WO2024090559A1 - フッ素ゴム架橋用組成物および成形品 - Google Patents

フッ素ゴム架橋用組成物および成形品 Download PDF

Info

Publication number
WO2024090559A1
WO2024090559A1 PCT/JP2023/038898 JP2023038898W WO2024090559A1 WO 2024090559 A1 WO2024090559 A1 WO 2024090559A1 JP 2023038898 W JP2023038898 W JP 2023038898W WO 2024090559 A1 WO2024090559 A1 WO 2024090559A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororubber
group
crosslinking
mass
compound
Prior art date
Application number
PCT/JP2023/038898
Other languages
English (en)
French (fr)
Inventor
一良 川崎
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024090559A1 publication Critical patent/WO2024090559A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride

Definitions

  • This disclosure relates to a composition for crosslinking fluororubber and a molded article.
  • Patent document 1 describes a graftable fluoroelastomer composition that includes a polyhydroxy-curable fluoroelastomer that is substantially free of nucleophilic end groups; a monophenolic grafting agent; an accelerator; and an acid acceptor, and is characterized in that the composition has a Mooney viscosity of ML(1+18) of less than 160 at 135°C.
  • Patent Document 2 describes a curable partially fluorinated polymer composition that includes: (i) a partially fluorinated amorphous fluoropolymer that includes a carbon-carbon double bond or that can form a carbon-carbon double bond within the partially fluorinated amorphous fluoropolymer chain, the partially fluorinated amorphous fluoropolymer being substantially free of bromine, iodine, and nitrile; and (ii) a curing agent that includes a terminal olefin having at least one olefinic hydrogen.
  • the objective of this disclosure is to provide a composition for crosslinking fluororubber that can produce molded products with high crosslink density and excellent compression set properties at high temperatures.
  • a composition for crosslinking fluororubber comprising fluororubber (a), a crosslinking agent (b), a dehydrofluorination agent (c), and an organic peroxide (d), in which the crosslinking agent (b) is at least one selected from the group consisting of a compound (b1) having in its molecule 1) at least one aromatic ring, 2) a group having a carbon-carbon triple bond, and 3) at least one or both of a hydroxy group and an alkylcarbonyloxy group bonded directly to a carbon atom constituting the aromatic ring, an onium salt of compound (b1), an alkali metal salt of compound (b1), an alkaline earth metal salt of compound (b1), and an ester derived from compound (b1) and a carboxylic acid.
  • the present disclosure provides a fluororubber cross-linking composition that can produce molded products with high cross-link density and excellent compression set properties at high temperatures.
  • the disclosed composition for cross-linking fluororubber contains fluororubber (a), a cross-linking agent (b), a dehydrofluorination agent (c), and an organic peroxide (d).
  • Patent Document 2 proposes blending a curing agent containing a terminal olefin having at least one olefinic hydrogen with a curable partially fluorinated polymer composition.
  • a compound that has a group with a carbon-carbon triple bond in the molecule and also has an aromatic ring to which a hydroxyl group or an alkylcarbonyloxy group is bonded is used as a cross-linking agent for fluororubber.
  • fluororubber crosslinking composition of the present disclosure contains fluororubber.
  • fluororubber is an amorphous fluoropolymer.
  • Amorphous means that the magnitude of the melting peak ( ⁇ H) that appears in differential scanning calorimetry [DSC] (heating rate 10°C/min) or differential thermal analysis [DTA] (heating rate 10°C/min) of the fluoropolymer is 4.5 J/g or less.
  • DSC differential scanning calorimetry
  • DTA differential thermal analysis
  • the fluororubber may be partially fluorinated rubber or perfluororubber, but is preferably partially fluorinated rubber.
  • Partially fluorinated rubber is a fluoropolymer that contains fluoromonomer units and has a perfluoromonomer unit content of less than 90 mol% relative to the total polymerized units, has a glass transition temperature of 20°C or less, and has a melting peak ( ⁇ H) of 4.5 J/g or less.
