industries, purity 98.5% or more) and niobium pentoxide (Nb 2 O 5 ) (manufactured by Fujifilm Wako Pure Chemical Industries, purity 99.9%) are weighed, and the total number of atoms of the elements of titanium and niobium is Lithium carbonate (Li 2 CO 3 ) (manufactured by Sigma-Aldrich, purity 99.0% or more) was weighed so that the number of lithium atoms was 1.92 times the amount.
  • the obtained pulverized material is placed in an alumina boat, and heated to 900 ° C. at a heating rate of 10 ° C./min in an air atmosphere (gas flow rate of 100 mL / min) using a rotary firing furnace (manufactured by Motoyama Co., Ltd.). was fired for 3 hours. After the temperature of the obtained secondary calcined product was lowered, it was taken out at room temperature and transferred to a desiccator kept in a vacuum of 200 Pa or less to obtain a lithium ion conductive solid electrolyte (1).
  • Powder X-ray Diffraction (XRD) Measurement A powder X-ray diffraction measurement of the lithium ion conductive solid electrolyte (1) was performed using a powder X-ray diffractometer PANalytical MPD (manufactured by Spectris Co., Ltd.). As the X-ray diffraction measurement conditions, Cu-K ⁇ ray (output 45 kV, 40 mA) is used, and the diffraction angle 2 ⁇ is measured in the range of 10 to 60 °, and the X-ray diffraction of the lithium ion conductive solid electrolyte (1) ( XRD) figure was obtained. The XRD pattern obtained is shown in FIG. In the XRD pattern, only the same monoclinic crystal structure as undoped Li 2 TiO 3 of Comparative Example 2 described later was confirmed.
  • Ionic conductivity evaluation (measurement pellet preparation) A measurement pellet for evaluating the ion conductivity of the lithium ion conductive solid electrolyte was prepared as follows.
  • the obtained lithium ion conductive solid electrolyte (1) is pulverized into powder by the pulverization procedure after the primary firing described above, and then formed into discs having a diameter of 10 mm and a thickness of 1 mm using a tableting machine. It was molded and fired at 1000° C. for 3 hours in the air.
  • the obtained baked product had a relative density of 93% with respect to the theoretical density.
  • a gold layer was formed on both sides of the obtained fired product using a sputtering machine to obtain a measurement pellet for ionic conductivity evaluation.
  • the ion conductivity evaluation of the lithium ion conductive solid electrolyte (1) was performed as follows. The measurement pellets prepared by the method described above were kept at 25° C. for 2 hours prior to measurement. Next, AC impedance was measured at 25° C. using an impedance analyzer (manufactured by Solartron Analytical, model number: 1260A) with an amplitude of 25 mV and a frequency range of 1 Hz to 10 MHz. The obtained impedance spectrum was fitted with an equivalent circuit using the equivalent circuit analysis software ZView attached to the device to obtain the total ionic conductivity. Table 1 also shows the obtained ionic conductivity.
  • Comparative Example 1 (Preparation of lithium ion conductive solid electrolyte) Titanium dioxide and niobium pentoxide are weighed so that the percentage of the number of niobium atoms with respect to the total number of atoms of titanium and niobium elements is 16%, and the number of lithium atoms with respect to the total number of atoms of titanium and niobium elements.
  • a lithium ion conductive solid electrolyte (2) was obtained in the same manner as in Example 1, except that lithium carbonate was weighed so as to be 1.84 times the amount.
  • XRD measurement, ionic conductivity evaluation XRD measurement and ion conductivity evaluation were performed in the same manner as in Example 1.
  • FIG. 1 also shows an XRD pattern of the lithium ion conductive solid electrolyte (2).
  • a diffraction peak derived from the monoclinic crystal structure (ICSD reference code: 15150) identified by Li 2 TiO 3 indicated by ⁇ (inverted black triangle)
  • a diffraction peak derived from the trigonal crystal structure (ICSD reference code: 74469) of lithium niobate (LiNbO 3 ) was confirmed in the hatched region.
  • the lithium ion conductive solid electrolyte (1) of Example 1 has only a monoclinic crystal structure identified as Li 2 TiO 3 .
  • Table 1 also shows the total ion conductivity of the lithium ion conductive solid electrolyte (2).
  • Comparative Example 2 (Preparation of lithium ion conductive solid electrolyte) Same as Example 1 except that niobium pentoxide was not used, and titanium dioxide and lithium carbonate were weighed so that the number of lithium atoms was 2.00 times the number of titanium atoms contained in the titanium dioxide. Then, a lithium ion conductive solid electrolyte (3) was obtained. (XRD measurement, ionic conductivity evaluation) XRD measurement and ion conductivity evaluation were performed in the same manner as in Example 1. The obtained XRD pattern is also shown in FIG. In the XRD pattern of the lithium ion conductive solid electrolyte (3), only a monoclinic crystal structure identified as Li 2 TiO 3 was confirmed. The ionic conductivity of the lithium ion conductive solid electrolyte (3) was too low to be measured.
  • the present electrolyte is a lithium-containing titanium oxide represented by the composition formula Li 2 TiO 3 partially substituted with the M1 element doped with a titanium element. Further, as described above, M1 is doped, replaces the titanium element, occupies the position of the titanium element, and is in a state of solid solution in the lithium- containing titanium oxide. Crystal structure is preserved.
