WO2024090857A1 - 리튬-황 이차전지용 전해질 및 이를 포함하는 리튬-황 이차전지 - Google Patents

리튬-황 이차전지용 전해질 및 이를 포함하는 리튬-황 이차전지 Download PDF

Info

Publication number
WO2024090857A1
WO2024090857A1 PCT/KR2023/015743 KR2023015743W WO2024090857A1 WO 2024090857 A1 WO2024090857 A1 WO 2024090857A1 KR 2023015743 W KR2023015743 W KR 2023015743W WO 2024090857 A1 WO2024090857 A1 WO 2024090857A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
secondary battery
sulfur secondary
ether
Prior art date
Application number
PCT/KR2023/015743
Other languages
English (en)
French (fr)
Inventor
차선영
유솔지
전혜림
이수영
이보람
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024090857A1 publication Critical patent/WO2024090857A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for lithium-sulfur secondary batteries that can lower the resistance of lithium-sulfur secondary batteries and improve output characteristics, and to lithium-sulfur secondary batteries containing the same.
  • lithium-ion secondary batteries which have a relatively low energy storage density compared to weight, are gradually facing limitations. Accordingly, interest in various next-generation secondary batteries with high energy density has recently increased, and among these, research and development on lithium-sulfur secondary batteries, which theoretically have a high energy storage density relative to weight, are being actively conducted.
  • lithium-sulfur secondary batteries include sulfur molecules with SS bonds (for example, S 8 ) or sulfur-containing complexes as a positive electrode active material, and metallic lithium, etc. as a negative electrode active material.
  • SS bonds for example, S 8
  • metallic lithium, etc. as a negative electrode active material.
  • These lithium-sulfur secondary batteries have abundant reserves around the world, and by using sulfur, which has a small weight compared to metal, as a positive electrode active material, they can be manufactured at a relatively low cost and realize a secondary battery with a very high energy density to weight ratio. makes possible.
  • the reaction process of lithium polysulfide and lithium sulfide by the continuous reduction reaction of sulfur is organized as S 8 ⁇ Li 2 S 8 ⁇ Li 2 S 6 ⁇ Li 2 S 4 ⁇ Li 2 S 2 ⁇ Li 2 S
  • S 8 , Li 2 S 2 and Li 2 S may be in a solid state, and the remaining lithium polysulfide (Li 2 S n ; n is 4, 6 or 8) may be in a liquid state dissolved in the electrolyte.
  • lithium-sulfur secondary batteries have relatively high electrical resistance and low output characteristics compared to lithium-ion secondary batteries.
  • some of the lithium polysulfide dissolved in the electrolyte may cause side reactions with the negative electrode, which reduces the lifespan characteristics of the lithium-sulfur secondary battery. It can be a factor.
  • the present invention provides an electrolyte for lithium-sulfur secondary batteries that can reduce the resistance of lithium-sulfur secondary batteries and improve output characteristics by facilitating the continuous conversion process of lithium polysulfide.
  • the present invention also provides a lithium-sulfur secondary battery including the electrolyte and having improved output characteristics and lifespan characteristics.
  • the present invention is an electrolyte for a lithium-sulfur secondary battery comprising a lithium salt, a non-aqueous solvent, and additives,
  • the first mixing energy ( Gmix1) the second mixing energy (Gmix2) of the electrolyte and dilithio perhexasulfide (Li 2 S 6 ), and the electrolyte and dilithio peroctasulfide (Li 2 S 8 )
  • the third mixing energy (Gmix3) provides an electrolyte for a lithium-sulfur secondary battery that satisfies the relationship in which Gmix1-Gmix2 is 0.73 kcal/mol or more and Gmix1-Gmix3 is 0.80 kcal/mol or more.
  • the present invention also provides a cathode comprising sulfur as a cathode active material; A negative electrode containing metallic lithium; A separator disposed between the anode and the cathode; And it provides a lithium-sulfur secondary battery containing the electrolyte.
  • the electrolyte of the present invention is optimized for the difference in solubility between lithium polysulfide generated during the charging/discharging process of a lithium-sulfur secondary battery.
  • the lithium-sulfur secondary battery can smoothly and quickly achieve continuous reduction and conversion of lithium polysulfide during the discharge process.
  • the lithium-sulfur secondary battery has lower electrical resistance compared to previously known batteries of the same type and can further exhibit improved output characteristics.
  • the lithium-sulfur secondary battery can reduce side reactions between the lithium polysulfide and the negative electrode as the conversion process of the lithium polysulfide, etc. is smoothly performed, which also improves the lifespan characteristics of the lithium-sulfur secondary battery. You can contribute.
  • the present invention can contribute to improving the output characteristics and lifespan characteristics, which have been the biggest obstacles to the commercialization of lithium-sulfur secondary batteries.
  • Figure 1 is a schematic diagram showing that multiple types of lithium polysulfides are formed in the electrolyte through oxidation and reduction reactions during the charge/discharge process of a lithium-sulfur secondary battery.
  • Figure 2a shows Gmix1-Gmix2 (kcal/mol) of the electrolyte at a state of charge (SOC) of 80% for lithium-sulfur secondary batteries manufactured using the electrolytes of Examples 1 to 3 and Comparative Examples 1 to 3, and This is a graph showing the relationship between the resistance factor (m ⁇ ) of secondary batteries.
  • Figure 2b shows Gmix1-Gmix3 (kcal/mol) of the electrolyte at a state of charge (SOC) of 80% for lithium-sulfur secondary batteries manufactured using the electrolytes of Examples 1 to 3 and Comparative Examples 1 to 3, and This is a graph showing the relationship between the resistance factor (m ⁇ ) of secondary batteries.
  • Figure 1 is a schematic diagram showing that multiple types of lithium polysulfides are formed in the electrolyte through oxidation and reduction reactions during the charge/discharge process of a lithium-sulfur secondary battery.
  • an electrolyte for a lithium-sulfur secondary battery comprising a lithium salt, a non-aqueous solvent, and an additive
  • the first mixing energy ( Gmix1) the second mixing energy (Gmix2) of the electrolyte and dilithio perhexasulfide (Li 2 S 6 ), and the electrolyte and dilithio peroctasulfide (Li 2 S 8 )
  • the third mixing energy (Gmix3) provides an electrolyte for a lithium-sulfur secondary battery that satisfies the relationship in which Gmix1-Gmix2 is 0.73 kcal/mol or more and Gmix1-Gmix3 is 0.80 kcal/mol or more.
  • the present inventors continued research on the characteristics of lithium-sulfur secondary batteries to develop an electrolyte that can lower the electrical resistance and improve the output characteristics.
  • the present inventors discovered that in the discharging process of a lithium-sulfur secondary battery, S 8 (solid) ⁇ Li 2 S 8 (liquid) ⁇ Li 2 S 6 (liquid) ⁇ Li 2 S 4 (liquid) ⁇ Li 2 S 2 (solid) ) ⁇
  • S 8 (solid) As a continuous reduction/conversion process of Li 2 S (solid) occurs and phase changes are accompanied during this process, in order to reveal which characteristics of the conversion process have a significant impact on the resistance and output of lithium-sulfur secondary batteries Research continued from various angles.
  • the first mixing energy (Gmix1), which defines the compatibility and solubility of the electrolyte for dilithio sawtrasulfide (Li 2 S 4 ), and dilithium
  • Gmix2 and Gmix3 which define the solubility of the electrolyte for thioperhexasulfide (Li 2 S 6 ) and dilithio peroctasulfide (Li 2 S 8 ), respectively.
  • the resistance of the secondary battery can be lowered during the charging/discharging process, and as a result, the output characteristics of the secondary battery can be improved.
  • the conversion process between the lithium polysulfide becomes more smooth, side reactions between the lithium polysulfide and the negative electrode can also be suppressed, and thus the lifespan characteristics of the lithium-sulfur secondary battery can also be improved.
  • the first to third mixing energies refer to the solvation free energy when each of the electrolyte and the lithium polysulfide (Li 2 S n ; n is 4, 6, or 8) is mixed.
  • the first and second mixing energies can be calculated using commercially available COSMOtherm software (COSMOlogic GmbH & Co. KG) that performs quantum mechanical calculations based on the COSMO-RS theory.
  • first to third mixing energies may reflect the solubility of the electrolyte of one embodiment and the lithium polysulfide (Li 2 S n ; n is 4, 6, or 8), and the electrolyte of one embodiment is described later.
  • the first mixing energy is higher (i.e., the solubility is lower) when mixed with Li 2 S 4
  • the second and third mixing energies are higher for Li 2 S 6 and Li 2 S 8 It may exhibit low (i.e. high solubility) properties.
  • the electrolyte of one embodiment has Gmix1-Gmix2 of 0.73 kcal/mol or more, or 0.74 to 1.40 kcal/mol, or 0.80 to 1.10 kcal/mol, and Gmix1-Gmix3 of 0.80 kcal/mol or more, or 0.80 to 1.50 kcal. /mol, or 0.85 to 1.20 kcal/mol, and the solubility difference between each lithium polysulfide may be large.
  • the electrolyte of the embodiment has Gmix2-Gmix3 of 0.05 kcal/mol or more, or 0.05 to 0.2 kcal/mol, or 0.06 to 0.1 kcal/mol, so that Li 2 S 6 and Li 2 S
  • Gmix2-Gmix3 of 0.05 kcal/mol or more, or 0.05 to 0.2 kcal/mol, or 0.06 to 0.1 kcal/mol, so that Li 2 S 6 and Li 2 S
  • the solubility of electrolytes for each of 8 may also show some differences.
  • the difference between the first to third mixing energies becomes more than a certain level, so that the difference in solubility for each of lithium polysulfide (Li 2 S n ; n is 4, 6, or 8) becomes more than a certain level,
  • the reduction and conversion process between lithium polysulfides can proceed more smoothly, so that the resistance of the lithium-sulfur secondary battery can be further reduced and the output can be further improved.
  • the difference between the first to third mixing energies is too large, the solubility of the electrolyte for a certain type of lithium polysulfide, for example, Li 2 S 4, is excessively low, so that the output characteristics of the secondary battery, etc. may deteriorate.
  • the first mixing energy ( Gmix1) can be from -3.02 kcal/mol to -0.02 kcal/mol
  • the second mixing energy (Gmix2) can be from -3.39 kcal/mol to -0.83 kcal/mol
  • the third mixing energy (Gmix3) can be -3.15 kcal/mol to -0.96 kcal/mol.
  • the conversion process between lithium polysulfides may not be smooth, or the solubility of some of the lithium polysulfides may be low, resulting in lithium-sulfur secondary batteries.
  • the output characteristics, etc. may deteriorate.
  • the first mixing energy is too low or the second and third mixing energies are too high, it may be difficult to achieve the difference between the first to third mixing energies, and the resistance of the secondary battery may increase. .
  • the electrolyte of one embodiment basically includes a lithium salt, a non-aqueous solvent, and additives.
  • it contains a certain solvent composition as a non-aqueous solvent, and the concentration/content of the lithium salt and other additives is controlled to a certain range. , the first to third mixing energies and their differences with each lithium polysulfide described above can be satisfied.