  • a perfluoromonomer is a monomer that does not contain a carbon atom-hydrogen atom bond in the molecule.
  • the above perfluoromonomer may be a monomer in which some of the fluorine atoms bonded to the carbon atoms are replaced with chlorine atoms, in addition to carbon atoms and fluorine atoms, and may also have nitrogen atoms, oxygen atoms, sulfur atoms, phosphorus atoms, boron atoms, or silicon atoms in addition to carbon atoms.
  • the above perfluoromonomer is preferably a monomer in which all hydrogen atoms are replaced with fluorine atoms.
  • the above perfluoromonomer does not include monomers that provide crosslinking sites.
  • the monomer that provides the crosslinking site is a monomer (cure site monomer) that has a crosslinkable group that provides the fluoropolymer with a crosslinking site for forming a crosslink with a crosslinking agent.
  • the fluorororubber used in the present disclosure is not particularly limited, and examples thereof include fluororubber known as peroxide-crosslinkable fluororubber, fluororubber known as polyol-crosslinkable fluororubber, and the like.
  • the fluororubber may be a fluororubber that can be crosslinked using a pyridinium-type salt as described in JP-T-2018-514627.
  • Peroxide-crosslinkable fluororubber is a fluororubber having a peroxide-crosslinkable site.
  • the peroxide-crosslinkable site is not particularly limited, and examples include iodine atoms, bromine atoms, and CN groups that the fluororubber has; and carbon-carbon unsaturated bonds that exist in the main chain or side chain of the fluororubber.
  • a peroxide-crosslinkable fluororubber may be used as the fluororubber, but this does not mean that the crosslinking reaction of the fluororubber crosslinking composition of the present disclosure proceeds in the same manner as the crosslinking reaction of a conventionally known peroxide-crosslinkable fluororubber.
  • the polyol-crosslinkable fluororubber is a fluororubber having a polyol-crosslinkable site.
  • polyol-crosslinkable fluororubber polyol-crosslinkable partially fluorinated rubber is preferable.
  • polyol-crosslinkable fluororubber there is no particular limitation, and examples thereof include vinylidene fluoride (VdF)-based fluororubber.
  • a polyol-crosslinkable fluororubber may be used as the fluororubber, but this does not mean that the crosslinking reaction of the fluororubber crosslinking composition of the present disclosure proceeds in the same manner as the crosslinking reaction of a conventionally known polyol-crosslinkable fluororubber.
  • the fluorororubber used in this disclosure is preferably a fluororubber containing vinylidene fluoride (VdF) units (VdF-based fluororubber).
  • VdF vinylidene fluoride
  • VdF-based fluororubbers examples include tetrafluoroethylene (TFE)/propylene/VdF-based fluororubbers, ethylene/hexafluoropropylene (HFP)/VdF-based fluororubbers, VdF/HFP-based fluororubbers, and VdF/TFE/HFP-based fluororubbers. These fluororubbers having polyol-crosslinkable sites can be used alone or in any combination within the scope that does not impair the effects of the present disclosure.
  • the fluororubber is preferably a fluororubber made of VdF and at least one other fluorine-containing monomer, and in particular at least one rubber selected from the group consisting of VdF/HFP-based fluororubber, VdF/TFE/HFP-based fluororubber, and VdF/TFE/PAVE-based fluororubber, and more preferably at least one rubber selected from the group consisting of VdF/HFP-based fluororubber and VdF/TFE/HFP-based fluororubber.
  • the fluororubber preferably has a Mooney viscosity at 100°C (ML1+10(100°C)) of 2 or more, more preferably 10 or more, even more preferably 20 or more, and particularly preferably 30 or more. It is also preferably 200 or less, more preferably 150 or less, even more preferably 120 or less, and particularly preferably 100 or less. Mooney viscosity is measured in accordance with ASTM D1646-15 and JIS K6300-1:2013.