  • Li 2 TiO 3 a search was made for an M1 element capable of substituting at the titanium position and forming a solid solution.
  • VASP Vienna Abinitio Simulation Package
  • Comparative Examples 6-7 (Preparation of lithium ion conductive solid electrolyte) Same as Example 1 except that tin (IV) oxide (manufactured by Sigma-Aldrich, purity 99.0% or higher) or silicon oxide (manufactured by Sigma-Aldrich, purity 99.0% or higher) was used instead of niobium pentoxide. As a result, a lithium ion conductive solid electrolyte (4) of Comparative Example 6 and a lithium ion conductive solid electrolyte (5) of Comparative Example 7 were obtained.
  • XRD measurement XRD measurement was performed in the same manner as in Example 1. The crystal structure confirmed in the XRD measurement is shown in Table 3 together with the results of Example 1 described above (ICSD reference code, Li 2 SnO 3 : 21032, Li 2 SiO 3 : 100402).
  • the lithium ion conductive solid electrolyte of the present invention is an oxide-based lithium ion conductive solid electrolyte with high ion conductivity, and can be suitably used as a solid electrolyte for lithium ion secondary batteries.

Abstract

本発明は、イオン伝導度の高い酸化物系のリチウムイオン伝導性固体電解質、および前記固体電解質を用いたリチウムイオン二次電池を提供する。 本発明は、組成式Li2-xTi1-xM1で表される化合物であり、前記M1は、ニオブおよびタンタルの元素からなる群から選ばれる少なくとも一種の金属元素であり、0.05≦x≦0.15である、リチウムイオン伝導性固体電解質を含む。

Description

リチウムイオン伝導性固体電解質
 本発明は、リチウムイオン伝導性固体電解質に関する。
 近年、ノートパソコン、タブレット端末、携帯電話、スマートフォン、および電気自動車(EV)等の電源として、高出力かつ高容量の電池の開発が求められている。その中でも有機溶媒などの液体電解質に替えて、固体電解質を用いた全固体リチウムイオン電池が、充放電効率、充電速度、安全性、および生産性に優れるとして注目されている。
 このような全固体リチウムイオン電池の分野において、リチウムイオン伝導体材料を用いて正極材料等を改善する技術が開示されている。
 例えば、特許文献1には、正極表面にリチウムイオン伝導体を含むコーティング膜を配置することにより、正極活物質と硫化物系固体電解質との界面において、Co、P、およびSなどの成分拡散を抑制し、リチウム欠乏層生成を防止することで界面抵抗を低減する、正極が開示されている。また、特許文献2には、正極活物質の表面に、LiNbO等のLiイオン伝導性が良好な第1リチウムイオン伝導体と、電気化学的安定性の高い第2リチウムイオン伝導体とを含有する反応抑制部を設けることで、正極活物質および硫化物固体電解質材料の界面抵抗が経時的に増加することを抑制できる正極活物質が開示されている。
特開2021-150286号公報 特開2013-026003号公報
 リチウムイオンが伝導するリチウムイオン伝導性固体電解質としては、安全性の観点から硫化物系の固体電解質より酸化物系の固体電解質が好ましい。
 しかし、特許文献1には、前記リチウムイオン伝導体としては、リチウムジルコニウム酸化物、リチウムチタン酸化物、リチウムニオブ酸化物等が例示されているが、LiO-ZrO以外の具体的な化合物組成は開示されていない。また、特許文献2には、第1リチウムイオン伝導体としては、LiNbO等のニオブ酸化物、LiTaO等のタンタル酸化物等のLi含有酸化物等が例示され、また、第2リチウムイオン伝導体としては、LiTi、LiTi、LiTi12等を含む、B、Si、P、Al、およびWの少なくとも一つを有するポリアニオン構造部を備えるLi含有化合物が例示されている。
 しかし、これらの文献には、リチウムイオン伝導体として、酸化物系の固体電解質のイオン伝導性を向上させる記載も示唆もない。本発明は上記現状を鑑みて、イオン伝導度が高い酸化物系リチウムイオン伝導性固体電解質、および前記固体電解質を用いたリチウムイオン二次電池を提供することを目的とする。
 本発明は以下に示す構成を含む。
 [1]
 組成式Li2-xTi1-xM1で表される化合物であり、