  • the non-aqueous solvent is a first and a second organic solvent with different solubilities for lithium polysulfide (Li 2 Sn ; n is 4, 6 or 8) It includes, wherein the first organic solvent acts as a solvent with good solubility for the lithium polysulfide, while the second organic solvent may be a non-solvent for the lithium polysulfide.
  • the mixing energy range and the difference between them can be achieved.
  • the non-aqueous solvent is 70 to 85% by volume, or 70 to 80% by volume, of an ether-based solvent including a dialkyl ether-based solvent and an alkylene glycol dialkyl ether-based solvent as the first organic solvent
  • the second organic solvent which is the non-solvent, contains 15 to 30% by volume, or 20 to 30% by volume, of a furan-based solvent and/or a tetrahydrofuran-based solvent, wherein the dialkyl ether-based solvent accounts for the volume of the total non-aqueous solvent.
  • it may be included in an amount of 40 to 85% by volume, or 40 to 80% by volume.
  • the second organic solvent of the furan-based or tetrahydrofuran-based solvent, and the first organic solvent of the dialkyl ether-based solvent and alkylene glycol dialkyl ether-based solvent each have different solubilities with respect to the lithium polysulfide. It can act as a non-solvent and solvent. Therefore, as these non-solvents and solvents are included in the above-described optimal composition and content range, the difference between the above-described first to third mixing energies is satisfied, so that the resistance of the lithium-sulfur secondary battery is further reduced and the output characteristics are improved. It can be improved.
  • the furan-based or tetrahydrofuran-based second organic solvent can suppress the formation of lithium dendrites by forming a solid electrolyte interface (SEI layer) on the surface of the metallic lithium of the negative electrode.
  • SEI layer solid electrolyte interface
  • the lifespan characteristics of secondary batteries can be improved by suppressing electrolyte decomposition. Therefore, as the content of the second organic solvent is optimized, the lifespan characteristics of the lithium-sulfur secondary battery can also be improved.
  • the solubility of some of the lithium polysulfide in the electrolyte may be excessively reduced, thereby deteriorating the characteristics of the lithium-sulfur secondary battery.
  • the content of the furan-based or tetrahydrofuran-based second organic solvent is too small, or the content range of the dialkyl ether-based solvent in the first organic solvent is too small, etc., the first to third solvents described above As the difference between mixed energies is difficult to meet, the resistance of the lithium-sulfur secondary battery may increase and its output characteristics may deteriorate.
  • the second organic solvent may include both a furan-based solvent and a tetrahydrofuran-based solvent.
  • the mixing volume ratio of the furan-based solvent to the tetrahydrofuran-based solvent is 30:1 to 1. :30, or 20:1 to 1:20.
  • the furan-based or tetrahydrofuran-based solvent may be a furan-based compound or a tetrahydrofuran-based compound in which an alkyl group having 1 to 4 carbon atoms is substituted or unsubstituted, and specific examples thereof include: , furan, 2-methylfuran, 3-methylfuran, 2-ethylfuran, 2-propylfuran, 2-butylfuran (2-butylfuran), 2,3-dimethylfuran, 2,4-dimethylfuran, 2,5-dimethylfuran, 2- One or more species selected from the group consisting of 2-methyl tetrahydrofuran and 4-methyl tetrahydrofuran may be mentioned.
  • 2-methylfuran, 2-methyl tetrahydrofuran, or 4-methyl tetrahydrofuran, or a combination of two or more selected from them is preferably used. You can use it.
  • the 2-methylfuran may be used alone, or 2-methyl tetrahydrofuran or 4-methyl tetrahydrofuran may be combined.
  • 4-methyl tetrahydrofuran may be mixed at a volume ratio of 30:1 to 1:30, or 20:1 to 1:20.
  • dialkyl ether-based solvent an ether-based compound to which an alkyl group having 1 to 10 carbon atoms or 1 to 5 carbon atoms is bonded can be used, and specific examples thereof include dimethyl ether, diethyl ether, dipropyl ether, One or more types selected from the group consisting of methyl ethyl ether, methyl propyl ether, ethyl propyl ether, dimethoxy ethane, diethoxy ethane, and methoxy ethoxy ethane may be used.
  • alkylene glycol dialkyl ether solvent two or more alkylene glycol groups having 1 to 5 carbon atoms or 2 to 3 carbon atoms are connected to an alkyl group having 1 to 5 carbon atoms through an ether bond (-O-).
  • Combined compounds can be used. Specific examples thereof include diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, and tetraethylene glycol dimethyl ether.
  • tetraethylene glycol diethyl ether tetraethylene glycol methyl ethyl ether
  • polyethylene glycol dimethyl ether polyethylene glycol diethyl ether
  • polyethylene glycol diethyl ether polyethylene glycol methyl ethyl ether
  • dimethoxyethane as the dialkyl ether-based solvent and diethylene glycol dimethyl ether as the alkylene glycol dialkyl ether-based solvent are appropriately used. Can be combined.
  • the lithium salt is an electrolyte salt used to increase ionic conductivity, and can be used without limitation as long as it is commonly used in the art.
  • Specific examples of such lithium salts include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi (LiFSI) and (CF 3 SO 2 ) 3
  • One or more types selected from the group consisting of CLi can be mentioned.
  • lithium salts in the form of sulfonates such as CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, or (CF 3 SO 2 ) 3 CLi can be appropriately used.
  • the lithium salt is present at a concentration of 0.2 to 0.8 mol%, or 0.25 to 0.75 mol%, or 0.30 to 0.70 mol% in the electrolyte so that the above-described electrolyte can appropriately satisfy the difference between the first to third mixing energies, etc. may be included. If the concentration of lithium salt is too low, the electrical conductivity of the lithium-sulfur secondary battery may not be sufficient, and if the concentration of lithium salt is too high, it is difficult to meet the difference between the first to third mixing energies, making it difficult to meet the lithium-sulfur secondary battery. The resistance of the secondary battery may increase.
  • the electrolyte of the above-described embodiment further includes additives to improve the characteristics of the lithium-sulfur secondary battery in addition to the non-aqueous solvent and lithium salt.
  • additives include lithium nitrate (LiNO 3 ), lithium thiocyanate (LiSCN), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), magnesium nitrate (MgNO 3 ), barium nitrate (BaNO 3 ), and nitrous acid.
  • LiNO 2 lithium
  • KNO 2 potassium nitrite
  • CsNO 2 cesium nitrite
  • the additive may be included in an amount of 0.8 to 4.0 wt% and 0.9 to 3.5 wt% based on the total weight of the electrolyte. If the content of the additive is too low, the characteristics of the lithium-sulfur secondary battery may not be sufficient, and if the content of the additive is too high, it is difficult to satisfy the difference between the first to third mixing energies, etc. The resistance of the battery may increase.
  • the electrolyte of one embodiment includes a non-aqueous solvent of a specific composition, a lithium salt and an additive in a certain content range, thereby satisfying the difference between the first to third mixed energies described above, and lithium- It can exhibit optimized solubility for lithium polysulfides formed during discharge of a sulfur secondary battery.
  • the conversion process between lithium polysulfides can be smoothed during charging/discharging of a lithium-sulfur secondary battery, the resistance of the secondary battery can be lowered, and its output characteristics and lifespan characteristics can be further improved.
  • the profiles of the initial charging voltage and end-of-charge voltage are measured and derived respectively according to changes in charging current, and from these, the resistance according to the state of charge (SOC) of the secondary battery is measured and derived.
  • SOC state of charge
  • the secondary battery may exhibit a low resistance factor of 400 m ⁇ or less, or 50 to 400 m ⁇ , or 100 to 350 m ⁇ , at SOC of 80%.
  • a positive electrode comprising sulfur as a positive electrode active material; A negative electrode containing metallic lithium; A separator disposed between the anode and the cathode; And a lithium-sulfur secondary battery comprising the electrolyte of the above embodiment is provided.
  • This lithium-sulfur secondary battery includes the electrolyte of one embodiment and can exhibit improved output characteristics and lifespan characteristics along with low resistance.
  • the positive electrode may include a positive electrode active material and a binder, and may further include a conductive material. Additionally, the positive electrode may have an active material layer including the positive electrode active material and a binder formed on a positive electrode current collector.
  • the positive electrode current collector supports the active material layer and is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, surface treatment of copper or stainless steel with carbon, nickel, silver, etc., aluminum-cadmium alloy, etc. can be used.
  • the positive electrode current collector can form fine irregularities on its surface to strengthen the bonding force with the active material layer, and can be used in various forms such as films, sheets, foils, meshes, nets, porous materials, foams, and non-woven fabrics. .
  • elemental sulfur (S 8 ) may be appropriately used.
  • the positive electrode active material containing sulfur may be included in an amount of 40 to 80 parts by weight, preferably 50 to 70 parts by weight, based on 100 parts by weight of the total weight of the positive electrode. If the content of the positive electrode active material is low, the energy density of the secondary battery may decrease, and if the content is excessively large, the conductivity and stability of the electrode may decrease.
  • the positive electrode may further include one or more additives selected from transition metal elements, Group IIIA elements, Group IVA elements, sulfur compounds of these elements, and alloys of these elements and sulfur.
  • the transition metal elements include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au or Hg, etc.
  • the group IIIA elements may include Al, Ga, In, Ti, etc.
  • the group IVA elements may include Ge, Sn, Pb, etc.
  • the binder is a component that assists in the bonding of the positive electrode active material and the current collector, such as polyvinylidene fluoride (PVdF), polyvinylidene fluoride-polyhexafluoropropylene copolymer (PVdF/HFP), poly Vinyl acetate, polyvinyl alcohol, polyvinyl ether, polyethylene, polyethylene oxide, alkylated polyethylene oxide, polypropylene, polymethyl (meth)acrylate, polyethyl (meth)acrylate, polytetrafluoroethylene (PTFE), polyvinyl Chloride, polyacrylonitrile, polyvinylpyridine, polyvinylpyrrolidone, styrene-butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene monomer (EPDM) rubber, sulfonated EPDM rubber, styrene-butylene rubber. , fluororubber, carboxymethyl
  • the binder may typically be added in an amount of 1 to 15 parts by weight based on 100 parts by weight of the total weight of the positive electrode. If the content of the binder is less than 1 part by weight, the adhesion between the active material layer and the current collector may become insufficient, and if it exceeds 15 parts by weight, the adhesion is improved, but the content of the positive electrode active material is reduced, which may lower battery capacity.
  • the conductive material is a component to improve electrical conductivity, and is not particularly limited as long as it is an electronic conductive material that does not cause chemical changes in the secondary battery.
  • the conductive material may be carbon black, graphite, carbon fiber, carbon nanotube, metal powder, conductive metal oxide, or organic conductive material, and products currently on the market as conductive materials.
  • Acetylene Black series (Chevron Chemical Company or Gulf Oil Company products, etc.), Ketjen Black EC series (Armak Company products), Vulcan These include XC-72 (from Cabot Company) and Super P (from MMM). Examples include acetylene black, carbon black, and graphite.
  • a filler may be selectively added to the positive electrode as a component to suppress expansion of a positive electrode active material containing sulfur.
  • These fillers are not particularly limited as long as they can suppress the expansion of the electrode without causing chemical changes in the battery, and include, for example, olipine polymers such as polyethylene and polypropylene; Fibrous materials such as glass fiber and carbon fiber; etc. can be used.
