WO2021251406A1 - 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池 - Google Patents

固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池 Download PDF

Info

Publication number
WO2021251406A1
WO2021251406A1 PCT/JP2021/021832 JP2021021832W WO2021251406A1 WO 2021251406 A1 WO2021251406 A1 WO 2021251406A1 JP 2021021832 W JP2021021832 W JP 2021021832W WO 2021251406 A1 WO2021251406 A1 WO 2021251406A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
compound
group
lithium
solid
Prior art date
Application number
PCT/JP2021/021832
Other languages
English (en)
French (fr)
Inventor
良輔 清
建燦 李
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US18/008,960 priority Critical patent/US20230291003A1/en
Priority to KR1020227044456A priority patent/KR20230013088A/ko
Priority to EP21821032.6A priority patent/EP4167315A4/en
Priority to JP2021549093A priority patent/JP7260657B2/ja
Priority to CN202180041259.9A priority patent/CN115699214A/zh
Publication of WO2021251406A1 publication Critical patent/WO2021251406A1/ja
Priority to JP2022028442A priority patent/JP2022068359A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • One embodiment of the present invention relates to a solid electrolyte material, a solid electrolyte, a method for producing a solid electrolyte, or an all-solid-state battery.
  • an inorganic solid electrolyte As the solid electrolyte, an inorganic solid electrolyte has attracted attention, and as the inorganic solid electrolyte, mainly oxide-based and sulfide-based solid electrolytes are known.
  • oxide-based and sulfide-based solid electrolytes are known.
  • a sulfide-based solid electrolyte When a sulfide-based solid electrolyte is used, there are advantages such as being able to manufacture a battery by cold pressing, but it is unstable with respect to humidity and harmful hydrogen sulfide gas may be generated, so it is safe. Development of oxide-based solid electrolytes is underway in terms of properties and the like.
  • Non-Patent Document 1 states that LiTa 2 PO 8 , which has a monoclinic crystal structure, has high lithium ion conductivity (total conductivity (25 ° C.): 2.5 ⁇ . It is described that 10 -4 S ⁇ cm -1) is shown.
  • Oxide-based solid electrolytes have extremely high grain boundary resistance, and in order to obtain ionic conductivity that can be used in all-solid-state batteries, not only the solid electrolyte powder is pressure-molded, but also a high-density sintered body is used. There is a need. Then, in order to obtain such a high-density sintered body, it was necessary to fire it at a high temperature of, for example, about 1100 ° C. Further, when manufacturing an all-solid-state battery using an oxide-based solid electrolyte, it is necessary to sintered the battery together with a positive electrode material, a negative electrode material, and the like in order to obtain high ionic conductivity.
  • One embodiment of the present invention provides a solid electrolyte material capable of obtaining a sintered body having sufficient ionic conductivity even when fired at a low temperature (eg, 900 ° C. or lower).
  • the configuration example of the present invention is as follows.
  • a solid electrolyte material which is a solid electrolyte material.
  • the solid electrolyte material contains lithium, tantalum, phosphorus and oxygen as constituent elements and contains.
  • the temperature of the exothermic peak of the differential thermal analysis (DTA) curve of the solid electrolyte material is in the range of 500 to 850 ° C. Solid electrolyte material.
  • a solid electrolyte which is a sintered body of the solid electrolyte material according to any one of [1] to [7].
  • a positive electrode having a positive electrode active material and a positive electrode Negative electrode with negative electrode active material and negative electrode A solid electrolyte layer between the positive electrode and the negative electrode, Including The solid electrolyte layer comprises the solid electrolyte according to [8] or [9]. All-solid-state battery.
  • the positive electrode active material is LiM3PO 4 [M3 is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, Ti and V, or two elements V and O. ], LiM5VO 4 [M5 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti. ], Li 2 M6P 2 O 7 [M6 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O.
  • M7 is Ti, Ge, Al, Ga and Zr. It is one or more elements selected from the group consisting of. ], Li 1 + x8 Al x8 M8 2-x8 (PO 4 ) 3 [0 ⁇ x8 ⁇ 0.8, M8 is one or more elements selected from the group consisting of Ti and Ge.
  • the negative electrode active material is LiM3PO 4 [M3 is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, Ti and V, or two elements V and O. ], LiM5VO 4 [M5 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti. ], Li 2 M6P 2 O 7 [M6 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O.
  • M7 is Ti, Ge, Al, Ga and Zr. It is one or more elements selected from the group consisting of. ], Li 1 + x8 Al x8 M8 2-x8 (PO 4 ) 3 [0 ⁇ x8 ⁇ 0.8, M8 is one or more elements selected from the group consisting of Ti and Ge.
  • M9 is, Mg, Al, be one or more elements selected from the group consisting of Ga and Zn
  • M10 is one or more elements selected from the group consisting of Zn, Al, Ga, Si, Ge, P and Ti
  • a9 are M9.
  • B9 is the average valence of M10] LiNb 2 O 7 , Li 4 Ti 5 O 12 , Li 4 Ti 5 PO 12 , TiO 2 , LiSi and one or more compounds selected from the group consisting of graphite.
  • the all-solid-state battery according to [11] or [12].
  • a sintered body having sufficient ionic conductivity, particularly sufficient lithium ion conductivity can be obtained even when fired at a low temperature (eg, 900 ° C. or lower). Therefore, by using the solid electrolyte material according to the embodiment of the present invention, it is excellent in economic efficiency, and a solid having sufficient ionic conductivity while suppressing decomposition and alteration of other materials such as positive electrode and negative electrode materials. An all-solid-state battery containing an electrolyte can be easily produced.
  • 6 is a DTA curve of the solid electrolyte material obtained in Examples 1, 5, 7 and Comparative Example 1.
  • the exothermic peaks are indicated by arrows.
  • 6 is a DTA curve of the solid electrolyte material obtained in Examples 8 and 9 and Comparative Example 1.
  • the exothermic peaks are indicated by arrows.
  • 6 is a DTA curve of the solid electrolyte material obtained in Examples 10, 11, 12 and Comparative Example 1.
  • the exothermic peaks are indicated by arrows. It is an XRD figure of the solid electrolyte material obtained in Example 1.
  • FIG. It is an XRD figure of the solid electrolyte material obtained in the comparative example 3.
  • the solid electrolyte material (hereinafter, also referred to as “the material”) according to the embodiment of the present invention contains lithium, tantalum, phosphorus and oxygen as constituent elements, and the temperature of the exothermic peak of the differential thermal analysis (DTA) curve is determined. It is in the range of 500 to 850 ° C. When two or more exothermic peaks on the DTA curve are observed, the temperatures of all the observed exothermic peaks are in the range of 500 to 850 ° C.
  • DTA differential thermal analysis
  • the temperature of the exothermic peak of the DTA curve of this material is preferably 550 to 850 ° C., more preferably 550 to 800, from the viewpoint that the firing temperature for obtaining a sintered body having sufficient ionic conductivity can be further lowered. It is in the range of ° C.
  • the exothermic peak of the DTA curve is an exothermic peak in the DTA curve measured by thermal weight differential thermal analysis (TG-DTA), and TG-DTA is specifically performed by the method described in the following Examples. ..
  • the temperature range of mass reduction of the obtained TG curve can lower the firing temperature when obtaining a sintered body with sufficient ionic conductivity. Therefore, it is preferably in the range of 500 to 850 ° C, more preferably 550 to 800 ° C.
  • the mass loss of the TG curve is the mass loss in the TG curve measured by thermogravimetric differential thermal analysis (TG-DTA).
  • TG-DTA thermogravimetric differential thermal analysis
  • the material is preferably amorphous.
  • the fact that this material is amorphous means that no peak is observed (a broad peak may be observed) in an X-ray diffraction (XRD) diagram, that is, it is observed in the range of 20 ⁇ 2 ⁇ ⁇ 40 °. It can be judged from the fact that the half width of the diffraction peak having the maximum intensity obtained is larger than 0.15 °. Since the present material is amorphous, the solid electrolyte obtained from the present material, particularly the solid electrolyte (sintered body) obtained by firing the present material, tends to exhibit higher ionic conductivity.
  • the shape, size, and the like of the present material are not particularly limited, but are preferably in the form of particles (powder), and the average particle size (D50) of the present material is preferably 0.1 to 10 ⁇ m, more preferably 0. It is 1 to 5 ⁇ m.
  • the average particle size of the present material is within the above range, the solid electrolyte obtained from the present material, particularly the solid electrolyte (sintered body) obtained by firing the present material, tends to exhibit higher ionic conductivity. It is in.
  • the elements constituting this material are not particularly limited as long as lithium, tantalum, phosphorus and oxygen are included, but the firing temperature for obtaining a sintered body having sufficient ionic conductivity can be further lowered.
  • the present material may contain one or more elements selected from the group consisting of Zr, Ga, Sn, Hf, W, Mo, Al and Ge as the elements constituting the present material.
  • the content of the tantalum element in this material is preferably 10.6 to 16.6 atomic%, more preferably 11.0, from the viewpoint that a solid electrolyte having higher lithium ion conductivity can be easily obtained. It is ⁇ 16.0 atomic%.
  • each element in this material for example, a standard powder sample containing Mn, Co, and Ni in a ratio of 1: 1: 1 as a lithium-containing transition metal oxide such as LiCoO 2 is used.
  • Auger electron spectroscopy (AES) can be measured by the absolute intensity quantification method.
  • AES Auger electron spectroscopy
  • it can be obtained by a conventionally known quantitative analysis.
  • an acid can be added to a sample for thermal decomposition, the thermal decomposition product is defined, and the content of each element in the present material can be determined using a high frequency inductively coupled plasma (ICP) emission spectrometer.
  • ICP inductively coupled plasma
  • the content of the phosphorus element in this material is preferably 5.3 to 8.8 atomic%, more preferably 5.8, from the viewpoint that a solid electrolyte having higher lithium ion conductivity can be easily obtained. ⁇ 8.3 atomic%.
  • the content of the lithium element in this material is preferably 5.0 to 20.0 atomic%, more preferably 9.0, from the viewpoint that a solid electrolyte having higher lithium ion conductivity can be easily obtained. It is ⁇ 15.0 atomic%.
  • the content of the boron element in this material is preferably 0.1 from the viewpoint that the firing temperature for obtaining a sintered body having sufficient ionic conductivity can be further lowered. It is ⁇ 5.0 atomic%, more preferably 0.5 to 3.0 atomic%.
  • the content of niobium elements in this material is preferably 0.1 from the viewpoint that the firing temperature for obtaining a sintered body having sufficient ionic conductivity can be further lowered. It is ⁇ 5.0 atomic%, more preferably 0.5 to 3.0 atomic%.
  • the content of bismuth element in this material is preferably 0.1 from the viewpoint that the firing temperature for obtaining a sintered body having sufficient ionic conductivity can be further lowered. It is about 5.0 atomic%, more preferably 0.1 to 2.0 atomic%.
  • the content of silicon element in this material is preferably 0.1 from the viewpoint that the firing temperature for obtaining a sintered body having sufficient ionic conductivity can be further lowered. It is ⁇ 5.0 atomic%, more preferably 0.5 to 3.0 atomic%.
  • this material contains one or more elements M1 selected from the group consisting of Zr, Ga, Sn, Hf, W and Mo
  • the content of the element M1 is crystalline in the solid electrolyte obtained using this material.
  • the ratio of all elements M1 and tantalum element to the total atomic weight of 2.00 is less than 1.00, preferably 0.95 or less, more preferably 0.95 or less, from the viewpoint of increasing the lithium ion conductivity at the grain boundaries. It is 0.90 or less, more preferably 0.85 or less, more preferably 0.80 or less, and particularly preferably 0.75 or less.
  • this material contains one or more elements M2 selected from the group consisting of Al and Ge
  • the content of the element M2 is the lithium in the crystal grains and at the grain boundaries in the solid electrolyte obtained by using this material.
  • the ratio of all elements M2 and phosphorus to the total atomic weight of 1.00 is less than 0.70, preferably 0.65 or less, from the viewpoint that the total ionic conductivity, which is the total of the ionic conductivity, can be increased. , More preferably 0.60 or less, still more preferably 0.55 or less.
  • This material can be produced as a component containing lithium, tantalum, phosphorus and oxygen as constituent elements by a method including, for example, a crushing step of crushing a material to be crushed containing lithium, tantalum, phosphorus and oxygen as constituent elements. ..
  • This material contains lithium, tantalum, phosphorus and oxygen as constituent elements and is capable of easily producing the present material which can lower the firing temperature when obtaining a sintered body having sufficient ionic conductivity.
  • a method (I) comprising a crushing step of crushing a material to be crushed containing at least one element selected from boron, bismuth, niobium and silicon as a constituent element, which comprises lithium, tantalum, phosphorus and oxygen as constituent elements.
  • the crushing step it is preferable to crush and mix the obtained material so that it becomes amorphous by a mechanochemical reaction and / or the average particle size of the material is within the above range.
  • Examples of the crushing step include a method of crushing using a roll rolling mill, a ball mill, a small diameter ball mill (bead mill), a medium stirring mill, an air flow crusher, a mortar, an automatic kneading mortar, a tank mortar, a jet mill, and the like. Be done.
  • a method of pulverizing and mixing using a ball mill or a bead mill is preferable from the viewpoint that a solid electrolyte having higher ionic conductivity can be easily obtained when a solid electrolyte is obtained from this material, and the diameter is large.
  • a method of pulverizing and mixing with a ball mill using 0.1 to 10 mm balls is more preferable.
  • the time of the crushing step is preferably 0.5 to 48 from the viewpoint that the material becomes amorphous by the mechanochemical reaction and the present material having an average particle size (D50) in the above range can be easily obtained.
  • the time more preferably 2 to 48 hours.
  • the mixture may be mixed while being pulverized while being heated, but it is usually carried out at room temperature. Further, the pulverization step may be performed in the atmosphere, but it is preferably performed in an atmosphere of nitrogen gas and / or argon gas in which the oxygen gas content is adjusted in the range of 0 to 20% by volume.
  • the raw material used for the material to be crushed is preferably an inorganic compound from the viewpoint of ease of handling.
  • the raw material may be produced and obtained by a conventionally known method, or a commercially available product may be used.
  • Examples of the material to be pulverized include a compound containing a lithium atom, a compound containing a tantalum atom, a compound containing a phosphorus atom, a compound containing a boron atom, and if necessary, a compound containing a bismuth atom and a compound containing a niobium atom. And a method (i) using at least one compound selected from compounds containing a silicon atom.
  • Examples of the compound containing a lithium atom include lithium carbonate (Li 2 CO 3 ), lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium acetate (LiCH 3 COO) and hydrates thereof. .. Among these, lithium carbonate, lithium hydroxide, and lithium acetate are preferable because they are easily decomposed and reacted.
  • the compound containing a lithium atom one kind may be used, or two or more kinds may be used.
  • Examples of the compound containing a tantalum atom include tantalum pentoxide (Ta 2 O 5 ) and tantalum nitrate (Ta (NO 3 ) 5 ). Among these, tantalum pentoxide is preferable from the viewpoint of cost. As the compound containing a tantalum atom, one kind may be used, or two or more kinds may be used.
  • a phosphate As the compound containing a phosphorus atom, a phosphate is preferable, and as the phosphate, diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) and dihydrogen phosphate 1 are easy to decompose and react. Ammonium (NH 4 H 2 PO 4 ) can be mentioned. As the compound containing a phosphorus atom, one kind may be used, or two or more kinds may be used.
  • Examples of the compound containing a boron atom include LiBO 2 , LiB 3 O 5 , Li 2 B 4 O 7 , Li 3 B 11 O 18 , Li 3 BO 3 , Li 3 B 7 O 12 , and Li 4 B 2 O 5.
  • Li 6 B 4 O 9 Li 3-x5 B 1-x5 C x5 O 3 (0 ⁇ x5 ⁇ 1), Li 4-x6 B 2-x6 C x6 O 5 (0 ⁇ x6 ⁇ 2), Li 2.4
  • Examples thereof include Al 0.2 BO 3 , Li 2.7 Al 0.1 BO 3 , B 2 O 3 , and H 3 BO 3.
  • the compound containing a boron atom one kind may be used, or two or more kinds may be used.
  • Examples of the compound containing a bismuth atom include LiBiO 2 , Li 3 BiO 3 , Li 4 Bi 2 O 5 , Li 2.4 Al 0.2 BiO 3 , and Bi 2 O 3 .
  • the compound containing a bismuth atom one kind may be used, or two or more kinds may be used.
  • Examples of the compound containing a niobium atom include Nb 2 O 5 , LiNbO 3 , LiNb 3 O 8 , and NbPO 5 .
  • the compound containing a niobium atom one kind may be used, or two or more kinds may be used.
  • Examples of the compound containing a silicon atom include SiO 2 , Li 2 SiO 3 , Li 2 Si 2 O 5 , Li 2 Si 3 O 7 , Li 4 SiO 4 , Li 6 Si 2 O 7 , and Li 8 SiO 6. Will be.
  • the compound containing a silicon atom one kind may be used, or two or more kinds may be used.
  • this material contains one or more elements M1 selected from the group consisting of Zr, Ga, Sn, Hf, W and Mo, and / or one or more elements M2 selected from the group consisting of Al and Ge.
  • elements M1 selected from the group consisting of Zr, Ga, Sn, Hf, W and Mo
  • elements M2 selected from the group consisting of Al and Ge.
  • a compound containing a lithium atom, a compound containing a tantalum atom, a compound containing a phosphorus atom, a compound containing the element M1 and / or a compound containing the element M2 are used.
  • the method (i') can be mentioned.
  • the compound containing the element M1 is not particularly limited, but an inorganic compound is preferable from the viewpoint of ease of handling, and examples thereof include oxides and nitrates of M1. Among these, oxides are preferable from the viewpoint of cost.
  • the compound containing M1 one kind may be used, or two or more kinds may be used.
  • examples of the oxide include gallium oxide (Ga 2 O 3 ) and tin oxide (SnO 2), respectively.
  • examples of the oxide include zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ) and the like, respectively. Will be.
  • Tungous acid (H 2 WO 4 ) and molybdenum acid (H 2 MoO 4 ) can also be used.
  • the compound containing the element M2 is not particularly limited, but an inorganic compound is preferable from the viewpoint of ease of handling, and examples thereof include an oxide of M2.
  • an inorganic compound is preferable from the viewpoint of ease of handling, and examples thereof include an oxide of M2.
  • the compound containing the element M2 one kind may be used, or two or more kinds may be used.
  • examples of the oxide include germanium oxide (GeO 2 ) and aluminum oxide (Al 2 O 3), respectively.
  • the mixing ratio of the raw materials may be, for example, an amount such that the content of each constituent element in the obtained material is within the above range.
  • the compound containing the lithium atoms may be used in excess of about 10 to 20%.
  • the compound containing a phosphorus atom may be excessively used by about 0.1 to 10%.
  • each raw material may be mixed in advance before the crushing step, but in the crushing step, each raw material is crushed and mixed (crushed and mixed). Is preferable.
  • a method (iii) using a compound (c) containing lithium, tantalum, phosphorus and oxygen as constituent elements and at least one element selected from boron, bismuth, niobium and silicon as constituent elements. ) Is also mentioned.
  • a compound containing the element M1 and / or a compound containing the element M2 may be further used.
  • the compound (a) and the compound (b) may be mixed in advance before the pulverization step, but in the pulverization step, the compound (a) and the compound (b) are mixed. It is preferable to mix while crushing (crushing and mixing).
  • the compound (a) is a compound containing lithium, tantalum, phosphorus and oxygen as constituent elements, preferably an oxide containing these elements, and preferably a lithium ion conductive compound containing these elements. More preferred.
  • the compound (a) used in the method (ii) may be one kind or two or more kinds.
  • the compound (a) is preferably a compound having a monoclinic structure.
  • the fact that compound (a) has a monoclinic structure is determined, for example, by Rietveld analysis of the X-ray diffraction (XRD) figure of compound (a), specifically by the method of the following example. be able to.
  • XRD X-ray diffraction
  • the compound (a) specifically, one or more elements M1 selected from the group consisting of lithium, tantalum, phosphorus and oxygen as constituent elements, and further composed of Zr, Ga, Sn, Hf, W and Mo.
  • the compound (a) is preferably a compound containing only lithium, tantalum, phosphorus and oxygen as constituent elements, and LiTa 2 PO 8 is more preferable. ..
  • the compound (a1) is preferably a compound in which LiTa 2 PO 8 or a part of Ta of LiTa 2 PO 8 is substituted with the element M1, and preferably has a monoclinic structure.
  • the compound (a1) is specifically composed of the composition formula Li [1 + (5-a) x ] Ta 2-x M1 x PO 8 [M1 is a group consisting of Zr, Ga, Sn, Hf, W and Mo. It is one or more elements selected from the above, 0.0 ⁇ x ⁇ 1.0, and a is an average valence of M1. ] Is preferable.
  • W and Mo are more preferable, and W is further preferable, from the viewpoint of increasing the lithium ion conductivity at the crystal grain boundaries.
  • the x is preferably 0.95 or less, more preferably 0.90 or less, still more preferably 0.85 or less, still more preferably 0.80 or less, and particularly preferably 0.75 or less.
  • x is in the above range, the lithium ion conductivity at the grain boundaries tends to be high in the solid electrolyte obtained by using the compound (a).
  • the amount of Li varies according to the average valence of M1 so that the charge neutrality of the compound (a) of the composition formula described above can be obtained.