  • the fluorine content of the fluororubber is preferably 50 to 75% by mass. More preferably, it is 60 to 73% by mass, and even more preferably, it is 63 to 72% by mass.
  • the fluorine content is calculated from the composition ratio of the monomer units that make up the fluororubber.
  • the fluororubber preferably has a glass transition temperature of -50 to 0°C.
  • the glass transition temperature can be determined by obtaining a DSC curve using a differential scanning calorimeter by heating 10 mg of a sample at 20°C/min, and finding the temperature at the intersection of an extension of the baseline before and after the secondary transition of the DSC curve and a tangent to the inflection point of the DSC curve.
  • the fluororubber may have at least one of iodine atoms and bromine atoms, or may have iodine atoms. Since the fluororubber can obtain a molded product with a higher crosslink density and better compression set properties at high temperatures, it is preferable that the fluororubber has at least one of iodine atoms and bromine atoms, and more preferably has iodine atoms.
  • the total content of iodine atoms and bromine atoms in the fluororubber is preferably 0.001 to 10 mass%, more preferably 5.0 mass% or less, even more preferably 1.0 mass% or less, particularly preferably 0.7 mass% or less, most preferably 0.5 mass% or less, more preferably 0.01 mass% or more, even more preferably 0.05 mass% or more, particularly preferably 0.08 mass% or more, and most preferably 0.10 mass% or more.
  • the bonding positions of the iodine atoms and bromine atoms in the fluororubber may be the terminals of the main chain or the terminals of the side chain of the fluororubber, or of course both.
  • the iodine content can be measured by the following method: Na 2 CO 3 and K 2 CO 3 are mixed in a 1:1 (weight ratio), and the resulting mixture is dissolved in 20 ml of pure water to prepare an absorption liquid, and 5 mg of Na 2 SO 3 is mixed with 12 mg of a sample (fluoropolymer) to prepare a mixture, which is burned in oxygen in a quartz flask, and the generated combustion gas is introduced into the absorption liquid, and the resulting absorption liquid is left to stand for 30 minutes, after which the concentration of iodine ions in the absorption liquid is measured using a Shimadzu 20A ion chromatograph, and the iodine ion content can be determined from the measured value using a calibration curve prepared using a KI standard solution containing 0.5 ppm iodine ions and a KI standard solution containing 1.0 ppm iodine ions.
  • Fluorororubber containing at least one of iodine and bromine atoms can be produced, for example, by a method of polymerizing iodine- or bromine-containing monomers, or by a method of polymerizing using a bromine compound or an iodine compound as a polymerization initiator or chain transfer agent.
  • Examples of the polymerization method using a bromine compound or an iodine compound as a chain transfer agent include a method in which emulsion polymerization is carried out in an aqueous medium under pressure in the presence of a bromine compound or an iodine compound in a substantially oxygen-free state (iodine transfer polymerization method).
  • iodine transfer polymerization method a method in which emulsion polymerization is carried out in an aqueous medium under pressure in the presence of a bromine compound or an iodine compound in a substantially oxygen-free state
  • iodine transfer polymerization method iodine transfer polymerization method.
  • General formula : R8IxBr y (wherein x and y are each an integer of 0 to 2 and satisfy 1 ⁇ x+y ⁇ 2; and R8 is a saturated or unsaturated fluorohydrocarbon group or chlorofluorohydrocarbon group having 1 to 16 carbon atoms, or a hydro
  • bromine compound and the iodine compound examples include 1,3-diiodoperfluoropropane, 2-iodoperfluoropropane, 1,3-diiodo-2-chloroperfluoropropane, 1,4-diiodoperfluorobutane, 1,5-diiodo-2,4-dichloroperfluoropentane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, 1,12-diiodoperfluorododecane, 1,16-diiodoperfluorohexadecane, diiodomethane, 1,2-diiodoethane, 1,3-diiodo-n-propane, CF 2 Br 2 , BrCF 2 CF 2 Br, CF 3 CFBrCF 2 Br, CFClBr 2 , BrCF 2
  • 1,4-diiodoperfluorobutane, 1,6-diiodoperfluorohexane, and 2-iodoperfluoropropane in terms of polymerization reactivity, crosslinking reactivity, and ease of availability.
