WO2022230426A1 - リチウムイオン伝導性酸化物および全固体電池 - Google Patents

リチウムイオン伝導性酸化物および全固体電池 Download PDF

Info

Publication number
WO2022230426A1
WO2022230426A1 PCT/JP2022/012228 JP2022012228W WO2022230426A1 WO 2022230426 A1 WO2022230426 A1 WO 2022230426A1 JP 2022012228 W JP2022012228 W JP 2022012228W WO 2022230426 A1 WO2022230426 A1 WO 2022230426A1
Authority
WO
WIPO (PCT)
Prior art keywords
atoms
group
lithium ion
elements selected
oxide
Prior art date
Application number
PCT/JP2022/012228
Other languages
English (en)
French (fr)
Inventor
建燦 李
良輔 清
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN202280028694.2A priority Critical patent/CN117203177A/zh
Priority to EP22795348.6A priority patent/EP4332059A1/en
Priority to JP2023517140A priority patent/JPWO2022230426A1/ja
Priority to KR1020237035401A priority patent/KR20230156423A/ko
Publication of WO2022230426A1 publication Critical patent/WO2022230426A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/372Phosphates of heavy metals of titanium, vanadium, zirconium, niobium, hafnium or tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3253Substoichiometric niobium or tantalum oxides, e.g. NbO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to lithium-ion conductive oxide or all-solid-state batteries.
  • Inorganic solid electrolytes are attracting attention as the solid electrolyte, and oxide-based and sulfide-based solid electrolytes are mainly known as the inorganic solid electrolyte.
  • Using a sulfide-based solid electrolyte has the advantage of being able to fabricate batteries by cold pressing, etc., but it is unstable against humidity and may generate harmful hydrogen sulfide gas, so it is safe.
  • Development of oxide-based solid electrolytes (for example, Patent Documents 1 to 3) is underway in terms of properties and the like.
  • Oxide-based solid electrolytes have extremely high grain boundary resistance, and in order to obtain sufficient ion conductivity for use in all-solid-state batteries, pressure-molding of lithium-ion conductive oxide powder is required. Not only that, it must be sintered to increase the relative density (percentage of actual density to theoretical density).
  • conventional lithium ion conductive oxides such as those described in Patent Documents 1 to 3 cannot easily obtain oxides with high relative densities, and there is room for improvement in terms of ionic conductivity. rice field.
  • An embodiment of the present invention provides a lithium ion conductive oxide that can have a high relative density and has sufficient ionic conductivity.
  • a configuration example of the present invention is as follows.
  • the boron content represented by the following formula (1) is 4.0 to 15.0%
  • the fluorine content represented by the following formula (2) is 0.5 to 2.0%, Lithium ion conductive oxide.
  • the niobium content represented by the following formula (3) is more than 0% and 20.0% or less, The lithium ion conductive oxide according to [1]. Number of Nb atoms/(Number of Nb atoms + Number of Ta atoms) x 100 (3)
  • the relative density which is the percentage of the ratio of the measured density calculated from the mass and volume of the oxide to the theoretical density of the lithium ion conductive oxide, is 70% or more, [1] or [2 ] Lithium ion conductive oxide as described in .
  • the lithium content represented by the following formula (4) is more than 0.9 and 1.5 or less.
  • the lithium ion conductive oxide according to any one of [1] to [4]. Number of Li atoms/ ⁇ (number of Nb atoms+number of Ta atoms)/2 ⁇ (4)
  • a positive electrode having a positive electrode active material a negative electrode having a negative electrode active material; a solid electrolyte layer between the positive electrode and the negative electrode; including The solid electrolyte layer contains the lithium ion conductive oxide according to any one of [1] to [5], All-solid battery.
  • the cathode active material is LiM3PO4 [M3 is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, Ti and V, or two elements of V and O; ], LiM5VO 4 [M5 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti. ], Li 2 M6P 2 O 7 [M6 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O.
  • LiVP2O7 Lix7Vy7M7z7 [ 2 ⁇ x7 ⁇ 4 , 1 ⁇ y7 ⁇ 3, 0 ⁇ z7 ⁇ 1 , 1 ⁇ y7+ z7 ⁇ 3
  • M7 is Ti, Ge, Al, Ga and Zr It is one or more elements selected from the group consisting of ], Li 1+x8 Al x8 M8 2-x8 (PO 4 ) 3 [0 ⁇ x8 ⁇ 0.8, M8 is one or more elements selected from the group consisting of Ti and Ge.
  • LiNi1 / 3Co1 / 3Mn1 / 3O2 LiCoO2, LiNiO2 , LiMn2O4 , Li2CoP2O7 , Li3V2 ( PO4 ) 3 , Li3Fe2 ( PO4 ) 3 , LiNi0.5Mn1.5O4 and Li4Ti5O12 .
  • the negative electrode active material is LiM3PO4 [M3 is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, Ti and V, or two elements of V and O; ], LiM5VO 4 [M5 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti. ], Li 2 M6P 2 O 7 [M6 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O.
  • LiVP2O7 Lix7Vy7M7z7 [ 2 ⁇ x7 ⁇ 4 , 1 ⁇ y7 ⁇ 3, 0 ⁇ z7 ⁇ 1 , 1 ⁇ y7+ z7 ⁇ 3
  • M7 is Ti, Ge, Al, Ga and Zr It is one or more elements selected from the group consisting of ], Li 1+x8 Al x8 M8 2-x8 (PO 4 ) 3 [0 ⁇ x8 ⁇ 0.8, M8 is one or more elements selected from the group consisting of Ti and Ge.
  • M9 is one or more elements selected from the group consisting of Mg, Al, Ga and Zn; , M10 are one or more elements selected from the group consisting of Zn, Al, Ga, Si, Ge, P and Ti, 0 ⁇ x9 ⁇ 1.0, 0 ⁇ y9 ⁇ 0.6, a9 is M9 and b9 is the average valence of M10], one or more compounds selected from the group consisting of LiNb2O7 , Li4Ti5O12 , Li4Ti5PO12 , TiO2 , LiSi and graphite
  • FIG. 1 is XRD patterns of lithium ion conductive oxides obtained in Examples 2 and 3 and Comparative Example 1.
  • FIG. 1 is XRD patterns of lithium ion conductive oxides obtained in Examples 2 and 3 and Comparative Example 1.
  • a lithium ion conductive oxide according to one embodiment of the present invention (hereinafter also referred to as “present oxide”) has a crystal structure based on LiTa 2 PO 8 (hereinafter also referred to as "LTPO structure”), having at least lithium, tantalum, boron, phosphorus, oxygen and fluorine as constituent elements,
  • the boron content represented by the following formula (1) is 4.0 to 15.0%
  • the fluorine content represented by the following formula (2) is 0.5 to 2.0%.
  • the fact that the present oxide has the LTPO structure can be determined by analyzing the X-ray diffraction (XRD) pattern, specifically the XRD pattern measured by the method described in the Examples below. can be done.
  • XRD X-ray diffraction
  • the constituent elements of the present oxide are not particularly limited as long as they include lithium, tantalum, boron, phosphorus, oxygen and fluorine. Further, it preferably contains niobium, and may further contain one or more other elements M selected from the group consisting of Zr, Ga, Sn, Hf, Bi, W, Mo, Si, Al and Ge.
  • the content of boron in the present oxide represented by the formula (1) is 4.0% or more, preferably 9.0% or more, and 15.0% or less, preferably 10 .0% or less.
  • the oxide has a higher relative density.
  • the fluorine content in the present oxide represented by the formula (2) is 0.5% or more, preferably 0.6% or more, and 2.0% or less, preferably 1 .9% or less.
  • the oxide has a higher total ionic conductivity.
  • the content of niobium represented by the following formula (3) is preferably more than 0% and 20.0% or less.
  • the lower limit of the niobium content is more preferably 5%.
  • the upper limit of the niobium content is more preferably 15.0%, still more preferably 12.0%, and particularly preferably 10.0%.
  • Niobium content number of Nb atoms/(number of Nb atoms+number of Ta atoms) ⁇ 100 (3)
  • the oxide has a relatively high total ionic conductivity and a higher relative density.
  • the lower limit of the lithium content in the present oxide represented by the following formula (4) is preferably greater than 0.9, more preferably 1.0, and still more preferably 1.1.
  • the upper limit of the lithium content is preferably 1.5, more preferably 1.2.
  • "(the number of Nb atoms + the number of Ta atoms)" in the following formula (4) becomes "the number of Ta atoms" when the present oxide does not have niobium as a constituent element.
  • Lithium content number of Li atoms/ ⁇ (number of Nb atoms+number of Ta atoms)/2 ⁇ (4) When the content of lithium is within the above range, the oxide has a relatively high total ionic conductivity and a higher relative density.
  • the content of each element in the present oxide is determined by using a standard powder sample containing Mn, Co, and Ni in a ratio of 1:1:1 as a lithium-containing transition metal oxide such as LiCoO 2 , for example. can be measured by the absolute intensity quantification method of Auger Electron Spectroscopy (AES). Alternatively, it can be obtained by a conventionally known quantitative analysis. For example, after thermal decomposition by adding an acid to the present oxide, the thermal decomposition product is kept at a constant volume, and the content of each element in the present oxide can be determined using a high frequency inductively coupled plasma (ICP) emission spectrometer. can.
  • ICP inductively coupled plasma
  • the composition of the present oxide can be conveniently adjusted by mixing raw materials containing each constituent element so that the content ratio of the constituent elements is within the desired range. Specifically, as shown in Examples, it can be adjusted by weighing and using raw materials containing each constituent element so as to satisfy a predetermined stoichiometric ratio.
  • the relative density of the present oxide is preferably 70% or higher, more preferably 80% or higher, even more preferably 90% or higher, and particularly preferably 95% or higher.
  • the relative density is a percentage obtained by dividing the measured density calculated from the mass and volume of the present oxide by the theoretical density of the oxide (measured density / theoretical density ⁇ 100). It can be measured by the method described in . Specifically, the theoretical density of the present oxide is calculated by weighted average using the theoretical density of the crystal structure constituting the lithium ion conductive oxide and the content of the crystal structure. For example, when the present oxide has a crystal structure 1 with a content of h% and a crystal structure 2 with a content of k%, (theoretical density of crystal structure 1 ⁇ h + theoretical density of crystal structure 2 ⁇ k) / 100 can. More specifically, it can be represented by the following formula (5). ⁇ (Theoretical density of observed crystals ⁇ Crystal ratio (%)) ⁇ /100 (5)
  • the content (crystal ratio) of each crystal structure can be determined by Rietveld analysis.
  • Crystal structures other than the LTPO structure contained in the present oxide include LiTa 3 O 8 , Ta 2 O 5 and TaPO 5 . These crystal structures can be confirmed in XRD patterns.
  • the present oxide preferably contains an LTPO structure and at least one crystal selected from LiTa 3 O 8 , Ta 2 O 5 and TaPO 5 , and the LTPO structure, LiTa 3 O 8 , Ta 2 O 5 and More preferably, it contains one or two crystals selected from TaPO5 . In the latter case, the content of one or two crystals selected from LiTa3O8 , Ta2O5 and TaPO5 is 0%.
  • the content of the LTPO structure in the present oxide is preferably 85% or more, more preferably 89%. Above, more preferably 90% or more, particularly preferably more than 95%.
  • the upper limit of the crystallinity of the LTPO structure is not particularly limited, it is preferably less than 100%, more preferably 99% or less. When the crystallinity of the LTPO structure in the present oxide is within the above range, the oxide tends to have a high total ionic conductivity.
  • the crystal ratio of the LTPO structure in this oxide can be obtained, for example, by analyzing the XRD pattern of this oxide with the known analysis software RIETAN-FP (author: Fujio Izumi's website "RIETAN-FP VENUS system distribution file" (http: http://fujioizumi.verse.jp/download/download.html)) can be used to perform Rietveld analysis.
  • RIETAN-FP author: Fujio Izumi's website "RIETAN-FP VENUS system distribution file" (http: http://fujioizumi.verse.jp/download/download.html)
  • the upper limit of the LiTa 3 O 8 crystal content (LiTa 3 O 8 crystal ratio) in the present oxide is preferably 12.0% or less, and , the lower limit thereof is preferably greater than 1.2%, more preferably 1.5% or more, and still more preferably 3.0% or more.
  • the lower limit of the Ta 2 O 5 crystal content (Ta 2 O 5 crystal percentage) in the present oxide is preferably more than 0%, and the upper limit is is preferably 2.5% or less, more preferably 1.5% or less, still more preferably 1.0% or less.
  • the upper limit of the TaPO5 crystal content ( TaPO5 crystal ratio) in the present oxide is preferably 3.5% or less, more preferably 3.0% or less. Yes, and its lower limit is greater than 0%.