  • the average valence represented by a can be obtained as follows.
  • the compound (a2) is preferably a compound in which LiTa 2 PO 8 or a part of P of LiTa 2 PO 8 is substituted with the element M2, and preferably has a monoclinic structure.
  • the compound (a2) is specifically composed of the composition formula Li [1 + (5-b) y ] Ta 2 P 1-y M2 y O 8 [M2 is one or more selected from the group consisting of Al and Ge. 0.0 ⁇ y ⁇ 0.7, and b is the average valence of M2. ] Is preferable.
  • Al is more preferable as M2 from the viewpoint of increasing the lithium ion conductivity at the crystal grain boundaries.
  • the y is preferably 0.65 or less, more preferably 0.60 or less, still more preferably 0.55 or less.
  • the total ion conductivity which is the total of the lithium ion conductivity in the crystal grains and at the crystal grain boundaries, tends to be high.
  • the average valence represented by b can be obtained in the same manner as the calculation method of the average valence a described above.
  • the method for producing the compound (a) is not particularly limited, and for example, a conventionally known production method such as a solid phase reaction or a liquid phase reaction can be adopted. Specific examples of the manufacturing method include a method including at least one step of mixing step and firing step.
  • the mixing step in the method for producing the compound (a) includes, for example, a compound containing a lithium atom (eg, oxide, carbon oxide), a compound containing a tantalum atom (eg, an oxide, a glass oxide), which is a raw material.
  • a compound containing a phosphorus atom eg, an ammonium salt
  • a compound containing the element M1 eg, an oxide
  • a compound containing the element M2 eg, an oxide
  • Be done as each of the raw materials, one kind may be used, or two or more kinds may be used.
  • a method of mixing the raw materials for example, a method of mixing using a roll rolling mill, a ball mill, a small diameter ball mill (bead mill), a medium stirring mill, an air flow crusher, a mortar, an automatic kneading mortar, a tank mortar, a jet mill, or the like. Can be mentioned.
  • the mixing ratio of the raw materials may be, for example, a stoichiometric ratio so as to obtain a desired composition of the compound (a).
  • the compound containing the lithium atoms may be used in excess of about 10 to 20%.
  • the compound containing a phosphorus atom may be excessively used by about 0.1 to 10%.
  • the mixing may be carried out in the atmosphere, but is preferably carried out in an atmosphere of nitrogen gas and / or argon gas having an oxygen gas content adjusted in the range of 0 to 20% by volume.
  • the mixture obtained in the mixing step is fired.
  • a crushing step using a ball mill, a mortar or the like may be provided for the purpose of crushing or reducing the particle size of the baked product obtained in the baking step.
  • a reaction intermediate may be present in the first firing. In this case, it is preferable to perform the first firing, perform the pulverization step, and then further perform the firing step.
  • the firing step may be performed in the atmosphere, but it is preferably performed in the atmosphere of nitrogen gas and / or argon gas in which the oxygen gas content is adjusted in the range of 0 to 20% by volume.
  • the firing temperature is preferably 800 to 1200 ° C, more preferably 950 to 1100 ° C, and even more preferably 950 to 1000 ° C, although it depends on the firing time.
  • the calcination temperature is within the above range, lithium atoms are less likely to flow out of the system, and the compound (a) having high ionic conductivity tends to be easily obtained.
  • the firing time (total firing time when the firing step is performed several times) is preferably 1 to 16 hours, more preferably 3 to 12 hours, although it depends on the firing temperature.
  • the firing time is within the above range, lithium atoms are less likely to flow out of the system, and a compound having high ionic conductivity tends to be easily obtained.
  • the fired product obtained after the firing process is left in the atmosphere, it may absorb moisture or react with carbon dioxide to deteriorate. Therefore, it is preferable that the calcined product obtained after the calcining step is transferred to a dehumidified inert gas atmosphere and stored when the temperature drops to 200 ° C. or lower after the calcining step.
  • the compound (b) is at least one compound selected from a boron compound, a bismuth compound, a niobium compound and a silicon compound. Among these, it is more preferable to contain at least one element selected from boron, bismuth and niobium from the viewpoint of further exerting the effect of the present invention, and either boron, niobium, or both of them is more preferable. Is particularly preferable.
  • the compound (b) is a compound different from the compound (a).
  • the compound (b) used in the method (ii) may be one kind or two or more kinds.
  • the compound (b) is preferably an inorganic compound, more preferably a compound containing lithium or hydrogen as a constituent element, and further preferably a composite oxide containing lithium as a constituent element.
  • the compound (b) may be produced and obtained by a conventionally known method, or a commercially available product may be used.
  • the compound (b) is preferably a crystalline compound.
  • the fact that compound (b) is a crystalline compound can be determined, for example, from the X-ray diffraction (XRD) figure of compound (b).
  • Examples of the boron compound include LiBO 2 , LiB 3 O 5 , Li 2 B 4 O 7 , Li 3 B 11 O 18 , Li 3 BO 3 , Li 3 B 7 O 12 , Li 4 B 2 O 5 , and Li 6.
  • B 4 O 9 Li 3-x5 B 1-x5 C x5 O 3 (0 ⁇ x5 ⁇ 1), Li 4-x6 B 2-x6 C x6 O 5 (0 ⁇ x6 ⁇ 2), Li 2.4 Al 0.2 BO 3 , Li 2.7 Al 0.1 BO 3 , B 2 O 3 , and H 3 BO 3 .
  • Examples of the bismuth compound include LiBiO 2 , Li 3 BiO 3 , Li 4 Bi 2 O 5 , Li 2.4 Al 0.2 BiO 3 , and Bi 2 O 3 .
  • niobium compound examples include Nb 2 O 5 , LiNbO 3 , LiNb 3 O 8 , and NbPO 5 .
  • Examples of the silicon compound include SiO 2 , Li 2 SiO 3 , Li 2 Si 2 O 5 , Li 2 Si 3 O 7 , Li 4 SiO 4 , Li 6 Si 2 O 7 , and Li 8 SiO 6 .
  • the method for producing the compound (b) is not particularly limited, and for example, a conventionally known production method such as a solid phase reaction or a liquid phase reaction can be adopted. Specific examples of the manufacturing method include a method including a mixing step and a firing step. A commercially available product may be used as the compound (b).
  • a compound containing a lithium atom, a compound containing a boron atom, and a compound containing a bismuth atom, which are raw materials are used.
  • this mixing step may not be performed.
  • the compound containing a lithium atom is not particularly limited, but an inorganic compound is preferable from the viewpoint of ease of handling, and examples of the inorganic compound containing a lithium atom include lithium carbonate (Li 2 CO 3 ) and lithium oxide (Li 2 O). ), Lithium hydroxide (LiOH), lithium acetate (LiCH 3 COO) and hydrates thereof. Among these, lithium carbonate is preferable because it is easily decomposed and reacted. It is also preferable to use lithium hydroxide monohydrate (LiOH ⁇ H 2 O). As the compound containing a lithium atom, one kind may be used, or two or more kinds may be used.
  • the compound containing a boron atom is not particularly limited, but an inorganic compound is preferable from the viewpoint of ease of handling, and examples of the inorganic compound containing a boron atom include boric acid (H 3 BO 3 ) and boron oxide (B 2 O). 3 ) can be mentioned. Among these, boric acid is preferable. As the compound containing a boron atom, one kind may be used, or two or more kinds may be used.
  • the compound containing a bismuth atom is not particularly limited, but an inorganic compound is preferable from the viewpoint of ease of handling, and examples of the inorganic compound containing a bismuth atom include bismuth oxide and bismuth nitrate (Bi (NO 3 ) 3 ). Be done. Among these, bismuth oxide is preferable. As the compound containing a bismuth atom, one kind may be used, or two or more kinds may be used.
  • Examples of the compound containing a niobium atom include Nb 2 O 5 , LiNbO 3 , LiNb 3 O 8 , and NbPO 5 .
  • the compound containing a niobium atom one kind may be used, or two or more kinds may be used.
  • Examples of the compound containing a silicon atom include SiO 2 , Li 2 SiO 3 , Li 2 Si 2 O 5 , Li 2 Si 3 O 7 , Li 4 SiO 4 , Li 6 Si 2 O 7 , and Li 8 SiO 6. Will be.
  • the compound containing a silicon atom one kind may be used, or two or more kinds may be used.
  • a method of mixing the raw materials for example, a method of mixing using a roll rolling mill, a ball mill, a small diameter ball mill (bead mill), a medium stirring mill, an air flow crusher, a mortar, an automatic kneading mortar, a tank mortar, a jet mill, or the like. Can be mentioned.
  • the mixing ratio of the raw materials may be, for example, a stoichiometric ratio so as to obtain a desired composition of the compound (b).
  • the compound containing the lithium atoms may be used in excess of about 10 to 20%.
  • the mixing may be carried out in the atmosphere, but is preferably carried out in an atmosphere of nitrogen gas and / or argon gas having an oxygen gas content adjusted in the range of 0 to 20% by volume.
  • the firing step the mixture obtained in the mixing step is fired.
  • a crushing step using a ball mill, a mortar or the like may be provided for the purpose of crushing or reducing the particle size of the baked product obtained in the baking step.
  • the firing step may be performed in the atmosphere, but it is preferably performed in the atmosphere of nitrogen gas and / or argon gas in which the oxygen gas content is adjusted in the range of 0 to 20% by volume.
  • the firing temperature is preferably 400 to 1000 ° C, more preferably 500 to 900 ° C, although it depends on the firing time. When the firing temperature is within the above range, lithium atoms are less likely to flow out of the system, and the desired compound (b) tends to be easily obtained.
  • the firing time (total firing time when the firing step is performed several times) is preferably 1 to 48 hours, more preferably 3 to 24 hours, although it depends on the firing temperature.
  • the firing time is within the above range, the lithium atom does not easily flow out of the system, and the desired compound (b) tends to be easily obtained.
  • the fired product obtained after the firing process is left in the atmosphere, it may absorb moisture or react with carbon dioxide to deteriorate. Therefore, it is preferable that the calcined product obtained after the calcining step is transferred to a dehumidified inert gas atmosphere and stored when the temperature drops to 200 ° C. or lower after the calcining step.
  • the compound (a) and the compound (b) in an amount such that the content of each constituent element in the obtained material is within the above range.
  • the compound (c) is a compound containing lithium, tantalum, phosphorus and oxygen as constituent elements and containing at least one element selected from boron, bismuth, niobium and silicon, and is an oxide containing these elements. It is preferably present, and more preferably a lithium ion conductive compound containing these elements.
  • Compound (c) may contain one or more elements selected from the group consisting of Zr, Ga, Sn, Hf, W, Mo, Al and Ge.
  • the compound (c) is preferably a compound having a monoclinic structure.
  • the fact that compound (c) has a monoclinic structure is determined, for example, by Rietveld analysis of the X-ray diffraction (XRD) figure of compound (c), specifically by the method of the following example. be able to.
  • XRD X-ray diffraction
  • the method for producing the compound (c) is not particularly limited, and for example, a conventionally known production method such as a solid phase reaction or a liquid phase reaction can be adopted. Specific examples of the manufacturing method include a method including at least one step of mixing step and firing step.
  • Examples of the mixing step in the method for producing the compound (c) include a compound containing a lithium atom (eg, oxide, hydroxide, carbon oxide) and a compound containing a tantalum atom (eg, an oxide, which are raw materials).
  • a compound containing a lithium atom eg, oxide, hydroxide, carbon oxide
  • a compound containing a tantalum atom eg, an oxide, which are raw materials.
  • Glass oxide compounds containing phosphorus atoms (eg, ammonium salts), and compounds containing boron atoms (eg, oxides), compounds containing bismuth atoms (eg, oxides), compounds containing niobium atoms (eg, examples).
  • Examples thereof include a step of mixing at least one compound selected from a compound containing an oxide (oxide, glass oxide) and a silicon atom (eg, an oxide).
  • the compound (b) may be used as the compound containing a boron atom, the compound containing a bismuth atom, the compound containing a niobium atom, and the compound containing a silicon atom.
  • the compound containing a boron atom the compound containing a bismuth atom
  • the compound containing a niobium atom the compound containing a silicon atom.
  • each of the raw materials one kind may be used, or two or more kinds may be used.
  • the mixing ratio of the raw materials may be, for example, an amount such that the content of each constituent element in the obtained material is within the above range.
  • the compound containing the lithium atoms may be used in excess of about 10 to 20%.
  • the compound containing a phosphorus atom may be excessively used by about 0.1 to 1.0%.
  • Examples of the mixing method of the raw materials and the conditions (temperature, atmosphere, etc.) at the time of mixing include the same methods and conditions as the mixing step at the time of producing the compound (a).
  • the mixture obtained in the mixing step is fired.
  • a crushing step using a ball mill, a dairy pot, or the like may be provided for the purpose of crushing or reducing the particle size of the baked product obtained in the baking step, but the compound (c).
  • the reaction rate of phase formation is high, so that the desired compound (c) can be produced in one firing step, so that the desired compound (c) can be produced in one firing step. It is preferable to produce the compound (c).
  • Examples of the conditions (temperature, time, atmosphere, etc.) in the firing step include the same conditions as in the firing step when producing the compound (a), and the fired product obtained after the firing step is a compound. For the same reason as in the production of (a), it is preferable to transfer and store the compound (a) in a dehumidified inert gas atmosphere as in the case of producing the compound (a).
  • the solid electrolyte according to one embodiment of the present invention (hereinafter, also referred to as “the present electrolyte”) is preferably a sintered body of the present material obtained by using the present material and obtained by firing the present material. ..
  • the present electrolyte preferably has a monoclinic structure.
  • the fact that the solid electrolyte has a monoclinic structure can be determined, for example, by Rietveld analysis of the X-ray diffraction (XRD) figure of the solid electrolyte, specifically by the method of the following embodiment.
  • the upper limit is not particularly limited, but is 100%. When the simple crystal ratio of this electrolyte is in the above range, it tends to be a solid electrolyte having high ionic conductivity both in the crystal grains and at the grain boundaries.
  • the relative density of the present electrolyte is preferably 60 to 100%, more preferably 80 to 100%, from the viewpoint that a solid electrolyte having higher ionic conductivity can be easily obtained.
  • the total ionic conductivity of the sintered body of this material obtained by firing this material at 850 ° C. or higher and 900 ° C. or lower is preferably 2.00 ⁇ 10 -4 S ⁇ cm -1 or higher, more preferably 3.00. ⁇ 10 -4 S ⁇ cm -1 or more.
  • the total ionic conductivity of the sintered body of this material obtained by firing this material at 750 ° C. or higher and lower than 850 ° C. is preferably 1.00 ⁇ 10 -5 S ⁇ cm -1 or higher, more preferably 5.00. ⁇ 10 -5 S ⁇ cm -1 or more.
  • the total ionic conductivity of the sintered body of this material obtained by firing this material at 650 ° C or higher and lower than 700 ° C is preferably 1.00 ⁇ 10 -6 S ⁇ cm -1 or higher, more preferably 2.00. ⁇ 10 -5 S ⁇ cm -1 or more.
  • the total ionic conductivity is within the above range, it can be said that the sintered body obtained by firing the present material at a low temperature has sufficient ionic conductivity.
  • the total ionic conductivity can be measured by the method described in the following Examples.
  • the method for producing the present electrolyte preferably includes a step A of calcining the present material, and more preferably a method of molding the present material and then calcining the material to obtain a sintered body.
  • the firing temperature in the step A is preferably 500 to 900 ° C, more preferably 600 to 900 ° C, and even more preferably 650 to 900 ° C. Since this material is used, a sintered body having sufficient ionic conductivity can be obtained even when fired at such a low temperature.
  • the firing time in the step A is preferably 12 to 144 hours, more preferably 48 to 96 hours, although it depends on the firing temperature.
  • the firing time is within the above range, a sintered body having sufficient ionic conductivity can be obtained even when fired at a low temperature.
  • the firing in the step A may be carried out in the atmosphere, but it is preferably carried out in the atmosphere of nitrogen gas and / or argon gas in which the oxygen gas content is adjusted in the range of 0 to 20% by volume. Further, the firing in the step A may be performed in a reducing gas atmosphere such as a nitrogen-hydrogen mixed gas containing a reducing gas such as hydrogen gas. The ratio of the hydrogen gas contained in the nitrogen-hydrogen mixed gas is, for example, 1 to 10% by volume. As the reducing gas, ammonia gas, carbon monoxide gas, or the like may be used in addition to hydrogen gas.
  • the step A it is preferable to fire the molded product obtained by molding the present material from the viewpoint that a solid electrolyte (sintered body) having higher ionic conductivity can be easily obtained, and the present material is press-molded. It is more preferable to bake the molded product.
  • the pressure for press-molding the present material is not particularly limited, but is preferably 50 to 500 MPa, more preferably 100 to 400 MPa.
  • the shape of the molded body obtained by press-molding the present material is not particularly limited, but it is preferably a shape suitable for the use of the sintered body (solid electrolyte) obtained by firing the molded body.
  • components other than the present material may be used.
  • the other component include conventionally known materials used for solid electrolytes of all-solid-state batteries, and examples of the lithium ion conductive compound include lithium ion conductive materials having structures such as NASICON type and LISION type. Be done.
  • the other components one kind may be used, or two or more kinds may be used.
  • the amount of the other component used is preferably 50% by mass or less, more preferably 30% by mass or less, based on 100% by mass of the total with the present material, and it is preferable not to use the other component.
  • the all-solid-state battery (hereinafter, also referred to as “the battery”) according to the embodiment of the present invention is a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a solid electrolyte between the positive electrode and the negative electrode.
  • the solid electrolyte layer contains the present electrolyte.
  • the present battery may be a primary battery or a secondary battery, but is preferably a secondary battery from the viewpoint of more exerting the effect of the present invention, and is preferably a lithium ion secondary battery. Is more preferable.
  • the structure of the present battery is not particularly limited as long as a solid electrolyte layer is included between the positive electrode, the negative electrode, and the positive electrode and the negative electrode, and may be a so-called thin film type, laminated type, or bulk type.
  • the solid electrolyte layer is not particularly limited as long as it contains the present electrolyte, and may contain conventionally known additives used for the solid electrolyte layer of the all-solid-state battery, if necessary, but it is preferably made of the present electrolyte.
  • the thickness of the solid electrolyte layer may be appropriately selected depending on the structure (thin film type or the like) of the battery to be formed, but is preferably 50 nm to 1000 ⁇ m, more preferably 100 nm to 100 ⁇ m.
  • the positive electrode is not particularly limited as long as it has a positive electrode active material, but a positive electrode having a positive electrode current collector and a positive electrode active material layer is preferable.
  • the positive electrode active material layer is not particularly limited as long as it contains a positive electrode active material, but preferably contains a positive electrode active material and a solid electrolyte, and may further contain additives such as a conductive auxiliary agent and a sintering aid. ..
  • the thickness of the positive electrode active material layer may be appropriately selected depending on the structure (thin film type, etc.) of the battery to be formed, but is preferably 10 to 200 ⁇ m, more preferably 30 to 150 ⁇ m, and further preferably 50 to 100 ⁇ m. ..
  • the positive positive active material examples include LiCo oxide, LiNiCo oxide, LiNiCoMn oxide, LiNiMn oxide, LiMn oxide, LiMn-based spinel, LiMnNi oxide, LiMnAl oxide, LiMnMg oxide, and LiMnCo oxide.
  • LiMnFe oxide, LiMnZn oxide, LiCrNiMn oxide, LiCrMn oxide, lithium titanate, lithium phosphate metal oxide, transition metal oxide, titanium sulfide, graphite, hard carbon, transition metal-containing lithium nitride, silicon oxide Examples thereof include lithium silicate, lithium metal, lithium alloy, Li-containing solid solution, and lithium-storable metal-to-metal compound.
  • LiNiCoMn oxide, LiNiCo oxide, and LiCo oxide are preferable, and LiNiCoMn oxide is more preferable, from the viewpoint of increasing the capacity and the like.
  • the surface of the positive electrode active material may be coated with lithium niobate, lithium phosphate, lithium borate, or the like, which are ionic conductive oxides.
  • the positive electrode active material used for the positive electrode active material layer may be one kind or two or more kinds.
  • Preferable examples of the positive electrode active material are LiM3PO 4 [M3 is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, Ti and V, or two elements V and O. .. ], LiM5VO 4 [M5 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti. ], Li 2 M6P 2 O 7 [M6 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O.
  • M7 is Ti, Ge, Al, Ga and Zr. It is one or more elements selected from the group consisting of. ], Li 1 + x8 Al x8 M8 2-x8 (PO 4 ) 3 [0 ⁇ x8 ⁇ 0.8, M8 is one or more elements selected from the group consisting of Ti and Ge.