  • the fluororubber described above can be manufactured by conventional methods.
  • the fluororubber crosslinking composition of the present disclosure contains a crosslinking agent. 1) at least one aromatic ring; 2) a group having a carbon-carbon triple bond, and 3) At least one selected from the group consisting of compound (b1) having in the molecule at least one or both of a hydroxy group and an alkylcarbonyloxy group directly bonded to a carbon atom constituting the aromatic ring, an onium salt of compound (b1), an alkali metal salt of compound (b1), an alkaline earth metal salt of compound (b1), and an ester derived from compound (b1) and a carboxylic acid is used.
  • the aromatic ring may be either a monocyclic or polycyclic ring.
  • the aromatic ring may be a so-called heterocyclic ring composed not only of carbon atoms but also of carbon atoms and heteroatoms such as oxygen atoms, sulfur atoms, and nitrogen atoms.
  • the carbon atom of the carbonyl group may form a ring structure.
  • monocyclic aromatic rings include monocyclic 5- to 7-membered aromatic rings, and specifically, preferred are a benzene ring and a monocyclic 5- to 7-membered aromatic heterocycle (including a 7-membered ring with a tropone structure), more preferred are a benzene ring, a furan ring, and a thiophene ring, and even more preferred is a benzene ring.
  • the number of aromatic rings in the polycyclic aromatic ring is 2 or more, preferably 2 to 8, more preferably 2 to 4, even more preferably 2 or 3, and most preferably 2.
  • polycyclic aromatic ring a polycyclic aromatic hydrocarbon ring or a polycyclic aromatic heterocycle is preferred, and a polycyclic aromatic hydrocarbon ring is more preferred.
  • the polycyclic aromatic hydrocarbon ring may be a polycycle in which two rings are linked via a bond, a condensed ring, or a spiro ring.
  • the number of carbon atoms in the polycyclic aromatic hydrocarbon ring is preferably 3 to 30, more preferably 5 or more, even more preferably 6 or more, more preferably 20 or less, even more preferably 14 or less.
  • the number of rings in the polycyclic aromatic hydrocarbon ring is preferably 2 to 4, more preferably 2 or 3, and even more preferably 2.
  • Polycyclic aromatic hydrocarbon rings include: Polycyclic aromatic hydrocarbon rings in which two rings are linked via a bond, such as a biphenyl ring, a diphenylmethane ring, a diphenyl ether ring, a diphenyl sulfone ring, or a diphenyl ketone ring; condensed polycyclic hydrocarbon rings such as a naphthalene ring, a phenanthrene ring, an anthracene ring, a fluorene ring, a tetracene ring, a chrysene ring, a pyrene ring, a pentacene ring, a benzopyrene ring, a triphenylene ring, and an azulene ring; etc.
  • a naphthalene ring or a biphenyl ring is preferred.
  • polycyclic aromatic heterocycles the carbonyl group may form part of the aromatic ring.
  • Polycyclic aromatic heterocycles also include rings that are composed only of carbon atoms and oxygen atoms of carbonyl groups.
  • a ring formed by carbon atoms and atoms other than carbon atoms is preferable.
  • a nitrogen atom, an oxygen atom, or a sulfur atom is preferable, and an oxygen atom or a sulfur atom is more preferable.
  • a heterocycle a nitrogen-containing heterocycle, an oxygen-containing heterocycle, or a sulfur-containing heterocycle is preferable, and an oxygen-containing heterocycle or a sulfur-containing heterocycle is more preferable.
  • the number of atoms other than carbon atoms in the ring is preferably 1 to 3.