  • a lithium ion conductive oxide having a high relative density and/or a high total ionic conductivity is readily obtained. tend to be able to
  • the present oxide contains at least one crystal selected from LiTa 3 O 8 , Ta 2 O 5 and TaPO 5 , the remainder of the total crystal ratio of these crystals (100-crystal ratio of these crystals is the content of the LTPO structure.
  • the crystal ratios of the crystal structures such as LiTa 3 O 8 , Ta 2 O 5 and TaPO 5 can be calculated in the same manner as the content ratio of the LTPO structure.
  • this oxide basically does not contain an amorphous component, there is no problem if it is contained within a range that does not affect the conductivity.
  • the total ionic conductivity of the present oxide is preferably 2.00 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 or more, more preferably 3.00 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 or more, and still more preferably 4.00 ⁇ 10 ⁇ 4 S ⁇ cm ⁇ 1 or more. It is 10 ⁇ 4 S ⁇ cm ⁇ 1 or more.
  • the present oxide can be said to have sufficient ionic conductivity. Specifically, the total ionic conductivity can be measured by the method described in Examples below.
  • the present oxide can be produced by firing (or sintering) a raw material mixed so that the content of each constituent element is within the above range. Specifically, the raw material is pulverized and mixed with a ball mill or bead mill and then fired (1), the raw material is pulverized and mixed with a ball mill or bead mill, and then compressed into a predetermined shape. Next, the method (2) of sintering and the like can be mentioned. In addition, after pulverizing the fired product obtained by the method (1) (mixed with various additives as necessary), it is shaped by compression processing such as press molding, and sintered ( 3) is also mentioned.
  • Examples of the raw material include a compound containing a lithium atom, a compound containing a tantalum atom, a compound containing a boron atom, a compound containing a phosphorus atom, and a compound containing a fluorine atom. If it has, a compound that further contains a niobium atom is used, and if the present oxide has the other element M, a compound that further contains an M atom is used.
  • Examples of compounds containing lithium atoms include lithium carbonate (Li 2 CO 3 ), lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium acetate (LiCH 3 COO) and hydrates thereof. .
  • lithium carbonate, lithium hydroxide, and lithium acetate are preferable because they are easily decomposed and reacted.
  • One type of compound containing a lithium atom may be used, or two or more types may be used.
  • Examples of compounds containing tantalum atoms include tantalum pentoxide (Ta 2 O 5 ) and tantalum nitrate (Ta(NO 3 ) 5 ). Among these, tantalum pentoxide is preferable from the viewpoint of cost.
  • tantalum pentoxide is preferable from the viewpoint of cost.
  • One type of compound containing a tantalum atom may be used, or two or more types may be used.
  • Examples of compounds containing boron atoms include LiBO2 , LiB3O5 , Li2B4O7 , Li3B11O18 , Li3BO3 , Li3B7O12 , Li4B2O5 , Li6B4O9 , Li3 - x5B1 -x5Cx5O3 ( 0 ⁇ x5 ⁇ 1), Li4-x6B2 -x6Cx6O5 ( 0 ⁇ x6 ⁇ 2), Li2.4 Al0.2BO3 , Li2.7Al0.1BO3 , B2O3 , H3BO3 .
  • One type of compound containing a boron atom may be used, or two or more types may be used.
  • a phosphate is preferable.
  • the phosphate since it is easily decomposed and reacted, for example, diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), dihydrogen phosphate Ammonium ( NH4H2PO4 ) may be mentioned.
  • diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 )
  • dihydrogen phosphate Ammonium ( NH4H2PO4 ) may be mentioned.
  • One type of compound containing a phosphorus atom may be used, or two or more types may be used.
  • Examples of compounds containing fluorine atoms include LiF, TaF 5 , NbF 5 , HBF 4 and H 2 SiF 6 .
  • LiF is preferable from the viewpoint of ease of handling and ease of composition adjustment. 1 type may be used for the compound containing a fluorine atom, and 2 or more types may be used for it.
  • Examples of compounds containing niobium atoms include Nb 2 O 5 , LiNbO 3 , LiNb 3 O 8 and NbPO 5 .
  • One type of compound containing a niobium atom may be used, or two or more types may be used.
  • Compounds containing M atoms include, for example, oxides and nitrates of the element M.
  • One type of compound containing an M atom may be used, or two or more types may be used.
  • the firing temperature during firing in the method (1) is preferably 500° C. or higher, more preferably 700° C. or higher, and preferably 1200° C. or lower, more preferably 1000° C. or lower, and the firing time is, for example, 1 ⁇ 16 hours.
  • impurity components and the like that may be contained in the raw material are volatilized and removed, and the desired oxide can be obtained.
  • the pressure during compression processing in the methods (2) and (3) is not particularly limited, but is preferably 50 MPa or higher, more preferably 100 MPa or higher, and preferably 500 MPa or lower, more preferably 400 MPa or lower.
  • the predetermined shape is not particularly limited, it is preferably a shape according to the application of the present oxide and further the solid electrolyte.
  • the sintering temperature for sintering in the methods (2) and (3) is preferably 600 to 1200° C., and the sintering time is, for example, 1 to 96 hours.
  • the firing and sintering may be performed in the air, but may be performed in an atmosphere of nitrogen gas and/or argon gas with an oxygen gas content adjusted in the range of 0 to 20% by volume, hydrogen gas
  • reducing gas atmosphere such as nitrogen hydrogen mixed gas containing reducing gas, such as.
  • reducing gas ammonia gas, carbon monoxide gas, etc. may be used in addition to hydrogen gas.
  • An all-solid-state battery according to one embodiment of the present invention includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a solid electrolyte between the positive electrode and the negative electrode layer, wherein the solid electrolyte layer comprises the present oxide.
  • the battery of the present invention may be a primary battery or a secondary battery, but is preferably a secondary battery from the viewpoint of exhibiting the effects of the present invention more, and a lithium ion secondary battery. is more preferable.
  • the structure of the present battery is not particularly limited as long as it includes a positive electrode, a negative electrode, and a solid electrolyte layer between the positive electrode and the negative electrode.
  • the solid electrolyte layer is not particularly limited as long as it contains the present oxide, and if necessary, may contain conventionally known additives used in solid electrolyte layers of all-solid-state batteries, but is preferably composed of the present oxide. .
  • the thickness of the solid electrolyte layer may be appropriately selected according to the structure of the battery to be formed (thin film type, etc.), but is preferably 50 nm or more, more preferably 100 nm or more, and preferably 1000 ⁇ m or less, more preferably 100 ⁇ m. It is below.
  • the positive electrode is not particularly limited as long as it has a positive electrode active material, but preferably includes a positive electrode having a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is not particularly limited as long as it contains a positive electrode active material, but preferably contains a positive electrode active material and a solid electrolyte, and may further contain additives such as a conductive aid and a sintering aid. .
  • the thickness of the positive electrode active material layer may be appropriately selected according to the structure of the battery to be formed (thin film type, etc.), but is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, still more preferably 50 ⁇ m or more. It is 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less.
  • Positive electrode active material examples include LiCo oxide, LiNiCo oxide, LiNiCoMn oxide, LiNiMn oxide, LiMn oxide, LiMn spinel, LiMnNi oxide, LiMnAl oxide, LiMnMg oxide, and LiMnCo oxide.
  • LiNiCoMn oxide, LiNiCo oxide, and LiCo oxide are preferable, and LiNiCoMn oxide is more preferable, from the viewpoint that the capacity can be increased.
  • the surface of the positive electrode active material may be coated with an ion-conductive oxide such as lithium niobate, lithium phosphate, or lithium borate.
  • the positive electrode active material used in the positive electrode active material layer may be of one type or two or more types.
  • Preferred examples of the positive electrode active material include LiM3PO4 [M3 is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, Ti and V, or two elements of V and O. . ], LiM5VO 4 [M5 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti. ], Li 2 M6P 2 O 7 [M6 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O.
  • LiVP2O7 Lix7Vy7M7z7 [ 2 ⁇ x7 ⁇ 4 , 1 ⁇ y7 ⁇ 3, 0 ⁇ z7 ⁇ 1 , 1 ⁇ y7+ z7 ⁇ 3
  • M7 is Ti, Ge, Al, Ga and Zr It is one or more elements selected from the group consisting of ], Li 1+x8 Al x8 M8 2-x8 (PO 4 ) 3 [0 ⁇ x8 ⁇ 0.8, M8 is one or more elements selected from the group consisting of Ti and Ge.
  • LiNi1 / 3Co1 / 3Mn1 / 3O2 LiCoO2, LiNiO2 , LiMn2O4 , Li2CoP2O7 , Li3V2 ( PO4 ) 3 , Li3Fe2 ( PO4 ) 3 , LiNi0.5Mn1.5O4 , Li4Ti5O12 may also be mentioned .
  • the positive electrode active material is preferably particulate.
  • the 50% diameter in the volume-based particle size distribution is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, still more preferably 0.4 ⁇ m or more, particularly preferably 0.5 ⁇ m or more, and preferably 30 ⁇ m or less. It is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • the ratio of the length of the major axis to the length of the minor axis (length of the major axis/length of the minor axis), that is, the aspect ratio of the positive electrode active material is preferably less than 3, more preferably less than 2.
  • the positive electrode active material may form secondary particles.
  • the 50% diameter in the number-based particle size distribution of the primary particles is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, still more preferably 0.4 ⁇ m or more, and particularly preferably 0.5 ⁇ m or more. is 20 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 10 ⁇ m or less, and particularly preferably 2 ⁇ m or less.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 20% by mass or more, more preferably 30% by mass or more, and preferably 80% by mass or less, more preferably 70% by mass or less.
  • the positive electrode active material functions favorably, and there is a tendency to easily obtain a battery with a high energy density.
  • Solid electrolyte The solid electrolyte that can be used for the positive electrode active material layer is not particularly limited, and conventionally known solid electrolytes can be used. It is preferable to use One type or two or more types of solid electrolytes may be used in the positive electrode active material layer.
  • the conductive aid include metal materials such as Ag, Au, Pd, Pt, Cu, and Sn, and carbon materials such as acetylene black, ketjen black, carbon nanotubes, and carbon nanofibers.
  • the sintering aid is preferably a compound containing a boron atom, a compound containing a niobium atom, or a compound containing an M atom (examples of M: bismuth, silicon).
  • M bismuth, silicon
  • the positive electrode current collector is not particularly limited as long as the material conducts electrons without causing an electrochemical reaction.
  • Materials for the positive electrode current collector include, for example, simple metals such as copper, aluminum, and iron, alloys containing these metals, and conductive metal oxides such as antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO). is mentioned.
  • ATO antimony-doped tin oxide
  • ITO tin-doped indium oxide
  • a current collector having a conductive adhesive layer provided on the surface of a conductor can also be used. Examples of the conductive adhesive layer include a layer containing a granular conductive material, a fibrous conductive material, or the like.
  • the negative electrode is not particularly limited as long as it has a negative electrode active material, but preferably includes a negative electrode having a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is not particularly limited as long as it contains the negative electrode active material, but preferably contains the negative electrode active material and the solid electrolyte, and may further contain additives such as a conductive aid and a sintering aid. .
  • the thickness of the negative electrode active material layer may be appropriately selected according to the structure of the battery to be formed (thin film type, etc.), preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, still more preferably 50 ⁇ m or more. It is 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less.