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 CoP 2 O 7 , Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 ( PO 4 ) 3 , LiNi 0.5 Mn 1.5 O 4 , and Li 4 Ti 5 O 12 are also mentioned.
  • the positive electrode active material is preferably in the form of particles.
  • the 50% diameter in the volume-based particle size distribution is preferably 0.1 to 30 ⁇ m, more preferably 0.3 to 20 ⁇ m, still more preferably 0.4 to 10 ⁇ m, and particularly preferably 0.5 to 3 ⁇ m.
  • the ratio of the length of the major axis to the length of the minor axis (length of the major axis / length of the minor axis), that is, the aspect ratio of the positive electrode active material is preferably less than 3, more preferably less than 2.
  • the positive electrode active material may form secondary particles.
  • the 50% diameter in the number-based particle size distribution of the primary particles is preferably 0.1 to 20 ⁇ m, more preferably 0.3 to 15 ⁇ m, still more preferably 0.4 to 10 ⁇ m, and particularly preferably 0.5 to 2 ⁇ m. Is.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 20 to 80% by volume, more preferably 30 to 70% by volume.
  • the positive electrode active material functions favorably, and a battery having a high energy density tends to be easily obtained.
  • the solid electrolyte that can be used for the positive electrode active material layer is not particularly limited, and a conventionally known solid electrolyte can be used, but the present electrolyte is used from the viewpoint of further exerting the effect of the present invention. Is preferable.
  • the solid electrolyte used for the positive electrode active material layer may be one kind or two or more kinds.
  • the conductive auxiliary agent include metal materials such as Ag, Au, Pd, Pt, Cu and Sn, and carbon materials such as acetylene black, ketjen black, carbon nanotubes and carbon nanofibers.
  • metal materials such as Ag, Au, Pd, Pt, Cu and Sn
  • carbon materials such as acetylene black, ketjen black, carbon nanotubes and carbon nanofibers.
  • a compound similar to the compound (b) is preferable.
  • the additive used for the positive electrode active material layer may be one kind or two or more kinds, respectively.
  • the positive electrode current collector is not particularly limited as long as the material is one that conducts electrons without causing an electrochemical reaction.
  • the material of the positive electrode current collector include simple substances of metals such as copper, aluminum, and iron, alloys containing these metals, and conductive metal oxides such as antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO). Can be mentioned.
  • ATO antimony-doped tin oxide
  • ITO tin-doped indium oxide
  • a current collector having a conductive adhesive layer provided on the surface of the conductor can also be used.
  • the conductive adhesive layer include a layer containing a granular conductive material, a fibrous conductive material, and the like.
  • the negative electrode is not particularly limited as long as it has a negative electrode active material, but a negative electrode having a negative electrode current collector and a negative electrode active material layer is preferable.
  • the negative electrode active material layer is not particularly limited as long as it contains the negative electrode active material, but preferably contains the negative electrode active material and the solid electrolyte, and may further contain additives such as a conductive auxiliary agent and a sintering aid. ..
  • the thickness of the negative electrode active material layer may be appropriately selected according to the structure (thin film type, etc.) of the battery to be formed, but is preferably 10 to 200 ⁇ m, more preferably 30 to 150 ⁇ m, and further preferably 50 to 100 ⁇ m. ..
  • Negative electrode active material examples include lithium alloy, metal oxide, graphite, hard carbon, soft carbon, silicon, silicon alloy, silicon oxide SiO n (0 ⁇ n ⁇ 2), and silicon / carbon composite material.
  • Examples thereof include a composite material containing a silicon domain in the pores of porous carbon, lithium titanate, and graphite coated with lithium titanate.
  • a silicon / carbon composite material or a composite material containing a silicon domain in the pores of porous carbon is preferable because it has a high specific capacity and can increase the energy density and the battery capacity.
  • the silicon domain is amorphous, the size of the silicon domain is 10 nm or less, and the pores derived from the porous carbon are present in the vicinity of the silicon domain. It is a composite material to be included.
  • the negative electrode active material are LiM3PO 4 [M3 is one or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, Ti and V, or two elements V and O. .. ], LiM5VO 4 [M5 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al and Ti. ], Li 2 M6P 2 O 7 [M6 is one or more elements selected from the group consisting of Fe, Mn, Co, Ni, Al, Ti and V, or two elements of V and O.
  • M7 is Ti, Ge, Al, Ga and Zr. It is one or more elements selected from the group consisting of. ], Li 1 + x8 Al x8 M8 2-x8 (PO 4 ) 3 [0 ⁇ x8 ⁇ 0.8, M8 is one or more elements selected from the group consisting of Ti and Ge.
  • M9 is, Mg, Al, be one or more elements selected from the group consisting of Ga and Zn
  • M10 is one or more elements selected from the group consisting of Zn, Al, Ga, Si, Ge, P and Ti
  • a9 are M9.
  • Is the average valence of, and b9 is the average valence of M10.
  • LiNb 2 O 7 Li 4 Ti 5 O 12
  • Li 4 Ti 5 PO 12 Li 4 Ti 5 PO 12
  • TiO 2 LiSi, and graphite.
  • the negative electrode active material is preferably in the form of particles.
  • the 50% diameter in the volume-based particle size distribution, the aspect ratio, and the 50% diameter in the number-based particle size distribution of the primary particles when the negative electrode active material forms the secondary particles are in the same range as the positive electrode active material. It is preferable to have.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 20 to 80% by volume, more preferably 30 to 70% by volume.
  • the negative electrode active material functions favorably, and a battery having a high energy density tends to be easily obtained.
  • the solid electrolyte that can be used for the negative electrode active material layer is not particularly limited, and a conventionally known solid electrolyte can be used. However, the present electrolyte is used from the viewpoint of further exerting the effect of the present invention. Is preferable.
  • the solid electrolyte used for the negative electrode active material layer may be one kind or two or more kinds.
  • the conductive auxiliary agent include metal materials such as Ag, Au, Pd, Pt, Cu and Sn, and carbon materials such as acetylene black, ketjen black, carbon nanotubes and carbon nanofibers.
  • metal materials such as Ag, Au, Pd, Pt, Cu and Sn
  • carbon materials such as acetylene black, ketjen black, carbon nanotubes and carbon nanofibers.
  • a compound similar to the compound (b) is preferable.
  • the additive used for the negative electrode active material layer may be one kind or two or more kinds, respectively.
  • the negative electrode current collector the same current collector as the positive electrode current collector can be used.
  • the all-solid-state battery can be formed, for example, by a known powder molding method.
  • the positive electrode current collector, the powder for the positive electrode active material layer, the powder for the solid electrolyte layer, the powder for the negative electrode active material layer, and the negative electrode current collector are superposed in this order, and they are simultaneously powder-molded. Formation of each layer of positive electrode active material layer, solid electrolyte layer and negative electrode active material layer, and connection between positive electrode current collector, positive electrode active material layer, solid electrolyte layer, negative electrode active material layer and negative electrode current collector, respectively. Can be done at the same time.
  • the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer may be powder-molded, respectively. However, when an all-solid-state battery is produced using each of the obtained layers, each layer is pressed. It is preferable to bake.
  • the all-solid-state battery can also be manufactured by, for example, the following method.
  • a paste for forming each layer is prepared by appropriately mixing a solvent, a resin, etc. with the material for forming the positive electrode active material layer, the material for forming the solid electrolyte layer, and the material for forming the negative electrode active material layer, and the paste is used as a base. By applying it on a sheet and drying it, a green sheet for a positive electrode active material layer, a green sheet for a solid electrolyte layer, and a green sheet for a negative electrode active material layer are produced.
  • the green sheet for the positive electrode active material layer, the green sheet for the solid electrolyte layer, and the green sheet for the negative electrode active material layer from which the base sheet was peeled off from each green sheet were sequentially laminated, heat-pressed at a predetermined pressure, and then placed in a container.
  • a laminated structure is produced by enclosing and pressurizing with a hot isotropic press, a cold isotropic press, a hydrostatic press, or the like.
  • the laminated structure is degreased at a predetermined temperature and then fired to prepare a laminated sintered body.
  • the firing temperature in this firing process is preferably the same as the firing temperature in the step A.
  • an all-solid-state battery is formed by forming a positive electrode current collector and a negative electrode current collector on both main surfaces of the laminated sintered body by a sputtering method, a vacuum vapor deposition method, application of a metal paste, or dipping. It can also be made.
  • the obtained mixture is placed in an alumina boat, and the temperature is raised to 500 ° C. under the condition of a heating rate of 10 ° C./min in an atmosphere of air (flow rate: 100 mL / min) using a rotary firing furnace (manufactured by Motoyama Co., Ltd.). Then, it was fired at 500 ° C. for 2 hours to obtain a primary fired product.
  • the obtained primary calcined product is crushed and mixed in a Menou mortar for 15 minutes, the obtained mixture is placed in an alumina boat, and an air (flow rate: 100 mL / min) atmosphere is used in a rotary calcining furnace (manufactured by Motoyama Co., Ltd.). Below, the temperature was raised to 630 ° C. under the condition of a temperature rising rate of 10 ° C./min, and firing was performed at 630 ° C. for 24 hours to obtain a secondary fired product (Li 4 B 2 O 5). The obtained secondary calcined product was cooled to room temperature, then taken out from the rotary calcining furnace, transferred to a dehumidified nitrogen gas atmosphere, and stored.
  • the obtained mixture was placed in an alumina boat, and the temperature was raised to 600 ° C. using a rotary baking furnace (manufactured by Motoyama Co., Ltd.) in an atmosphere of air (flow rate: 100 mL / min) at a heating rate of 10 ° C./min. Then, it was fired at 600 ° C. for 4 hours to obtain a fired product (LiBio 2). After the temperature of the obtained calcined product was lowered to room temperature, it was taken out from the rotary calcining furnace, transferred to a dehumidified nitrogen gas atmosphere, and stored.
  • a rotary baking furnace manufactured by Motoyama Co., Ltd.
  • the obtained mixture was placed in an alumina boat, and the temperature was raised to 600 ° C. using a rotary baking furnace (manufactured by Motoyama Co., Ltd.) in an atmosphere of air (flow rate: 100 mL / min) at a heating rate of 10 ° C./min. Then, it was fired at 600 ° C. for 3 hours to obtain a fired product (LiPO 3). After the temperature of the obtained calcined product was lowered to room temperature, it was taken out from the rotary calcining furnace, transferred to a dehumidified nitrogen gas atmosphere, and stored.
  • a rotary baking furnace manufactured by Motoyama Co., Ltd.
  • Example 1 Add an appropriate amount of toluene to tantalum pentoxide (Ta 2 O 5 ) (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9%), and use a zirconia ball mill (zirconia ball: diameter 3 mm) for Ta 2 O 5 Was crushed for 2 hours.
  • Ta 2 O 5 tantalum pentoxide
  • zirconia ball mill zirconia ball: diameter 3 mm
  • lithium carbonate Li 2 CO 3
  • the pulverized tantalum pentoxide Ti 2 O 5
  • Li 4 B 2 O obtained in the above-mentioned Synthesis Example 1 5
  • diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 )
  • lithium, tantalum, boron and phosphorus atomic weight ratio Li: Ta: B: P)
  • the amount of diammonium hydrogen phosphate is 1.065 times the phosphorus atomic weight in Table 1.
  • Example 2 the mixture was prepared in the same manner as in Example 1 and amorphous except that the mixing ratio of the raw materials was changed so that the atomic number ratios of lithium, tantalum, boron and phosphorus were the amounts shown in Table 1. A quality solid electrolyte material was obtained.
  • Example 5 Li 3 BO 3 obtained in Synthesis Example 2 described above was used instead of Li 4 B 2 O 5 , so that the atomic number ratios of lithium, tantalum, boron and phosphorus were as shown in Table 1.
  • An amorphous solid electrolyte material was obtained by producing in the same manner as in Example 1 except that each raw material powder was used.
  • Example 7 In Example 1, boric acid (H 3 BO 3 ) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 99.5% or more) was used instead of Li 4 B 2 O 5, and lithium, tantalum, boron and An amorphous solid electrolyte material was obtained by producing in the same manner as in Example 1 except that each raw material powder was used so that the atomic number ratio of phosphorus was as shown in Table 1.
  • H 3 BO 3 boric acid
  • Li 4 B 2 O 5 lithium, tantalum, boron
  • An amorphous solid electrolyte material was obtained by producing in the same manner as in Example 1 except that each raw material powder was used so that the atomic number ratio of phosphorus was as shown in Table 1.
  • Niobium pentoxide (Nb 2 O 5 ) (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9%) is added with an appropriate amount of toluene, and Nb 2 O 5 is used using a zirconia ball mill (zirconia ball: diameter 3 mm). Was crushed for 2 hours.
  • the pulverized niobium pentoxide (Nb 2 O 5 ) was used, and the atomic number ratios of lithium, tantalum, niobium and phosphorus were as shown in Table 1.
  • An amorphous solid electrolyte material was obtained by producing in the same manner as in Example 1 except that each raw material powder was used so as to be.
  • Example 9 Li 4 B 2 O 5 obtained in the above-mentioned Synthesis Example 1 was further used, and each raw material powder was prepared so that the atomic number ratios of lithium, tantalum, niobium, boron and phosphorus were as shown in Table 1.
  • Amorphous solid electrolyte material was obtained by producing in the same manner as in Example 8 except that it was used.
  • Example 10 In Example 1, silicon oxide (SiO 2 ) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 99.9%) was used instead of Li 4 B 2 O 5, and atoms of lithium, tantalum, phosphorus and silicon were used. Amorphous solid electrolyte material was obtained in the same manner as in Example 1 except that each raw material powder was used so that the number ratio (Li: Ta: P: Si) was as shown in Table 1. ..
  • Example 11 silicon oxide (SiO 2 ) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 99.9%) was further used, and the atomic number ratios of lithium, tantalum, boron, phosphorus and silicon were shown in Table 1.
  • An amorphous solid electrolyte material was obtained by producing in the same manner as in Example 5 except that each raw material powder was used so as to pass.
  • Example 12 In Example 1, LiBiO 2 obtained in Synthesis Example 3 was used instead of Li 4 B 2 O 5 , and each raw material powder was used so that the atomic number ratios of lithium, tantalum, bismuth and phosphorus were as shown in Table 1. Was prepared in the same manner as in Example 1 except that an amorphous solid electrolyte material was obtained.
  • Example 13 In Example 1, lithium hydroxide monohydrate (LiOH ⁇ H 2 O) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 98.0% or more) was used instead of lithium carbonate, and lithium, tantalate, and tantalate were used. Amorphous solid electrolyte material was obtained in the same manner as in Example 1 except that each raw material powder was used so that the atomic number ratios of boron and phosphorus were as shown in Table 1.
  • Example 14 In Example 9, lithium acetate (CH 3 COOLi) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 98.0% or more) was used instead of lithium carbonate, and atoms of lithium, tantalate, amorphous, boron and phosphorus were used. An amorphous solid electrolyte material was obtained by producing in the same manner as in Example 9 except that each raw material powder was used so that the number ratio was as shown in Table 1.
  • Lithium carbonate Li 2 CO 3
  • tantalum pentoxide Ta 2 O 5
  • Diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 )
  • lithium, tantalum and phosphorus atomic weight ratios (Li: Ta: P) are as shown in Table 1.
  • lithium carbonate is weighed so that the amount is 1.1 times the lithium atomic weight in Table 1, and further, it is added in the firing step.
  • diammonium hydrogen phosphate was weighed so that the amount of lithium atom in Table 1 was multiplied by 1.065.
  • An appropriate amount of toluene was added to each of the weighed raw material powders, and the mixture was pulverized and mixed for 2 hours using a zirconia ball mill (zirconia balls: diameter 1 mm).
  • the obtained mixture is placed in an alumina boat, and the temperature is raised to 1000 ° C. under the condition of a heating rate of 10 ° C./min in an atmosphere of air (flow rate: 100 mL / min) using a rotary firing furnace (manufactured by Motoyama Co., Ltd.). Then, it was calcined at 1000 ° C. for 4 hours to obtain a primary calcined product.
  • the obtained primary calcined product is crushed and mixed in a Menou mortar for 15 minutes, the obtained mixture is placed in an alumina boat, and an air (flow rate: 100 mL / min) atmosphere is used in a rotary calcining furnace (manufactured by Motoyama Co., Ltd.). Below, the temperature was raised to 1000 ° C. under the condition of a heating rate of 10 ° C./min, and firing was performed at 1000 ° C. for 1 hour to obtain a secondary fired product.
  • Lithium carbonate Li 2 CO 3
  • Ta 2 O 5 tantalum pentoxide
  • LiPO 3 obtained in Synthesis Example 4 and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) (manufactured by Sigma Aldrich, with a purity of 98% or more) were added to LiPO 3 and diammonium hydrogen phosphate ((NH 4) 2 HPO 4).
  • Example 3 The solid electrolyte material obtained in Example 3 was placed in an alumina boat, and the temperature rise rate was 10 ° C./min in an atmosphere of air (flow rate: 100 mL / min) using a rotary firing furnace (manufactured by Motoyama Co., Ltd.). The temperature was raised to 1000 ° C. under the conditions and calcined at 1000 ° C. for 4 hours to obtain a solid electrolyte material. The obtained solid electrolyte material was crystallized when evaluated by powder X-ray diffraction described later.
  • TG-DTA2020 thermogravimetric differential thermal analyzer
  • a platinum measuring container containing about 5 mg of solid electrolyte material was set in the device, and the temperature range was 100 to 900 ° C. under an air flow of 100 ml / min. The temperature was raised at 10 ° C./min to obtain TG-DTA measurement results.
  • the obtained DTA curve was differentiated with respect to the temperature, and the temperature at which the value of the first derivative of the obtained DTA curve became 0 in the process of changing from positive to negative was defined as the temperature of the exothermic peak of DTA.
  • FIG. 1 shows DTA curves obtained by using the solid electrolyte materials prepared in Examples 1, 5, 7 and Comparative Example 1, respectively, and the exothermic peaks are indicated by arrows.
  • FIG. 2 shows the DTA curves obtained by using the solid electrolyte materials prepared in Examples 8 and 9 and Comparative Example 1, respectively, and the exothermic peaks are indicated by arrows.
  • FIG. 3 shows the DTA curves obtained by using the solid electrolyte materials prepared in Examples 10, 11, 12 and Comparative Example 1, respectively, and the exothermic peaks are indicated by arrows.
  • XRD ⁇ Powder X-ray diffraction
  • the obtained XRD figure can be obtained from the known analysis software RIETAN-FP (creator; Fujio Izumi's homepage "RIETAN-FP / VENUS system distribution file" (http://fujioizumi.verse.jp/download/download.html)).
  • the crystal structure was confirmed by performing a Rietbelt analysis using (available).
  • FIGS. 4 and 5 The XRD figures of the solid electrolyte materials obtained in Example 1 and Comparative Example 3 are shown in FIGS. 4 and 5, respectively.
  • Table 1 the peak cannot be confirmed as in FIG. 4 (it is a broad figure), and the case where it is amorphous is regarded as “amorphous”, and the case where the peak is confirmed as shown in FIG. 5 is “crystal”. ".
  • ⁇ Making pellets> By applying a pressure of 40 MPa with a hydraulic press to the obtained solid electrolyte material using a tablet molding machine, a disk-shaped molded body having a diameter of 10 mm and a thickness of 1 mm is formed, and then CIP (cold hydrostatic isotropic pressure pressing) is performed. ), A pellet was prepared by applying a pressure of 300 MPa to the disk-shaped molded body.
  • ⁇ Total conductivity> By forming gold layers on both sides of the obtained sintered body using a sputtering machine, measurement pellets for ionic conductivity evaluation were obtained. The obtained measurement pellets were kept in a constant temperature bath at 25 ° C. for 2 hours before measurement. Next, at 25 ° C., AC impedance measurement was performed in a frequency range of 1 Hz to 10 MHz using an impedance analyzer (manufactured by Solartron Analytical Co., Ltd., model number: 1260 A) under the condition of an amplitude of 25 mV.
  • an impedance analyzer manufactured by Solartron Analytical Co., Ltd., model number: 1260 A
  • the obtained impedance spectrum is fitted in an equivalent circuit using the equivalent circuit analysis software ZView attached to the device to obtain each lithium ion conductivity in the crystal grain and at the grain boundary, and the total conduction is obtained by totaling these. The degree was calculated. The results are shown in Table 1. The total conductivity of the sintered body obtained by firing at 650 ° C. using the solid electrolyte material obtained in Comparative Example 1 was too low to obtain a measured value.
  • solid electrolyte materials containing lithium, tantalum, phosphorus and oxygen as constituent elements and having a temperature of the exothermic peak of the differential thermal analysis (DTA) curve in the range of 500 to 850 ° C are at low temperatures of 850 ° C or less. It can be seen that a sintered body having sufficient total conductivity can be obtained even when fired.
  • DTA differential thermal analysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