  • the number of rings in the polycyclic aromatic heterocycle is preferably 2 to 4, more preferably 2 or 3, and even more preferably 2.
  • oxygen-containing polycyclic aromatic heterocycles are preferred, such as a xanthene ring, a 1-benzopyran ring, a 2-benzopyran ring, a 1-benzofuran ring, and a 2-benzofuran ring.
  • the aromatic ring is preferably a benzene ring, a naphthalene ring or a biphenyl ring, and more preferably a benzene ring, since this allows for a molded article to be obtained that has a higher crosslink density and is more excellent in compression set properties at high temperatures.
  • Compound (b1) has a group having a carbon-carbon triple bond in addition to the aromatic ring.
  • the group having a carbon-carbon triple bond includes an ethynyl group as well as a group that includes a carbon-carbon triple bond as part of its structure, such as a propargyl group.
  • the number of groups having a carbon-carbon triple bond is preferably 1 or more, more preferably 1 or 2, and even more preferably 1.
  • the group having a carbon-carbon triple bond may be directly bonded to a carbon atom constituting the aromatic ring, or may be bonded to a carbon atom constituting the aromatic ring via another bond. It is preferable that the group having a carbon-carbon triple bond is directly bonded to a carbon atom constituting the aromatic ring, since this allows for the production of molded articles with a higher crosslink density and better compression set properties at high temperatures.
  • R 2 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, a phenyl group or a fluorophenyl group
  • R 2 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, a phenyl group or a fluorophenyl group
  • R2 is preferably a hydrogen atom or a fluorophenyl group, and more preferably a hydrogen atom, that is, the group having a carbon-carbon triple bond is more preferably an ethynyl group.
  • Compound (b1) further has at least one or both of a hydroxy group and an alkylcarbonyloxy group bonded directly to a carbon atom constituting an aromatic ring in the molecule.
  • alkylcarbonyloxy group a group represented by the general formula: R 1 —C( ⁇ O)—O— (wherein R 1 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a fluorinated alkyl group having 1 to 5 carbon atoms) is preferred.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a fluorinated alkyl group having 1 to 5 carbon atoms
  • the number of carbon atoms in the alkyl group and the fluorinated alkyl group is preferably 1 to 3, and more preferably 1.
  • R 1 is preferably a methyl group.
  • the total number of hydroxy groups and alkylcarbonyloxy groups contained in compound (b1) is preferably 1 or more, preferably 3 or less, and more preferably 2 or less.
  • compound (b1) has one hydroxy group in the molecule that is directly bonded to a carbon atom that constitutes an aromatic ring.
  • Hydrogen atoms bonded to carbon atoms constituting the aromatic ring may be substituted with groups having a carbon-carbon triple bond, substituents containing a hydroxyl group, and substituents other than alkylcarbonyloxy groups.
  • substituents ( ⁇ ) (excluding substituents containing a hydroxyl group and alkylcarbonyloxy groups) in which at least one of the values of Hammett's substituent constants ⁇ m and ⁇ p is 0.03 or more are preferred.
  • the electron density of the hydroxyl group or alkylcarbonyloxy group bonded directly to the carbon atom constituting the aromatic ring can be appropriately adjusted, thereby improving the properties of the molded article obtained from the fluororubber crosslinking composition.
  • Substituents ( ⁇ ) do not include substituents containing a hydroxy group or alkylcarbonyloxy groups.
  • Substituents containing a hydroxy group include hydroxy groups and groups that have a hydroxy group as part of their structure.
  • the number of substituents ( ⁇ ) is preferably 0 to 4, more preferably 0 to 2, and even more preferably 0 or 1.
  • the substituent ( ⁇ ) is a monovalent substituent in which at least one of the Hammett substituent constants ⁇ m and ⁇ p is in the range of 0.03 or more.