 前記M1は、ニオブおよびタンタルの元素からなる群から選ばれる少なくとも一種の金属元素であり、
 0.05≦x≦0.15である、
リチウムイオン伝導性固体電解質。
 [2]
 X線回折測定において、単斜晶の結晶構造が確認される、前記[1]に記載のリチウムイオン伝導性固体電解質。
 [3]
 トータルのリチウムイオン伝導度σtotal(25℃)が1.0×10-6(S/cm)以上である前記[1]または[2]に記載のリチウムイオン伝導性固体電解質。
 [4]
 前記[1]~[3]のいずれかに記載のリチウムイオン伝導性固体電解質を固体電解質として含むリチウムイオン二次電池。
 本発明により、イオン伝導度が高い酸化物系リチウムイオン伝導性固体電解質、および前記固体電解質を用いたリチウムイオン二次電池を提供することができる。
 また、該リチウムイオン伝導性固体電解質を使用することで、例えば、高出力かつ高容量のリチウムイオン二次電池を得ることができる。
実施例1および比較例1、2でそれぞれ作製したリチウムイオン伝導性固体電解質(1)~(3)のX線回折図形である。
 本発明の一実施形態であるリチウムイオン伝導性固体電解質(以下、本電解質ともいう)は、組成式Li2-xTi1-xM1で表される化合物であり、前記M1は、ニオブおよびタンタルの元素からなる群から選ばれる少なくとも一種の金属元素であり、0.05≦x≦0.15である。
 より具体的には、本電解質は、組成式LiTiOで表されるリチウム含有チタン酸化物において、チタン元素をドープしたM1元素で一部置換したものである。ここで、M1元素が、4価のチタンイオンを5価のイオンとして置換したとき、リチウムの組成が2-xと表されているように、電荷補償の観点から化合物中にリチウム元素の存在しないリチウム空孔が結晶構造中に導入され、リチウムイオンが動きやすくなることでリチウムイオン伝導性が向上すると考えられる。
 (リチウムイオン伝導性固体電解質の構成元素)
 本電解質は、少なくとも、リチウム、チタン、M1および酸素を構成元素として有し、M1は、ニオブおよびタンタルの元素からなる群から選ばれる少なくとも一種の金属元素である。本電解質は、リチウムを含有する特定の酸化物からなるリチウムイオン伝導性固体電解質ともいえる。ただ、このことは、リチウムイオン伝導性固体電解質における不純物の存在を厳密に排除するものでない。原料および/または製造過程などに起因する不可避不純物、リチウムイオン伝導性を劣化させない範囲内において他の結晶系を有する不純物等がリチウムイオン伝導性固体電解質に含まれることは差し支えない。
 本発明の好ましい実施態様におけるリチウムイオン伝導性固体電解質を構成するリチウム、チタン、M1および酸素の各構成元素の原子数の比は、例えば、Mn、CoおよびNiが1:1:1の割合で含有されている標準粉末試料を用いて、オージェ電子分光法(AES:Auger Electron Spectroscopy)により絶対強度定量法を用いて測定することができる。標準粉末試料としては、例えば、LiCoO等のリチウム含有遷移金属酸化物等が挙げられる。
 (M1含有量)
 本電解質の組成式は、下記式(1)で表される。
 Li2-xTi1-xM1    …式(1)
 上記式(1)においてxで表される、本電解質が含むM1の含有量は、0.05以上0.15以下である。この含有量の範囲は、チタンとM1の元素の合計原子数に対するM1の原子数の百分率で表すと、5%以上15%以下である。上記式(1)のxで表すとき、M1含有量の下限は、好ましくは0.06であり、より好ましくは0.07であり、特に好ましくは0.08である。上記式(1)のxで表すとき、M1含有量の上限は、好ましくは0.13であり、より好ましくは0.12であり、さらに好ましくは0.10である。M1含有量が上記の範囲にあると、リチウムイオン伝導度の向上が大きい。M1含有量は、チタンとM1との合計原子数に対するM1の原子数の百分率として、従来公知の定量分析により求めることができる。例えば、M1含有量は、試料に酸を加えて熱分解後、熱分解物を定容し、高周波誘導結合プラズマ(ICP)発光分析装置を用いて求めることができる。後述するリチウムイオン伝導性固体電解質の製造方法において、チタンとM1は系外に流出しないので、M1のドープ量を表す、チタンとM1との合計原子数に対するM1の原子数の百分率は、簡易的に原材料の仕込み量から算出することができる。
 (金属元素M1)
 本電解質が含むM1は、ニオブおよびタンタルの元素からなる群から選ばれる少なくとも一種の金属元素である。
 リチウムイオン伝導性固体電解質の構成元素の価数に着目したとき、M1は5価のイオンとしてドープされるので、チタンの価数とは1異なる。したがって、電解質全体の電荷中性のバランスをとるため、ドープされたM1原子の数xだけリチウムイオン伝導性固体電解質に含有されるリチウムイオン数が減少する。
 (結晶構造)
 本電解質は、好ましくは、X線回折測定において、単斜晶の結晶構造を含むことが確認される。前記M1がドープされてチタン元素を置換し、チタン元素の位置を占め、リチウム含有チタン酸化物に固溶した状態であると、元となるLiTiOの単斜晶の結晶構造が確認される。X線回折測定において、LiTiOの単斜晶の結晶構造のみが確認されることが好ましく、イオン伝導性を有しない、もしくはイオン伝導性の低い、ドープしたM1を含むLiM1Oに同定されるような結晶構造が他に確認されることは好ましくない。
 また、本電解質において、前記M1がドープされてチタン元素を置換しているため、M1のドープ量に応じて格子定数の特にβの角度が変動するが、単斜晶の結晶構造は保たれる。しかし、ドープ量によってβの角度が変化して90°に近くなると、直方晶になるということもできる。