  • Negative electrode active material examples include lithium alloys, metal oxides, graphite, hard carbon, soft carbon, silicon, silicon alloys, silicon oxide SiO n (0 ⁇ n ⁇ 2), and silicon/carbon composite materials. , a composite material in which silicon is included in the pores of porous carbon, lithium titanate, and graphite coated with lithium titanate. Among these, a silicon/carbon composite material and a composite material in which silicon domains are included in the pores of porous carbon are preferable because they have a high specific capacity and can increase energy density and battery capacity.
  • the silicon domain is a composite material in which silicon domains are included in the pores of porous carbon, which is excellent in mitigation of volume expansion accompanying lithium absorption/desorption of silicon, and has macro-, micro-, and ionic conductivity. Able to maintain good balance.
  • the silicon domain is amorphous, the size of the silicon domain is 10 nm or less, and the porous carbon-derived pores are present in the vicinity of the silicon domain. It is an encapsulating composite material.
  • the negative electrode active material include LiM3PO4 [M3 is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, Ti and V, or two elements of V and O . ], LiM5VO 4 [M5 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti. ], Li 2 M6P 2 O 7 [M6 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O.
  • LiVP2O7 Lix7Vy7M7z7 [ 2 ⁇ x7 ⁇ 4 , 1 ⁇ y7 ⁇ 3, 0 ⁇ z7 ⁇ 1 , 1 ⁇ y7+ z7 ⁇ 3
  • M7 is Ti, Ge, Al, Ga and Zr It is one or more elements selected from the group consisting of ], Li 1+x8 Al x8 M8 2-x8 (PO 4 ) 3 [0 ⁇ x8 ⁇ 0.8, M8 is one or more elements selected from the group consisting of Ti and Ge.
  • M9 is one or more elements selected from the group consisting of Mg, Al, Ga and Zn; , M10 are one or more elements selected from the group consisting of Zn, Al, Ga, Si, Ge, P and Ti, 0 ⁇ x9 ⁇ 1.0, 0 ⁇ y9 ⁇ 0.6, a9 is M9 and b9 is the average valence of M10], LiNb 2 O 7 , Li 4 Ti 5 O 12 , Li 4 Ti 5 PO 12 , TiO 2 , LiSi, and graphite.
  • the negative electrode active material is preferably particulate.
  • the 50% diameter in the volume-based particle size distribution, the aspect ratio, and the 50% diameter in the number-based particle size distribution of the primary particles when the negative electrode active material forms secondary particles are in the same range as the positive electrode active material. Preferably.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 20% by mass or more, more preferably 30% by mass or more, and preferably 80% by mass or less, more preferably 70% by mass or less.
  • the negative electrode active material functions favorably, and there is a tendency to easily obtain a battery with a high energy density.
  • the solid electrolyte that can be used in the negative electrode active material layer is not particularly limited, and conventionally known solid electrolytes can be used. It is preferable to use One type or two or more types of solid electrolytes may be used in the negative electrode active material layer.
  • the conductive aid include metal materials such as Ag, Au, Pd, Pt, Cu, and Sn, and carbon materials such as acetylene black, ketjen black, carbon nanotubes, and carbon nanofibers.
  • the sintering aid is preferably a compound containing a boron atom, a compound containing a niobium atom, or a compound containing an M atom (examples of M: bismuth, silicon).
  • M bismuth, silicon
  • Negative electrode current collector As the negative electrode current collector, the same current collector as the positive electrode current collector can be used.
  • An all-solid-state battery can be formed, for example, by a known powder molding method.
  • the positive electrode current collector, the powder for the positive electrode active material layer, the powder for the solid electrolyte layer, the powder for the negative electrode active material layer, and the negative electrode current collector are superimposed in this order, and powder-molded at the same time. Formation of each layer of the positive electrode active material layer, the solid electrolyte layer and the negative electrode active material layer, and connection between the positive electrode current collector, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer and the negative electrode current collector can be done simultaneously.
  • Suitable examples of conditions for this powder molding include conditions (pressure, temperature) similar to those for sintering in the method for producing the present oxide.
  • Each layer of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer may be powder-molded. Sintering is preferred.
  • an all-solid-state battery can also be produced, for example, by the following method.
  • a paste for forming each layer is prepared by appropriately mixing a solvent, a resin, etc. with the material for forming the positive electrode active material layer, the material for forming the solid electrolyte layer, and the material for forming the negative electrode active material layer, and the paste is used as a base.
  • a green sheet for a positive electrode active material layer, a green sheet for a solid electrolyte layer, and a green sheet for a negative electrode active material layer are produced by coating the sheets and drying them.
  • the green sheet for the positive electrode active material layer, the green sheet for the solid electrolyte layer, and the green sheet for the negative electrode active material layer which are obtained by peeling off the base sheet from each green sheet, are successively laminated, thermocompression bonded at a predetermined pressure, and placed in a container.
  • a laminate structure is fabricated by enclosing and pressing by hot isostatic pressing, cold isostatic pressing, isostatic pressing, or the like.
  • the laminated structure is degreased at a predetermined temperature and then sintered to produce a laminated sintered body.
  • the sintering temperature in this sintering treatment is preferably the same as the sintering temperature in the method for producing the present oxide.
  • a positive electrode current collector and a negative electrode current collector are formed on both main surfaces of the laminated sintered body by a sputtering method, a vacuum deposition method, applying or dipping a metal paste, or the like, thereby forming an all-solid battery. It can also be produced.
  • Lithium carbonate (Li 2 CO 3 ) (manufactured by Merck & Co. Sigma-Aldrich, purity 99.0% or more), tantalum pentoxide (Ta 2 O 5 ) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 99.9%), Boric acid (H 3 BO 3 ) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 99.5% or more), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) (manufactured by Merck Sigma-Aldrich, purity 98 % or more) and lithium fluoride (LiF) (manufactured by Merck & Co.
  • the resulting primary mixture is placed in an alumina boat, and heated to 1000° C. in an atmosphere of air (flow rate: 100 mL/min) at a temperature elevation rate of 10° C./min using a rotary kiln (manufactured by Motoyama Co., Ltd.). It was heated and fired at that temperature for 4 hours to obtain a primary fired product.
  • the obtained pellets are placed in an alumina boat and heated to 850°C at a heating rate of 10°C/min in an air atmosphere (flow rate: 100 mL/min) using a rotary kiln (manufactured by Motoyama Co., Ltd.). Then, it was sintered at this temperature for 96 hours to obtain a lithium ion conductive oxide (sintered body). After cooling the resulting lithium ion conductive oxide (sintered body) to room temperature, it was taken out from the rotary sintering furnace, transferred to a dehumidified nitrogen gas atmosphere, and stored.
  • Example 2 and 4 A lithium ion conductive oxide was prepared in the same manner as in Example 1, except that the mixing ratio of the raw materials was changed so that the obtained lithium ion conductive oxide satisfies the stoichiometric ratio (atomic ratio) in Table 1. was made.
  • Example 3 In Example 1, niobium pentoxide (Nb 2 O 5 ) (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., purity 99.9%) was further used, and the resulting lithium ion conductive oxide had the stoichiometric amount shown in Table 1.
  • a lithium ion conductive oxide was produced in the same manner as in Example 1, except that each raw material powder was used so as to satisfy the theoretical ratio (atomic ratio).
  • Lithium carbonate Li 2 CO 3
  • tantalum pentoxide Ta 2 O 5
  • diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 )
  • a lithium ion conductive oxide was produced in the same manner as in Example 1, except that each raw material powder was used so as to satisfy the ratio).
  • Lithium fluoride (LiF) (manufactured by Merck & Co. Sigma-Aldrich) was further used, and each raw material powder was used so that the resulting lithium ion conductive oxide satisfies the stoichiometric ratio (atomic ratio) in Table 1. produced a lithium ion conductive oxide in the same manner as in Comparative Example 1.
  • X-ray diffraction (XRD)> The resulting lithium ion conductive oxide was pulverized 30 times using an agate mortar to obtain a powder for XRD measurement.
  • a powder X-ray diffraction measurement device PANalytical MPD manufactured by Spectris Co., Ltd.
  • the obtained XRD pattern is extracted from the well-known analysis software RIETAN-FP (author: Fujio Izumi's website "RIETAN-FP/VENUS system distribution file" (http://fujioizumi.verse.jp/download/download.html)
  • RIETAN-FP author: Fujio Izumi's website "RIETAN-FP/VENUS system distribution file" (http://fujioizumi.verse.jp/download/download.html)
  • the contained crystal structures were confirmed by performing Rietveld analysis using the . Table 2 shows the results.
  • XRD patterns of the lithium ion conductive oxides obtained in Examples 2 and 3 and Comparative Example 1 are shown in FIG. From FIG. 1, in Comparative Example 1, only peaks derived from the monoclinic crystal structure of LiTa 2 PO 8 were observed. In the lithium ion conductive oxide obtained in Example 2, a peak derived from LiTa 3 O 8 (ICSD code: 493) was observed in addition to the peak derived from the LiTa 2 PO 8 structure. In the lithium ion conductive oxide thus obtained, peaks derived from Ta 2 O 5 (ICSD code: 66366) were observed in addition to peaks derived from the LiTa 2 PO 8 structure.
  • ICSD code a peak derived from LiTa 3 O 8
  • ⁇ Relative Density> The mass of the produced lithium ion conductive oxide was measured using an electronic balance. Next, the volume was measured from the actual size of the lithium ion conductive oxide using a micrometer. By dividing the measured mass by the volume, the density of the lithium ion conductive oxide (measured density) is calculated, and the percentage of the ratio of the measured density to the theoretical density of the lithium ion conductive oxide (measured density / theoretical density ⁇ 100), the relative density (%) was determined. Table 2 shows the results.
  • the theoretical value of the density of the lithium ion conductive oxide is the theoretical density of the crystal structure based on LiTa2PO8 , which constitutes the lithium ion conductive oxide , and LiTa3O8 , Ta2O5 and TaPO5 . (ICSD code: 202041) and the theoretical density of the crystal structure based on the Rietveld analysis was calculated by taking a weighted average using the content of each crystal structure.
  • Gold layers were formed on both surfaces of the obtained lithium ion conductive oxide using a sputtering machine to obtain measurement pellets for ion conductivity evaluation.
  • the obtained measurement pellets were kept in a constant temperature bath at 25° C. for 2 hours before measurement. Then, at 25° C., using an impedance analyzer (manufactured by Solartron Analytical, model number: 1260A), AC impedance was measured in a frequency range of 1 Hz to 10 MHz under conditions of an amplitude of 25 mV.
  • an impedance analyzer manufactured by Solartron Analytical, model number: 1260A
  • the obtained impedance spectrum is fitted with an equivalent circuit using the equivalent circuit analysis software ZView attached to the device to obtain the lithium ion conductivity in the crystal grain and the crystal grain boundary, and by summing these, the total ion Conductivity was calculated.
  • Table 2 shows the results.
  • the atomic number ratios (stoichiometric ratios) in Table 1 and the content values of the elements calculated by the respective formulas are the number of atoms in the lithium ion conductive oxide obtained in each example and comparative example. It is the ratio (stoichiometric ratio) and the value of the element content calculated by each formula.
  • this oxide has a high total ionic conductivity and a lithium ion conductive oxide with a high relative density can be easily obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の一実施形態は、リチウムイオン伝導性酸化物または全固体電池に関し、該リチウムイオン伝導性酸化物は、LiTa2PO8に基づく結晶構造を有し、少なくとも、リチウム、タンタル、ホウ素、リン、酸素およびフッ素を構成元素として有し、下記式(1)で表されるホウ素の含有量が4.0~15.0%であり、下記式(2)で表されるフッ素の含有量が0.5~2.0%である。 B原子数/(B原子数+P原子数)×100 ・・・(1) F原子数/(O原子数+F原子数)×100 ・・・(2)