  • the positive electrode can be manufactured by dispersing and mixing the positive electrode active material, conductive material, and binder in a dispersion medium (solvent) to create a slurry, applying it on a positive electrode current collector, then drying and rolling.
  • the dispersion medium may be NMP (N-methyl-2-pyrrolidone), DMF (Dimethyl formamide), DMSO (Dimethyl sulfoxide), ethanol, isopropanol, water, and mixtures thereof, but is not limited thereto.
  • the negative electrode may include metallic lithium and, for example, may include a lithium metal or alloy layer formed on the negative electrode current collector.
  • These negative electrode current collectors are not particularly limited as long as they have high conductivity without causing chemical changes in the battery, and include copper, aluminum, stainless steel, zinc, titanium, silver, palladium, nickel, iron, chromium, alloys thereof, and these. It may be selected from the group consisting of a combination of.
  • the stainless steel may be surface treated with carbon, nickel, titanium, or silver, and the alloy may be an aluminum-cadmium alloy, and in addition, calcined carbon, a non-conductive polymer or a conductive polymer surface-treated with a conductive material, etc. You can also use it.
  • a thin copper plate is used as the negative electrode current collector.
  • the metallic lithium may be lithium metal or alloy.
  • the lithium alloy includes elements that can be alloyed with lithium, specifically lithium and Si, Sn, C, Pt, Ir, Ni, Cu, Ti, Na, K, Rb, Cs, Fr, Be, Mg, Ca, It may be an alloy with one or more types selected from the group consisting of Sr, Sb, Pb, In, Zn, Ba, Ra, Ge, and Al.
  • the metallic lithium may be in the form of a sheet or foil, and in some cases, lithium or a lithium alloy may be deposited or coated on a current collector by a dry process, or particle-like metals and alloys may be deposited or coated on a current collector by a wet process. It may be in a given form.
  • a conventional separator may be interposed between the anode and the cathode.
  • the separator is a physical separator that has the function of physically separating electrodes, and can be used without particular limitations as long as it is used as a normal separator. In particular, it is desirable to have low resistance to ion movement in the electrolyte and excellent electrolyte moisturizing ability. Additionally, the separator separates or insulates the positive and negative electrodes from each other and enables the transport of lithium ions between the positive and negative electrodes. These separators are porous and may be made of non-conductive or insulating materials.
  • the separator may be an independent member such as a film, or may be a coating layer added to the anode and/or cathode.
  • polyolefin-based porous membranes that can be used as the separation membrane include polyolefin-based polymers such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene, polypropylene, polybutylene, and polypentene, respectively, individually or together.
  • polyolefin-based polymers such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene, polypropylene, polybutylene, and polypentene, respectively, individually or together.
  • examples include membranes formed from mixed polymers.
  • nonwoven fabrics that can be used as the separator include polyphenyleneoxide, polyimide, polyamide, polycarbonate, polyethyleneterephthalate, and polyethylenenaphthalate.
  • Nonwoven fabrics made of polymers mixed with these are possible, and such nonwoven fabrics are in the form of fibers that form a porous web, and include spunbond or meltblown forms made of long fibers.
  • the thickness of the separator is not particularly limited, but is preferably in the range of 1 to 100 ⁇ m, and more preferably in the range of 5 to 50 ⁇ m. If the thickness of the separator is less than 1 ⁇ m, the mechanical properties cannot be maintained, and if it exceeds 100 ⁇ m, the separator acts as a resistance layer and battery performance deteriorates.
  • the pore size and porosity of the separator are not particularly limited, but it is preferable that the pore size is 0.1 to 50 ⁇ m and the porosity is 10 to 95%.
  • the separator acts as a resistance layer, and if the pore size is greater than 50 ⁇ m or the porosity is greater than 95%, the mechanical properties cannot be maintained. .
  • a lithium-sulfur secondary battery of another embodiment including the electrolyte, positive electrode, negative electrode, and separator described above can be manufactured through a process of placing the positive electrode against the negative electrode, interposing a separator between them, and then injecting the electrolyte.
  • the lithium-sulfur secondary battery is not only applied to battery cells used as a power source for small devices, but can also be particularly suitably used as a unit cell in a battery module that is a power source for medium to large devices.
  • a battery module containing two or more lithium-sulfur secondary batteries electrically connected (series or parallel) may be provided.
  • the quantity of lithium-sulfur secondary batteries included in the battery module can be adjusted in various ways considering the use and capacity of the battery module.
  • a battery pack in which the battery modules are electrically connected according to common techniques in the art may also be provided.
  • the battery module and battery pack include Power Tool; Electric vehicles, including Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), and Plug-in Hybrid Electric Vehicle (PHEV); electric truck; electric commercial vehicles; Alternatively, it can be used as a power source for any one or more mid- to large-sized devices among power storage systems, but is not necessarily limited to this.
  • lithium salt and additives were dissolved at the concentrations and contents in Table 1 to prepare electrolytes for each Example and Comparative Example.
  • Non-aqueous solvent (substance name (vol%)) lithium salt additive first organic solvent second organic solvent type Concentration (mol%) type Content (% by weight)
  • Example 1 DME (78.85) 2-methyl furan (1.45) & 2-Methyl-tetrahydrofuran (19.70) LiFSI 0.67 LINO 3 0.90
  • Example 2 DME (79.93) 2-Methyl furan (20.07) LiFSI 0.30 LiNO 3 & LiSCN 2.01 & 1.10
  • Test Example 1 Calculation of first to third mixing energies (Gmix1 to 3) when mixing electrolyte and lithium polysulfide
  • the electrolytes of Examples 1 to 3 contain a non-aqueous solvent of a specific composition and contain lithium salt and additives at a certain concentration and content, so that Gmix1-Gmix2 is 0.73 kcal/mol or more, It was confirmed that the characteristic of Gmix1-Gmix3 being 0.80 kcal/mol or more was satisfied. In contrast, it was confirmed that the electrolytes of Comparative Examples 1 to 3 had relatively low values of Gmix1-Gmix2 and Gmix1-Gmix3 as the composition of the non-aqueous solvent was different from that of the examples.
  • Test Example 2 Lithium-sulfur secondary battery manufacturing and resistance factor evaluation
  • a coin cell type lithium-sulfur secondary battery was manufactured by placing the manufactured positive electrode face to face with a 150 ⁇ m thick lithium metal negative electrode, interposing a polyethylene (PE) separator between them, and then injecting the electrolyte. Meanwhile, in the manufacture of the battery, the positive electrode was punched at 15phi, the polyethylene separator was punched at 19phi, and the lithium metal was punched at 16phi.
  • PE polyethylene
  • the resistance factor was measured and calculated for the lithium-sulfur secondary battery manufactured using the electrolyte of the above Example or Comparative Example according to the method described in International Patent Publication WO2016/126075.
  • a plurality of charging initial voltage data and a plurality of charging end voltage data according to the change in the size of the charging current for each temperature and state of charge (SOC) of the secondary battery are measured to form a memory memory. It was saved in .
  • the end-of-charge I-V profile was determined from the plurality of end-of-charge voltage data, and the intersection point where the end-of-charge I-V profile met the boundary line corresponding to the upper-charge current or upper-charge voltage preset as the upper-charge limit condition was determined.
  • the initial charging I-V profile was determined from the plurality of initial charging voltage data, and the first differential value for the initial charging I-V profile calculated based on the current value at the intersection was determined. Then, the determined first differential value was determined and calculated as a resistance factor corresponding to the temperature and state of charge of the secondary battery.
  • the resistance factors at SOC 80% are summarized in Table 3 below.
  • Figure 2a shows the Gmix1-Gmix2 (kcal/mol) and , the relationship between the resistance factor (m ⁇ ) of the secondary battery is shown
  • Figure 2b shows the state of charge (SOC) of 80% of the lithium-sulfur secondary battery manufactured using the electrolytes of Examples 1 to 3 and Comparative Examples 1 to 3.
  • Gmix1-Gmix3 kcal/mol
  • the lithium-sulfur secondary battery manufactured using the electrolyte of the example showed a lower resistance factor compared to the comparative example at SOC of 80%.
  • the Example was confirmed to exhibit a lower resistance factor and excellent output as Gmix1-Gmix2 was more than 0.73 kcal/mol and Gmix1-Gmix3 was more than 0.80 kcal/mol, which is a larger value compared to the electrolyte of the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 리튬-황 이차전지의 저항을 낮추고 출력 특성을 향상시킬 수 있는 리튬-황 이차전지용 전해질 및 이를 포함하는 리튬-황 이차전지에 관한 것이다. 상기 리튬-황 이차전지용 전해질은 리튬염, 비수계 용매 및 첨가제를 포함하고, 전해질과, 디리티오 퍼테트라설파이드 (dilithio pertetrasulfide; Li2S4)의 제 1 혼합 에너지(Gmix1), 전해질과, 디리티오 퍼헥사설파이드 (dilithio perhexasulfide; Li2S6)의 제 2 혼합 에너지(Gmix2), 및 전해질과, 디리티오 퍼옥타설파이드 (dilithio peroctasulfide; Li2S8) 의 제 3 혼합 에너지(Gmix3)가 소정의 관계를 충족하는 것이다.

Description

리튬-황 이차전지용 전해질 및 이를 포함하는 리튬-황 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2022년 10월 26일자 한국 특허 출원 제 10-2022-0139326호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 리튬-황 이차전지의 저항을 낮추고 출력 특성을 향상시킬 수 있는 리튬-황 이차전지용 전해질 및 이를 포함하는 리튬-황 이차전지에 관한 것이다.
이차전지의 응용 영역이 전기 자동차(EV)나 에너지 저장 장치(ESS) 등으로 확대됨에 따라, 상대적으로 무게 대비 에너지 저장 밀도가 낮은 리튬-이온 이차전지는 점차 한계에 부딪히고 있다. 이에 최근 들어 높은 에너지 밀도를 갖는 다양한 차세대 이차전지에 관한 관심이 높아지고 있으며, 이 중에서도 이론상 무게 대비 에너지 저장 밀도가 높은 리튬-황 이차전지에 관한 연구, 개발이 활발이 이루어지고 있다.
일반적으로 이러한 리튬-황 이차전지는 S-S 결합(Sulfur-Sulfur Bond)을 갖는 황 분자(예를 들어, S8), 또는 황 함유 복합체 등을 양극 활물질로 포함하며, 금속상 리튬 등을 음극 활물질로 포함하는 충/방전 가능한 전지 시스템을 지칭한다. 이러한 리튬-황 이차전지는 전 세계적으로 풍부한 매장량을 가지며 금속 대비 작은 무게를 갖는 황을 양극 활물질로 사용함에 따라, 상대적으로 낮은 비용으로 제조가 가능하며, 무게 대비 에너지 밀도가 매우 큰 이차전지의 구현을 가능케 한다.