本発明の一実施形態は、固体電解質材料、固体電解質、固体電解質の製造方法または全固体電池に関し、該固体電解質材料は、リチウム、タンタル、リンおよび酸素を構成元素として含み、前記固体電解質材料の示差熱分析(DTA)曲線の発熱ピークの温度が、500~850℃の範囲にある。

Description

固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
 本発明の一実施形態は、固体電解質材料、固体電解質、固体電解質の製造方法または全固体電池に関する。
 近年、ノートパソコン、タブレット端末、携帯電話、スマートフォン、および電気自動車(EV)等の電源として、高出力かつ高容量の電池の開発が求められている。その中でも有機溶媒などの液体電解質に替えて、固体電解質を用いた全固体電池が、充放電効率、充電速度、安全性および生産性に優れる電池として注目されている。
 前記固体電解質としては、無機固体電解質が注目されており、該無機固体電解質としては、主に酸化物系と硫化物系の固体電解質が知られている。
 硫化物系の固体電解質を用いた場合、コールドプレスなどにより電池を作製できるなどの利点はあるものの、湿度に対して不安定であり、有害な硫化水素ガスが発生する可能性があるため、安全性等の点から酸化物系の固体電解質の開発が進められている。
 このような酸化物系の固体電解質として、非特許文献1には、単斜晶の結晶構造を有するLiTa2PO8が、高いリチウムイオン伝導度(トータル伝導度(25℃):2.5×10-4S・cm-1)を示すことが記載されている。
J. Kim et al., J. Mater. Chem. A, 2018, 6, p22478-22482
 酸化物系の固体電解質は粒界抵抗が極めて大きく、全固体電池に使用できるだけのイオン伝導度を得るには、固体電解質の粉末を加圧成形するだけではなく、高密度の焼結体にする必要がある。そして、このような高密度の焼結体を得るには、例えば、1100℃程度の高温で焼成する必要があった。
 また、酸化物系の固体電解質を用いて全固体電池を作製する際に、高いイオン伝導度を得るには、正極材料、負極材料等と併せて焼結することが必要とされる。
 これらの焼成の際には、経済性や設備の点、正極や負極材料などの他の材料の分解や変質等を抑制するために、低温(例:900℃以下)で焼成しても高いイオン伝導度の焼結体を得ることが望まれているが、非特許文献1に記載のLiTa2PO8を低温で焼成した場合には、十分なイオン伝導度を示す焼結体を得ることはできなかった。
 本発明の一実施形態は、低温(例:900℃以下)で焼成しても、十分なイオン伝導度の焼結体を得ることができる固体電解質材料を提供する。
 本発明者らが鋭意検討した結果、下記構成例によれば、前記課題を解決できることを見出し、本発明を完成させるに至った。
 本発明の構成例は以下のとおりである。
 [1] 固体電解質材料であって、
 前記固体電解質材料は、リチウム、タンタル、リンおよび酸素を構成元素として含み、
 前記固体電解質材料の示差熱分析(DTA)曲線の発熱ピークの温度が、500~850℃の範囲にある、
固体電解質材料。
 [2] 非晶質である、[1]に記載の固体電解質材料。
 [3] タンタル元素の含有量が10.6~16.6原子%である、[1]または[2]に記載の固体電解質材料。
 [4] リン元素の含有量が5.3~8.8原子%である、[1]~[3]のいずれかに記載の固体電解質材料。
 [5] リチウム元素の含有量が5.0~20.0原子%である、[1]~[4]のいずれかに記載の固体電解質材料。
 [6] リチウム、タンタル、リンおよび酸素を構成元素として含み、かつ、ホウ素、ビスマス、ニオブおよびケイ素から選ばれる少なくとも1種の元素を構成元素として含む、[1]~[5]のいずれかに記載の固体電解質材料。
 [7] Zr、Ga、Sn、Hf、W、Mo、AlおよびGeからなる群より選ばれる1種以上の元素を構成元素として含む、[1]~[6]のいずれかに記載の固体電解質材料。
 [8] [1]~[7]のいずれかに記載の固体電解質材料を用いて得られた固体電解質。
 [9] [1]~[7]のいずれかに記載の固体電解質材料の焼結体である、固体電解質。
 [10] [1]~[7]のいずれかに記載の固体電解質材料を500~900℃で焼成する工程を含む、[8]または[9]に記載の固体電解質の製造方法。
 [11] 正極活物質を有する正極と、
 負極活物質を有する負極と、
 前記正極と前記負極との間に固体電解質層と、
を含み、
 前記固体電解質層が、[8]または[9]に記載の固体電解質を含む、
全固体電池。
 [12] 前記正極活物質が、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P27[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP27、Lix7y7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO43[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、LiNi1/3Co1/3Mn1/32、LiCoO2、LiNiO2、LiMn24、Li2CoP27、Li32(PO43、Li3Fe2(PO43、LiNi0.5Mn1.54およびLi4Ti512からなる群より選ばれる1種以上の化合物を含む、[11]に記載の全固体電池。
 [13] 前記負極活物質が、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P27[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP27、Lix7y7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO43[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、(Li3-a9x9+(5-b9)y9M9x9)(V1-y9M10y9)O4[M9は、Mg、Al、GaおよびZnからなる群より選ばれる1種以上の元素であり、M10は、Zn、Al、Ga、Si、Ge、PおよびTiからなる群より選ばれる1種以上の元素であり、0≦x9≦1.0、0≦y9≦0.6、a9はM9の平均価数、b9はM10の平均価数]、LiNb27、Li4Ti512、Li4Ti5PO12、TiO2、LiSiおよびグラファイトからなる群より選ばれる1種以上の化合物を含む、[11]または[12]に記載の全固体電池。
 [14] 前記正極および負極が、[8]または[9]に記載の固体電解質を含有する、[11]~[13]のいずれかに記載の全固体電池。
 本発明の一実施形態によれば、低温(例:900℃以下)で焼成しても、十分なイオン伝導度、特に十分なリチウムイオン伝導度の焼結体を得ることができる。従って、本発明の一実施形態に係る固体電解質材料を用いることで、経済性に優れ、正極や負極材料などの他の材料の分解や変質等を抑制しながらも、十分なイオン伝導度の固体電解質を含む全固体電池を容易に作製することができる。
実施例1、5、7および比較例1で得られた固体電解質材料のDTA曲線である。発熱ピークをそれぞれ矢印で示す。 実施例8、9および比較例1で得られた固体電解質材料のDTA曲線である。発熱ピークをそれぞれ矢印で示す。 実施例10、11、12および比較例1で得られた固体電解質材料のDTA曲線である。発熱ピークをそれぞれ矢印で示す。 実施例1で得られた固体電解質材料のXRD図形である。 比較例3で得られた固体電解質材料のXRD図形である。
≪固体電解質材料≫
 本発明の一実施形態に係る固体電解質材料(以下「本材料」ともいう。)は、リチウム、タンタル、リンおよび酸素を構成元素として含み、示差熱分析(DTA)曲線の発熱ピークの温度が、500~850℃の範囲にある。
 DTA曲線の発熱ピークが2本以上観測されたときには、観測された全ての発熱ピークの温度が、500~850℃の範囲にある。
 本材料のDTA曲線の発熱ピークの温度は、十分なイオン伝導度の焼結体を得る際の焼成温度をより低温化できる等の点から、好ましくは550~850℃、より好ましくは550~800℃の範囲にある。
 該DTA曲線の発熱ピークは、熱重量示差熱分析(TG-DTA)で測定されるDTA曲線における発熱ピークであり、TG-DTAは、具体的には、下記実施例に記載の方法で行われる。
 本材料は、熱重量分析(TG)を行ったとき、得られるTG曲線の質量減少の温度範囲は、十分なイオン伝導度の焼結体を得る際の焼成温度をより低温化できる等の点から、好ましくは500~850℃、より好ましくは550~800℃の範囲にある。
 該TG曲線の質量減少は、熱重量示差熱分析(TG-DTA)で測定されるTG曲線における質量減少である。
 試料量は多いほど感度が高くなるが、ピーク分解能は低下する傾向があり、TGで使用される試料量は1~50mgが好ましく、DTA測定で使用される試料量は10mg以下が好ましい。
 本材料は、非晶質であることが好ましい。本材料が非晶質であることは、例えば、X線回折(XRD)図形において、ピークが観測されない(ブロードなピークが観測されてもよい)こと、すなわち20≦2θ≦40°の範囲で観測された最大の強度を持つ回折ピークの半値幅が0.15°より大きいことで判断することができる。
 本材料が非晶質であることで、該本材料から得られる固体電解質、特に、本材料を焼成して得られる固体電解質(焼結体)は、より高いイオン伝導度を奏する傾向にある。
 本材料の形状、大きさ等は特に制限されないが、粒子状(粉末状)であることが好ましく、本材料の平均粒子径(D50)は、好ましくは0.1~10μm、より好ましくは0.1~5μmである。
 本材料の平均粒子径が前記範囲にあることで、該本材料から得られる固体電解質、特に、本材料を焼成して得られる固体電解質(焼結体)は、より高いイオン伝導度を奏する傾向にある。
 本材料を構成する元素としては、リチウム、タンタル、リンおよび酸素を含めば特に制限されないが、十分なイオン伝導度の焼結体を得る際の焼成温度をより低温化できる等の点から、さらに、ホウ素、ビスマス、ニオブおよびケイ素から選ばれる少なくとも1種の元素を含むことが好ましく、ホウ素、ビスマスおよびニオブから選ばれる少なくとも1種の元素を含むことがより好ましく、ホウ素、ニオブのいずれか、または、これらの両方を含むことが特に好ましい。
 また、本材料は、本材料を構成する元素として、Zr、Ga、Sn、Hf、W、Mo、AlおよびGeからなる群より選ばれる1種以上の元素を含んでいてもよい。
 本材料中のタンタル元素の含有量は、リチウムイオン伝導度がより高い固体電解質を容易に得ることができる等の点から、好ましくは10.6~16.6原子%、より好ましくは11.0~16.0原子%である。
 なお、本材料中の各元素の含有量は、例えば、LiCoO2等のリチウム含有遷移金属酸化物として、Mn、Co、Niが1:1:1の割合で含有されている標準粉末試料を用い、オージェ電子分光法(AES:Auger Electron Spectroscopy)の絶対強度定量法により測定することができる。他にも、従来公知の定量分析により求めることができる。例えば、試料に酸を加えて熱分解後、熱分解物を定容し、高周波誘導結合プラズマ(ICP)発光分析装置を用いて、本材料中の各元素の含有量を求めることができる。
 本材料中のリン元素の含有量は、リチウムイオン伝導度がより高い固体電解質を容易に得ることができる等の点から、好ましくは5.3~8.8原子%、より好ましくは5.8~8.3原子%である。
 本材料中のリチウム元素の含有量は、リチウムイオン伝導度がより高い固体電解質を容易に得ることができる等の点から、好ましくは5.0~20.0原子%、より好ましくは9.0~15.0原子%である。
 本材料がホウ素元素を含む場合、本材料中のホウ素元素の含有量は、十分なイオン伝導度の焼結体を得る際の焼成温度をより低温化できる等の点から、好ましくは0.1~5.0原子%、より好ましくは0.5~3.0原子%である。
 本材料がニオブ元素を含む場合、本材料中のニオブ元素の含有量は、十分なイオン伝導度の焼結体を得る際の焼成温度をより低温化できる等の点から、好ましくは0.1~5.0原子%、より好ましくは0.5~3.0原子%である。
 本材料がビスマス元素を含む場合、本材料中のビスマス元素の含有量は、十分なイオン伝導度の焼結体を得る際の焼成温度をより低温化できる等の点から、好ましくは0.1~5.0原子%、より好ましくは0.1~2.0原子%である。
 本材料がケイ素元素を含む場合、本材料中のケイ素元素の含有量は、十分なイオン伝導度の焼結体を得る際の焼成温度をより低温化できる等の点から、好ましくは0.1~5.0原子%、より好ましくは0.5~3.0原子%である。
 本材料がZr、Ga、Sn、Hf、WおよびMoからなる群より選ばれる1種以上の元素M1を含む場合、該元素M1の含有量は、本材料を用いて得られる固体電解質において、結晶粒界におけるリチウムイオン伝導度を高くできる等の点から、すべての元素M1およびタンタル元素との合計原子量2.00に対する割合として、1.00未満であり、好ましくは0.95以下、より好ましくは0.90以下、さらに好ましくは0.85以下、より好ましくは0.80以下、特に好ましくは0.75以下である。
 本材料がAlおよびGeからなる群より選ばれる1種以上の元素M2を含む場合、該元素M2の含有量は、本材料を用いて得られる固体電解質において、結晶粒内と結晶粒界のリチウムイオン伝導度の合計であるトータルイオン伝導度を高くできる等の点から、すべての元素M2およびリン元素との合計原子量1.00に対する割合として、0.70未満であり、好ましくは0.65以下、より好ましくは0.60以下、さらに好ましくは0.55以下である。
<本材料の製造方法>
 本材料は、例えば、リチウム、タンタル、リンおよび酸素を構成元素として含む粉砕対象材料を粉砕する粉砕工程を含む方法で、リチウム、タンタル、リンおよび酸素を構成元素として含む成分として製造することができる。
 十分なイオン伝導度の焼結体を得る際の焼成温度をより低温化できる本材料を容易に製造できる等の点から、本材料は、リチウム、タンタル、リンおよび酸素を構成元素として含み、かつ、ホウ素、ビスマス、ニオブおよびケイ素から選ばれる少なくとも1種の元素を構成元素として含む粉砕対象材料を粉砕する粉砕工程を含む方法(I)で、リチウム、タンタル、リンおよび酸素を構成元素として含み、かつ、ホウ素、ビスマス、ニオブおよびケイ素から選ばれる少なくとも1種の元素を構成元素として含む成分(Z)として製造することが好ましい。
 前記粉砕工程は、得られる本材料がメカノケミカル反応により非晶質となるように、および/または、本材料の平均粒子径が前記範囲となるように粉砕混合することが好ましい。
 前記粉砕工程としては、例えば、ロール転動ミル、ボールミル、小径ボールミル(ビーズミル)、媒体撹拌ミル、気流粉砕機、乳鉢、自動混練乳鉢、槽解機、ジェットミルなどを用いて粉砕する方法が挙げられる。これらの中でも、本材料から固体電解質を得る際に、より高いイオン伝導度を奏する固体電解質を容易に得ることができる等の点から、ボールミルまたはビーズミルを用いて粉砕混合する方法が好ましく、直径が0.1~10mmのボールを用いたボールミルにて粉砕混合する方法がより好ましい。
 前記粉砕工程の時間は、メカノケミカル反応により非晶質となって、平均粒子径(D50)が前記範囲にある本材料を容易に得ることができる等の点から、好ましくは0.5~48時間、より好ましくは2~48時間である。
 前記粉砕工程の際には、必要により加温しながら、粉砕しつつ混合してもよいが、通常、室温で行う。
 また、前記粉砕工程は、大気下で行ってもよいが、0~20体積%の範囲で酸素ガス含有量の調整された、窒素ガスおよび/またはアルゴンガスの雰囲気下で行うことが好ましい。
 前記粉砕対象材料に用いる原材料は、取り扱いやすさの点から、無機化合物であることが好ましい。
 原材料は、従来公知の方法で製造して得てもよく、市販品を用いてもよい。
 前記粉砕対象材料としては、例えば、リチウム原子を含む化合物と、タンタル原子を含む化合物と、リン原子を含む化合物と、ホウ素原子を含む化合物、必要により、ビスマス原子を含む化合物、ニオブ原子を含む化合物およびケイ素原子を含む化合物から選ばれる少なくとも1種の化合物とを用いる方法(i)が挙げられる。
 リチウム原子を含む化合物としては、例えば、炭酸リチウム(Li2CO3)、酸化リチウム(Li2O)、水酸化リチウム(LiOH)、酢酸リチウム(LiCH3COO)およびこれらの水和物が挙げられる。これらの中でも、分解、反応させやすいことから、炭酸リチウム、水酸化リチウム、および酢酸リチウムが好ましい。
 リチウム原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 タンタル原子を含む化合物としては、例えば、五酸化タンタル(Ta25)、硝酸タンタル(Ta(NO35)が挙げられる。これらの中でも、コストの点から、五酸化タンタルが好ましい。
 タンタル原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 リン原子を含む化合物としては、リン酸塩が好ましく、リン酸塩としては、分解、反応させやすいことから、例えば、リン酸水素二アンモニウム((NH42HPO4)、リン酸二水素一アンモニウム(NH42PO4)が挙げられる。
 リン原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 ホウ素原子を含む化合物としては、例えば、LiBO2、LiB35、Li247、Li31118、Li3BO3、Li3712、Li425、Li649、Li3-x51-x5x53(0<x5<1)、Li4-x62-x6x65(0<x6<2)、Li2.4Al0.2BO3、Li2.7Al0.1BO3、B23、H3BO3が挙げられる。