Description

リチウムイオン伝導性酸化物および全固体電池
 本発明の一実施形態は、リチウムイオン伝導性酸化物または全固体電池に関する。
 近年、ノートパソコン、タブレット端末、携帯電話、スマートフォン、および電気自動車(EV)等の電源として、高出力かつ高容量の電池の開発が求められている。その中でも有機溶媒などの液体電解質に替えて、固体電解質を用いた全固体電池が、充放電効率、充電速度、安全性および生産性に優れる電池として注目されている。
 前記固体電解質として、無機固体電解質が注目されており、該無機固体電解質としては、主に酸化物系と硫化物系の固体電解質が知られている。
 硫化物系の固体電解質を用いた場合、コールドプレスなどにより電池を作製できるなどの利点はあるものの、湿度に対して不安定であり、有害な硫化水素ガスが発生する可能性があるため、安全性等の点から酸化物系の固体電解質(例えば、特許文献1~3)の開発が進められている。
特開2013-157090号公報 国際公開第2020/036290号 特開2020-194773号公報
 酸化物系の固体電解質(リチウムイオン伝導性酸化物)は粒界抵抗が極めて大きく、全固体電池に使用できるだけのイオン伝導度を得るには、リチウムイオン伝導性酸化物の粉末を加圧成形するだけではなく、焼結して相対密度(理論密度に対する実際の密度の百分率)を高くする必要がある。
 しかしながら、前記特許文献1~3に記載などの従来のリチウムイオン伝導性酸化物は、相対密度の高い酸化物を容易に得ることができず、また、イオン伝導度の点で改良の余地があった。
 本発明の一実施形態は、相対密度を高くすることができ、十分なイオン伝導度を有するリチウムイオン伝導性酸化物を提供する。
 本発明者らが鋭意検討した結果、下記構成例によれば、前記課題を解決できることを見出し、本発明を完成させるに至った。
 本発明の構成例は以下のとおりである。
 [1] LiTa2PO8に基づく結晶構造を有し、
 少なくとも、リチウム、タンタル、ホウ素、リン、酸素およびフッ素を構成元素として有し、
 下記式(1)で表されるホウ素の含有量が4.0~15.0%であり、
 下記式(2)で表されるフッ素の含有量が0.5~2.0%である、
リチウムイオン伝導性酸化物。
 B原子数/(B原子数+P原子数)×100 ・・・(1)
 F原子数/(O原子数+F原子数)×100 ・・・(2)
 [2] さらに、ニオブを構成元素として有し、
 下記式(3)で表されるニオブの含有量が0%を超え20.0%以下である、
[1]に記載のリチウムイオン伝導性酸化物。
 Nb原子数/(Nb原子数+Ta原子数)×100 ・・・(3)
 [3] リチウムイオン伝導性酸化物の理論密度に対する、該酸化物の質量と体積とから算出される実測密度の比の百分率である相対密度が、70%以上である、[1]または[2]に記載のリチウムイオン伝導性酸化物。
 [4] 前記LiTa2PO8に基づく結晶構造の含有率が85%以上である、[1]~[3]のいずれかに記載のリチウムイオン伝導性酸化物。
 [5] 下記式(4)で表されるリチウムの含有量が0.9を超え1.5以下である、
[1]~[4]のいずれかに記載のリチウムイオン伝導性酸化物。
 Li原子数/{(Nb原子数+Ta原子数)/2} ・・・(4)
 [6] 正極活物質を有する正極と、
 負極活物質を有する負極と、
 前記正極と前記負極との間に固体電解質層と、
を含み、
 前記固体電解質層が、[1]~[5]のいずれかに記載のリチウムイオン伝導性酸化物を含む、
全固体電池。
 [7] 前記正極活物質が、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P27[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP27、Lix7y7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO43[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、LiNi1/3Co1/3Mn1/32、LiCoO2、LiNiO2、LiMn24、Li2CoP27、Li32(PO43、Li3Fe2(PO43、LiNi0.5Mn1.54およびLi4Ti512からなる群より選ばれる1種以上の化合物を含む、[6]に記載の全固体電池。
 [8] 前記負極活物質が、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P27[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP27、Lix7y7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO43[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、(Li3-a9x9+(5-b9)y9M9x9)(V1-y9M10y9)O4[M9は、Mg、Al、GaおよびZnからなる群より選ばれる1種以上の元素であり、M10は、Zn、Al、Ga、Si、Ge、PおよびTiからなる群より選ばれる1種以上の元素であり、0≦x9≦1.0、0≦y9≦0.6、a9はM9の平均価数、b9はM10の平均価数]、LiNb27、Li4Ti512、Li4Ti5PO12、TiO2、LiSiおよびグラファイトからなる群より選ばれる1種以上の化合物を含む、[6]または[7]に記載の全固体電池。
 [9] 前記正極および負極が、[1]~[5]のいずれかに記載のリチウムイオン伝導性酸化物を含有する、[6]~[8]のいずれかに記載の全固体電池。
 本発明の一実施形態によれば、相対密度を高くすることができ、十分なイオン伝導度を有するリチウムイオン伝導性酸化物を提供することができる。
実施例2、3および比較例1で得られたリチウムイオン伝導性酸化物のXRD図形である。
≪リチウムイオン伝導性酸化物≫
 本発明の一実施形態に係るリチウムイオン伝導性酸化物(以下「本酸化物」ともいう。)は、LiTa2PO8に基づく結晶構造(以下「LTPO構造」ともいう。)を有し、
 少なくとも、リチウム、タンタル、ホウ素、リン、酸素およびフッ素を構成元素として有し、
 下記式(1)で表されるホウ素の含有量が4.0~15.0%であり、
 下記式(2)で表されるフッ素の含有量が0.5~2.0%である。
 ホウ素の含有量=B原子数/(B原子数+P原子数)×100 ・・・(1)
 フッ素の含有量=F原子数/(O原子数+F原子数)×100 ・・・(2)
 本酸化物が、前記LTPO構造を有していることは、X線回折(XRD)図形、具体的には、下記実施例に記載の方法で測定されたXRD図形を解析することで判断することができる。
 本酸化物の構成元素としては、リチウム、タンタル、ホウ素、リン、酸素およびフッ素を含めば特に制限されないが、相対密度の高いリチウムイオン伝導性酸化物を容易に得ることができる等の点から、さらにニオブを含むことも好ましく、さらに、Zr、Ga、Sn、Hf、Bi、W、Mo、Si、AlおよびGeからなる群より選ばれる1種以上の他の元素Mを含んでいてもよい。
 前記式(1)で表される、本酸化物中のホウ素の含有量は、4.0%以上であり、好ましくは9.0%以上であり、15.0%以下であり、好ましくは10.0%以下である。
 ホウ素の含有量が前記範囲にあると、相対密度がより高い酸化物となる。
 前記式(2)で表される、本酸化物中のフッ素の含有量は、0.5%以上であり、好ましくは0.6%以上であり、2.0%以下であり、好ましくは1.9%以下である。
 フッ素の含有量が前記範囲にあると、トータルイオン伝導度がより高い酸化物となる。
 本酸化物が、さらにニオブ元素を含む場合、下記式(3)で表されるニオブの含有量は、好ましくは0%を超え20.0%以下である。該ニオブの含有量の下限は、より好ましくは5%である。また、該ニオブの含有量の上限は、より好ましくは15.0%、さらに好ましくは12.0%、特に好ましくは10.0%である。
 ニオブの含有量=Nb原子数/(Nb原子数+Ta原子数)×100 ・・・(3)
 ニオブの含有量が前記範囲にあると、トータルイオン伝導度が比較的高く、かつ、相対密度がより高い酸化物となる。
 下記式(4)で表される、本酸化物中のリチウムの含有量の下限は、好ましくは0.9超えであり、より好ましくは1.0、さらに好ましくは1.1である。また、該リチウムの含有量の上限は、好ましくは1.5、より好ましくは1.2である。なお、下記式(4)における、「(Nb原子数+Ta原子数)」は、本酸化物がニオブを構成元素として有さない場合には、「Ta原子数」となる。
 リチウムの含有量=Li原子数/{(Nb原子数+Ta原子数)/2} ・・・(4)
 リチウムの含有量が前記範囲にあると、トータルイオン伝導度が比較的高く、かつ、相対密度がより高い酸化物となる。
 なお、本酸化物中の各元素の含有量は、例えば、LiCoO2等のリチウム含有遷移金属酸化物として、Mn、Co、Niが1:1:1の割合で含有されている標準粉末試料を用い、オージェ電子分光法(AES:Auger Electron Spectroscopy)の絶対強度定量法により測定することができる。他にも、従来公知の定量分析により求めることができる。例えば、本酸化物に酸を加えて熱分解後、熱分解物を定容し、高周波誘導結合プラズマ(ICP)発光分析装置を用いて、本酸化物中の各元素の含有量を求めることができる。
 本酸化物の組成は、簡便には、各構成元素を含む原材料を、構成元素の含有量の比が所望の範囲となるように混合することで、調整することができる。具体的には、実施例において示すように、所定の化学量論比を満たすように、各構成元素を含む原材料を秤量して用いることで調整することができる。