 (リチウムイオン伝導度)
 本電解質の25℃におけるトータルのリチウムイオン伝導度σtotalは、好ましくは1.0×10-6(S/cm)以上であり、より好ましくは1.5×10-6(S/cm)以上であり、さらに好ましくは2.0×10-6(S/cm)以上である。トータルのリチウムイオン伝導度は、後述する実施例において説明する方法で測定することができる。
 (リチウムイオン伝導性固体電解質の製造方法)
 本電解質の製造方法は、上記の構成の範囲内のリチウムイオン伝導性固体電解質が得られる限り特に限定されない。固相反応、液相反応等が採用可能である。以下、固相反応による製造方法について詳細に説明する。
 固相反応による製造方法としては、少なくとも1段階の混合工程と焼成工程をそれぞれ有する製造方法が挙げられる。
 混合工程では、リチウム原子、チタン原子およびM1原子をそれぞれ含む化合物を混合する。
 リチウム原子を含有する化合物としては、特に限定はされないが、扱いやすさから無機化合物が好ましく、リチウム原子を含有する無機化合物としては、炭酸リチウム(LiCO)、酸化リチウム(LiO)などのリチウム化合物を挙げることができる。これらのリチウム化合物は1種単独でもよく、2種以上を併用してもよい。分解、反応させやすいことから炭酸リチウム(LiCO)を用いることが好ましい。
 チタン原子を含有する化合物としては、特に限定はされないが、二酸化チタン(TiO)、チタンテトラエトキシドなどのチタン化合物を挙げることができ、扱いやすさから無機化合物が好ましい。これらのチタン化合物は1種単独でもよく、2種以上を併用してもよい。コストおよび扱いやすさの点から二酸化チタン(TiO)を用いることが好ましい。
 M1原子を含有する化合物としては、特に限定はされないが、扱いやすさから無機化合物が好ましく、M1の酸化物、硝酸塩などの化合物を挙げることができる。これらの化合物は1種単独でもよく、2種以上を併用してもよい。コストの点から酸化物を用いることが好ましい。
 M1がニオブである場合には、例えば、酸化物として五酸化ニオブ(Nb)を挙げることができる。
 M1がタンタルである場合には、例えば、酸化物として五酸化タンタル(Ta)、硝酸タンタル(Ta(NO)などのタンタル化合物を挙げることができる。これらのタンタル化合物は1種単独でもよく、2種以上を併用してもよい。コストの点から五酸化タンタル(Ta)を用いることが好ましい
 上述した原材料の混合は、ロール転動ミル、ボールミル、小径ボールミル(ビーズミル)、媒体撹拌ミル、気流粉砕機、乳鉢、自動混練乳鉢、解槽機またはジェットミルなどを用いて行うことができる。混合する原材料の比率は、簡便には、上述した式(1)の組成となるような化学量論比である。より具体的には、後述する焼成工程において、リチウム原子が系外へ流出しやすいので、上述したリチウム原子を含有する化合物を1~2割程度過剰に加えて調節してもよい。
 混合工程は、大気雰囲気下で行ってもよい。酸素ガス含有量の調整された窒素ガスおよび/またはアルゴンガスのガス雰囲気であることがより好ましい。
 焼成工程では、混合工程で得た混合物を焼成する。焼成工程を、例えば低温焼成と高温焼成の2段階の工程とするように複数回行う場合には、焼成工程間に、一次焼成物の解砕、または小粒径化を目的として、ボールミルや乳鉢を用いた解砕工程を設けてもよい。
 焼成工程は大気雰囲気下で行ってもよい。酸素ガス含有量の調整された窒素ガスおよび/またはアルゴンガスのガス雰囲気であることがより好ましい。
 焼成温度としては、800~1200℃の範囲が好ましく、850~1100℃の範囲がより好ましく、900~1000℃の範囲がさらに好ましい。800℃以上で焼成すると金属元素M1の固溶が十分に行われてイオン伝導度が向上し、1200℃以下で焼成すると、リチウム原子が系外へ流出しにくいため好ましい。焼成時間は、1~16時間が好ましく、3~12時間がより好ましい。焼成時間が前述の範囲であると、トータルのリチウムイオン伝導度が大きくなりやすく好ましい。焼成時間が前述の範囲より長いと、リチウム原子が系外へ流出しやすい。焼成時間と焼成温度は互いに連動して調整される。
 焼成工程を、例えば低温焼成と高温焼成の2段階の工程とする場合、低温焼成は、400~800℃で、2~12時間行ってもよい。
 また、副生成物の残存を抑えるために、高温焼成を2回行ってもよい。2回目の焼成工程では、焼成温度としては、800~1200℃の範囲が好ましく、850~1100℃の範囲がより好ましく、900~1000℃の範囲がさらに好ましい。各焼成工程の焼成時間は1~8時間が好ましく、2~6時間がより好ましい。
 焼成後に得られる焼成物は、大気中に放置すると、吸湿したり二酸化炭素と反応したりして変質することがある。焼成後に得られる焼成物は、焼成後の降温において焼成物が200℃より下がったところで、除湿した不活性ガス雰囲気下に移して保管することが好ましい。
 このようにして本電解質を得ることができる。本電解質の好適な実施態様の1つとして、固体電解質として、リチウムイオン二次電池に利用することが挙げられる。
 (リチウムイオン二次電池)
 本発明の一実施形態は、本電解質を固体電解質として含むリチウムイオン二次電池である。リチウムイオン二次電池の構造は、特に限定されないが、例えば、固体電解質層を備える固体電池の場合、正極集電体、正電極層、固体電解質層、負電極層および負極集電体がこの順に積層された構造を成している。
 前記正極集電体および前記負極集電体は、その材質が電気化学反応を起こさずに電子を導電するものであれば特に限定されない。例えば、銅、アルミニウム、鉄等の金属の単体もしくは合金、またはアンチモンドープ酸化スズ(ATO)、スズドープ酸化インジウム(ITO)などの導電性金属酸化物などの導電体で構成される。なお、導電体の表面に導電性接着層を設けた集電体を用いることもできる。導電性接着層は、粒状導電材や繊維状導電材などを含んで構成することができる。