  • At least one of the substituent constants ⁇ m and ⁇ p of the substituent ( ⁇ ) is 0.03 or more, preferably 0.05 or more, more preferably 0.10 or more, preferably 1.40 or less, more preferably 1.00 or less, and even more preferably 0.80 or less.
  • the value of the substituent constant ⁇ m of the substituent ( ⁇ ) is 0.03 or more, preferably 0.05 or more, more preferably 0.10 or more, preferably 1.40 or less, more preferably 1.00 or less, and even more preferably 0.80 or less.
  • the value of the substituent constant ⁇ p of the substituent ( ⁇ ) is 0.03 or more, preferably 0.05 or more, more preferably 0.10 or more, preferably 1.40 or less, more preferably 1.00 or less, and even more preferably 0.80 or less.
  • Hammett's rule is an empirical rule proposed by L. P. Hammett in 1935 to quantitatively discuss the effect of substituents on the reaction or equilibrium of benzene derivatives, and is widely recognized as valid today.
  • the substituent constants determined by Hammett's rule include ⁇ p and ⁇ m values, and these values can be found in many general textbooks, but in this invention, the values described in "TABLE 1 Hammett and Modified Swain-Lupton Constants" in Chem. Rev., 1991, Vol. 91, pp. 165-195 are used.
  • values calculated according to the calculation method described in the literature “The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives" (J. Am. Chem. Soc. 1937, 59, 1, 96-103) are used.
  • Compound (b1) also includes compounds that are not benzene derivatives, but the ⁇ m value and ⁇ p value are used as a measure of the electronic effect of the substituent, regardless of the substitution position. In this disclosure, the ⁇ m value and ⁇ p value are used in this sense.
  • substituent ( ⁇ ) include partially fluorinated alkyl groups having 1 to 5 carbon atoms, perfluoroalkyl groups having 1 to 5 carbon atoms, fluorine atoms, chlorine atoms, alkoxycarbonyl groups having 1 to 5 carbon atoms (excluding the number of carbon atoms constituting the carbonyl group), partially fluorinated alkoxycarbonyl groups having 1 to 5 carbon atoms (excluding the number of carbon atoms constituting the carbonyl group), perfluoroalkoxycarbonyl groups having 1 to 5 carbon atoms (excluding the number of carbon atoms constituting the carbonyl group), alkoxy groups having 1 to 5 carbon atoms, partially fluorinated alkoxy groups having 1 to 5 carbon atoms, perfluoroalkoxy groups having 1 to 5 carbon atoms, and the number of carbon atoms (excluding the number of carbon atoms constituting the carbonyl group).
  • Such groups include acyloxy groups with 1 to 5 carbon atoms (excluding the number of carbon atoms that make up the carbonyl group) in which a portion is fluorinated, perfluoroacyloxy groups with 1 to 5 carbon atoms (excluding the number of carbon atoms that make up the carbonyl group), acyl groups with 0 to 5 carbon atoms (excluding the number of carbon atoms that make up the carbonyl group), acyl groups with 0 to 5 carbon atoms (excluding the number of carbon atoms that make up the carbonyl group) in which a portion is fluorinated, perfluoroacyl groups with 0 to 5 carbon atoms (excluding the number of carbon atoms that make up the carbonyl group), alkylsulfonyl groups with 1 to 5 carbon atoms, alkylsulfonyl groups with 1 to 5 carbon atoms in which a portion is fluorinated, perfluoroalkylsulfonyl groups with 1 to 5 carbon
  • the hydrogen atoms bonded to the carbon atoms constituting the aromatic ring of compound (b1) may or may not be substituted with any substituent other than the substituent ( ⁇ ), but it is preferable that they are not substituted with any substituent other than the substituent ( ⁇ ) so as not to impair the function of the substituent ( ⁇ ) that gives the hydroxy group an appropriate electron density.
  • the aromatic ring of the crosslinking agent is not substituted with any substituent other than a group having a carbon-carbon triple bond, a hydroxy group, and an alkylcarbonyloxy group.