 本酸化物の相対密度は、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。
 前記相対密度は、本酸化物の質量と体積とから算出した実測密度を、該酸化物の理論密度で除した百分率(実測密度/理論密度×100)であり、具体的には、下記実施例に記載の方法で測定できる。
 なお、本酸化物の理論密度は、具体的には、リチウムイオン伝導性酸化物を構成する結晶構造の理論密度と、該結晶構造の含有量を用いて加重平均することによって算出される。例えば、本酸化物が、含有量h%の結晶構造1および含有量k%の結晶構造2を有する場合、(結晶構造1の理論密度×h+結晶構造2の理論密度×k)/100で算出できる。より具体的には、下記式(5)で表すことができる。
 {(観測された結晶の理論密度×結晶率(%))の和}/100 ・・・(5)
 各結晶構造の含有率(結晶率)は、リートベルト解析で求めることができる。
 本酸化物が含む、LTPO構造以外の結晶構造としては、LiTa38、Ta25およびTaPO5等が挙げられる。これらの結晶構造はXRD図形において確認することができる。
 本酸化物は、LTPO構造と、LiTa38、Ta25およびTaPO5から選ばれる少なくとも1つの結晶とを含有することが好ましく、LTPO構造と、LiTa38、Ta25およびTaPO5から選ばれる1つまたは2つの結晶とを含有することがより好ましい。後者の場合、LiTa38、Ta25およびTaPO5から選ばれる1つまたは2つの結晶の含有率は0%である。
 本酸化物中のLTPO構造の含有率[LTPO構造の結晶率](=LTPOの結晶量×100/確認された全ての結晶の合計結晶量)は、好ましくは85%以上、より好ましくは89%以上、さらに好ましくは90%以上、特に好ましくは95%超である。LTPO構造の結晶率の上限は特に制限されないが、好ましくは100%未満、より好ましくは99%以下である。
 本酸化物中のLTPO構造の結晶率が前記範囲にあると、トータルイオン伝導度の高い酸化物となる傾向にある。
 本酸化物中のLTPO構造の結晶率は、例えば、本酸化物のXRD図形を、公知の解析ソフトウェアRIETAN-FP(作成者;泉富士夫のホームページ「RIETAN-FP・VENUS システム配布ファイル」(http://fujioizumi.verse.jp/download/download.html)から入手することができる。)を用いてリートベルト解析することで算出することができる。
 本酸化物がLiTa38結晶を含有する場合、本酸化物中のLiTa38結晶の含有率(LiTa38結晶率)の上限は、好ましくは12.0%以下であり、また、その下限は、好ましくは1.2%超、より好ましくは1.5%以上、さらに好ましくは3.0%以上である。
 本酸化物がTa25結晶を含有する場合、本酸化物中のTa25結晶の含有率(Ta25結晶率)の下限は好ましくは0%超であり、また、その上限は、好ましくは2.5%以下、より好ましくは1.5%以下、さらに好ましくは1.0%以下である。
 本酸化物がTaPO5結晶を含有する場合、本酸化物中のTaPO5結晶の含有率(TaPO5結晶率)の上限は、好ましくは3.5%以下、より好ましくは3.0%以下であり、また、その下限は、0%超である。
 前記LiTa38結晶率、Ta25結晶率およびTaPO5結晶率の範囲の少なくとも1つが満たされると、相対密度および/またはトータルイオン伝導度の高いリチウムイオン伝導性酸化物を容易に得ることができる傾向にある。
 なお、本酸化物が、LiTa38、Ta25およびTaPO5から選ばれる少なくとも1つの結晶を含有する場合、これらの結晶の結晶率の合計の残部(100-これらの結晶の結晶率の合計)がLTPO構造の含有率であることが好ましい。
 LiTa38、Ta25およびTaPO5等の結晶構造の結晶率は、前記LTPO構造の含有率の算出方法と同様にしてそれぞれ算出することができる。
 本酸化物中には非晶質分は基本的に含まれないが、伝導度に影響しない範囲で含まれていても問題ない。
 本酸化物のトータルイオン伝導度は、好ましくは2.00×10-4S・cm-1以上、より好ましくは3.00×10-4S・cm-1以上、さらに好ましくは4.00×10-4S・cm-1以上である。
 該トータルイオン伝導度が前記範囲にあると、本酸化物は、十分なイオン伝導度を有するといえる。
 該トータルイオン伝導度は、具体的には、下記実施例に記載の方法で測定できる。
<本酸化物の製造方法>
 本酸化物は、各構成元素の含有量が前記範囲となるように混合した原料物質を焼成(または焼結)することで製造することができる。
 具体的には、原料物質を、ボールミルやビーズミルなどで粉砕・混合した後、焼成する方法(1)、原料物質を、ボールミルやビーズミルなどで粉砕・混合した後、所定の形状に圧縮加工し、次いで、焼結する方法(2)等が挙げられる。
 また、前記方法(1)で得られた焼成物(さらに必要に応じて各種添加剤を混合したもの)を、粉砕した後、プレス成形などの圧縮加工などにより賦形し、焼結する方法(3)も挙げられる。
 前記原料物質としては、例えば、リチウム原子を含む化合物、タンタル原子を含む化合物、ホウ素原子を含む化合物、リン原子を含む化合物およびフッ素原子を含む化合物が用いられ、本酸化物がニオブを構成元素として有する場合、さらにニオブ原子を含む化合物が用いられ、本酸化物が前記他の元素Mを有する場合、さらにM原子を含む化合物が用いられる。
 リチウム原子を含む化合物としては、例えば、炭酸リチウム(Li2CO3)、酸化リチウム(Li2O)、水酸化リチウム(LiOH)、酢酸リチウム(LiCH3COO)およびこれらの水和物が挙げられる。これらの中でも、分解、反応させやすいことから、炭酸リチウム、水酸化リチウム、および酢酸リチウムが好ましい。
 リチウム原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 タンタル原子を含む化合物としては、例えば、五酸化タンタル(Ta25)、硝酸タンタル(Ta(NO35)が挙げられる。これらの中でも、コストの点から、五酸化タンタルが好ましい。
 タンタル原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 ホウ素原子を含む化合物としては、例えば、LiBO2、LiB35、Li247、Li31118、Li3BO3、Li3712、Li425、Li649、Li3-x51-x5x53(0<x5<1)、Li4-x62-x6x65(0<x6<2)、Li2.4Al0.2BO3、Li2.7Al0.1BO3、B23、H3BO3が挙げられる。
 ホウ素原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 リン原子を含む化合物としては、リン酸塩が好ましく、リン酸塩としては、分解、反応させやすいことから、例えば、リン酸水素二アンモニウム((NH42HPO4)、リン酸二水素一アンモニウム(NH42PO4)が挙げられる。
 リン原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 フッ素原子を含む化合物としては、例えば、LiF、TaF5、NbF5、HBF4、H2SiF6が挙げられる。扱いやすさや、組成の調整のしやすさの観点から、LiFが好ましい。
 フッ素原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 ニオブ原子を含む化合物としては、例えば、Nb25、LiNbO3、LiNb38、NbPO5が挙げられる。
 ニオブ原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 M原子を含む化合物としては、例えば、元素Mの酸化物や硝酸化物が挙げられる。
 M原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 前記方法(1)における焼成の際の焼成温度は、好ましくは500℃以上、より好ましくは700℃以上であり、好ましくは1200℃以下、より好ましくは1000℃以下であり、焼成時間は、例えば1~16時間である。
 このような焼成により、原料物質に含まれ得る不純物成分等が揮発除去され、目的とする酸化物を得ることができる。
 前記方法(2)や(3)における圧縮加工する際の圧力としては特に制限されないが、好ましくは50MPa以上、より好ましくは100MPa以上であり、好ましくは500MPa以下、より好ましくは400MPa以下である。
 前記所定の形状としては特に制限されないが、本酸化物、さらには固体電解質の用途に応じた形状であることが好ましい。
 前記方法(2)や(3)における焼結の際の焼結温度は、好ましくは600~1200℃であり、焼結時間は、例えば1~96時間である。
 前記焼成や焼結は大気下で行ってもよいが、0~20体積%の範囲で酸素ガス含有量の調整された、窒素ガスおよび/またはアルゴンガスの雰囲気下で行ってもよく、水素ガスなどの還元性ガスを含む、窒素水素混合ガス等の還元性ガス雰囲気下で行ってもよい。還元性ガスとしては、水素ガス以外に、アンモニアガス、一酸化炭素ガスなどを用いてもよい。
≪全固体電池≫
 本発明の一実施形態に係る全固体電池(以下「本電池」ともいう。)は、正極活物質を有する正極と、負極活物質を有する負極と、前記正極と前記負極との間に固体電解質層とを含み、前記固体電解質層が本酸化物を含む。
 本電池は、一次電池であってもよく、二次電池であってもよいが、本発明の効果がより発揮される等の点から、二次電池であることが好ましく、リチウムイオン二次電池であることがより好ましい。
 本電池の構造は、正極と、負極と、該正極と負極との間に固体電解質層を含めば特に制限されず、いわゆる、薄膜型、積層型、バルク型のいずれであってもよい。
<固体電解質層>