 前記正電極層および前記負電極層は、公知の粉末成形法によって得ることができる。例えば、正極集電体、正電極層用の粉末、固体電解質層用の粉末、負電極層用の粉末および負極集電体をこの順に重ね合わせて、それらを同時に粉末成形することによって、正電極層、固体電解質層および負電極層のそれぞれの層形成と、正極集電体、正電極層、固体電解質層、負電極層および負極集電体のそれぞれの間の接続を同時に行うこともできる。また、各層を逐次に粉末成形することもできる。得られた粉末成形品に、必要に応じて、焼成などの熱処理を施してもよい。
 粉末成形法としては、例えば、粉末に溶剤を加えてスラリーとし、スラリーを集電体に塗布し、乾燥させ、次いで加圧することを含む方法(ドクターブレード法)、スラリーを吸液性の金型に入れ、乾燥させ、次いで加圧することを含む方法(鋳込成形法)、粉末を所定形状の金型に入れ圧縮成形することを含む方法(金型成形法)、スラリーをダイスから押し出して成形することを含む押出成形法、粉末を遠心力により圧縮して成形することを含む遠心力法、粉末をロールプレス機に供給して圧延成形することを含む圧延成形法、粉末を所定形状の可撓性バッグに入れ、それを圧力媒体に入れて等方圧を加えることを含む冷間等方圧成形法(cold isostatic pressing)、粉末を所定形状の容器に入れ真空状態にし、その容器に高温下、圧力媒体にて等方圧を加えることを含む熱間等方圧成形法(hot isostatic pressing)などを挙げることができる。
 金型成形法としては、固定下パンチと固定ダイに粉末を入れ、可動上パンチで粉末に圧を加えることを含む片押し法、固定ダイに粉末を入れ、可動下パンチと可動上パンチで粉末に圧を加えることを含む両押し法、固定下パンチと可動ダイに粉末を入れて可動上パンチで粉末に圧を加え、圧が所定値を超えた時に可動ダイを移動させて固定下パンチが相対的に可動ダイの中に入り込むようにすることを含むフローティングダイ法、固定下パンチと可動ダイに粉末を入れ、可動上パンチで粉末に圧を加えると同時に可動ダイを移動させて固定下パンチが相対的に可動ダイの中に入り込むようにすることを含むウイズドローアル法などを挙げることができる。
 前記正電極層の厚さは、好ましくは10~200μm、より好ましくは30~150μm、さらに好ましくは50~100μmである。前記固体電解質層の厚さは、好ましくは50nm~1000μm、より好ましくは100nm~100μmである。前記負電極層の厚さは、好ましくは10~200μm、より好ましくは30~150μm、さらに好ましくは50~100μmである。
 (活物質)
 負電極用の活物質としては、リチウム合金、金属酸化物、グラファイト、ハードカーボン、ソフトカーボン、ケイ素、ケイ素合金、ケイ素酸化物SiO(0<n≦2)、ケイ素/炭素複合材、多孔質炭素の細孔内にケイ素ドメインを内包する複合材、チタン酸リチウム、およびチタン酸リチウムで被覆されたグラファイトからなる群から選ばれる少なくとも一つを含有するものを挙げることができる。ケイ素/炭素複合材および多孔質炭素の細孔内にケイ素ドメインを内包する複合材は、比容量が高く、エネルギー密度および電池容量を高めることができるので好ましい。より好ましくは、多孔質炭素の細孔内にケイ素ドメインを内包する複合材であり、ケイ素のリチウム吸蔵/放出に伴う体積膨張の緩和性に優れ、複合電極材料または電極層において、マクロ導電性、ミクロ導電性およびイオン伝導性のバランスを良好に維持することができる。特に好ましくは、ケイ素ドメインが非晶質であり、ケイ素ドメインのサイズが10nm以下であり、ケイ素ドメインの近傍に多孔質炭素由来の細孔が存在する、多孔質炭素の細孔内にケイ素ドメインを内包する複合材である。
 正電極用の活物質としては、LiCo酸化物、LiNiCo酸化物、LiNiCoMn酸化物、LiNiMn酸化物、LiMn酸化物、LiMn系スピネル、LiMnNi酸化物、LiMnAl酸化物、LiMnMg酸化物、LiMnCo酸化物、LiMnFe酸化物、LiMnZn酸化物、LiCrNiMn酸化物、LiCrMn酸化物、チタン酸リチウム、リン酸金属リチウム、遷移金属酸化物、硫化チタン、グラファイト、ハードカーボン、遷移金属含有リチウム窒化物、酸化ケイ素、ケイ酸リチウム、リチウム金属、リチウム合金、Li含有固溶体、およびリチウム貯蔵性金属間化合物からなる群から選ばれる少なくとも一つを含有するものを挙げることができる。LiNiCoMn酸化物、LiNiCo酸化物またはLiCo酸化物が好ましく、LiNiCoMn酸化物がより好ましい。LiNiCoMn酸化物は固体電解質との親和性がよく、マクロ導電性、ミクロ導電性およびイオン伝導性のバランスに優れる。また、LiNiCoMn酸化物は平均電位が高く、比容量と安定性のバランスにおいてエネルギー密度や電池容量を高めることができる。また、正電極用の活物質は、本固体電解質、ニオブ酸リチウム、リン酸リチウムまたはホウ酸リチウム等で表面が被覆されていてもよい。
 本発明の一実施形態における活物質は、粒子状が好ましい。その体積基準粒度分布における50%径は0.1μm以上30μm以下が好ましく、0.3μm以上20μm以下がより好ましく、0.4μm以上10μm以下がさらに好ましく、0.5μm以上3μm以下が最も好ましい。また、短径の長さに対する長径の長さの比(長径の長さ/短径の長さ)、すなわちアスペクト比が、好ましくは3未満、より好ましくは2未満である。