도 1에도 도시된 바와 같이, 상기 리튬-황 이차전지의 방전 과정에서는, 각 전극 및 전해질 내에서, 양극에 포함된 황(예를 들어, S8)의 연속적인 환원 반응 및 음극에 포함된 금속상 리튬의 연속적인 산화 반응이 일어난다. 이러한 연속적인 산화/환원 반응이 일어나면서, 복수 종의 리튬 폴리설파이드(Lithium Polysulfide, LiPS)가 전해질 내에 형성되면서 전극 사이를 이동할 수 있고, 최종 형성된 고체 상태의 리튬 설파이드(Li2S)가 음극 상에 쌓일 수 있다. 예를 들어, 상기 황의 연속적인 환원 반응에 의한 리튬 폴리설파이드 및 리튬 설파이드의 반응 과정은 S8 → Li2S8 → Li2S6 → Li2S4 → Li2S2 → Li2S로 정리될 수 있으며, 이 중 S8, Li2S2 및 Li2S는 고체 상태를 가질 수 있고, 나머지 리튬 폴리설파이드(Li2Sn; n은 4, 6 또는 8)는 전해질 중에 용해된 액체 상태를 가질 수 있다.
그러나, 상(phase)을 서로 달리하는 황, 리튬 폴리설파이드 및 리튬 설파이드가 순차적, 연속적으로 변환되는 과정에서, 이러한 변환 과정이 원활하지 않고 빠르게 이루어지지 못함에 따라, 리튬-황 이차전지는 기존의 리튬-이온 이차전지에 비해 상대적으로 높은 전기적 저항 및 낮은 출력 특성을 갖게 된다. 또한, 상기 연속적인 산화/환원 반응에 의한 리튬 폴리설파이드의 형성 과정에서, 전해질에 용해된 리튬 폴리설파이드의 일부가 음극과 부반응 등을 일으킬 수 있고, 이는 리튬-황 이차전지의 수명 특성을 저하시키는 일 요인으로 될 수 있다.
이러한 높은 저항, 낮은 출력 특성 및 수명 특성 등은 리튬-황 이차전지의 적용을 어렵게 하는 주요인으로 되고 있으며, 이로 인해 보다 낮은 저항 및 향상된 출력 특성 등을 갖는 리튬-황 이차전지의 개발이 계속적으로 요구되고 있다.
이에 본 발명은 리튬 폴리설파이드의 연속적 전환 과정을 원활히 하여, 리튬-황 이차전지의 저항을 낮추고 출력 특성을 향상시킬 수 있는 리튬-황 이차전지용 전해질을 제공하는 것이다.
본 발명은 또한, 상기 전해질을 포함하여 향상된 출력 특성 및 수명 특성 등을 갖는 리튬-황 이차전지를 제공하는 것이다.
본 발명은 리튬염, 비수계 용매 및 첨가제를 포함하는 리튬-황 이차전지용 전해질로서,
COSMO-RS(Conductor like Screening Model for real Solvent) 이론에 따라, 상온(20±5℃)에서 산출된 상기 전해질과, 디리티오 퍼테트라설파이드 (dilithio pertetrasulfide; Li2S4)의 제 1 혼합 에너지(Gmix1), 상기 전해질과, 디리티오 퍼헥사설파이드 (dilithio perhexasulfide; Li2S6)의 제 2 혼합 에너지(Gmix2), 및 상기 전해질과, 디리티오 퍼옥타설파이드 (dilithio peroctasulfide; Li2S8) 의 제 3 혼합 에너지(Gmix3)는 Gmix1-Gmix2가 0.73kcal/mol 이상이고, Gmix1-Gmix3가 0.80kcal/mol 이상인 관계를 충족하는 리튬-황 이차전지용 전해질을 제공한다.
본 발명은 또한, 황을 양극 활물질로 포함하는 양극; 금속상 리튬을 포함하는 음극; 상기 양극 및 음극 사이에 개재된 분리막; 및 상기 전해질을 포함하는 리튬-황 이차전지를 제공한다.
본 발명의 전해질은 리튬-황 이차전지의 충/방전 과정에서 생성되는 리튬 폴리설파이드 간의 용해도 차이가 최적화된 것이다.
이러한 전해질을 적용함에 따라, 상기 리튬-황 이차전지는 이의 방전 과정에서 리튬 폴리설파이드의 연속적인 환원 및 전환 과정이 원활하고 빠르게 이루어질 수 있음이 확인되었다. 그 결과, 상기 리튬-황 이차전지는 이전에 알려진 동종의 전지에 비해 낮은 전기적 저항을 가지며, 더 나아가 향상된 출력 특성을 나타낼 수 있음이 확인되었다.
부가하여, 상기 리튬-황 이차전지는 상기 리튬 폴리설파이드 등의 전환 과정이 원활히 이루어짐에 따라, 상기 리튬 폴리설파이드와 음극의 부반응 등을 줄일 수 있으며, 이는 상기 리튬-황 이차전지의 수명 특성 향상에도 기여할 수 있다.
따라서, 본 발명은 리튬-황 이차전지의 상용화에 가장 큰 걸림돌로 작용하였던 출력 특성 및 수명 특성 향상에 기여할 수 있다.
도 1은 리튬-황 이차전지의 충/방전 과정에서, 산화 및 환원 반응에 의해 전해질 중에 복수 종의 리튬 폴리설파이드가 형성됨을 나타내는 개략적인 모식도이다.
도 2a는 실시예 1 내지 3 및 비교예 1 내지 3의 전해질을 사용하여 제조된 리튬-황 이차전지의 충전 상태(SOC) 80%에서, 상기 전해질의 Gmix1-Gmix2 (kcal/mol)와, 상기 이차전지의 저항 팩터(mΩ)의 관계를 나타낸 그래프이다.
도 2b는 실시예 1 내지 3 및 비교예 1 내지 3의 전해질을 사용하여 제조된 리튬-황 이차전지의 충전 상태(SOC) 80%에서, 상기 전해질의 Gmix1-Gmix3 (kcal/mol)와, 상기 이차전지의 저항 팩터(mΩ)의 관계를 나타낸 그래프이다.
이하, 첨부한 도면을 참고로 발명의 구체적인 구현예에 따른 전해질 및 이를 포함하는 리튬-황 이차전지에 대해 구체적으로 설명하기로 한다.
도 1은 리튬-황 이차전지의 충/방전 과정에서, 산화 및 환원 반응에 의해 전해질 중에 복수 종의 리튬 폴리설파이드가 형성됨을 나타내는 개략적인 모식도이다.
발명의 일 구현예에 따르면, 리튬염, 비수계 용매 및 첨가제를 포함하는 리튬-황 이차전지용 전해질로서,
COSMO-RS(Conductor like Screening Model for real Solvent) 이론에 따라, 상온(20±5℃)에서 산출된 상기 전해질과, 디리티오 퍼테트라설파이드 (dilithio pertetrasulfide; Li2S4)의 제 1 혼합 에너지(Gmix1), 상기 전해질과, 디리티오 퍼헥사설파이드 (dilithio perhexasulfide; Li2S6)의 제 2 혼합 에너지(Gmix2), 및 상기 전해질과, 디리티오 퍼옥타설파이드 (dilithio peroctasulfide; Li2S8) 의 제 3 혼합 에너지(Gmix3)는 Gmix1-Gmix2가 0.73kcal/mol 이상이고, Gmix1-Gmix3가 0.80kcal/mol 이상인 관계를 충족하는 리튬-황 이차전지용 전해질이 제공된다.
본 발명자들은 리튬-황 이차전지의 전기적 저항을 낮추고, 이의 출력 특성 등을 향상시킬 수 있는 전해질을 개발하기 위해 이의 특성에 대한 연구를 계속하였다. 특히, 본 발명자들은 리튬-황 이차전지의 방전 과정에서 S8 (고체) → Li2S8 (액체) → Li2S6 (액체) → Li2S4 (액체) → Li2S2 (고체) → Li2S (고체)의 연속적인 환원/전환 과정이 일어나며 이러한 과정 중에 상 변화가 수반됨에 따라, 어떤 전환 과정의 어떤 특성이 리튬-황 이차전지의 저항 및 출력에 큰 영향을 미치는지 밝히기 위해 다각도로 연구를 계속하였다.
이러한 계속적인 연구 결과, 상기 전해질 내에서 고체(Li2S2)로의 전환이 일어나기 전의 복수 종의 리튬 폴리설파이드 Li2Sn; n은 4, 6 또는 8)에 대한 전해질의 특성이 리튬-황 이차전지의 저항을 낮추는데 가장 큰 영향을 미침을 확인하였다.
또한, 본 발명자들의 추가적인 실험 결과, 상기 복수 종의 리튬 폴리설파이드 중에서, 디리티오 퍼테트라설파이드 (Li2S4)에 대한 전해질의 상용성 및 용해도를 정의하는 제 1 혼합 에너지(Gmix1)와, 디리티오 퍼헥사설파이드 (Li2S6) 및 디리티오 퍼옥타설파이드 (Li2S8)에 대한 전해질의 용해도 등을 각각 정의하는 제 2 및 제 3 혼합 에너지(Gmix2 및 Gmix3)의 차이가 일정 수준 이상으로 크게 되도록 전해질 조성을 제어함으로써, 상기 리튬-황 이차전지의 전기적 저항을 낮추고 출력 특성을 향상시킬 수 있음을 밝혀내고 발명을 완성하였다.
이는 상기 복수 종의 리튬 폴리설파이드들 간의 용해도 차이가 크게 됨에 따라, 전해질 중에서 주로 일어나는 상기 액체 상태의 리튬 폴리설파이드들 간의 환원 및 전환 과정이 보다 원활히 진행될 수 있으며, 더 나아가 디리티오 퍼테트라설파이드 (Li2S4)에 대한 전해질의 제 1 혼합 에너지(Gmix1)가 상대적으로 높아짐(즉, Li2S4에 대한 전해질의 용해도가 상대적으로 낮아짐)에 따라, 그 이후의 고체로의 상 변화 과정 역시 원활히 진행될 수 있기 때문으로 추정된다.
이에 일 구현예의 특성을 충족하는 리튬-황 이차전지용 전해질을 사용하면, 충/방전 과정에서 상기 이차전지의 저항을 보다 낮출 수 있고, 그 결과 이러한 이차전지의 출력 특성을 향상시킬 수 있다. 또한, 상기 리튬 폴리설파이드 간의 전환 과정이 보다 원활히 이루어짐에 따라, 이러한 리튬 폴리설파이드와 음극의 부반응 등 역시 억제할 수 있으며, 이에 따라 리튬-황 이차전지의 수명 특성 역시 보다 향상시킬 수 있다.
상술한 일 구현예의 전해질에서, 상기 제 1 내지 제 3 혼합 에너지는 상기 전해질 및 상기 리튬 폴리설파이드 (Li2Sn; n은 4, 6 또는 8) 각각을 혼합하였을 때의 용매화 자유 에너지를 지칭하는 것으로서, 각 분자 구조 정보에 기초하여 COSMO-RS 이론에 의한 양자 역학적 계산에 기반하여 산출될 수 있다 (예를 들어, “COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design”, A. Klamt, Elsevier; Amsterdam, The Netherlands, 2005 및 한국 공개 특허공보 제 2019-0011963 호 참조). 보다 구체적인 예에서, 상기 제 1 및 제 2 혼합 에너지는 상기 COSMO-RS 이론에 의한 양자 역학적 계산을 수행하는 상용화된 COSMOtherm 소프트웨어(COSMOlogic GmbH & Co. KG社) 등을 활용하여 산출될 수 있다.