 ホウ素原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 ビスマス原子を含む化合物としては、例えば、LiBiO2、Li3BiO3、Li4Bi25、Li2.4Al0.2BiO3、Bi23が挙げられる。
 ビスマス原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 ニオブ原子を含む化合物としては、例えば、Nb25、LiNbO3、LiNb38、NbPO5が挙げられる。
 ニオブ原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 ケイ素原子を含む化合物としては、例えば、SiO2、Li2SiO3、Li2Si25、Li2Si37、Li4SiO4、Li6Si27、Li8SiO6が挙げられる。
 ケイ素原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 本材料がZr、Ga、Sn、Hf、WおよびMoからなる群より選ばれる1種以上の元素M1を含む場合、および/または、AlおよびGeからなる群より選ばれる1種以上の元素M2を含む場合には、前記粉砕対象材料として、リチウム原子を含む化合物と、タンタル原子を含む化合物と、リン原子を含む化合物と、元素M1を含む化合物、および/または、元素M2を含む化合物とを用いる方法(i’)が挙げられる。
 元素M1を含む化合物としては特に限定されないが、取り扱いやすさの点から、無機化合物が好ましく、例えば、M1の酸化物、硝酸塩が挙げられる。これらの中でも、コストの点から、酸化物が好ましい。
 M1を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 M1がGaまたはSnである場合、前記酸化物としてはそれぞれ、酸化ガリウム(Ga23)、酸化スズ(SnO2)等が挙げられる。
 M1がZr、Hf、WまたはMoである場合、前記酸化物としてはそれぞれ、酸化ジルコニウム(ZrO2)、酸化ハフニウム(HfO2)、酸化タングステン(WO3)、酸化モリブデン(MoO3)等が挙げられる。M1がZr、Hf、WまたはMoである場合、該酸化物の他に、反応させやすさの点から、水酸化ジルコニウム(Zr(OH)4)、水酸化ハフニウム(Hf(OH)4)、タングステン酸(H2WO4)、モリブデン酸(H2MoO4)を用いることもできる。
 元素M2を含む化合物としては特に限定されないが、取り扱いやすさの点から、無機化合物が好ましく、例えば、M2の酸化物が挙げられる。
 元素M2を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 M2がGeまたはAlである場合、前記酸化物としてはそれぞれ、酸化ゲルマニウム(GeO2)、酸化アルミニウム(Al23)等が挙げられる。
 前記原材料の混合比率は、例えば、得られる本材料中の各構成元素の含有量が前記範囲となるような量で混合すればよい。
 なお、後述する焼成工程において、リチウム原子が系外に流出しやすいので、前記リチウム原子を含む化合物を1~2割程度過剰に用いてもよい。
 また、後述する焼成工程において、副生成物の発生を抑制するために、前記リン原子を含む化合物を0.1~1割程度過剰に用いてもよい。
 なお、方法(i)および方法(i’)では、前記粉砕工程の前に、予め各原材料を混合してもよいが、前記粉砕工程において、各原材料を粉砕しつつ混合(粉砕混合)することが好ましい。
 また、前記方法(I)としては、例えば、
 前記粉砕対象材料として、リチウム、タンタル、リンおよび酸素を構成元素として含む化合物(a)と、ホウ素化合物、ビスマス化合物、ニオブ化合物およびケイ素化合物から選ばれる少なくとも1種の化合物(b)とを用いる方法(ii)、または、
 前記粉砕対象材料として、リチウム、タンタル、リンおよび酸素を構成元素として含み、かつ、ホウ素、ビスマス、ニオブおよびケイ素から選ばれる少なくとも1種の元素を構成元素として含む化合物(c)を用いる方法(iii)も挙げられる。
 また、方法(ii)および(iii)では、元素M1を含む化合物、および/または、元素M2を含む化合物をさらに用いてもよい。
 なお、方法(ii)では、前記粉砕工程の前に、予め化合物(a)と化合物(b)とを混合してもよいが、前記粉砕工程において、化合物(a)と化合物(b)とを粉砕しつつ混合(粉砕混合)することが好ましい。
・化合物(a)
 化合物(a)は、リチウム、タンタル、リンおよび酸素を構成元素として含む化合物であり、これらの元素を含む酸化物であることが好ましく、これらの元素を含むリチウムイオン伝導性の化合物であることがより好ましい。
 方法(ii)で用いる化合物(a)は、1種でも、2種以上でもよい。
 化合物(a)は、単斜晶型構造を有する化合物であることが好ましい。化合物(a)が単斜晶型構造を有することは、例えば、化合物(a)のX線回折(XRD)図形をリートベルト解析することで、具体的には、下記実施例の方法で判断することができる。
 化合物(a)として、具体的には、リチウム、タンタル、リンおよび酸素を構成元素として含み、さらに、Zr、Ga、Sn、Hf、WおよびMoからなる群より選ばれる1種以上の元素M1を含んでいてもよい化合物(a1)、リチウム、タンタル、リンおよび酸素を構成元素として含み、さらに、AlおよびGeからなる群より選ばれる1種以上の元素M2を含んでいてもよい化合物(a2)等が挙げられる。これらの中でも、本発明の効果がより発揮される等の点から、化合物(a)としては、構成元素が、リチウム、タンタル、リンおよび酸素のみからなる化合物が好ましく、LiTa2PO8がより好ましい。
 前記化合物(a1)は、LiTa2PO8、または、LiTa2PO8のTaの一部が、元素M1で置換された化合物であることが好ましく、単斜晶型構造を有することが好ましい。
 化合物(a1)は、具体的には、組成式Li〔1+(5-a)x〕Ta2-xM1xPO8[M1は、Zr、Ga、Sn、Hf、WおよびMoからなる群より選ばれる1種以上の元素であり、0.0≦x<1.0であり、aはM1の平均価数である。]で表される化合物であることが好ましい。
 化合物(a)を用いて得られる固体電解質において、結晶粒界におけるリチウムイオン伝導度が高くなる等の点から、M1は、W、Moがより好ましく、Wがさらに好ましい。
 前記xは、好ましくは0.95以下、より好ましくは0.90以下、さらに好ましくは0.85以下、より好ましくは0.80以下、特に好ましくは0.75以下である。
 xが前記範囲にあると、化合物(a)を用いて得られる固体電解質において、結晶粒界におけるリチウムイオン伝導度が高くなる傾向にある。
 M1の価数と含有量により、前述した組成式の化合物(a)の電荷中性がとれるよう、Liの量がM1の平均価数に応じて変動する。前記aで表される平均価数は、次のようにして求めることができる。M1が2種以上の元素から構成される場合、前記aはそれぞれの元素の価数とそれぞれの元素の含有量とを用いて加重平均することで算出する。例えば、M1が80原子%のNbと、20原子%のZrとを含む場合、aは、(+5×0.8)+(+4×0.2)=+4.8と算出される。また、M1が80原子%のNbと、20原子%のWで構成される場合、aは、(+5×0.8)+(+6×0.2)=+5.2と算出される。
 前記化合物(a2)は、LiTa2PO8、または、LiTa2PO8のPの一部が、元素M2で置換された化合物であることが好ましく、単斜晶型構造を有することが好ましい。
 化合物(a2)は、具体的には、組成式Li〔1+(5-b)y〕Ta21-yM2y8[M2は、AlおよびGeからなる群より選ばれる1種以上の元素であり、0.0≦y<0.7であり、bはM2の平均価数である。]で表される化合物であることが好ましい。
 化合物(a)を用いて得られる固体電解質において、結晶粒界におけるリチウムイオン伝導度が高くなる等の点から、M2は、Alがより好ましい。
 前記yは、好ましくは0.65以下、より好ましくは0.60以下、さらに好ましくは0.55以下である。
 yが前記範囲にあると、化合物(a)を用いて得られる固体電解質において、結晶粒内と結晶粒界のリチウムイオン伝導度の合計であるトータルイオン伝導度が高くなる傾向にある。
 前記bで表される平均価数は、前述した平均価数aの算出方法と同様にして求めることができる。
 化合物(a)の製造方法としては特に制限されず、例えば、固相反応、液相反応等の従来公知の製造方法を採用することができる。該製造方法としては、具体的には、少なくともそれぞれ1段階の混合工程と焼成工程とを含む方法が挙げられる。
 前記化合物(a)の製造方法における混合工程としては、例えば、原材料である、リチウム原子を含む化合物(例:酸化物、炭酸化物)、タンタル原子を含む化合物(例:酸化物、硝酸化物)、リン原子を含む化合物(例:アンモニウム塩)、ならびに、必要により、元素M1を含む化合物(例:酸化物)、および/または、元素M2を含む化合物(例:酸化物)を混合する工程が挙げられる。
 前記原材料はそれぞれ、1種を用いてもよく、2種以上を用いてもよい。
 前記原材料の混合方法としては、例えば、ロール転動ミル、ボールミル、小径ボールミル(ビーズミル)、媒体撹拌ミル、気流粉砕機、乳鉢、自動混練乳鉢、槽解機、ジェットミルなどを用いて混合する方法が挙げられる。
 原材料の混合比率は、例えば、化合物(a)の所望の組成となるよう化学量論比で混合すればよい。
 なお、後述する焼成工程において、リチウム原子が系外に流出しやすいので、前記リチウム原子を含む化合物を1~2割程度過剰に用いてもよい。また、後述する焼成工程において、副生成物の発生を抑制するために、前記リン原子を含む化合物を0.1~1割程度過剰に用いてもよい。
 前記混合の際には、必要により加温しながら混合してもよいが、通常、室温で行う。
 また、前記混合は、大気下で行ってもよいが、0~20体積%の範囲で酸素ガス含有量の調整された、窒素ガスおよび/またはアルゴンガスの雰囲気下で行うことが好ましい。
 前記化合物(a)の製造方法における焼成工程では、混合工程で得た混合物を焼成する。焼成工程を複数回行う場合には、焼成工程で得られた焼成物を粉砕または小粒径化することを目的として、ボールミルや乳鉢等を用いた粉砕工程を設けてもよい。特に、化合物(a)は、相生成の反応速度が遅いため、1回目の焼成では反応中間体が存在する場合がある。この場合には、1回目の焼成を行い、粉砕工程を行った後、さらに焼成工程を行うことが好ましい。
 焼成工程は大気下で行ってもよいが、0~20体積%の範囲で酸素ガス含有量の調整された、窒素ガスおよび/またはアルゴンガスの雰囲気下で行うことが好ましい。
 焼成温度は、焼成時間にもよるが、好ましくは800~1200℃、より好ましくは950~1100℃、さらに好ましくは950~1000℃である。
 焼成温度が前記範囲にあると、リチウム原子が系外へ流出しにくく、イオン伝導度の高い化合物(a)が得られやすい傾向にある。
 焼成時間(焼成工程を何回か行う場合は合計焼成時間)は、焼成温度にもよるが、好ましくは1~16時間、より好ましくは3~12時間である。
 焼成時間が前記範囲にあると、リチウム原子が系外へ流出しにくく、イオン伝導度の高い化合物が得られやすい傾向にある。
 焼成工程後に得られる焼成物は、大気中に放置すると、吸湿したり二酸化炭素と反応したりして変質することがある。このため、焼成工程後に得られる焼成物は、焼成工程後の降温において、200℃以下の温度になったところで、除湿した不活性ガス雰囲気下に移して保管することが好ましい。
・化合物(b)
 化合物(b)は、ホウ素化合物、ビスマス化合物、ニオブ化合物およびケイ素化合物から選ばれる少なくとも1種の化合物である。これらの中でも、本発明の効果がより発揮される等の点から、ホウ素、ビスマスおよびニオブから選ばれる少なくとも1種の元素を含むことがより好ましく、ホウ素、ニオブのいずれか、または、これらの両方を含むことが特に好ましい。
 なお、化合物(b)は、化合物(a)とは異なる化合物である。
 方法(ii)で用いる化合物(b)は、1種でも、2種以上でもよい。
 化合物(b)は、取り扱いやすさの点から、無機化合物が好ましく、リチウムまたは水素を構成元素として含む化合物であることがより好ましく、リチウムを構成元素として含む複合酸化物であることがさらに好ましい。
 化合物(b)は、従来公知の方法で製造して得てもよく、市販品を用いてもよい。
 化合物(b)は、結晶性の化合物であることが好ましい。化合物(b)が結晶性の化合物であることは、例えば、化合物(b)のX線回折(XRD)図形から判断することができる。
 ホウ素化合物としては、例えば、LiBO2、LiB35、Li247、Li31118、Li3BO3、Li3712、Li425、Li649、Li3-x51-x5x53(0<x5<1)、Li4-x62-x6x65(0<x6<2)、Li2.4Al0.2BO3、Li2.7Al0.1BO3、B23、H3BO3が挙げられる。
 ビスマス化合物としては、例えば、LiBiO2、Li3BiO3、Li4Bi25、Li2.4Al0.2BiO3、Bi23が挙げられる。
 ニオブ化合物としては、例えば、Nb25、LiNbO3、LiNb38、NbPO5が挙げられる。
 ケイ素化合物としては、例えば、SiO2、Li2SiO3、Li2Si25、Li2Si37、Li4SiO4、Li6Si27、Li8SiO6が挙げられる。
[化合物(b)の製造方法]
 化合物(b)の製造方法としては特に制限されず、例えば、固相反応、液相反応等の従来公知の製造方法を採用することができる。該製造方法としては、具体的には、混合工程と焼成工程とを含む方法が挙げられる。
 なお、化合物(b)として市販品を用いてもよい。
・混合工程
 前記混合工程としては、例えば、リチウムを構成元素として含む複合酸化物を製造する場合には、原材料である、リチウム原子を含む化合物と、ホウ素原子を含む化合物、ビスマス原子を含む化合物、ニオブ原子を含む化合物またはケイ素原子を含む化合物とを混合する。
 化合物(b)の種類によっては、この混合工程を行わなくてもよい。
 リチウム原子を含む化合物としては特に限定されないが、取り扱いやすさの点から、無機化合物が好ましく、リチウム原子を含む無機化合物としては、例えば、炭酸リチウム(Li2CO3)、酸化リチウム(Li2O)、水酸化リチウム(LiOH)、酢酸リチウム(LiCH3COO)およびこれらの水和物が挙げられる。これらの中でも、分解、反応させやすいことから、炭酸リチウムが好ましい。また、水酸化リチウム一水和物(LiOH・H2O)を用いることも好ましい。
 リチウム原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 ホウ素原子を含む化合物としては特に限定されないが、取り扱いやすさの点から、無機化合物が好ましく、ホウ素原子を含む無機化合物としては、例えば、ホウ酸(H3BO3)、酸化ホウ素(B23)が挙げられる。これらの中でも、ホウ酸が好ましい。
 ホウ素原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 ビスマス原子を含む化合物としては特に限定されないが、取り扱いやすさの点から、無機化合物が好ましく、ビスマス原子を含む無機化合物としては、例えば、酸化ビスマス、硝酸ビスマス(Bi(NO33)が挙げられる。これらの中でも、酸化ビスマスが好ましい。
 ビスマス原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 ニオブ原子を含む化合物としては、例えば、Nb25、LiNbO3、LiNb38、NbPO5が挙げられる。
 ニオブ原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 ケイ素原子を含む化合物としては、例えば、SiO2、Li2SiO3、Li2Si25、Li2Si37、Li4SiO4、Li6Si27、Li8SiO6が挙げられる。
 ケイ素原子を含む化合物は、1種を用いてもよく、2種以上を用いてもよい。
 前記原材料の混合方法としては、例えば、ロール転動ミル、ボールミル、小径ボールミル(ビーズミル)、媒体撹拌ミル、気流粉砕機、乳鉢、自動混練乳鉢、槽解機、ジェットミルなどを用いて混合する方法が挙げられる。
 原材料の混合比率は、例えば、化合物(b)の所望の組成となるよう化学量論比で混合すればよい。
 なお、後述する焼成工程において、リチウム原子が系外に流出しやすいので、前記リチウム原子を含む化合物を1~2割程度過剰に用いてもよい。
 前記混合の際には、必要により加温しながら混合してもよいが、通常、室温で行う。
 また、前記混合は、大気下で行ってもよいが、0~20体積%の範囲で酸素ガス含有量の調整された、窒素ガスおよび/またはアルゴンガスの雰囲気下で行うことが好ましい。
・焼成工程
 前記焼成工程では、混合工程で得た混合物を焼成する。焼成工程を複数回行う場合には、焼成工程で得られた焼成物を粉砕または小粒径化することを目的として、ボールミルや乳鉢等を用いた粉砕工程を設けてもよい。
 焼成工程は大気下で行ってもよいが、0~20体積%の範囲で酸素ガス含有量の調整された、窒素ガスおよび/またはアルゴンガスの雰囲気下で行うことが好ましい。
 焼成温度は、焼成時間にもよるが、好ましくは400~1000℃、より好ましくは500~900℃である。
 焼成温度が前記範囲にあると、リチウム原子が系外へ流出しにくく、所望の化合物(b)が得られやすい傾向にある。