 本発明の一実施形態における活物質は、二次粒子を形成していてもよい。その場合、一次粒子の数基準粒度分布における50%径は、0.1μm以上20μm以下が好ましく、0.3μm以上15μm以下がより好ましく、0.4μm以上10μm以下がさらに好ましく、0.5μm以上2μm以下が最も好ましい。圧縮成形して電極層を形成する場合においては、活物質は、一次粒子であることが好ましい。活物質が一次粒子である場合は、圧縮成形した場合でも、電子伝導パスまたは正孔伝導パスが損なわれることが起こりにくい。
 以下、本発明を実施例に基づいて具体的に説明する。なお、本発明はこれらの実施例にのみ限定されるものではない。また、実施例および比較例における粉末X線回折測定およびイオン伝導度評価は、以下の方法および手順により行った。
 実施例1:
 (1)リチウムイオン伝導性固体電解質の作製
 まず、チタンとニオブの元素の合計原子数に対するニオブの原子数の百分率が8%となるよう二酸化チタン(TiO)(アナターゼ型、富士フイルム和光純薬製、純度98.5%以上)と五酸化ニオブ(Nb)(富士フイルム和光純薬製、純度99.9%)とを秤量し、チタンとニオブの元素の合計原子数に対してリチウムの原子数が1.92倍量となるよう炭酸リチウム(LiCO)(シグマアルドリッチ製、純度99.0%以上)を秤量した。
 秤量した各粉末を、適量のトルエンを加えてジルコニアボールミル(ジルコニアボール:直径1mm)を用いて3時間混合した。
 得られた混合物をアルミナボートに入れ、回転焼成炉(モトヤマ社製)を用いて空気雰囲気下(ガス流量100mL/分)で昇温速度10℃/分で700℃まで昇温し、700℃において5時間焼成を行った。
 焼成して得られた一次焼成物に、適量のトルエンを加えてジルコニアボールミル(ジルコニアボール:直径1mm)を用いて3時間解砕した。
 得られた解砕物をアルミナボートに入れ、回転焼成炉(モトヤマ社製)を用いて空気雰囲気下(ガス流量100mL/分)で昇温速度10℃/分で900℃まで昇温し、900℃において3時間焼成を行った。
 得られた二次焼成物を降温後、室温で取り出し、200Pa以下の真空に保たれたデシケーターに移し、リチウムイオン伝導性固体電解質(1)を得た。
 (2)粉末X線回折(XRD)測定
 粉末X線回折測定装置パナリティカルMPD(スペクトリス株式会社製)を用いて、リチウムイオン伝導性固体電解質(1)の粉末X線回折測定を行った。X線回折測定条件としては、Cu-Kα線(出力45kV、40mA)を用いて回折角2θ=10~60°の範囲で測定を行い、リチウムイオン伝導性固体電解質(1)のX線回折(XRD)図形を得た。得られたXRD図形を図1に示す。XRD図形において、後述する比較例2の未ドープのLiTiOと同じ単斜晶の結晶構造のみが確認された。
 (3)イオン伝導度評価
 (測定ペレット作製)
 リチウムイオン伝導性固体電解質のイオン伝導度評価用の測定ペレットの作製は、次のように行った。得られたリチウムイオン伝導性固体電解質(1)を、上述した、一次焼成後の解砕手順で解砕して粉末とした後、錠剤成形機を用いて直径10mm、厚さ1mmの円盤状に成形し、1000℃で大気下3時間焼成した。得られた焼成物の、理論密度に対する相対密度は93%であった。得られた焼成物の両面に、スパッタ機を用いて金層を形成して、イオン伝導度評価用の測定ペレットを得た。
 (インピーダンス測定)
 リチウムイオン伝導性固体電解質(1)のイオン伝導度評価を次のように行った。前述の方法で作製した測定ペレットを、測定前に2時間25℃に保持した。次いで、25℃においてインピーダンスアナライザー(ソーラトロンアナリティカル製、型番:1260A)を用いて振幅25mV、周波数1Hz~10MHzの範囲でACインピーダンス測定を行った。得られたインピーダンススペクトルを装置付属の等価回路解析ソフトウェアZViewを用いて等価回路でフィッティングして、トータルのイオン伝導度を得た。得られたイオン伝導度を併せて表1に示す。
 比較例1:
 (リチウムイオン伝導性固体電解質の作製)
 チタンとニオブの元素の合計原子数に対するニオブの原子数の百分率が16%となるよう二酸化チタンと五酸化ニオブとを秤量し、チタンとニオブの元素の合計原子数に対してリチウムの原子数が1.84倍量となるよう炭酸リチウムを秤量した以外は、実施例1と同様にしてリチウムイオン伝導性固体電解質(2)を得た。
 (XRD測定、イオン伝導度評価)
 XRD測定およびイオン伝導度評価は、実施例1と同様に測定および分析を行った。リチウムイオン伝導性固体電解質(2)のXRD図形を図1に併せて示す。リチウムイオン伝導性固体電解質(2)のXRD図形においては、▼(逆黒三角)で示したLiTiOに同定される単斜晶の結晶構造(ICSDリファレンスコード:15150)に由来する回折ピークに加えて、ハッチングで示す領域にニオブ酸リチウム(LiNbO)の三方晶の結晶構造(ICSDリファレンスコード:74469)に由来する回折ピークが確認された。より詳しくは、比較例1のリチウムイオン伝導性固体電解質(2)の回折図形には、33°及び54°付近にLiNbOに特有のピークが観測された一方で、実施例1のリチウムイオン伝導性固体電解質(1)の回折図形には、これらのピークは観測されなかった。よって、実施例1のリチウムイオン伝導性固体電解質(1)はLiTiOに同定される単斜晶の結晶構造のみであることが確認できる。
 リチウムイオン伝導性固体電解質(2)のトータルのイオン伝導度を表1に併せて示す。
 比較例2:
 (リチウムイオン伝導性固体電解質の作製)
 五酸化ニオブを用いず、二酸化チタンと、二酸化チタンが含むチタンの原子数に対してリチウムの原子数が2.00倍量となるよう、炭酸リチウムとを秤量した以外は、実施例1と同様にしてリチウムイオン伝導性固体電解質(3)を得た。