이러한 제 1 내지 제 3 혼합 에너지는 상기 일 구현예의 전해질과, 상기 리튬 폴리설파이드 (Li2Sn; n은 4, 6 또는 8) 각각의 용해도를 반영할 수 있고, 일 구현예의 전해질은 후술하는 일정 조성 등을 충족함에 따라, Li2S4와 혼합시 제 1 혼합 에너지가 보다 높고(즉, 용해도가 보다 낮고), Li2S6 및 Li2S8에 대해서는 제 2 및 제 3 혼합 에너지가 낮은 (즉, 용해도가 높은) 특성을 나타낼 수 있다.
이로서, 일 구현예의 전해질은 상기 Gmix1-Gmix2가 0.73kcal/mol 이상, 혹은 0.74 내지 1.40kcal/mol, 혹은 0.80 내지 1.10kcal/mol이고, Gmix1-Gmix3가 0.80kcal/mol 이상, 혹은 0.80 내지 1.50 kcal/mol, 혹은 0.85 내지 1.20 kcal/mol인 관계를 충족할 수 있으며, 각 리튬 폴리설파이드 간의 용해도 차이가 크게 나타날 수 있다.
또한, 보다 구체적인 일 예에서, 상기 일 구현예의 전해질은 Gmix2-Gmix3가 0.05kcal/mol 이상, 혹은 0.05 내지 0.2 kcal/mol, 혹은 0.06 내지 0.1 kcal/mol로 되어, Li2S6 및 Li2S8의 각각에 대한 전해질의 용해도 역시 일부의 차이를 나타낼 수 있다.
이와 같이, 제 1 내지 제 3 혼합 에너지 상호 간의 차이가 일정 수준 이상으로 되어 리튬 폴리설파이드 (Li2Sn; n은 4, 6 또는 8) 각각에 대한 용해도 차이가 일정 수준 이상으로 됨에 따라, 이러한 리튬 폴리설파이드들 간의 환원 및 전환 과정이 보다 원활히 진행되어 리튬-황 이차전지의 저항이 보다 감소하고 출력이 보다 향상될 수 있다. 다만, 상기 제 1 내지 제 3 혼합 에너지 상호 간의 차이가 지나치게 커지만, 어느 일 종의 리튬 폴리설파이드, 예를 들어, Li2S4에 대한 전해질의 용해도가 지나치게 낮아져 오히려 이차전지의 출력 특성 등이 저하될 수 있다.
한편, 상술한 제 1 내지 제 3 혼합 에너지 상호 간의 차이를 달성하고, 각 리튬 폴리설파이드 (Li2Sn; n은 4, 6 또는 8)에 대한 적절한 용해도를 확보하기 위해, 제 1 혼합 에너지(Gmix1)는 -3.02 kcal/mol 내지 -0.02 kcal/mol 으로 될 수 있고, 제 2 혼합 에너지(Gmix2)는 -3.39 kcal/mol 내지 -0.83 kcal/mol 으로 될 수 있으며, 제 3 혼합 에너지(Gmix3)는 -3.15 kcal/mol 내지 -0.96 kcal/mol 으로 될 수 있다.
만일, 제 1 혼합 에너지가 지나치게 높아지거나, 제 2 및 제 3 혼합 에너지가 지나치게 낮아지면, 리튬 폴리설파이드 간의 전환 과정이 원활하지 못하거나, 리튬 폴리설파이드 중 일부에 대한 용해도가 낮아져 리튬-황 이차전지의 출력 특성 등이 저하될 수 있다. 반대로, 상기 제 1 혼합 에너지가 지나치게 낮아지거나, 제 2 및 제 3 혼합 에너지가 지나치게 높아지는 경우, 상술한 제 1 내지 제 3 혼합 에너지 상호 간의 차이를 달성하기 어렵게 되어 이차전지의 저항이 증가할 수 있다.
한편, 일 구현예의 전해질은 기본적으로 리튬염, 비수계 용매 및 첨가제를 포함하며, 특히, 비수계 용매로서 일정한 용매 조성을 포함하고, 리튬염 및 기타 첨가제의 농도/함량 등을 일정 범위로 제어함에 따라, 상술한 각 리튬 폴리설파이드와의 제 1 내지 제 3 혼합 에너지 및 이들의 차이를 충족할 수 있다.
상기 전해질이 상술한 혼합 에너지 범위 및 차이를 충족하기 위해, 상기 비수계 용매는 리튬 폴리설파이드 (Li2Sn; n은 4, 6 또는 8)에 대해 상이한 용해도를 갖는 제 1 및 제 2 유기 용매를 포함하고, 이중 제 1 유기 용매는 상기 리튬 폴리설파이드에 대한 양호한 용해도를 갖는 용매로 작용하는 한편, 제 2 유기 용매는 상기 리튬 폴리설파이드에 대해 비용매(non-solvent)로 될 수 있다. 특히, 이러한 제 1 유기 용매 및 비용매로서 포함되는 제 2 유기 용매의 조성을 조절함으로써, 상기 혼합 에너지 범위 및 이들 간의 차이를 달성할 수 있다.
구체적인 일 예에서, 상기 비수계 용매는 상기 제 1 유기 용매로서 디알킬 에테르계 용매 및 알킬렌글리콜 디알킬 에테르계 용매를 포함한 에테르계 용매의 70 내지 85 부피%, 혹은 70 내지 80 부피%와, 상기 비용매인 제 2 유기 용매로서 퓨란계 용매 및/또는 테트라히드로퓨란계 용매의 15 내지 30 부피%, 혹은 20 내지 30 부피%를 포함하되, 상기 디알킬 에테르계 용매가 전체 비수계 용매의 부피를 기준으로 40 내지 85 부피%, 혹은 40 내지 80 부피%의 함량으로 포함될 수 있다.
이때, 상기 퓨란계 또는 테트라히드로퓨란계 용매의 제 2 유기 용매와, 상기 디알킬 에테르계 용매 및 알킬렌글리콜 디알킬 에테르계 용매의 제 1 유기 용매는 각각 상기 리튬 폴리설파이드에 대해 상이한 용해도를 갖는 비용매 및 용매로 작용할 수 있다. 따라서, 이러한 비용매 및 용매가 상술한 최적 조성 및 함량 범위로 포함됨에 따라, 상술한 제 1 내지 제 3 혼합 에너지 상호 간의 차이가 충족되어 리튬-황 이차전지의 저항이 보다 감소하고 출력 특성이 보다 향상될 수 있다.
또한, 상기 퓨란계 또는 테트라히드로퓨란계 제 2 유기 용매는 금속상 리튬의 표면에 SEI층(solid electrolyte interface)을 형성함으로써 리튬 덴드라이트의 생성을 억제시킬 수 있으며, 음극의 금속상 리튬 표면에서의 전해액 분해 등을 억제하여 이차전지의 수명 특성을 향상시킬 수 있다. 따라서, 이러한 제 2 유기 용매의 함량 등이 최적화됨에 따라, 상기 리튬-황 이차전지의 수명 특성 역시 보다 향상될 수 있다.
이와 달리, 상기 퓨란계 또는 테트라히드로퓨란계 제 2 유기 용매의 함량이 지나치게 커지는 경우, 리튬 폴리설파이드 중 일부에 대한 전해질의 용해도가 지나치게 감소하여 리튬-황 이차전지의 특성이 저하될 수 있다. 또한, 상기 퓨란계 또는 테트라히드로퓨란계 제 2 유기 용매의 함량이 지나치게 작아지거나, 상기 제 1 유기 용매 중의 디알킬 에테르계 용매의 함량 범위가 지나치게 작아지는 경우 등에 있어서는, 상술한 제 1 내지 제 3 혼합 에너지 상호 간의 차이가 충족되기 어려워, 리튬-황 이차전지의 저항이 증가하고 그 출력 특성이 저하될 수 있다.
보다 구체적인 일 예에서, 상기 제 2 유기 용매는 퓨란계 용매 및 테트라히드로퓨란계 용매를 함께 포함할 수 있으며, 이 때, 상기 퓨란계 용매 : 테트라히드로퓨란계 용매의 혼합 부피비는 30 : 1 내지 1 : 30, 혹은 20 : 1 내지 1 : 20으로 될 수 있다.
상술한 비수계 용매의 조성에서, 상기 퓨란계 또는 테트라히드로퓨란계 용매로는 탄소수 1 내지 4의 알킬기가 치환 또는 비치환된 퓨란계 화합물 또는 테트라히드로퓨란계 화합물을 사용할 수 있으며, 이의 구체적인 예로서, 퓨란(furan), 2-메틸퓨란(2-methylfuran), 3-메틸퓨란(3-methylfuran), 2-에틸퓨란(2-ethylfuran), 2-프로필퓨란(2-propylfuran), 2-부틸퓨란(2-butylfuran), 2,3-디메틸퓨란(2,3-dimethylfuran), 2,4-디메틸퓨란(2,4-dimethylfuran), 2,5-디메틸퓨란(2,5-dimethylfuran), 2-메틸 테트라히드로퓨란(2-methyl tetrahydrofuran) 및 4-메틸 테트라히드로퓨란(4-methyl tetrahydrofuran)으로 이루어진 군에서 선택된 1종 이상을 들 수 있다.
이 중에서도, 상술한 제 1 내지 제 3 혼합 에너지 상호 간의 차이 등을 고려하여, 2-메틸퓨란, 2-메틸 테트라히드로퓨란 또는 4-메틸 테트라히드로퓨란이나, 이들 중에 선택된 2종 이상의 조합을 바람직하게 사용할 수 있다. 예를 들어, 상기 2-메틸퓨란이 단독으로 사용되거나, 2-메틸 테트라히드로퓨란 또는 4-메틸 테트라히드로퓨란이 조합될 수 있으며, 이러한 조합의 경우, 2-메틸퓨란 : 2-메틸 테트라히드로퓨란 또는 4-메틸 테트라히드로퓨란은 30 : 1 내지 1 : 30, 혹은 20 : 1 내지 1 : 20의 부피비로 혼합될 수 있다.
또한, 상기 디알킬 에테르계 용매로는, 탄소수 1 내지 10, 또는 탄소수 1 내지 5의 알킬기가 결합된 에테르계 화합물을 사용할 수 있고, 이의 구체적인 예로는, 디메틸 에테르, 디에틸 에테르, 디프로필에테르, 메틸에틸에테르, 메틸프로필에테르, 에틸프로필에테르, 디메톡시에탄, 디에톡시에탄 및 메톡시에톡시에탄으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
또, 상기 알킬렌글리콜 디알킬 에테르계 용매로는, 탄소수 1 내지 5, 또는 탄소수 2 내지 3의 알킬렌 글리콜기의 둘 이상이 에테르 결합(-O-)을 매개로 탄소수 1 내지 5의 알킬기에 결합된 화합물을 사용할 수 있다. 이의 구체적인 예로는, 디에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 디에틸렌글리콜 메틸에틸에테르, 트리에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디에틸에테르, 트리에틸렌글리콜 메틸에틸에테르, 테트라에틸렌글리콜 디메틸에테르, 테트라에틸렌글리콜 디에틸에테르, 테트라에틸렌글리콜 메틸에틸에테르, 폴리에틸렌글리콜 디메틸에테르, 폴리에틸렌글리콜 디에틸에테르 및 폴리에틸렌글리콜 메틸에틸에테르로 이루어진 군에서 선택된 1종 이상을 들 수 있다.