 固体電解質層は、本酸化物を含めば特に制限されず、必要により、全固体電池の固体電解質層に用いられる従来公知の添加剤を含んでいてもよいが、本酸化物からなることが好ましい。
 固体電解質層の厚さは、形成したい電池の構造(薄膜型等)に応じて適宜選択すればよいが、好ましくは50nm以上、より好ましくは100nm以上であり、好ましくは1000μm以下、より好ましくは100μm以下である。
<正極>
 正極は正極活物質を有すれば特に制限されないが、好ましくは、正極集電体と正極活物質層とを有する正極が挙げられる。
[正極活物質層]
 正極活物質層は、正極活物質を含めば特に制限されないが、正極活物質と固体電解質とを含むことが好ましく、さらに、導電助剤や焼結助剤等の添加剤を含んでいてもよい。
 正極活物質層の厚さは、形成したい電池の構造(薄膜型等)に応じて適宜選択すればよいが、好ましくは10μm以上、より好ましくは30μm以上、さらに好ましくは50μm以上であり、好ましくは200μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下である。
・正極活物質
 正極活物質としては、例えば、LiCo酸化物、LiNiCo酸化物、LiNiCoMn酸化物、LiNiMn酸化物、LiMn酸化物、LiMn系スピネル、LiMnNi酸化物、LiMnAl酸化物、LiMnMg酸化物、LiMnCo酸化物、LiMnFe酸化物、LiMnZn酸化物、LiCrNiMn酸化物、LiCrMn酸化物、チタン酸リチウム、リン酸金属リチウム、遷移金属酸化物、硫化チタン、グラファイト、ハードカーボン、遷移金属含有リチウム窒化物、酸化ケイ素、ケイ酸リチウム、リチウム金属、リチウム合金、Li含有固溶体、リチウム貯蔵性金属間化合物が挙げられる。
 これらの中でも、固体電解質との親和性がよく、マクロ導電性、ミクロ導電性およびイオン伝導性のバランスに優れ、また、平均電位が高く、比容量と安定性とのバランスにおいて、エネルギー密度や電池容量を高めることができる等の点から、LiNiCoMn酸化物、LiNiCo酸化物、LiCo酸化物が好ましく、LiNiCoMn酸化物がより好ましい。
 また、正極活物質は、イオン伝導性酸化物であるニオブ酸リチウム、リン酸リチウムまたはホウ酸リチウム等で表面が被覆されていてもよい。
 正極活物質層に用いられる正極活物質は、1種でもよく、2種以上でもよい。
 前記正極活物質の好適例としては、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P27[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP27、Lix7y7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO43[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、LiNi1/3Co1/3Mn1/32、LiCoO2、LiNiO2、LiMn24、Li2CoP27、Li32(PO43、Li3Fe2(PO43、LiNi0.5Mn1.54、Li4Ti512も挙げられる。
 正極活物質は、粒子状が好ましい。その体積基準粒度分布における50%径は、好ましくは0.1μm以上、より好ましくは0.3μm以上、さらに好ましくは0.4μm以上、特に好ましくは0.5μm以上であり、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下、特に好ましくは3μm以下である。
 また、正極活物質の、短径の長さに対する長径の長さの比(長径の長さ/短径の長さ)、すなわちアスペクト比は、好ましくは3未満、より好ましくは2未満である。
 正極活物質は、二次粒子を形成していてもよい。その場合、一次粒子の数基準粒度分布における50%径は、好ましくは0.1μm以上、より好ましくは0.3μm以上、さらに好ましくは0.4μm以上、特に好ましくは0.5μm以上であり、好ましくは20μm以下、より好ましくは15μm以下、さらに好ましくは10μm以下、特に好ましくは2μm以下である。
 正極活物質層中の正極活物質の含有量は、好ましくは20質量%以上、より好ましくは30質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下である。
 正極活物質の含有量が前記範囲にあると、正極活物質が好適に機能し、エネルギー密度の高い電池を容易に得ることができる傾向にある。
・固体電解質
 正極活物質層に用いられ得る固体電解質としては特に制限されず、従来公知の固体電解質を用いることができるが、本発明の効果がより発揮される等の点から、本酸化物を用いることが好ましい。
 正極活物質層に用いられる固体電解質は、1種でもよく、2種以上でもよい。
・添加剤
 前記導電助剤の好適例としては、Ag、Au、Pd、Pt、Cu、Snなどの金属材料、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料が挙げられる。
 前記焼結助剤としては、ホウ素原子を含む化合物、ニオブ原子を含む化合物、M原子を含む化合物(Mの例:ビスマス、ケイ素)が好ましい。
 正極活物質層に用いられる添加剤はそれぞれ、1種でもよく、2種以上でもよい。
・正極集電体
 正極集電体は、その材質が電気化学反応を起こさずに電子を導電するものであれば特に限定されない。正極集電体の材質としては、例えば、銅、アルミニウム、鉄等の金属の単体、これらの金属を含む合金、アンチモンドープ酸化スズ(ATO)、スズドープ酸化インジウム(ITO)などの導電性金属酸化物が挙げられる。
 なお、正極集電体としては、導電体の表面に導電性接着層を設けた集電体を用いることもできる。該導電性接着層としては、例えば、粒状導電材や繊維状導電材などを含む層が挙げられる。
<負極>
 負極は負極活物質を有すれば特に制限されないが、好ましくは、負極集電体と負極活物質層とを有する負極が挙げられる。
[負極活物質層]
 負極活物質層は、負極活物質を含めば特に制限されないが、負極活物質と固体電解質とを含むことが好ましく、さらに、導電助剤や焼結助剤等の添加剤を含んでいてもよい。
 負極活物質層の厚さは、形成したい電池の構造(薄膜型等)に応じて適宜選択すればよいが、好ましくは10μm以上、より好ましくは30μm以上、さらに好ましくは50μm以上であり、好ましくは200μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下である。
・負極活物質
 負極活物質としては、例えば、リチウム合金、金属酸化物、グラファイト、ハードカーボン、ソフトカーボン、ケイ素、ケイ素合金、ケイ素酸化物SiOn(0<n≦2)、ケイ素/炭素複合材、多孔質炭素の細孔内にケイ素を内包する複合材、チタン酸リチウム、チタン酸リチウムで被覆されたグラファイトが挙げられる。
 これらの中でも、ケイ素/炭素複合材や多孔質炭素の細孔内にケイ素ドメインを内包する複合材は、比容量が高く、エネルギー密度や電池容量を高めることができるため好ましい。より好ましくは、多孔質炭素の細孔内にケイ素ドメインを内包する複合材であり、ケイ素のリチウム吸蔵/放出に伴う体積膨張の緩和性に優れ、マクロ導電性、ミクロ導電性およびイオン伝導性のバランスを良好に維持することができる。特に好ましくは、ケイ素ドメインが非晶質であり、ケイ素ドメインのサイズが10nm以下であり、ケイ素ドメインの近傍に多孔質炭素由来の細孔が存在する、多孔質炭素の細孔内にケイ素ドメインを内包する複合材である。
 前記負極活物質の好適例としては、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P27[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP27、Lix7y7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO43[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、(Li3-a9x9+(5-b9)y9M9x9)(V1-y9M10y9)O4[M9は、Mg、Al、GaおよびZnからなる群より選ばれる1種以上の元素であり、M10は、Zn、Al、Ga、Si、Ge、PおよびTiからなる群より選ばれる1種以上の元素であり、0≦x9≦1.0、0≦y9≦0.6、a9はM9の平均価数、b9はM10の平均価数]、LiNb27、Li4Ti512、Li4Ti5PO12、TiO2、LiSi、グラファイトも挙げられる。
 負極活物質は、粒子状が好ましい。その体積基準粒度分布における50%径、アスペクト比および負極活物質が二次粒子を形成している場合の、一次粒子の数基準粒度分布における50%径は、前記正極活物質と同様の範囲にあることが好ましい。
 負極活物質層中の負極活物質の含有量は、好ましくは20質量%以上、より好ましくは30質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下である。
 負極活物質の含有量が前記範囲にあると、負極活物質が好適に機能し、エネルギー密度の高い電池を容易に得ることができる傾向にある。
・固体電解質
 負極活物質層に用いられ得る固体電解質としては特に制限されず、従来公知の固体電解質を用いることができるが、本発明の効果がより発揮される等の点から、本酸化物を用いることが好ましい。
 負極活物質層に用いられる固体電解質は、1種でもよく、2種以上でもよい。
・添加剤
 前記導電助剤の好適例としては、Ag、Au、Pd、Pt、Cu、Snなどの金属材料、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料が挙げられる。
 前記焼結助剤としては、ホウ素原子を含む化合物、ニオブ原子を含む化合物、M原子を含む化合物(Mの例:ビスマス、ケイ素)が好ましい。