 (XRD測定、イオン伝導度評価)
 XRD測定およびイオン伝導度評価は、実施例1と同様に測定および分析を行った。得られたXRD図形を図1に併せて示す。リチウムイオン伝導性固体電解質(3)のXRD図形においては、LiTiOに同定される単斜晶の結晶構造のみが確認された。
 リチウムイオン伝導性固体電解質(3)のイオン伝導度は低すぎて測定できなかった。
Figure JPOXMLDOC01-appb-T000001
 実施例2~3および比較例3~5:
 (理論計算)
 本電解質は、組成式LiTiOで表されるリチウム含有チタン酸化物において、チタン元素をドープしたM1元素で一部置換したものである。また、上述したように、M1がドープされ、チタン元素を置換してチタン元素の位置を占め、リチウム含有チタン酸化物に固溶した状態であり、元となるLiTiOの単斜晶の結晶構造が保たれる。ここで、理論計算を用いて、LiTiOにおいて、チタン位置に置換して固溶可能なM1元素の探索を行った。
 具体的には、LiTiOのスーパーセル中のTi原子をM1原子で置換した構造を用意し、第一原理計算を用いて最安定構造を求めて比較した。
 第一原理計算の詳細は、以下のとおりで行った。ユニットセル16個からなるスーパーセル(Li32Ti1648)中のTi原子1個をM1原子で置換し、M1原子がNb、TaまたはVの場合は電気的中性条件を考慮してLi原子1個を取り除いた構造として、幾何対称性の異なる全ての原子配置のスーパーセルを用意した。この構造において、M1元素のドープ量は6%に相当する。第一原理計算パッケージソフトウェアVienna Ab initio Simulation Package(VASP)(HPCシステムズ株式会社取扱い)に前述したスーパーセルの原子配置を入力し、M1をNb、Ta、V、SnおよびSiに替えて、表2に記す各例の組成で構造最適化を行い、エネルギーの計算をそれぞれ行った。
 第一原理計算による構造最適化は以下の条件で行った。
・擬ポテンシャル:Projector Augmented Wave (PAW)法
・交換相関汎関数:Generalized Gradient Approximation (GGA)
・エネルギーカットオフ:520eV
・k点メッシュ:2×2×2
 Kristin Perssonら提供のMaterials Projectデータベース(webサイト「https://materialsproject.org/」、2021年8月訪問)収録のLi、Ti、M1およびOからなる元素で構成される、単体、2元系、3元系および4元系の全組成物のエネルギー値を用いて、M1元素で一部置換したLiTiOの凸包(convex hull)からの1原子当たりエネルギーの増分(meV/原子)を算出した。算出された値を表2に示す。幾何対称性の違いに関しては、計算されたエネルギーのうち最も低い値となった幾何対称性の原子配置を採用した。凸包からのエネルギーの増分が小さいほど、M1元素で一部置換したLiTiOが安定であると考えられる。
Figure JPOXMLDOC01-appb-T000002
 表2に示す計算結果から、比較例3~5のV、SnおよびSiと比較して、実施例2および3に示すNbおよびTaをM1として用いた場合に、M1元素で6%置換したLiTiOが安定であることが確認できる。
 比較例6~7:
 (リチウムイオン伝導性固体電解質の作製)
 五酸化ニオブに替えて、酸化スズ(IV)(シグマアルドリッチ製、純度99.0%以上)または酸化ケイ素(シグマアルドリッチ製、純度99.0%以上)を用いた以外は、実施例1と同様にして、比較例6のリチウムイオン伝導性固体電解質(4)および比較例7のリチウムイオン伝導性固体電解質(5)をそれぞれ得た。
 (XRD測定)
 XRD測定は、実施例1と同様に測定を行った。XRD測定において、確認された結晶構造を、前述した実施例1の結果とともに表3に示す(ICSDリファレンスコード、LiSnO:21032、LiSiO:100402)。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、比較例6および7のリチウムイオン伝導性固体電解質(4)および(5)では、実際に作製したリチウムイオン伝導性固体電解質においてM1原子が安定して固溶せず、LiTiO以外の結晶構造が生じていることが確認できる。この実験結果は、上述の理論計算を肯定している。
 実施例の結果より、組成式Li2-xTi1-xM1で表される化合物であり、前記M1は、ニオブおよびタンタルの元素からなる群から選ばれる少なくとも一種の金属元素であり、0.05≦x≦0.15であるリチウムイオン伝導性固体電解質は、イオン伝導度が高いことが確認できる。
 本発明のリチウムイオン伝導性固体電解質は、イオン伝導度の高い酸化物系のリチウムイオン伝導性固体電解質であり、リチウムイオン二次電池の固体電解質として好適に用いることができる。

Claims (4)

  1.  組成式Li2-xTi1-xM1で表される化合物であり、
     前記M1は、ニオブおよびタンタルの元素からなる群から選ばれる少なくとも一種の金属元素であり、
     0.05≦x≦0.15である、
    リチウムイオン伝導性固体電解質。
  2.  X線回折測定において、単斜晶の結晶構造が確認される、請求項1に記載のリチウムイオン伝導性固体電解質。
  3.  トータルのリチウムイオン伝導度σtotal(25℃)が1.0×10-6(S/cm)以上である請求項1または2に記載のリチウムイオン伝導性固体電解質。
  4.  請求項1~3のいずれか1項に記載のリチウムイオン伝導性固体電解質を固体電解質として含むリチウムイオン二次電池。