이 중에서도, 상술한 제 1 내지 제 3 혼합 에너지 상호 간의 차이 등을 고려하여, 상기 디알킬 에테르계 용매로서 디메톡시에탄과, 상기 알킬렌글리콜 디알킬 에테르계 용매로서 디에틸렌글리콜 디메틸에테르 등이 적절히 조합될 수 있다.
한편, 상기 리튬염으로는 이온 전도성을 증가시키기 위하여 사용되는 전해질염으로서, 당업계에서 통상적으로 사용하는 것이라면 제한없이 사용될 수 있다. 이러한 리튬염의 구체적인 예로는 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi (LiFSI) 및 (CF3SO2)3CLi로 이루어진 군에서 선택된 1종 이상을 들 수 있다. 다만, 리튬-황 이차전지의 전기 전도도 또는 상술한 혼합 에너지 차이 등의 충족 등을 고려하여, 설폰산염 형태의 리튬염, 예를 들어, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi 또는 (CF3SO2)3CLi를 적절히 사용할 수 있다.
상기 리튬염은 상술한 전해질이 제 1 내지 제 3 혼합 에너지 간의 차이 등을 적절히 충족할 수 있도록, 상기 전해질 중에 0.2 내지 0.8몰%, 혹은 0.25 내지 0.75몰%, 혹은 0.30 내지 0.70 몰%의 농도로 포함될 수 있다. 만일, 리튬염의 농도가 지나치게 낮아지면, 상기 리튬-황 이차전지의 전기 전도도가 충분치 못할 수 있고, 리튬염의 농도가 지나치게 높아지는 경우, 상기 제 1 내지 제 3 혼합 에너지 간의 차이가 충족되기 어려워 리튬-황 이차전지의 저항이 증가할 수 있다.
한편, 상술한 일 구현예의 전해질은 비수계 용매 및 리튬염 외에, 리튬-황 이차전지의 특성 향상을 위한 첨가제를 더 포함한다. 이러한 첨가제의 예로는, 질산리튬(LiNO3), 티오시안산리튬(LiSCN), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산마그네슘(MgNO3), 질산바륨(BaNO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2) 및 아질산세슘(CsNO2)으로 이루어진 군으로부터 선택된 1종 이상을 들 수 있고, 이중에서도, 질산리튬 및/또는 티오시안산리튬을 바람직하게 사용할 수 있다.
또한, 상기 첨가제는 상기 전해질의 총 중량을 기준으로 0.8 내지 4.0 중량%, 0.9 내지 3.5 중량%의 함량으로 포함될 수 있다. 상기 첨가제의 함량이 지나치게 낮아지면, 리튬-황 이차전지의 특성이 충분치 못할 수 있고, 상기 첨가제의 함량이 지나치게 높아지는 경우, 상기 제 1 내지 제 3 혼합 에너지 간의 차이 등이 충족되기 어려워 리튬-황 이차전지의 저항이 증가할 수 있다.
상술한 바와 같이, 일 구현예의 전해질은 특정 조성의 비수계 용매와 함께, 일정 함량 범위의 리튬염 및 첨가제를 포함함에 따라, 상술한 제 1 내지 제 3 혼합 에너지 상호 간의 차이를 충족하고, 리튬-황 이차전지의 방전 중에 형성되는 리튬 폴리설파이드들에 대해 최적화된 용해도 등을 나타낼 수 있다. 그 결과, 리튬-황 이차전지의 충/방전 중에 상기 리튬 폴리설파이드 간의 전환 과정을 원활히 할 수 있고, 이차전지의 저항을 낮추고 이의 출력 특성 및 수명 특성을 보다 향상시킬 수 있다.
특히, 이러한 리튬-황 이차전지는 이에 대해 충전 전류의 변화에 따른 충전 초기 전압 및 충전 종료 전압의 프로파일을 각각 측정 및 도출하고, 이로부터 이차전지의 충전 상태(SOC; State of Charge)에 따른 저항 팩터를 산출하였을 때, 상기 이차전지는 SOC 80%에서 400mΩ 이하, 혹은 50 내지 400mΩ, 혹은 100 내지 350mΩ의 낮은 저항 팩터를 나타낼 수 있다.
한편, 이러한 저항 팩터의 측정 및 산출 방법은 본 발명자들의 국제 공개 특허 공보 WO2016/126075 등에 구체적으로 기재되어 있다.
이에 발명의 다른 구현예에 따르면, 황을 양극 활물질로 포함하는 양극; 금속상 리튬을 포함하는 음극; 상기 양극 및 음극 사이에 개재된 분리막; 및 상기 일 구현예의 전해질을 포함하는 리튬-황 이차전지가 제공된다. 이러한 리튬-황 이차전지는 일 구현예의 전해질이 포함되어 낮은 저항과 함께 향상된 출력 특성 및 수명 특성을 나타낼 수 있다.
상기 다른 구현예의 이차전지에서, 상기 양극은, 양극 활물질 및 바인더를 포함할 수 있고, 이에 더하여 도전재를 더 포함할 수 있다. 또한, 상기 양극은 양극 집전체 상에 상기 양극 활물질 및 바인더 등을 포함하는 활물질층이 형성된 것일 수 있다.
이때, 상기 양극 집전체는 상기 활물질층을 지지하며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
또, 상기 양극 집전체는 그 표면에 미세한 요철을 형성하여 활물질층과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
상기 양극 활물질은 황을 포함할 수 있고, 보다 구체적으로, 황 원소(Elemental sulfur, S8), 유기 황 화합물, 황-탄소 복합체 또는 폴리머((C2Sx)n: x=2.5 ~ 50, n≥2) 등을 양극 활물질로 사용할 수 있다. 일 구현예의 전해질의 특성 등을 고려해, 상기 황 원소(Elemental sulfur, S8)를 적절히 사용할 수 있다.
이러한 황을 포함한 양극 활물질은, 양극 총 중량 100 중량부에 대하여 40 내지 80 중량부, 바람직하게는 50 내지 70 중량부로 포함될 수 있다. 상기 양극 활물질의 함량이 낮아지면 이차전지의 에너지 밀도가 감소할 수 있고, 그 함량이 지나치게 커지면 전극의 도전성 및 안정성 등이 저하될 수 있다.
또, 상기 양극은 상기 양극 활물질 이외에 전이금속 원소, ⅢA족 원소, ⅣA족 원소, 이들 원소들의 황 화합물, 및 이들 원소들과 황의 합금 중에서 선택되는 하나 이상의 첨가제를 더 포함할 수 있다.
상기 전이금속 원소로는 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au 또는 Hg 등이 포함될 수 있고, 상기 ⅢA족 원소로는 Al, Ga, In, Ti 등이 포함될 수 있으며, 상기 ⅣA족 원소로는 Ge, Sn, Pb 등이 포함될 수 있다.
한편, 상기 바인더는 양극 활물질과 집전체 등의 결합에 조력하는 성분으로서, 예컨대, 폴리비닐리덴플루오라이드(PVdF), 폴리비닐리덴플루오라이드-폴리헥사플루오로프로필렌 공중합체(PVdF/HFP), 폴리비닐아세테이트, 폴리비닐알코올, 폴리비닐에테르, 폴리에틸렌, 폴리에틸렌옥사이드, 알킬화 폴리에틸렌옥사이드, 폴리프로필렌, 폴리메틸(메트)아크릴레이트, 폴리에틸(메트)아크릴레이트, 폴리테트라플루오로에틸렌(PTFE), 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리비닐피롤리돈, 스티렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무, 에틸렌-프로필렌-디엔 모노머(EPDM) 고무, 술폰화 EPDM 고무, 스틸렌-부틸렌 고무, 불소 고무, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 바인더는 통상적으로 양극 총 중량 100 중량부를 기준으로 1 내지 15 중량부 첨가될 수 있다. 상기 바인더의 함량이 1 중량부 미만이면 활물질층과 집전체와의 접착력이 불충분해질 수 있고, 15 중량부를 초과하면 접착력은 향상되지만 그만큼 양극 활물질의 함량이 감소하여 전지 용량이 낮아질 수 있다.
한편, 상기 도전재는 전기 전도성을 향상시키기 위한 성분으로, 이차전지에서 화학변화를 일으키지 않는 전자 전도성 물질이면 특별한 제한되지 않는다. 예를 들어, 상기 도전재로는 카본블랙(carbon black), 흑연, 탄소섬유, 카본 나노튜브, 금속분말, 도전성 금속산화물 또는 유기 도전재 등을 사용할 수 있고, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열(쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠 블랙(Ketjen Black) EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼 P(엠엠엠(MMM)사 제품) 등이 있다. 예를 들면 아세틸렌블랙, 카본블랙, 흑연 등을 들 수 있다.
또한, 상기 다른 구현예의 리튬-황 이차전지에서, 상기 양극에는 황을 포함한 양극 활물질 등의 팽창을 억제하는 성분으로서 충진제가 선택적으로 첨가될 수 있다. 이러한 충진제는 당해 전지에 화학적 변화를 유발하지 않으면서 전극의 팽창을 억제할 수 있는 것이라면 특별히 제한되는 것은 아니며, 예컨대, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소 섬유 등의 섬유상 물질; 등을 사용할 수 있다.
상기 양극은 양극 활물질, 도전재 및 바인더를 분산매(용매)에 분산, 혼합시켜 슬러리를 만들고, 이를 양극 집전체 상에 도포한 후 건조 및 압연함으로써 제조될 수 있다. 상기 분산매로는 NMP(N-methyl-2-pyrrolidone), DMF(Dimethyl formamide), DMSO(Dimethyl sulfoxide), 에탄올, 이소프로판올, 물 및 이들의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상술한 다른 구현예의 이차전지에서, 상기 음극은 금속상 리튬을 포함할 수 있고, 예를 들어, 음극 집전체 상에 형성된 리튬 금속 또는 합금층을 포함할 수 있다.
이러한 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특히 제한하지 않으며, 구리, 알루미늄, 스테인리스 스틸, 아연, 티타늄, 은, 팔라듐, 니켈, 철, 크롬, 이들의 합금 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다. 상기 스테인리스 스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금을 사용할 수 있고, 그 외에도 소성 탄소, 도전재로 표면 처리된 비전도성 고분자 또는 전도성 고분자 등을 사용할 수도 있다. 일반적으로 음극 집전체로는 구리 박판을 적용한다.
상기 금속상 리튬은 리튬 금속 또는 합금일 수 있다. 이때 리튬 합금은 리튬과 합금화가 가능한 원소를 포함하고, 구체적으로 리튬과 Si, Sn, C, Pt, Ir, Ni, Cu, Ti, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Sb, Pb, In, Zn, Ba, Ra, Ge 및 Al로 이루어진 군으로부터 선택되는 1종 이상과의 합금일 수 있다. 상기 금속상 리튬은 시트 또는 호일의 형태일 수 있으며, 경우에 따라 집전체 상에 리튬 또는 리튬 합금이 건식 공정에 의해 증착 또는 코팅된 형태이거나, 입자 상의 금속 및 합금이 습식 공정 등에 의해 증착 또는 코팅된 형태일 수 있다.