 負極活物質層に用いられる添加剤はそれぞれ、1種でもよく、2種以上でもよい。
・負極集電体
 負極集電体としては、正極集電体と同様の集電体を用いることができる。
<全固体電池の製造方法>
 全固体電池は、例えば、公知の粉末成形法によって形成することができる。例えば、正極集電体、正極活物質層用の粉末、固体電解質層用の粉末、負極活物質層用の粉末および負極集電体をこの順に重ね合わせて、それらを同時に粉末成形することによって、正極活物質層、固体電解質層および負極活物質層のそれぞれの層の形成と、正極集電体、正極活物質層、固体電解質層、負極活物質層および負極集電体のそれぞれの間の接続を同時に行うことができる。
 この粉末成形の条件の好適例としては、前記本酸化物の製造方法における焼結と同程度の条件(圧力、温度)が挙げられる。
 なお、正極活物質層、固体電解質層、負極活物質層の各層をそれぞれ前記粉末成形してもよいが、得られた各層を用いて全固体電池を作製する際には、各層をプレスして焼結することが好ましい。
 また、全固体電池は、例えば、以下の方法で作製することもできる。
 正極活物質層形成用の材料、固体電解質層形成用の材料、負極活物質層形成用の材料に、溶剤、樹脂等を適宜混合することにより、各層形成用ペーストを調製し、そのペーストをベースシート上に塗布し、乾燥させることで、正極活物質層用グリーンシート、固体電解質層用グリーンシート、負極活物質層用グリーンシートを作製する。次に、各グリーンシートからベースシートを剥離した、正極活物質層用グリーンシート、固体電解質層用グリーンシートおよび負極活物質層用グリーンシートを順次積層し、所定圧力で熱圧着した後、容器に封入し、熱間等方圧プレス、冷間等方圧プレス、静水圧プレス等により加圧することで、積層構造体を作製する。
 その後、必要によりこの積層構造体を所定温度で脱脂処理した後、焼結処理を行い、積層焼結体を作製する。
 この焼結処理における焼結温度は、前記本酸化物の製造方法における焼結温度と同様の温度であることが好ましい。
 次いで、必要により、積層焼結体の両主面に、スパッタリング法、真空蒸着法、金属ペーストの塗布またはディップ等により、正極集電体および負極集電体を形成することで、全固体電池を作製することもできる。
 以下、本発明の一実施形態を実施例に基づいて具体的に説明する。なお、本発明はこれらの実施例に限定されない。
[実施例1]
 炭酸リチウム(Li2CO3)(メルク社シグマアルドリッチ製、純度99.0%以上)、五酸化タンタル(Ta25)(富士フイルム和光純薬(株)製、純度99.9%)、ホウ酸(H3BO3)(富士フイルム和光純薬(株)製、純度99.5%以上)、リン酸水素二アンモニウム((NH42HPO4)(メルク社シグマアルドリッチ製、純度98%以上)、および、フッ化リチウム(LiF)(メルク社シグマアルドリッチ製)を、得られるリチウムイオン伝導性酸化物が表1の化学量論比(原子数比)を満たすように秤量した。具体的には、下記焼成の際に系外に流出するリチウム原子を考慮し、炭酸リチウムを表1中のリチウム原子量を1.05倍した量となるように秤量し、下記焼成の際に副生成物の生成を抑制するために、リン酸水素二アンモニウムを表1中のリン原子量を1.06倍した量となるように秤量した。このとき、残りの秤量対象の元素(タンタル、ホウ素およびフッ素)は、焼成の温度において系外に流出しないものとして秤量した。秤量した各原料粉末に、適量のトルエンを加え、ジルコニアボールミル(ジルコニアボール:直径5mm)を用いて2時間粉砕混合し、一次混合物を得た。
 得られた一次混合物をアルミナボートに入れ、回転焼成炉((株)モトヤマ製)を用い、空気(流量:100mL/分)の雰囲気下、昇温速度10℃/分の条件で1000℃まで昇温し、該温度において4時間焼成を行い、一次焼成物を得た。
 得られた一次焼成物に適量のトルエンを加え、ジルコニアボールミル(ジルコニアボール:直径1mm)を用いて2時間粉砕混合し、二次混合物を得た。
 錠剤成形機を用い、得られた二次混合物に、油圧プレスで40MPaの圧力をかけることで、直径10mm、厚さ1mmの円盤状成形体を形成し、次いでCIP(冷間静水等方圧プレス)により、円盤状成形体に300MPaの圧力をかけることでペレットを作製した。
 得られたペレットをアルミナボートに入れ、回転焼成炉((株)モトヤマ製)を用い、空気(流量:100mL/分)の雰囲気下、昇温速度10℃/分の条件で850℃まで昇温し、該温度において96時間焼成を行い、リチウムイオン伝導性酸化物(焼結体)を得た。
 得られたリチウムイオン伝導性酸化物(焼結体)を室温まで降温後、回転焼成炉から取り出し、除湿された窒素ガス雰囲気下に移して保管した。
[実施例2および4]
 得られるリチウムイオン伝導性酸化物が表1の化学量論比(原子数比)を満たすように、原材料の混合比を変更した以外は、実施例1と同様にして、リチウムイオン伝導性酸化物を作製した。
[実施例3、5および6]
 実施例1において、五酸化ニオブ(Nb25)(富士フイルム和光純薬(株)製、純度99.9%)をさらに用い、得られるリチウムイオン伝導性酸化物が、表1の化学量論比(原子数比)を満たすように各原料粉末を用いた以外は、実施例1と同様にして、リチウムイオン伝導性酸化物を作製した。
[比較例1]
 炭酸リチウム(Li2CO3)(メルク社シグマアルドリッチ製、純度99.0%以上)、五酸化タンタル(Ta25)(富士フイルム和光純薬(株)製、純度99.9%)、および、リン酸水素二アンモニウム((NH42HPO4)(メルク社シグマアルドリッチ製、純度98%以上)を、得られるリチウムイオン伝導性酸化物が、表1の化学量論比(原子数比)を満たすように各原料粉末を用いた以外は、実施例1と同様にして、リチウムイオン伝導性酸化物を作製した。
[比較例2]
 フッ化リチウム(LiF)(メルク社シグマアルドリッチ製)をさらに用い、得られるリチウムイオン伝導性酸化物が、表1の化学量論比(原子数比)を満たすように各原料粉末を用いた以外は、比較例1と同様にして、リチウムイオン伝導性酸化物を作製した。
<X線回折(XRD)>
 得られたリチウムイオン伝導性酸化物を、メノウ乳鉢を用いて30分解砕し、XRD測定用の粉末を得た。
 粉末X線回折測定装置パナリティカルMPD(スペクトリス(株)製)を用い、得られたXRD測定用の粉末をX線回折測定(Cu-Kα線(出力:45kV、40mA)、回折角2θ=10~50°の範囲、ステップ幅:0.013°、入射側Sollerslit:0.04rad、入射側Anti-scatter slit:2°、受光側Sollerslit:0.04rad、受光側Anti-scatter slit:5mm)を行い、X線回折(XRD)図形を得た。得られたXRD図形を、公知の解析ソフトウェアRIETAN-FP(作成者;泉富士夫のホームページ「RIETAN-FP・VENUS システム配布ファイル」(http://fujioizumi.verse.jp/download/download.html)から入手することができる。)を用いてリートベルト解析を行うことで、含まれる結晶構造を確認し、各結晶構造の含有率(結晶率)を算出した。結果を表2に示す。
 また、実施例2、3および比較例1で得られたリチウムイオン伝導性酸化物のXRD図形を図1に示す。
 図1から、比較例1では、LiTa2PO8の単斜晶の結晶構造に由来するピークのみが観測された。実施例2で得られたリチウムイオン伝導性酸化物では、LiTa2PO8構造に由来するピークに加え、LiTa38(ICSDコード:493)に由来するピークが観測され、実施例3で得られたリチウムイオン伝導性酸化物では、LiTa2PO8構造に由来するピークに加え、Ta25(ICSDコード:66366)に由来するピークが観測された。
<相対密度>
 作製したリチウムイオン伝導性酸化物の質量を、電子天秤を用いて測定した。次に、マイクロメーターを用いてリチウムイオン伝導性酸化物の実寸から体積を測定した。測定した質量を体積で除することにより、リチウムイオン伝導性酸化物の密度(実測密度)を算出し、リチウムイオン伝導性酸化物の理論密度に対する該実測密度の比の百分率(実測密度/理論密度×100)である相対密度(%)を求めた。結果を表2に示す。
 なお、リチウムイオン伝導性酸化物の密度の理論値は、リチウムイオン伝導性酸化物を構成する、LiTa2PO8に基づく結晶構造の理論密度と、LiTa38、Ta25およびTaPO5(ICSDコード:202041)に基づく結晶構造の理論密度とを、リートベルト解析で求めた各結晶構造の含有量を用いて加重平均することによって算出した。
<トータルイオン伝導度>
 得られたリチウムイオン伝導性酸化物の両面に、スパッタ機を用いて金層を形成することで、イオン伝導度評価用の測定ペレットを得た。
 得られた測定ペレットを、測定前に25℃の恒温槽に2時間保持した。次いで、25℃において、インピーダンスアナライザー(ソーラトロンアナリティカル社製、型番:1260A)を用い、振幅25mVの条件で、周波数1Hz~10MHzの範囲におけるACインピーダンス測定を行った。得られたインピーダンススペクトルを、装置付属の等価回路解析ソフトウェアZViewを用いて等価回路でフィッティングして、結晶粒内および結晶粒界における各リチウムイオン伝導度を求め、これらを合計することで、トータルイオン伝導度を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中の原子数比(量論比)および各式で算出される元素の含有量の値は、各実施例および比較例で得られたリチウムイオン伝導性酸化物中の、原子数比(量論比)および各式で算出される元素の含有量の値である。
Figure JPOXMLDOC01-appb-T000002
 表2から、本酸化物はトータルイオン伝導度が高く、相対密度の高いリチウムイオン伝導性酸化物を容易に得ることができることが分かる。