PCT/JP2023/003939 2022-02-28 2023-02-07 リチウムイオン伝導性固体電解質 WO2023162669A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022028893 2022-02-28
JP2022-028893 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023162669A1 true WO2023162669A1 (ja) 2023-08-31

Family

ID=87765636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003939 WO2023162669A1 (ja) 2022-02-28 2023-02-07 リチウムイオン伝導性固体電解質

Country Status (1)

Country Link
WO (1) WO2023162669A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091079A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 非水電解質電池用負極活物質、非水電解質電池、電池パック及び自動車
JP2012033279A (ja) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd リチウムイオン二次電池
JP2015046218A (ja) * 2011-12-28 2015-03-12 パナソニック株式会社 非水電解質二次電池用電極およびそれを用いた非水電解質二次電池
JP2018049701A (ja) * 2016-09-20 2018-03-29 株式会社東芝 固体電解質、リチウム電池、電池パック、及び車両
EP3863094A2 (en) * 2020-02-04 2021-08-11 Samsung Electronics Co., Ltd. Cathode, lithium-air battery comprising the same, and method of preparing the cathode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091079A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 非水電解質電池用負極活物質、非水電解質電池、電池パック及び自動車
JP2012033279A (ja) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd リチウムイオン二次電池
JP2015046218A (ja) * 2011-12-28 2015-03-12 パナソニック株式会社 非水電解質二次電池用電極およびそれを用いた非水電解質二次電池
JP2018049701A (ja) * 2016-09-20 2018-03-29 株式会社東芝 固体電解質、リチウム電池、電池パック、及び車両
EP3863094A2 (en) * 2020-02-04 2021-08-11 Samsung Electronics Co., Ltd. Cathode, lithium-air battery comprising the same, and method of preparing the cathode

Similar Documents

Publication Publication Date Title
WO2021039834A1 (ja) リチウムイオン伝導性酸化物
WO2021039835A1 (ja) リチウムイオン伝導性酸化物
WO2021251411A1 (ja) リチウムイオン伝導性固体電解質および全固体電池
WO2021251405A1 (ja) 固体電解質材料、固体電解質、これらの製造方法および全固体電池
WO2021251407A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2023162669A1 (ja) リチウムイオン伝導性固体電解質
WO2021251410A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2022230426A1 (ja) リチウムイオン伝導性酸化物および全固体電池
WO2021251406A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2021251409A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2021251408A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2023032773A1 (ja) 固体電解質、全固体電池および固体電解質材料
WO2023032772A1 (ja) リチウムイオン伝導性固体電解質材料、リチウムイオン伝導性固体電解質、これらの製造方法および全固体電池
EP4082965A1 (en) Lithium ion-conductive oxide and use for same
WO2022254752A1 (ja) イオン伝導性固体及び全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759673

Country of ref document: EP

Kind code of ref document: A1