 焼成時間(焼成工程を何回か行う場合は合計焼成時間)は、焼成温度にもよるが、好ましくは1~48時間、より好ましくは3~24時間である。
 焼成時間が前記範囲にあると、リチウム原子が系外へ流出しにくく、所望の化合物(b)が得られやすい傾向にある。
 焼成工程後に得られる焼成物は、大気中に放置すると、吸湿したり二酸化炭素と反応したりして変質することがある。このため、焼成工程後に得られる焼成物は、焼成工程後の降温において、200℃以下の温度になったところで、除湿した不活性ガス雰囲気下に移して保管することが好ましい。
 方法(ii)では、得られる本材料中の各構成元素の含有量が前記範囲となるような量で化合物(a)と化合物(b)とを用いることが好ましい。
・化合物(c)
 化合物(c)は、リチウム、タンタル、リンおよび酸素を構成元素として含み、かつ、ホウ素、ビスマス、ニオブおよびケイ素から選ばれる少なくとも1種の元素を含む化合物であり、これらの元素を含む酸化物であることが好ましく、これらの元素を含むリチウムイオン伝導性の化合物であることがより好ましい。
 化合物(c)は、Zr、Ga、Sn、Hf、W、Mo、AlおよびGeからなる群より選ばれる1種以上の元素を含んでいてもよい。
 化合物(c)は、単斜晶型構造を有する化合物であることが好ましい。化合物(c)が単斜晶型構造を有することは、例えば、化合物(c)のX線回折(XRD)図形をリートベルト解析することで、具体的には、下記実施例の方法で判断することができる。
 化合物(c)の製造方法としては特に制限されず、例えば、固相反応、液相反応等の従来公知の製造方法を採用することができる。該製造方法としては、具体的には、少なくともそれぞれ1段階の混合工程と焼成工程とを含む方法が挙げられる。
 前記化合物(c)の製造方法における混合工程としては、例えば、原材料である、リチウム原子を含む化合物(例:酸化物、水酸化物、炭酸化物)、タンタル原子を含む化合物(例:酸化物、硝酸化物)、リン原子を含む化合物(例:アンモニウム塩)、ならびに、ホウ素原子を含む化合物(例:酸化物)、ビスマス原子を含む化合物(例:酸化物)、ニオブ原子を含む化合物(例:酸化物、硝酸化物)およびケイ素原子を含む化合物(例:酸化物)から選ばれる少なくとも1種の化合物を混合する工程が挙げられる。前記ホウ素原子を含む化合物、ビスマス原子を含む化合物、ニオブ原子を含む化合物およびケイ素原子を含む化合物としては、それぞれ前記化合物(b)を用いてもよい。
 前記原材料はそれぞれ、1種を用いてもよく、2種以上を用いてもよい。
 原材料の混合比率は、例えば、得られる本材料中の各構成元素の含有量が前記範囲となるような量で混合すればよい。
 なお、後述する焼成工程において、リチウム原子が系外に流出しやすいので、前記リチウム原子を含む化合物を1~2割程度過剰に用いてもよい。また、後述する焼成工程において、副生成物の発生を抑制するために、前記リン原子を含む化合物を0.1~1.0割程度過剰に用いてもよい。
 前記原材料の混合方法や、混合の際の条件(温度、雰囲気等)としては、例えば、前記化合物(a)を製造する際の混合工程と同様の方法、条件が挙げられる。
 前記化合物(c)の製造方法における焼成工程では、混合工程で得た混合物を焼成する。焼成工程を複数回行う場合には、焼成工程で得られた焼成物を粉砕または小粒径化することを目的として、ボールミルや乳鉢等を用いた粉砕工程を設けてもよいが、化合物(c)は、化合物(a)を製造する際とは異なり、相生成の反応速度が速いため、1回の焼成工程で所望の化合物(c)を製造することができるため、1回の焼成工程で化合物(c)を製造することが好ましい。
 前記焼成工程における条件(温度、時間、雰囲気等)としては、例えば、前記化合物(a)を製造する際の焼成工程と同様の条件が挙げられ、また、焼成工程後に得られる焼成物は、化合物(a)を製造する際と同様の理由から、化合物(a)を製造する際と同様に、除湿した不活性ガス雰囲気下に移して保管することが好ましい。
≪固体電解質≫
 本発明の一実施形態に係る固体電解質(以下「本電解質」ともいう。)は、前記本材料を用いて得られ、本材料を焼成して得られる本材料の焼結体であることが好ましい。
 本電解質は、単斜晶型構造を有することが好ましい。固体電解質が単斜晶型構造を有することは、例えば、固体電解質のX線回折(XRD)図形をリートベルト解析することで、具体的には、下記実施例の方法で判断することができる。
 本電解質の単斜晶率(=単斜晶の結晶量×100/確認された結晶の合計結晶量)は、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上であり、上限は特に制限されないが100%である。
 本電解質の単斜晶率が前記範囲にあると、結晶粒内と結晶粒界との両方においてイオン伝導度が高い固体電解質となる傾向にある。
 本電解質の相対密度は、よりイオン伝導度が高い固体電解質を容易に得ることができる等の点から、好ましくは60~100%、より好ましくは80~100%である。
 本材料を850℃以上900℃以下で焼成して得られる本材料の焼結体のトータルイオン伝導度は、好ましくは2.00×10-4S・cm-1以上、より好ましくは3.00×10-4S・cm-1以上である。
 本材料を750℃以上850℃未満で焼成して得られる本材料の焼結体のトータルイオン伝導度は、好ましくは1.00×10-5S・cm-1以上、より好ましくは5.00×10-5S・cm-1以上である。
 本材料を700℃以上750℃未満で焼成して得られる本材料の焼結体のトータルイオン伝導度は、好ましくは1.00×10-5S・cm-1以上、より好ましくは2.00×10-5S・cm-1以上である。
 本材料を650℃以上700℃未満で焼成して得られる本材料の焼結体のトータルイオン伝導度は、好ましくは1.00×10-6S・cm-1以上、より好ましくは2.00×10-5S・cm-1以上である。
 該トータルイオン伝導度が前記範囲にあると、本材料を低温で焼成して得られる焼結体は、十分なイオン伝導度を有するといえる。
 該トータルイオン伝導度は、具体的には、下記実施例に記載の方法で測定できる。
<本電解質の製造方法>
 本電解質の製造方法としては、前記本材料を焼成する工程Aを含むことが好ましく、前記本材料を成形した後、焼成して焼結体とする方法であることがより好ましい。
 前記工程Aにおける焼成温度は、好ましくは500~900℃、より好ましくは600~900℃、さらに好ましくは650~900℃である。
 本材料を用いるため、このような低温で焼成しても、十分なイオン伝導度の焼結体を得ることができる。
 前記工程Aにおける焼成時間は、焼成温度にもよるが、好ましくは12~144時間、より好ましくは48~96時間である。
 焼成時間が前記範囲にあると、低温で焼成しても、十分なイオン伝導度の焼結体を得ることができる。
 前記工程Aにおける焼成は大気下で行ってもよいが、0~20体積%の範囲で酸素ガス含有量の調整された、窒素ガスおよび/またはアルゴンガスの雰囲気下で行うことが好ましい。
 また、前記工程Aにおける焼成は、水素ガスなどの還元性ガスを含む、窒素水素混合ガス等の還元性ガス雰囲気下で行ってもよい。窒素水素混合ガスが含む水素ガスの比率は、例えば1~10体積%が挙げられる。還元性ガスとしては、水素ガス以外に、アンモニアガス、一酸化炭素ガスなどを用いてもよい。
 前記工程Aでは、よりイオン伝導度が高い固体電解質(焼結体)を容易に得ることができる等の点から、本材料を成形した成形体を焼成することが好ましく、本材料をプレス成形した成形体を焼成することがより好ましい。
 本材料をプレス成形する際の圧力としては特に制限されないが、好ましくは50~500MPa、より好ましくは100~400MPaである。
 本材料をプレス成形した成形体の形状も特に制限されないが、該成形体を焼成して得られる焼結体(固体電解質)の用途に応じた形状であることが好ましい。
 なお、本電解質を製造する際には、本材料以外の他の成分を用いてもよい。該他の成分としては、全固体電池の固体電解質に用いられる従来公知の材料が挙げられ、例えば、リチウムイオン伝導性化合物として、NASICON型、LISICON型などの構造を有するリチウムイオン伝導性材料が挙げられる。
 前記他の成分はそれぞれ、1種を用いてもよく、2種以上を用いてもよい。
 前記他の成分の使用量は、本材料との合計100質量%に対し、好ましくは50質量%以下、より好ましくは30質量%以下であり、前記他の成分を使用しないことが好ましい。
≪全固体電池≫
 本発明の一実施形態に係る全固体電池(以下「本電池」ともいう。)は、正極活物質を有する正極と、負極活物質を有する負極と、前記正極と前記負極との間に固体電解質層とを含み、前記固体電解質層が本電解質を含む。
 本電池は、一次電池であってもよく、二次電池であってもよいが、本発明の効果がより発揮される等の点から、二次電池であることが好ましく、リチウムイオン二次電池であることがより好ましい。
 本電池の構造は、正極と、負極と、該正極と負極との間に固体電解質層を含めば特に制限されず、いわゆる、薄膜型、積層型、バルク型のいずれであってもよい。
<固体電解質層>
 固体電解質層は、本電解質を含めば特に制限されず、必要により、全固体電池の固体電解質層に用いられる従来公知の添加剤を含んでいてもよいが、本電解質からなることが好ましい。
 固体電解質層の厚さは、形成したい電池の構造(薄膜型等)に応じて適宜選択すればよいが、好ましくは50nm~1000μm、より好ましくは100nm~100μmである。
<正極>
 正極は正極活物質を有すれば特に制限されないが、好ましくは、正極集電体と正極活物質層とを有する正極が挙げられる。
[正極活物質層]
 正極活物質層は、正極活物質を含めば特に制限されないが、正極活物質と固体電解質とを含むことが好ましく、さらに、導電助剤や焼結助剤等の添加剤を含んでいてもよい。
 正極活物質層の厚さは、形成したい電池の構造(薄膜型等)に応じて適宜選択すればよいが、好ましくは10~200μm、より好ましくは30~150μm、さらに好ましくは50~100μmである。
・正極活物質
 正極活物質としては、例えば、LiCo酸化物、LiNiCo酸化物、LiNiCoMn酸化物、LiNiMn酸化物、LiMn酸化物、LiMn系スピネル、LiMnNi酸化物、LiMnAl酸化物、LiMnMg酸化物、LiMnCo酸化物、LiMnFe酸化物、LiMnZn酸化物、LiCrNiMn酸化物、LiCrMn酸化物、チタン酸リチウム、リン酸金属リチウム、遷移金属酸化物、硫化チタン、グラファイト、ハードカーボン、遷移金属含有リチウム窒化物、酸化ケイ素、ケイ酸リチウム、リチウム金属、リチウム合金、Li含有固溶体、リチウム貯蔵性金属間化合物が挙げられる。
 これらの中でも、固体電解質との親和性がよく、マクロ導電性、ミクロ導電性およびイオン伝導性のバランスに優れ、また、平均電位が高く、比容量と安定性とのバランスにおいて、エネルギー密度や電池容量を高めることができる等の点から、LiNiCoMn酸化物、LiNiCo酸化物、LiCo酸化物が好ましく、LiNiCoMn酸化物がより好ましい。
 また、正極活物質は、イオン伝導性酸化物であるニオブ酸リチウム、リン酸リチウムまたはホウ酸リチウム等で表面が被覆されていてもよい。
 正極活物質層に用いられる正極活物質は、1種でもよく、2種以上でもよい。
 前記正極活物質の好適例としては、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P27[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP27、Lix7y7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO43[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、LiNi1/3Co1/3Mn1/32、LiCoO2、LiNiO2、LiMn24、Li2CoP27、Li32(PO43、Li3Fe2(PO43、LiNi0.5Mn1.54、Li4Ti512も挙げられる。
 正極活物質は、粒子状が好ましい。その体積基準粒度分布における50%径は、好ましくは0.1~30μm、より好ましくは0.3~20μm、さらに好ましくは0.4~10μm、特に好ましくは0.5~3μmである。
 また、正極活物質の、短径の長さに対する長径の長さの比(長径の長さ/短径の長さ)、すなわちアスペクト比は、好ましくは3未満、より好ましくは2未満である。
 正極活物質は、二次粒子を形成していてもよい。その場合、一次粒子の数基準粒度分布における50%径は、好ましくは0.1~20μm、より好ましくは0.3~15μm、さらに好ましくは0.4~10μm、特に好ましくは0.5~2μmである。
 正極活物質層中の正極活物質の含有量は、好ましくは20~80体積%、より好ましくは30~70体積%である。
 正極活物質の含有量が前記範囲にあると、正極活物質が好適に機能し、エネルギー密度の高い電池を容易に得ることができる傾向にある。
・固体電解質
 正極活物質層に用いられ得る固体電解質としては特に制限されず、従来公知の固体電解質を用いることができるが、本発明の効果がより発揮される等の点から、本電解質を用いることが好ましい。
 正極活物質層に用いられる固体電解質は、1種でもよく、2種以上でもよい。
・添加剤
 前記導電助剤の好適例としては、Ag、Au、Pd、Pt、Cu、Snなどの金属材料、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料が挙げられる。
 前記焼結助剤としては、前記化合物(b)と同様の化合物が好ましい。
 正極活物質層に用いられる添加剤はそれぞれ、1種でもよく、2種以上でもよい。
・正極集電体
 正極集電体は、その材質が電気化学反応を起こさずに電子を導電するものであれば特に限定されない。正極集電体の材質としては、例えば、銅、アルミニウム、鉄等の金属の単体、これらの金属を含む合金、アンチモンドープ酸化スズ(ATO)、スズドープ酸化インジウム(ITO)などの導電性金属酸化物が挙げられる。
 なお、正極集電体としては、導電体の表面に導電性接着層を設けた集電体を用いることもできる。該導電性接着層としては、例えば、粒状導電材や繊維状導電材などを含む層が挙げられる。
<負極>
 負極は負極活物質を有すれば特に制限されないが、好ましくは、負極集電体と負極活物質層とを有する負極が挙げられる。
[負極活物質層]
 負極活物質層は、負極活物質を含めば特に制限されないが、負極活物質と固体電解質とを含むことが好ましく、さらに、導電助剤や焼結助剤等の添加剤を含んでいてもよい。
 負極活物質層の厚さは、形成したい電池の構造(薄膜型等)に応じて適宜選択すればよいが、好ましくは10~200μm、より好ましくは30~150μm、さらに好ましくは50~100μmである。
・負極活物質
 負極活物質としては、例えば、リチウム合金、金属酸化物、グラファイト、ハードカーボン、ソフトカーボン、ケイ素、ケイ素合金、ケイ素酸化物SiOn(0<n≦2)、ケイ素/炭素複合材、多孔質炭素の細孔内にケイ素ドメインを内包する複合材、チタン酸リチウム、チタン酸リチウムで被覆されたグラファイトが挙げられる。
 これらの中でも、ケイ素/炭素複合材や多孔質炭素の細孔内にケイ素ドメインを内包する複合材は、比容量が高く、エネルギー密度や電池容量を高めることができるため好ましい。より好ましくは、多孔質炭素の細孔内にケイ素ドメインを内包する複合材であり、ケイ素のリチウム吸蔵/放出に伴う体積膨張の緩和性に優れ、マクロ導電性、ミクロ導電性およびイオン伝導性のバランスを良好に維持することができる。特に好ましくは、ケイ素ドメインが非晶質であり、ケイ素ドメインのサイズが10nm以下であり、ケイ素ドメインの近傍に多孔質炭素由来の細孔が存在する、多孔質炭素の細孔内にケイ素ドメインを内包する複合材である。
 前記負極活物質の好適例としては、LiM3PO4[M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiM5VO4[M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素である。]、Li2M6P27[M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素である。]、LiVP27、Lix7y7M7z7[2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素である。]、Li1+x8Alx8M82-x8(PO43[0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である。]、(Li3-a9x9+(5-b9)y9M9x9)(V1-y9M10y9)O4[M9は、Mg、Al、GaおよびZnからなる群より選ばれる1種以上の元素であり、M10は、Zn、Al、Ga、Si、Ge、PおよびTiからなる群より選ばれる1種以上の元素であり、0≦x9≦1.0、0≦y9≦0.6、a9はM9の平均価数であり、b9はM10の平均価数である。]、LiNb27、Li4Ti512、Li4Ti5PO12、TiO2、LiSi、グラファイトも挙げられる。
 負極活物質は、粒子状が好ましい。その体積基準粒度分布における50%径、アスペクト比および負極活物質が二次粒子を形成している場合の、一次粒子の数基準粒度分布における50%径は、前記正極活物質と同様の範囲にあることが好ましい。
 負極活物質層中の負極活物質の含有量は、好ましくは20~80体積%、より好ましくは30~70体積%である。
 負極活物質の含有量が前記範囲にあると、負極活物質が好適に機能し、エネルギー密度の高い電池を容易に得ることができる傾向にある。