  • compound (b1) a compound represented by general formula (b1) is preferable, and at least one selected from the group consisting of 3-ethynylphenol and 4-ethynylphenol is more preferable.
  • ring A is a monocyclic or polycyclic aromatic ring.
  • the aromatic ring may be a so-called heterocyclic ring composed of not only carbon atoms but also carbon atoms and heteroatoms such as oxygen atoms, sulfur atoms, and nitrogen atoms.
  • the carbon atom of the carbonyl group may also constitute a ring structure.
  • a monocyclic ring is preferred, since it allows the production of molded products with a higher crosslink density and better compression set properties at high temperatures, a monocyclic 5- to 7-membered aromatic ring is more preferred, a benzene ring and a monocyclic 5- to 7-membered aromatic heterocycle (including a 7-membered ring with a tropone structure) are even more preferred, a benzene ring, a furan ring and a thiophene ring are even more preferred, and a benzene ring is particularly preferred.
  • X is a hydroxy group or an alkylcarbonyloxy group, preferably a hydroxy group.
  • R2 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, a phenyl group or a fluorophenyl group, preferably a hydrogen atom or a fluorophenyl group, and more preferably a hydrogen atom.
  • the content of the crosslinking agent is preferably 0.1 to 10 parts by mass, more preferably 0.5 parts by mass or more, even more preferably 0.7 parts by mass or more, more preferably 7 parts by mass or less, and even more preferably 5 parts by mass or less, so that the crosslinking reaction in the crosslinking step proceeds at an appropriate speed and a molded product can be obtained that has sufficient tensile strength, elongation at break, and compression set properties at high temperatures, as well as appropriate hardness.
  • the fluororubber crosslinking composition of the present disclosure contains a dehydrofluorination agent.
  • the use of the dehydrofluorination agent can promote the formation of an intramolecular double bond in the dehydrofluorination reaction of the fluororubber main chain, thereby promoting the crosslinking reaction.
  • Onium compounds are generally used as dehydrofluorination agents. There are no particular limitations on the onium compounds, and examples include ammonium salts such as quaternary ammonium salts, phosphonium salts such as quaternary phosphonium salts, and sulfonium salts, with quaternary ammonium salts and quaternary phosphonium salts being preferred.
  • ammonium salts such as quaternary ammonium salts
  • phosphonium salts such as quaternary phosphonium salts
  • sulfonium salts quaternary ammonium salts and quaternary phosphonium salts being preferred.
  • the quaternary ammonium salt is not particularly limited, and examples thereof include 8-methyl-1,8-diazabicyclo[5,4,0]-7-undecenium chloride, 8-methyl-1,8-diazabicyclo[5,4,0]-7-undecenium iodide, 8-methyl-1,8-diazabicyclo[5,4,0]-7-undecenium hydroxide, and 8-methyl-1,8-diazabicyclo[5,4,0]-7-undecenium methylsulfate.
  • the quaternary phosphonium salt is not particularly limited, and examples thereof include tetrabutylphosphonium chloride, benzyltriphenylphosphonium chloride (hereinafter referred to as BTPPC), benzyltrimethylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl-2-methoxypropylphosphonium chloride, and benzylphenyl(dimethylamino)phosphonium chloride.
  • BTPPC benzyltriphenylphosphonium chloride
  • BTPPC benzyltriphenylphosphonium chloride
  • the content of the dehydrofluorination agent is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, even more preferably 0.1 to 3 parts by mass, and particularly preferably 0.1 to 1.5 parts by mass, per 100 parts by mass of fluororubber, because this allows the crosslinking reaction to proceed at an appropriate speed and allows for the production of even better molded products due to the compression set properties at high temperatures.
  • the fluororubber crosslinking composition of the present disclosure contains an organic peroxide.
  • organic peroxides those which easily generate peroxy radicals in the presence of heat or an oxidation-reduction system are preferred.