Claims (9)

  1.  LiTa2PO8に基づく結晶構造を有し、
     少なくとも、リチウム、タンタル、ホウ素、リン、酸素およびフッ素を構成元素として有し、
     下記式(1)で表されるホウ素の含有量が4.0~15.0%であり、
     下記式(2)で表されるフッ素の含有量が0.5~2.0%である、
    リチウムイオン伝導性酸化物。
     B原子数/(B原子数+P原子数)×100 ・・・(1)
     F原子数/(O原子数+F原子数)×100 ・・・(2)
  2.  さらに、ニオブを構成元素として有し、
     下記式(3)で表されるニオブの含有量が0%を超え20.0%以下である、
    請求項1に記載のリチウムイオン伝導性酸化物。
     Nb原子数/(Nb原子数+Ta原子数)×100 ・・・(3)
  3.  リチウムイオン伝導性酸化物の理論密度に対する、該酸化物の質量と体積とから算出される実測密度の比の百分率である相対密度が、70%以上である、請求項1または2に記載のリチウムイオン伝導性酸化物。
  4.  前記LiTa2PO8に基づく結晶構造の含有率が85%以上である、請求項1~3のいずれか1項に記載のリチウムイオン伝導性酸化物。
  5.  下記式(4)で表されるリチウムの含有量が0.9を超え1.5以下である、
    請求項1~4のいずれか1項に記載のリチウムイオン伝導性酸化物。
     Li原子数/{(Nb原子数+Ta原子数)/2} ・・・(4)
  6.  正極活物質を有する正極と、
     負極活物質を有する負極と、
     前記正極と前記負極との間に固体電解質層と、
    を含み、
     前記固体電解質層が、請求項1~5のいずれか1項に記載のリチウムイオン伝導性酸化物を含む、
    全固体電池。
  7.  前記正極活物質が、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P27[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP27、Lix7y7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO43[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、LiNi1/3Co1/3Mn1/32、LiCoO2、LiNiO2、LiMn24、Li2CoP27、Li32(PO43、Li3Fe2(PO43、LiNi0.5Mn1.54およびLi4Ti512からなる群より選ばれる1種以上の化合物を含む、請求項6に記載の全固体電池。
  8.  前記負極活物質が、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P27[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP27、Lix7y7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO43[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、(Li3-a9x9+(5-b9)y9M9x9)(V1-y9M10y9)O4[M9は、Mg、Al、GaおよびZnからなる群より選ばれる1種以上の元素であり、M10は、Zn、Al、Ga、Si、Ge、PおよびTiからなる群より選ばれる1種以上の元素であり、0≦x9≦1.0、0≦y9≦0.6、a9はM9の平均価数、b9はM10の平均価数]、LiNb27、Li4Ti512、Li4Ti5PO12、TiO2、LiSiおよびグラファイトからなる群より選ばれる1種以上の化合物を含む、請求項6または7に記載の全固体電池。
  9.  前記正極および負極が、請求項1~5のいずれか1項に記載のリチウムイオン伝導性酸化物を含有する、請求項6~8のいずれか1項に記載の全固体電池。
PCT/JP2022/012228 2021-04-28 2022-03-17 リチウムイオン伝導性酸化物および全固体電池 WO2022230426A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280028694.2A CN117203177A (zh) 2021-04-28 2022-03-17 锂离子传导性氧化物和全固体电池
EP22795348.6A EP4332059A1 (en) 2021-04-28 2022-03-17 Lithium ion conducting oxide and all solid battery
JP2023517140A JPWO2022230426A1 (ja) 2021-04-28 2022-03-17
KR1020237035401A KR20230156423A (ko) 2021-04-28 2022-03-17 리튬 이온 전도성 산화물 및 전고체 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-076234 2021-04-28
JP2021076234 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230426A1 true WO2022230426A1 (ja) 2022-11-03

Family

ID=83848396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012228 WO2022230426A1 (ja) 2021-04-28 2022-03-17 リチウムイオン伝導性酸化物および全固体電池

Country Status (5)

Country Link
EP (1) EP4332059A1 (ja)
JP (1) JPWO2022230426A1 (ja)
KR (1) KR20230156423A (ja)
CN (1) CN117203177A (ja)
WO (1) WO2022230426A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157090A (ja) 2012-01-26 2013-08-15 Tdk Corp リチウムイオン伝導性固体電解質
WO2020036290A1 (ko) 2018-08-16 2020-02-20 아주대학교산학협력단 이온 전도성 고체 전해질 화합물, 이의 제조방법 및 이를 포함하는 전기화학 장치
CN111403805A (zh) * 2020-04-28 2020-07-10 深圳先进技术研究院 一种复合固态电解质、其制备方法及锂离子电池
JP2020194773A (ja) 2019-05-24 2020-12-03 三星電子株式会社Samsung Electronics Co.,Ltd. 固体伝導体、その製造方法、それを含む固体電解質、及び電気化学素子
WO2021039834A1 (ja) * 2019-08-30 2021-03-04 昭和電工株式会社 リチウムイオン伝導性酸化物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157090A (ja) 2012-01-26 2013-08-15 Tdk Corp リチウムイオン伝導性固体電解質
WO2020036290A1 (ko) 2018-08-16 2020-02-20 아주대학교산학협력단 이온 전도성 고체 전해질 화합물, 이의 제조방법 및 이를 포함하는 전기화학 장치
JP2020194773A (ja) 2019-05-24 2020-12-03 三星電子株式会社Samsung Electronics Co.,Ltd. 固体伝導体、その製造方法、それを含む固体電解質、及び電気化学素子
WO2021039834A1 (ja) * 2019-08-30 2021-03-04 昭和電工株式会社 リチウムイオン伝導性酸化物
CN111403805A (zh) * 2020-04-28 2020-07-10 深圳先进技术研究院 一种复合固态电解质、其制备方法及锂离子电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUSSAIN FIAZ, LI PAI, LI ZHENYU: "Theoretical Insights into Li-Ion Transport in LiTa 2 PO 8", THE JOURNAL OF PHYSICAL CHEMISTRY C, AMERICAN CHEMICAL SOCIETY, US, vol. 123, no. 32, 15 August 2019 (2019-08-15), US , pages 19282 - 19287, XP055796425, ISSN: 1932-7447, DOI: 10.1021/acs.jpcc.9b03313 *
ISHIGAKI NORIKAZU; KATAOKA KUNIMITSU; MORIKAWA DAISUKE; TERAUCHI MASAMI; HAYAMIZU KIKUKO; AKIMOTO JUNJI: "Structural and Li-ion diffusion properties of lithium tantalum phosphate LiTa2PO8", SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM; NL, NL, vol. 351, 12 May 2020 (2020-05-12), NL , XP086179550, ISSN: 0167-2738, DOI: 10.1016/j.ssi.2020.115314 *
JAEGYEOM KIM, JUHYUN KIM, MAXIM AVDEEV, HOSEOP YUN, SEUNG-JOO KIM: "LiTa 2 PO 8 : a fast lithium-ion conductor with new framework structure", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 6, no. 45, 20 November 2018 (2018-11-20), GB , pages 22478 - 22482, XP055687208, ISSN: 2050-7488, DOI: 10.1039/C8TA09170F *

Also Published As

Publication number Publication date
JPWO2022230426A1 (ja) 2022-11-03
KR20230156423A (ko) 2023-11-14
EP4332059A1 (en) 2024-03-06
CN117203177A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
JP7284824B2 (ja) リチウムイオン伝導性固体電解質および全固体電池
WO2022138804A1 (ja) リチウムイオン伝導性固体電解質および全固体電池
JP7260656B2 (ja) 固体電解質材料、固体電解質、これらの製造方法および全固体電池
JP7260658B2 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2022230426A1 (ja) リチウムイオン伝導性酸化物および全固体電池
JP7260660B2 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
JP7260659B2 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2023032772A1 (ja) リチウムイオン伝導性固体電解質材料、リチウムイオン伝導性固体電解質、これらの製造方法および全固体電池
WO2021251409A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2023032773A1 (ja) 固体電解質、全固体電池および固体電解質材料
JP7260657B2 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2023162669A1 (ja) リチウムイオン伝導性固体電解質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795348

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517140

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280028694.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237035401

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035401

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18287584

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022795348

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795348

Country of ref document: EP

Effective date: 20231128