・固体電解質
 負極活物質層に用いられ得る固体電解質としては特に制限されず、従来公知の固体電解質を用いることができるが、本発明の効果がより発揮される等の点から、本電解質を用いることが好ましい。
 負極活物質層に用いられる固体電解質は、1種でもよく、2種以上でもよい。
・添加剤
 前記導電助剤の好適例としては、Ag、Au、Pd、Pt、Cu、Snなどの金属材料、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料が挙げられる。
 前記焼結助剤としては、前記化合物(b)と同様の化合物が好ましい。
 負極活物質層に用いられる添加剤はそれぞれ、1種でもよく、2種以上でもよい。
・負極集電体
 負極集電体としては、正極集電体と同様の集電体を用いることができる。
<全固体電池の製造方法>
 全固体電池は、例えば、公知の粉末成形法によって形成することができる。例えば、正極集電体、正極活物質層用の粉末、固体電解質層用の粉末、負極活物質層用の粉末および負極集電体をこの順に重ね合わせて、それらを同時に粉末成形することによって、正極活物質層、固体電解質層および負極活物質層のそれぞれの層の形成と、正極集電体、正極活物質層、固体電解質層、負極活物質層および負極集電体のそれぞれの間の接続を同時に行うことができる。
 この粉末成形の際は、前記工程Aにおける本材料をプレス成形する際の圧力と同程度の圧力をかけながら、前記工程Aにおける焼成温度と同様の温度で焼成することが好ましい。
 本発明の一実施形態によれば、この全固体電池を作製する際の焼成温度を低温で行っても、十分なイオン伝導度を奏する全固体電池が得られるため、正極や負極材料などの他の材料の分解や変質等を抑制しながらも、経済性に優れ、省設備で全固体電池を作製することができる。
 なお、正極活物質層、固体電解質層、負極活物質層の各層をそれぞれ前記粉末成形してもよいが、得られた各層を用いて全固体電池を作製する際には、各層をプレスして焼成することが好ましい。
 また、全固体電池は、例えば、以下の方法で作製することもできる。
 正極活物質層形成用の材料、固体電解質層形成用の材料、負極活物質層形成用の材料に、溶剤、樹脂等を適宜混合することにより、各層形成用ペーストを調製し、そのペーストをベースシート上に塗布し、乾燥させることで、正極活物質層用グリーンシート、固体電解質層用グリーンシート、負極活物質層用グリーンシートを作製する。次に、各グリーンシートからベースシートを剥離した、正極活物質層用グリーンシート、固体電解質層用グリーンシートおよび負極活物質層用グリーンシートを順次積層し、所定圧力で熱圧着した後、容器に封入し、熱間等方圧プレス、冷間等方圧プレス、静水圧プレス等により加圧することで、積層構造体を作製する。
 その後、必要によりこの積層構造体を所定温度で脱脂処理した後、焼成処理を行い、積層焼結体を作製する。
 この焼成処理における焼成温度は、前記工程Aにおける焼成温度と同様の温度であることが好ましい。
 次いで、必要により、積層焼結体の両主面に、スパッタリング法、真空蒸着法、金属ペーストの塗布またはディップ等により、正極集電体および負極集電体を形成することで、全固体電池を作製することもできる。
 以下、本発明を実施例に基づいて具体的に説明する。なお、本発明はこれらの実施例に限定されない。
[合成例1]Li425の合成
 水酸化リチウム一水和物(LiOH・H2O)(富士フイルム和光純薬(株)製、純度98.0%以上)、および、ホウ酸(H3BO3)(富士フイルム和光純薬(株)製、純度99.5%以上)を、リチウムおよびホウ素の原子数比(Li:B)が、2.00:1.00となるように秤量した。秤量した各原料粉末を、メノウ乳鉢で15分間粉砕混合し、混合物を得た。
 得られた混合物をアルミナボートに入れ、回転焼成炉((株)モトヤマ製)を用い、空気(流量:100mL/分)の雰囲気下、昇温速度10℃/分の条件で500℃まで昇温し、500℃において2時間焼成を行い、一次焼成物を得た。
 得られた一次焼成物を、メノウ乳鉢で15分間粉砕混合し、得られた混合物をアルミナボートに入れ、回転焼成炉((株)モトヤマ製)を用い、空気(流量:100mL/分)の雰囲気下、昇温速度10℃/分の条件で630℃まで昇温し、630℃において24時間焼成を行い、二次焼成物(Li425)を得た。
 得られた二次焼成物を室温まで降温後、回転焼成炉から取り出し、除湿された窒素ガス雰囲気下に移して保管した。
[合成例2]Li3BO3の合成
 水酸化リチウム一水和物(LiOH・H2O)(富士フイルム和光純薬(株)製、純度98.0%以上)、および、ホウ酸(H3BO3)(富士フイルム和光純薬(株)製、純度99.5%以上)を、リチウムおよびホウ素の原子数比(Li:B)が、3.00:1.00となるように秤量した以外は合成例1と同様に作製して、二次焼成物(Li3BO3)を得た。
[合成例3]LiBiO2の合成
 水酸化リチウム一水和物(LiOH・H2O)(富士フイルム和光純薬(株)製、純度98.0%以上)、および、酸化ビスマス(富士フイルム和光純薬(株)製、純度99.9%)を、リチウムおよびビスマスの原子数比(Li:Bi)が、1:1となるように秤量した。秤量した各原料粉末を、メノウ乳鉢で15分間粉砕混合し、混合物を得た。
 得られた混合物をアルミナボートに入れ、回転焼成炉((株)モトヤマ製)を用い、空気(流量:100mL/分)の雰囲気下、昇温速度10℃/分の条件で600℃まで昇温し、600℃において4時間焼成を行い、焼成物(LiBiO2)を得た。
 得られた焼成物を室温まで降温後、回転焼成炉から取り出し、除湿された窒素ガス雰囲気下に移して保管した。
[合成例4]LiPO3の合成
 炭酸リチウム(Li2CO3)(シグマアルドリッチ社製、純度99.0%以上)、および、リン酸水素二アンモニウム((NH42HPO4)(シグマアルドリッチ社製、純度98%以上)を、リチウムおよびリンの原子数比(Li:P)が、1:1となるように秤量した。秤量した各原料粉末を、メノウ乳鉢で15分間粉砕混合し、混合物を得た。
 得られた混合物をアルミナボートに入れ、回転焼成炉((株)モトヤマ製)を用い、空気(流量:100mL/分)の雰囲気下、昇温速度10℃/分の条件で600℃まで昇温し、600℃において3時間焼成を行い、焼成物(LiPO3)を得た。
 得られた焼成物を室温まで降温後、回転焼成炉から取り出し、除湿された窒素ガス雰囲気下に移して保管した。
[実施例1]
 五酸化タンタル(Ta25)(富士フイルム和光純薬(株)製、純度99.9%)に適量のトルエンを加えて、ジルコニアボールミル(ジルコニアボール:直径3mm)を用いてTa25を2時間粉砕した。
 次いで、炭酸リチウム(Li2CO3)(シグマアルドリッチ社製、純度99.0%以上)、粉砕した前記五酸化タンタル(Ta25)、前述した合成例1で得たLi425、および、リン酸水素二アンモニウム((NH42HPO4)(シグマアルドリッチ社製、純度98%以上)を、リチウム、タンタル、ホウ素およびリンの原子数比(Li:Ta:B:P)が、表1の通りになるように秤量し、さらに焼成工程において副生成物の生成を抑制するために、リン酸水素二アンモニウムを表1中のリン原子量を1.065倍した量となるように秤量した。秤量した各原料粉末に、適量のトルエンを加え、ジルコニアボールミル(ジルコニアボール:直径1mm)を用いて2時間粉砕混合して固体電解質材料を作製した。
 得られた固体電解質材料は、後述の粉末X線回折で評価したところ、非晶質であった。
[実施例2~4]
 実施例1において、リチウム、タンタル、ホウ素およびリンの原子数比が表1に記載の量となるように、原材料の混合比を変更した以外は、実施例1と同様に作製して、非晶質の固体電解質材料を得た。
[実施例5および6]
 実施例1において、Li425に替えて、前述した合成例2で得たLi3BO3を用い、リチウム、タンタル、ホウ素およびリンの原子数比が、表1の通りになるように各原料粉末を用いた以外は、実施例1と同様に作製して、非晶質の固体電解質材料を得た。
[実施例7]
 実施例1において、Li425に替えて、ホウ酸(H3BO3)(富士フイルム和光純薬(株)製、純度99.5%以上)を用い、リチウム、タンタル、ホウ素およびリンの原子数比が、表1の通りになるように各原料粉末を用いた以外は、実施例1と同様に作製して、非晶質の固体電解質材料を得た。
[実施例8]
 五酸化ニオブ(Nb25)(富士フイルム和光純薬(株)製、純度99.9%)に適量のトルエンを加えて、ジルコニアボールミル(ジルコニアボール:直径3mm)を用いてNb25を2時間粉砕した。
 次いで、実施例1において、Li425に替えて、粉砕した前記五酸化ニオブ(Nb25)を用い、リチウム、タンタル、ニオブおよびリンの原子数比が、表1の通りになるように各原料粉末を用いた以外は、実施例1と同様に作製して、非晶質の固体電解質材料を得た。
[実施例9]
 実施例8において、前述した合成例1で得たLi425をさらに用い、リチウム、タンタル、ニオブ、ホウ素およびリンの原子数比が、表1の通りになるように各原料粉末を用いた以外は、実施例8と同様に作製して、非晶質の固体電解質材料を得た。
[実施例10]
 実施例1において、Li425に替えて、酸化ケイ素(SiO2)(富士フイルム和光純薬(株)製、純度99.9%)を用い、リチウム、タンタル、リンおよびケイ素の原子数比(Li:Ta:P:Si)が、表1の通りになるように各原料粉末を用いた以外は、実施例1と同様に作製して、非晶質の固体電解質材料を得た。
[実施例11]
 実施例5において、酸化ケイ素(SiO2)(富士フイルム和光純薬(株)製、純度99.9%)をさらに用い、リチウム、タンタル、ホウ素、リンおよびケイ素の原子数比が、表1の通りになるように各原料粉末を用いた以外は、実施例5と同様に作製して、非晶質の固体電解質材料を得た。
[実施例12]
 実施例1において、Li425に替えて、合成例3で得たLiBiO2を用い、リチウム、タンタル、ビスマスおよびリンの原子数比が、表1の通りになるように各原料粉末を用いた以外は、実施例1と同様に作製して、非晶質の固体電解質材料を得た。
[実施例13]
 実施例1において、炭酸リチウムに替えて、水酸化リチウム一水和物(LiOH・H2O)(富士フイルム和光純薬(株)製、純度98.0%以上)を用い、リチウム、タンタル、ホウ素およびリンの原子数比が、表1の通りになるように各原料粉末を用いた以外は、実施例1と同様に作製して、非晶質の固体電解質材料を得た。
[実施例14]
 実施例9において、炭酸リチウムに替えて、酢酸リチウム(CH3COOLi)(富士フイルム和光純薬(株)製、純度98.0%以上)を用い、リチウム、タンタル、ニオブ、ホウ素およびリンの原子数比が、表1の通りになるように各原料粉末を用いた以外は、実施例9と同様に作製して、非晶質の固体電解質材料を得た。
[比較例1]
 炭酸リチウム(Li2CO3)(シグマアルドリッチ社製、純度99.0%以上)、五酸化タンタル(Ta25)(富士フイルム和光純薬(株)製、純度99.9%)、および、リン酸水素二アンモニウム((NH42HPO4)(シグマアルドリッチ社製、純度98%以上)を、リチウム、タンタルおよびリンの原子数比(Li:Ta:P)が、表1の通りになるように秤量し、さらに焼成工程において系外に流出するリチウム原子を考慮し、炭酸リチウムを表1中のリチウム原子量を1.1倍した量となるように秤量し、さらに焼成工程において副生成物の生成を抑制するために、リン酸水素二アンモニウムを表1中のリン原子量を1.065倍した量となるように秤量した。秤量した各原料粉末に、適量のトルエンを加え、ジルコニアボールミル(ジルコニアボール:直径1mm)を用いて2時間粉砕混合した。
 得られた混合物をアルミナボートに入れ、回転焼成炉((株)モトヤマ製)を用い、空気(流量:100mL/分)の雰囲気下、昇温速度10℃/分の条件で1000℃まで昇温し、1000℃において4時間焼成を行い、一次焼成物を得た。
 得られた一次焼成物を、メノウ乳鉢で15分間粉砕混合し、得られた混合物をアルミナボートに入れ、回転焼成炉((株)モトヤマ製)を用い、空気(流量:100mL/分)の雰囲気下、昇温速度10℃/分の条件で1000℃まで昇温し、1000℃において1時間焼成を行い、二次焼成物を得た。
 得られた焼成物に適量のトルエンを加え、ジルコニアボールミル(ジルコニアボール:直径1mm)を用いて2時間粉砕混合して固体電解質材料を得た。
[比較例2]
 炭酸リチウム(Li2CO3)(シグマアルドリッチ社製、純度99.0%以上)、五酸化タンタル(Ta25)(富士フイルム和光純薬(株)製、純度99.9%)、前述した合成例4で得たLiPO3、および、リン酸水素二アンモニウム((NH42HPO4)(シグマアルドリッチ社製、純度98%以上)を、LiPO3とリン酸水素二アンモニウム((NH42HPO4)とをモル比で1:10の比で用い、リチウム、タンタルおよびリンの原子数比が、表1の通りになるように各原料粉末を用いた以外は、比較例1と同様に作製して、非晶質の固体電解質材料を得た。
[比較例3]
 実施例3で得られた固体電解質材料を、アルミナボートに入れ、回転焼成炉((株)モトヤマ製)を用い、空気(流量:100mL/分)の雰囲気下、昇温速度10℃/分の条件で1000℃まで昇温し、1000℃において4時間焼成を行い、固体電解質材料を得た。
 得られた固体電解質材料は、後述の粉末X線回折で評価したところ、結晶であった。
<熱重量示差熱分析(TG-DTA)>
 熱重量示差熱分析装置TG-DTA2020(NETZSCH社製)を用いて、固体電解質材料を約5mg入れた白金製測定容器を装置にセットし、100ml/minの空気気流下、100~900℃の範囲で10℃/minで昇温を行い、TG-DTA測定結果を得た。得られたDTA曲線を温度に対して微分し、得られたDTA曲線の一次導関数の値が正から負へ変化する過程で0となる温度を、DTAの発熱ピークの温度とした。
 図1に、実施例1、5、7および比較例1で作製した固体電解質材料をそれぞれ用いて得た、DTA曲線を示し、発熱ピークをそれぞれ矢印で示す。
 図2に、実施例8、9および比較例1で作製した固体電解質材料をそれぞれ用いて得た、DTA曲線を示し、発熱ピークをそれぞれ矢印で示す。
 図3に、実施例10、11、12および比較例1で作製した固体電解質材料をそれぞれ用いて得た、DTA曲線を示し、発熱ピークをそれぞれ矢印で示す。
 なお、図では示していないが、比較例3で作製した固体電解質材料は、後述するXRDを用いた解析から確認されるように結晶性であるため、DTA曲線には発熱ピークは観測されなかった。
<粉末X線回折(XRD)>
 粉末X線回折測定装置パナリティカルMPD(スペクトリス(株)製)を用い、得られた固体電解質材料のX線回折測定(Cu-Kα線(出力:45kV、40mA)、回折角2θ=10~50°の範囲、ステップ幅:0.013°、入射側Sollerslit:0.04rad、入射側Anti-scatter slit:2°、受光側Sollerslit:0.04rad、受光側Anti-scatter slit:5mm)を行い、X線回折(XRD)図形を得た。得られたXRD図形を、公知の解析ソフトウェアRIETAN-FP(作成者;泉富士夫のホームページ「RIETAN-FP・VENUS システム配布ファイル」(http://fujioizumi.verse.jp/download/download.html)から入手することができる。)を用いてリートベルト解析を行うことで、結晶構造を確認した。
 実施例1および比較例3で得られた固体電解質材料のXRD図形をそれぞれ、図4および図5に示す。
 表1では、図4と同様にピークが確認できず(ブロードな図形であり)、非晶質である場合を「非晶質」とし、図5のようにピークが確認された場合を「結晶」とした。
<ペレットの作製>
 錠剤成形機を用い、得られた固体電解質材料に、油圧プレスで40MPaの圧力をかけることで、直径10mm、厚さ1mmの円盤状成形体を形成し、次いでCIP(冷間静水等方圧プレス)により、円盤状成形体に300MPaの圧力をかけることでペレットを作製した。
<焼結体の作製>
 得られたペレットをアルミナボートに入れ、回転焼成炉((株)モトヤマ製)を用い、空気(流量:100mL/分)の雰囲気下、昇温速度10℃/分の条件で、表1のトータル伝導度の欄に記載の温度(650℃、700℃、750℃または850℃)まで昇温し、該温度において96時間焼成を行い、焼結体を得た。
 得られた焼結体を室温まで降温後、回転焼成炉から取り出し、除湿された窒素ガス雰囲気下に移して保管した。
<トータル伝導度>
 得られた焼結体の両面に、スパッタ機を用いて金層を形成することで、イオン伝導度評価用の測定ペレットを得た。
 得られた測定ペレットを、測定前に25℃の恒温槽に2時間保持した。次いで、25℃において、インピーダンスアナライザー(ソーラトロンアナリティカル社製、型番:1260A)を用い、振幅25mVの条件で、周波数1Hz~10MHzの範囲におけるACインピーダンス測定を行った。得られたインピーダンススペクトルを、装置付属の等価回路解析ソフトウェアZViewを用いて等価回路でフィッティングして、結晶粒内および結晶粒界における各リチウムイオン伝導度を求め、これらを合計することで、トータル伝導度を算出した。結果を表1に示す。なお、比較例1で得た固体電解質材料を用いて、650℃で焼成して得た焼結体のトータル伝導度は、低すぎて測定値は得られなかった。
Figure JPOXMLDOC01-appb-T000001
 表1から、リチウム、タンタル、リンおよび酸素を構成元素として含み、示差熱分析(DTA)曲線の発熱ピークの温度が、500~850℃の範囲にある固体電解質材料は、850℃以下の低温で焼成した場合であっても、十分なトータル伝導度の焼結体を得ることができることが分かる。