상기 양극과 음극 사이에는 통상적인 분리막이 개재될 수 있다. 상기 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저 저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 또한, 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 다공성이고 비전도성 또는 절연성인 물질로 이루어질 수 있다. 상기 분리막은 필름과 같은 독립적인 부재이거나, 또는 양극 및/또는 음극에 부가된 코팅층일 수 있다.
상기 분리막으로 사용될 수 있는 폴리올레핀계 다공성 막의 예로는, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막을 들 수 있다. 상기 분리막으로 사용될 수 있는 부직포의 예로는, 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리이미드(polyimide), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리에틸렌나프탈레이트(polyethylenenaphthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리아세탈(polyacetal), 폴리에테르설폰(polyethersulfone), 폴리에테르에테르케톤(polyetheretherketone), 폴리에스테르(polyester) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 부직포가 가능하며, 이러한 부직포는 다공성 웹(web)을 형성하는 섬유 형태로서, 장섬유로 구성된 스펀본드(spunbond) 또는 멜트블로운(meltblown) 형태를 포함한다.
상기 분리막의 두께는 특별히 제한되지는 않으나, 1 내지 100 ㎛ 범위가 바람직하며, 더욱 바람직하게는 5 내지 50 ㎛ 범위이다. 상기 분리막의 두께가 1 ㎛ 미만인 경우에는 기계적 물성을 유지할 수 없으며, 100 ㎛를 초과하는 경우에는 상기 분리막이 저항층으로 작용하게 되어 전지의 성능이 저하된다. 상기 분리막의 기공 크기 및 기공도는 특별히 제한되지는 않으나, 기공 크기는 0.1 내지 50 ㎛이고, 기공도는 10 내지 95 %인 것이 바람직하다. 상기 분리막의 기공 크기가 0.1 ㎛ 미만이거나 기공도가 10 % 미만이면 분리막이 저항층으로 작용하게 되며, 기공 크기가 50 ㎛를 초과하거나 기공도가 95 %를 초과하는 경우에는 기계적 물성을 유지할 수 없다.
이상과 같은 전해질, 양극, 음극 및 분리막을 포함하는 다른 구현예의 리튬-황 이차전지는, 양극을 음극과 대면시키고 그 사이에 분리막을 개재한 후, 전해질을 주입하는 공정을 통하여 제조될 수 있다.
한편, 상기 리튬-황 이차전지는, 소형 디바이스의 전원으로 사용되는 전지 셀에 적용됨은 물론, 중대형 디바이스의 전원인 전지모듈의 단위전지로 특히 적합하게 사용될 수 있다. 이러한 측면에서, 2개 이상의 리튬-황 이차전지가 전기적으로 연결(직렬 또는 병렬)되어 포함된 전지모듈이 제공될 수 있다.
상기 전지모듈에 포함되는 리튬-황 이차전지의 수량은, 전지모듈의 용도 및 용량 등을 고려하여 다양하게 조절될 수 있음은 물론이다. 나아가, 당 분야의 통상적인 기술에 따라 상기 전지모듈을 전기적으로 연결한 전지팩 또한 제공될 수 있다. 상기 전지모듈 및 전지팩은 파워 툴(Power Tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 전기 트럭; 전기 상용차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용 가능하나, 반드시 이에 한정되는 것은 아니다.
이하 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 발명을 예시하는 것일 뿐, 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 1 내지 3, 비교예 1 내지 3: 리튬-황 이차전지용 전해질의 제조
하기 표 1의 조성에 따라 비수계 용매를 혼합한 후, 리튬염 및 첨가제를 표 1의 농도 및 함량으로 용해시켜 각 실시예 및 비교예의 전해질을 제조하였다.
비수계 용매 (물질명(부피%)) 리튬염 첨가제
제 1 유기 용매 제 2 유기 용매 종류 농도 (몰%) 종류 함량(중량%)
실시예 1 DME (78.85) 2-메틸 퓨란 (1.45) &
2-메틸-테트라히드로퓨란 (19.70)
LiFSI 0.67 LiNO3 0.90
실시예 2 DME (79.93) 2-메틸 퓨란 (20.07) LiFSI 0.30 LiNO3 & LiSCN 2.01 & 1.10
실시예 3 DME (44.87) &디에틸렌글리콜 디메틸에테르 (33.59) 2-메틸 퓨란 (21.54) LiFSI 0.50 LiNO3 2.01
비교예 1 DME (61.99) &테트라에틸렌글리콜 디메틸에테르 (38.01) - LiFSI 0.50 LiNO3 2.02
비교예 2 DME (38.06) &트리에틸렌글리콜 디메틸에테르 (40.13) 2-메틸 퓨란 (21.81) LiFSI 0.75 LiNO3 2.01
비교예 3 DME (39.48) &트리에틸렌글리콜 디메틸에테르 (39.53) 2-메틸 퓨란 (20.99) LiFSI 0.50 LiNO3 2.01
* DME: 1,2-디메톡시에탄; LiFSI: (SO2F)2NLi
시험예 1: 전해질과, 리튬 폴리설파이드 혼합시의 제 1 내지 제 3 혼합 에너지(Gmix1~3) 산출
COSMO-RS 이론에 의한 상용화된 COSMOtherm 소프트웨어(COSMOlogic GmbH & Co. KG社)를 활용하여, 상온(25℃)에서, 실시예 또는 비교예의 전해질과, 리튬 폴리설파이드(Li2Sn; n은 4, 6 또는 8) 각각의 혼합시의 혼합 에너지를 각각 산출하고, 그 산출 결과를 하기 표 2에 정리하여 나타내었다:
리튬 폴리설파이드별 혼합 에너지(kcal/mol)
Gmix1(Li2S4) Gmix2(Li2S6) Gmix3(Li2S8) Gmix1-Gmix2 Gmix1-Gmix3 Gmix2-Gmix3
실시예 1 -0.368261 -1.17603 -1.25084 0.807769 0.882579 0.07481
실시예 2 -0.799997 -1.599774 -1.679846 0.799777 0.879849 0.080072
실시예 3 -0.636317 -1.385893 -1.436826 0.749576 0.800509 0.050933
비교예 1 -1.228703 -1.936371 -1.898895 0.707668 0.670192 -0.037476
비교예 2 -0.50522 -1.136719 -1.140344 0.631499 0.635124 0.003625
비교예 3 -0.64068 -1.365863 -1.396953 0.725183 0.756273 0.03109
상기 표 2를 참고하면, 실시예 1 내지 3의 전해질은 특정 조성의 비수계 용매를 포함하고, 리튬염 및 첨가제를 일정 농도 및 함량으로 포함함에 따라, Gmix1-Gmix2가 0.73kcal/mol 이상이고, Gmix1-Gmix3가 0.80kcal/mol 이상인 특성이 충족됨이 확인되었다. 이에 비해, 비교예 1 내지 3의 전해질은 비수계 용매의 조성이 실시예와 상이함에 따라, 상기 Gmix1-Gmix2 및 Gmix1-Gmix3이 상대적으로 낮은 값을 나타냄이 확인되었다.
시험예 2: 리튬-황 이차전지 제조 및 저항 팩터 평가
전해질
상기 실시예 또는 비교예의 전해질을 사용하였다.
양극 제조
양극 활물질로 황-탄소 복합체(S : C = 70 : 30 중량비) 95 중량부(황 단독 함량은 양극 총 중량에 대해 67.5 중량%가 되도록 설정하였고, 탄소재는 기공 부피가 1.8 cm3/g인 활성탄소를 사용하였다), 바인더로 스티렌 부타디엔 고무/카르복시메틸 셀룰로오스(SBR : CMC = 7 : 3) 5 중량부를 혼합하여 양극 슬러리 조성물을 제조한 후, 상기 제조된 슬러리 조성물을 집전체(Al Foil) 상에 코팅하고 50 ℃에서 12 시간 동안 건조하고 롤프레스(roll press) 기기로 압착하여 양극을 제조하였다(이때, 전극의 기공도(porosity)는 65 %로 하였다).
리튬-황 이차전지 제조
상기 제조된 양극과 150 ㎛ 두께의 리튬 금속 음극을 대면하도록 위치시키고, 그 사이에 폴리에틸렌(PE) 분리막을 개재한 후, 상기 전해질을 주입하여 코인 셀 타입의 리튬-황 이차전지를 제조하였다. 한편, 상기 전지의 제조에 있어서, 상기 양극은 15phi로 타발하여 사용하였으며, 상기 폴리에틸렌 분리막은 19phi로, 상기 리튬 금속은 16phi로 타발하여 사용하였다.
상기 실시예 또는 비교예의 전해질을 사용하여 제조된 리튬-황 이차전지에 대해 국제 공개 특허 공보 WO2016/126075에 기재된 방법에 따라 저항 팩터를 측정 및 산출하였다.
보다 구체적으로, 상기 리튬-황 이차전지에 대해, 먼저, 이차 전지의 온도와 충전 상태(SOC) 별로 충전 전류의 크기 변화에 따른 복수의 충전 초기 전압 데이터와 복수의 충전 종료 전압 데이터를 측정하여 메모리에 저장하였다. 이어서, 상기 복수의 충전 종료 전압 데이터로부터 충전 종료 I-V 프로파일을 결정하고, 상기 충전 종료 I-V 프로파일이 충전 상한 조건으로 미리 설정된 충전 상한 전류 또는 충전 상한 전압과 대응되는 경계선과 만나는 교차점을 결정하였다. 또, 상기 복수의 충전 초기 전압 데이터로부터 충전 초기 I-V 프로파일을 결정하고, 상기 교차점의 전류 값을 기준으로 계산된 상기 충전 초기 I-V 프로파일에 대한 일차 미분 값을 결정하였다. 그리고, 상기 결정된 일차 미분 값을 이차 전지의 온도 및 충전 상태에 대응되는 저항 팩터로서 결정 및 산출하였다.
이때, 2ea 보다 큰 전류를 사용하였고, 하기의 식 1따라 최대 전류(Imax)에서의 저항 팩터를 산출하였다.
[식 1]
Figure PCTKR2023015743-appb-img-000001
각 실시예 및 비교예의 전해질을 사용하여 제조된 전지에 대해, SOC 80%에서의 저항 팩터를 하기 표 3에 정리하여 나타내었다. 또한, 도 2a에는 실시예 1 내지 3 및 비교예 1 내지 3의 전해질을 사용하여 제조된 리튬-황 이차전지의 충전 상태(SOC) 80%에서, 상기 전해질의 Gmix1-Gmix2 (kcal/mol)와, 상기 이차전지의 저항 팩터(mΩ)의 관계를 나타내었고, 도 2b에는 실시예 1 내지 3 및 비교예 1 내지 3의 전해질을 사용하여 제조된 리튬-황 이차전지의 충전 상태(SOC) 80%에서, 상기 전해질의 Gmix1-Gmix3 (kcal/mol)와, 상기 이차전지의 저항 팩터(mΩ)의 관계를 나타내었다.
저항 팩터 @ SOC 80
(mΩ)
실시예 1 199.32
실시예 2 218.95
실시예 3 340.58
비교예 1 514.73
비교예 2 595.50
비교예 3 480.65
상기 표 3, 도 2a 및 2b를 참고하면, 실시예의 전해질을 사용하여 제조된 리튬-황 이차전지는 SOC 80%에서 비교예 대비 낮은 저항 팩터를 나타내는 것으로 확인되었다. 특히, 실시예는 Gmix1-Gmix2가 0.73kcal/mol 이상이고, Gmix1-Gmix3가 0.80kcal/mol 이상으로 비교예의 전해질 대비 큰 값을 나타냄에 따라, 보다 낮은 저항 팩터 및 우수한 출력을 나타내는 것으로 확인되었다.

Claims (16)

  1. 리튬염, 비수계 용매 및 첨가제를 포함하는 리튬-황 이차전지용 전해질로서,
    COSMO-RS(Conductor like Screening Model for real Solvent) 이론에 따라, 상온(20±5℃)에서 산출된 상기 전해질과, 디리티오 퍼테트라설파이드 (dilithio pertetrasulfide; Li2S4)의 제 1 혼합 에너지(Gmix1), 상기 전해질과, 디리티오 퍼헥사설파이드 (dilithio perhexasulfide; Li2S6)의 제 2 혼합 에너지(Gmix2), 및 상기 전해질과, 디리티오 퍼옥타설파이드 (dilithio peroctasulfide; Li2S8) 의 제 3 혼합 에너지(Gmix3)는 Gmix1-Gmix2가 0.73kcal/mol 이상이고, Gmix1-Gmix3가 0.80kcal/mol 이상인 관계를 충족하는 리튬-황 이차전지용 전해질.
  2. 제 1 항에 있어서, 상기 Gmix1-Gmix2가 0.74 내지 1.40kcal/mol이고, Gmix1-Gmix3가 0.80 내지 1.50 kcal/mol인 리튬-황 이차전지용 전해질.
  3. 제 1 항에 있어서, 상기 Gmix2-Gmix3가 0.05kcal/mol 이상으로 되는 리튬-황 이차전지용 전해질.
  4. 제 1 항에 있어서, 제 1 혼합 에너지(Gmix1)는 -3.02 kcal/mol 내지 -0.02 kcal/mol이고,
    제 2 혼합 에너지(Gmix2)는 -3.39 kcal/mol 내지 -0.83 kcal/mol이고,
    제 3 혼합 에너지(Gmix3)는 -3.15 kcal/mol 내지 -0.96 kcal/mol 인 리튬-황 이차전지용 전해질.
  5. 제 1 항에 있어서, 상기 비수계 용매는 리튬 폴리설파이드 (Li2Sn; n은 4, 6 또는 8)에 대해 상이한 용해도를 갖는 제 1 및 제 2 유기 용매를 포함하고,
    제 2 유기 용매는 상기 리튬 폴리설파이드에 대해 비용매(non-solvent)로 되는 리튬-황 이차전지용 전해질.
  6. 제 5 항에 있어서, 상기 비수계 용매는 상기 제 1 유기 용매로서 디알킬 에테르계 용매 및 알킬렌글리콜 디알킬 에테르계 용매를 포함한 에테르계 용매의 70 내지 85 부피%와,
    상기 제 2 유기 용매로서 퓨란계 용매 또는 테트라히드로퓨란계 용매의 15 내지 30 부피%를 포함하고,
    상기 디알킬 에테르계 용매는 전체 비수계 용매의 부피를 기준으로 40 내지 85 부피%의 함량으로 포함되는 리튬-황 이차전지용 전해질.
  7. 제 6 항에 있어서, 상기 퓨란계 용매 또는 테트라히드로퓨란계 용매는 퓨란(furan), 2-메틸퓨란(2-methylfuran), 3-메틸퓨란(3-methylfuran), 2-에틸퓨란(2-ethylfuran), 2-프로필퓨란(2-propylfuran), 2-부틸퓨란(2-butylfuran), 2,3-디메틸퓨란(2,3-dimethylfuran), 2,4-디메틸퓨란(2,4-dimethylfuran), 2,5-디메틸퓨란(2,5-dimethylfuran), 2-메틸 테트라히드로퓨란(2-methyl tetrahydrofuran) 및 4-메틸 테트라히드로퓨란(4-methyl tetrahydrofuran)으로 이루어진 군에서 선택된 1종 이상을 포함하는 리튬-황 이차전지용 전해질.
  8. 제 6 항에 있어서, 상기 디알킬 에테르계 용매는 디메틸 에테르, 디에틸 에테르, 디프로필에테르, 메틸에틸에테르, 메틸프로필에테르, 에틸프로필에테르, 디메톡시에탄, 디에톡시에탄 및 메톡시에톡시에탄으로 이루어진 군에서 선택된 1종 이상을 포함하는 리튬-황 이차전지용 전해질.
  9. 제 6 항에 있어서, 상기 알킬렌글리콜 디알킬 에테르계 용매는 디에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 디에틸렌글리콜 메틸에틸에테르, 트리에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디에틸에테르, 트리에틸렌글리콜 메틸에틸에테르, 테트라에틸렌글리콜 디메틸에테르, 테트라에틸렌글리콜 디에틸에테르, 테트라에틸렌글리콜 메틸에틸에테르, 폴리에틸렌글리콜 디메틸에테르, 폴리에틸렌글리콜 디에틸에테르 및 폴리에틸렌글리콜 메틸에틸에테르로 이루어진 군에서 선택된 1종 이상을 포함하는 리튬-황 이차전지용 전해질.
  10. 제 1 항에 있어서, 상기 리튬염은 상기 비수계 용매 내에 0.2 내지 0.8몰%의 농도로 용해되어 있는 리튬-황 이차전지용 전해질.
  11. 제 1 항에 있어서, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi (LiFSI) 및 (CF3SO2)3CLi로 이루어진 군에서 선택된 1종 이상을 포함하는 리튬-황 이차전지용 전해질.
  12. 제 1 항에 있어서, 상기 첨가제는 상기 전해질의 총 중량을 기준으로 0.8 내지 4.0 중량%의 함량으로 포함되는 리튬-황 이차전지용 전해질.
  13. 제 1 항에 있어서, 상기 첨가제는 질산리튬(LiNO3), 티오시안산리튬(LiSCN), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산마그네슘(MgNO3), 질산바륨(BaNO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2) 및 아질산세슘(CsNO2)으로 이루어진 군에서 선택된 1종 이상을 포함하는 리튬-황 이차전지용 전해질.
  14. 황을 양극 활물질로 포함하는 양극;
    금속상 리튬을 포함하는 음극;
    상기 양극 및 음극 사이에 개재된 분리막; 및
    제 1 항의 전해질을 포함하는 리튬-황 이차전지.
  15. 제 14 항에 있어서, 상기 양극 활물질은 황 원소(Elemental sulfur, S8)를 포함하는 리튬-황 이차전지.
  16. 제 14 항에 있어서, 상기 리튬-황 이차전지에 대해 충전 전류의 변화에 따른 충전 초기 전압 및 충전 종료 전압의 프로파일을 각각 측정 및 도출하고, 이로부터 이차전지의 충전 상태(SOC; State of Charge)에 따른 저항 팩터를 산출하였을 때, 상기 이차전지는 SOC 80%에서 400mΩ 이하의 저항 팩터를 나타내는 리튬-황 이차전지.
PCT/KR2023/015743 2022-10-26 2023-10-12 리튬-황 이차전지용 전해질 및 이를 포함하는 리튬-황 이차전지 WO2024090857A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0139326 2022-10-26
KR1020220139326A KR20240058519A (ko) 2022-10-26 2022-10-26 리튬-황 이차전지용 전해질 및 이를 포함하는 리튬-황 이차전지

Publications (1)

Publication Number Publication Date
WO2024090857A1 true WO2024090857A1 (ko) 2024-05-02

Family

ID=90831203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015743 WO2024090857A1 (ko) 2022-10-26 2023-10-12 리튬-황 이차전지용 전해질 및 이를 포함하는 리튬-황 이차전지

Country Status (2)

Country Link
KR (1) KR20240058519A (ko)
WO (1) WO2024090857A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218404A (ja) * 2007-02-08 2008-09-18 Nippon Shokubai Co Ltd イオン伝導性材料及びその用途
KR101166274B1 (ko) * 2004-01-06 2012-07-17 싸이언 파워 코포레이션 리튬 황 전지를 위한 전해질
JP2015125934A (ja) * 2013-12-26 2015-07-06 国立大学法人京都大学 二次電池
KR20200016045A (ko) * 2018-08-06 2020-02-14 주식회사 삼양사 리튬-황 전지용 비수계 전해질 조성물 및 이를 포함하는 리튬-황 전지
KR20210138511A (ko) * 2020-05-12 2021-11-19 주식회사 엘지에너지솔루션 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166274B1 (ko) * 2004-01-06 2012-07-17 싸이언 파워 코포레이션 리튬 황 전지를 위한 전해질
JP2008218404A (ja) * 2007-02-08 2008-09-18 Nippon Shokubai Co Ltd イオン伝導性材料及びその用途
JP2015125934A (ja) * 2013-12-26 2015-07-06 国立大学法人京都大学 二次電池
KR20200016045A (ko) * 2018-08-06 2020-02-14 주식회사 삼양사 리튬-황 전지용 비수계 전해질 조성물 및 이를 포함하는 리튬-황 전지
KR20210138511A (ko) * 2020-05-12 2021-11-19 주식회사 엘지에너지솔루션 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
KR20240058519A (ko) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2019088672A1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
KR102639662B1 (ko) 강유전성 고분자 보호층이 형성된 리튬 이차전지용 음극, 이의 제조 방법 및 상기 음극을 포함하는 리튬 이차전지
WO2021235760A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2012086939A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2022071722A1 (ko) 고 에너지 밀도를 갖는 리튬-황 전지
WO2012091301A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2012086940A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2020105981A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2021210814A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20210136877A (ko) 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022149751A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20200020624A (ko) 리튬 이차 전지용 음극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 음극
KR20170099642A (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2024090857A1 (ko) 리튬-황 이차전지용 전해질 및 이를 포함하는 리튬-황 이차전지
WO2024043567A1 (ko) 리튬-황 이차전지용 전해질 및 이를 포함하는 리튬-황 이차전지
WO2020017774A1 (ko) 리튬 이차전지용 바나듐 양극의 전기화학적 전처리 방법 및 이에 의해 전처리된 리튬 이차전지용 바나듐 양극
WO2022092691A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2023096182A1 (ko) 에너지 밀도 및 출력이 개선된 리튬-황 전지
WO2023140502A1 (ko) 수명 성능이 개선된 리튬-황 전지
US20230238584A1 (en) Electrolyte for lithium-sulfur battery, and lithium-sulfur battery comprising same
WO2023211164A1 (ko) 고 에너지 밀도를 갖는 리튬-황 전지
WO2023211230A1 (ko) 고 에너지 밀도를 갖는 리튬-황 전지
WO2020096253A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022245010A1 (ko) 사이클 수명 성능이 개선된 리튬-황 전지