Claims (14)

  1.  固体電解質材料であって、
     前記固体電解質材料は、リチウム、タンタル、リンおよび酸素を構成元素として含み、
     前記固体電解質材料の示差熱分析曲線の発熱ピークの温度が、500~850℃の範囲にある、
    固体電解質材料。
  2.  非晶質である、請求項1に記載の固体電解質材料。
  3.  タンタル元素の含有量が10.6~16.6原子%である、請求項1または2に記載の固体電解質材料。
  4.  リン元素の含有量が5.3~8.8原子%である、請求項1~3のいずれか1項に記載の固体電解質材料。
  5.  リチウム元素の含有量が5.0~20.0原子%である、請求項1~4のいずれか1項に記載の固体電解質材料。
  6.  リチウム、タンタル、リンおよび酸素を構成元素として含み、かつ、ホウ素、ビスマス、ニオブおよびケイ素から選ばれる少なくとも1種の元素を構成元素として含む、請求項1~5のいずれか1項に記載の固体電解質材料。
  7.  Zr、Ga、Sn、Hf、W、Mo、AlおよびGeからなる群より選ばれる1種以上の元素を構成元素として含む、請求項1~6のいずれか1項に記載の固体電解質材料。
  8.  請求項1~7のいずれか1項に記載の固体電解質材料を用いて得られた固体電解質。
  9.  請求項1~7のいずれか1項に記載の固体電解質材料の焼結体である、固体電解質。
  10.  請求項1~7のいずれか1項に記載の固体電解質材料を500~900℃で焼成する工程を含む、請求項8または9に記載の固体電解質の製造方法。
  11.  正極活物質を有する正極と、
     負極活物質を有する負極と、
     前記正極と前記負極との間に固体電解質層と、
    を含み、
     前記固体電解質層が、請求項8または9に記載の固体電解質を含む、
    全固体電池。
  12.  前記正極活物質が、LiM3PO4、LiM5VO4、Li2M6P27、LiVP27、Lix7y7M7z7、Li1+x8Alx8M82-x8(PO43、LiNi1/3Co1/3Mn1/32、LiCoO2、LiNiO2、LiMn24、Li2CoP27、Li32(PO43、Li3Fe2(PO43、LiNi0.5Mn1.54およびLi4Ti512からなる群より選ばれる1種以上の化合物を含み、
     M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素であり、
     M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素であり、
     M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素であり、
     2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素であり、
     0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素である、
    請求項11に記載の全固体電池。
  13.  前記負極活物質が、LiM3PO4、LiM5VO4、Li2M6P27、LiVP27、Lix7y7M7z7、Li1+x8Alx8M82-x8(PO43、(Li3-a9x9+(5-b9)y9M9x9)(V1-y9M10y9)O4、LiNb27、Li4Ti512、Li4Ti5PO12、TiO2、LiSiおよびグラファイトからなる群より選ばれる1種以上の化合物を含み、
     M3は、Mn、Co、Ni、Fe、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素であり、
     M5は、Fe、Mn、Co、Ni、AlおよびTiからなる群より選ばれる1種以上の元素であり、
     M6は、Fe、Mn、Co、Ni、Al、TiおよびVからなる群より選ばれる1種以上の元素、またはVおよびOの2元素であり、
     2≦x7≦4、1≦y7≦3、0≦z7≦1、1≦y7+z7≦3、M7は、Ti、Ge、Al、GaおよびZrからなる群より選ばれる1種以上の元素であり、
     0≦x8≦0.8、M8は、TiおよびGeからなる群より選ばれる1種以上の元素であり、
     M9は、Mg、Al、GaおよびZnからなる群より選ばれる1種以上の元素であり、M10は、Zn、Al、Ga、Si、Ge、PおよびTiからなる群より選ばれる1種以上の元素であり、0≦x9≦1.0、0≦y9≦0.6、a9はM9の平均価数であり、b9はM10の平均価数である、
    請求項11または12に記載の全固体電池。
  14.  前記正極および負極が、請求項8または9に記載の固体電解質を含有する、請求項11~13のいずれか1項に記載の全固体電池。
PCT/JP2021/021832 2020-06-10 2021-06-09 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池 WO2021251406A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/008,960 US20230291003A1 (en) 2020-06-10 2021-06-09 Solid electrolyte material, solid electrolyte, method for producing solid electrolyte, and all-solid-state battery
KR1020227044456A KR20230013088A (ko) 2020-06-10 2021-06-09 고체 전해질 재료, 고체 전해질, 고체 전해질의 제조 방법 및 전고체 전지
EP21821032.6A EP4167315A4 (en) 2020-06-10 2021-06-09 SOLID ELECTROLYTE MATERIAL, SOLID ELECTROLYTE, SOLID ELECTROLYTE PRODUCTION PROCESS AND SOLID STATE BATTERY
JP2021549093A JP7260657B2 (ja) 2020-06-10 2021-06-09 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
CN202180041259.9A CN115699214A (zh) 2020-06-10 2021-06-09 固体电解质材料、固体电解质、固体电解质的制造方法和全固体电池
JP2022028442A JP2022068359A (ja) 2020-06-10 2022-02-25 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-100588 2020-06-10
JP2020100588 2020-06-10

Publications (1)

Publication Number Publication Date
WO2021251406A1 true WO2021251406A1 (ja) 2021-12-16

Family

ID=78845751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021832 WO2021251406A1 (ja) 2020-06-10 2021-06-09 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池

Country Status (6)

Country Link
US (1) US20230291003A1 (ja)
EP (1) EP4167315A4 (ja)
JP (2) JP7260657B2 (ja)
KR (1) KR20230013088A (ja)
CN (1) CN115699214A (ja)
WO (1) WO2021251406A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119257A (ja) * 2014-12-22 2016-06-30 株式会社日立製作所 固体電解質、それを用いた全固体電池及び固体電解質の製造方法
WO2020036290A1 (ko) * 2018-08-16 2020-02-20 아주대학교산학협력단 이온 전도성 고체 전해질 화합물, 이의 제조방법 및 이를 포함하는 전기화학 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919673B2 (ja) * 2011-08-10 2016-05-18 株式会社豊田中央研究所 固体電解質及びその製造方法
JP5817533B2 (ja) * 2012-01-06 2015-11-18 株式会社豊田中央研究所 固体電解質、それを用いた電池及びその製造方法
JP6620770B2 (ja) * 2016-05-27 2019-12-18 トヨタ自動車株式会社 酸化物電解質焼結体、及び、当該酸化物電解質焼結体の製造方法
JP2019046721A (ja) * 2017-09-05 2019-03-22 トヨタ自動車株式会社 スラリー、固体電解質層の製造方法、及び、全固体電池の製造方法
JP2019121462A (ja) * 2017-12-28 2019-07-22 トヨタ自動車株式会社 酸化物電解質焼結体で被覆された電極活物質の製造方法、酸化物電解質焼結体で被覆された電極活物質、及び、硫化物固体電池
US20230026839A1 (en) * 2019-12-27 2023-01-26 Showa Denko K.K. Lithium ion-conductive oxide and use for same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119257A (ja) * 2014-12-22 2016-06-30 株式会社日立製作所 固体電解質、それを用いた全固体電池及び固体電解質の製造方法
WO2020036290A1 (ko) * 2018-08-16 2020-02-20 아주대학교산학협력단 이온 전도성 고체 전해질 화합물, 이의 제조방법 및 이를 포함하는 전기화학 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. KIM ET AL., J. MATER. CHEM. A, vol. 6, 2018, pages 22478 - 22482
See also references of EP4167315A4

Also Published As

Publication number Publication date
JPWO2021251406A1 (ja) 2021-12-16
EP4167315A4 (en) 2024-06-26
JP7260657B2 (ja) 2023-04-18
JP2022068359A (ja) 2022-05-09
CN115699214A (zh) 2023-02-03
EP4167315A1 (en) 2023-04-19
US20230291003A1 (en) 2023-09-14
KR20230013088A (ko) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2021251411A1 (ja) リチウムイオン伝導性固体電解質および全固体電池
WO2021251405A1 (ja) 固体電解質材料、固体電解質、これらの製造方法および全固体電池
WO2021251407A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2022230426A1 (ja) リチウムイオン伝導性酸化物および全固体電池
WO2021251406A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2021251410A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2021251408A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2021251409A1 (ja) 固体電解質材料、固体電解質、固体電解質の製造方法および全固体電池
WO2023032772A1 (ja) リチウムイオン伝導性固体電解質材料、リチウムイオン伝導性固体電解質、これらの製造方法および全固体電池
WO2023032773A1 (ja) 固体電解質、全固体電池および固体電解質材料
CN115699216B (zh) 固体电解质材料、固体电解质、固体电解质的制造方法和全固体电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021549093

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227044456

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021821032

Country of ref document: EP

Effective date: 20230110