  • specific examples include 1,1-bis(t-butylperoxy)-3,5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, ⁇ , ⁇ '-bis(t-butylperoxy)-p-diisopropylbenzene, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, 2,5-dimethyl-2,5-bis(t-butylperoxy)-hexyne-3, benzoyl peroxide, t-butylperoxybenzene, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butylperoxymaleic
  • the content of organic peroxide is preferably 0.05 to 10 parts by mass, more preferably 0.1 part by mass or more, more preferably 5 parts by mass or less, and even more preferably 1 part by mass or less, per 100 parts by mass of fluororubber, since this allows for a molded product with a higher crosslink density and better compression set properties at high temperatures to be obtained.
  • the fluororubber crosslinking composition of the present disclosure may further contain an acid acceptor. By containing an acid acceptor, the crosslinking reaction of the fluororubber crosslinking composition proceeds more smoothly, and the compression set properties at high temperatures are further improved.
  • acid acceptors include metal oxides such as magnesium oxide, calcium oxide, bismuth oxide, and zinc oxide; metal hydroxides such as calcium hydroxide; alkali metal silicates such as hydrotalcite and sodium metasilicate, which are described in JP-T-2011-522921; and metal salts of weak acids such as those described in JP-A-2003-277563.
  • metal salts of weak acids include carbonates, benzoates, oxalates, and phosphites of Ca, Sr, Ba, Na, and K.
  • the acid acceptor at least one selected from the group consisting of metal oxides, metal hydroxides, alkali metal silicates, metal salts of weak acids, and hydrotalcite is preferred, since it allows the production of molded articles with even better compression set properties at high temperatures, and sodium metasilicate hydrate, calcium hydroxide, magnesium oxide, bismuth oxide, and hydrotalcite are more preferred. Furthermore, when the molded article to be obtained requires good water resistance, acid resistance, or resistance to organic acid esters including biodiesel, the acid acceptor is preferably at least one selected from the group consisting of bismuth oxide and hydrotalcite.
  • the content of the acid acceptor is preferably 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass, even more preferably 1 to 30 parts by mass, and particularly preferably 1 to 20 parts by mass, per 100 parts by mass of the fluororubber, since this allows for the production of molded products with better compression set properties at high temperatures.
  • the content of the acid acceptor can be selected according to the application of the resulting molded product.
  • the content of calcium hydroxide can be reduced to 0 to 1.5 parts by mass, and the content of the other acid acceptor can be adjusted to adjust the crosslink density, thereby obtaining a molded product with better compression set properties at high temperatures.
  • the fluororubber crosslinking composition may be blended with various additives as necessary, such as usual additives blended in fluororubber crosslinking compositions, for example, fillers (carbon black, bituminous coal, barium sulfate, diatomaceous earth, calcined clay, talc, wollastonite, carbon nanotubes, etc.), processing aids (waxes, etc.), plasticizers, colorants, stabilizers, tackifiers (coumarone resins, coumarone-indene resins, etc.), release agents, electrical conductivity imparting agents, thermal conductivity imparting agents, surface non-tackifiers, flexibility imparting agents, heat resistance improving agents, flame retardants, foaming agents, and antioxidants described in WO 2012/023485, and may also be blended with one or more usual crosslinking agents and dehydrofluorination agents different from the above.
  • fillers carbon black, bituminous coal, barium sulfate, diatomaceous earth, calcined
  • the preferred carbon blacks are thermal carbon black and furnace carbon black, with MT carbon black, FT carbon black and SRF carbon black being more preferred.
  • carbon black or carbon black with a relatively large particle size such as FT carbon black is blended, molded products with excellent compression set properties are obtained, while when carbon black with a fine particle size is blended, molded products with excellent strength and elongation are obtained.
  • the above properties can be balanced.
  • preferred fillers include barium sulfate and wollastonite.
  • Processing aids are not particularly limited, but may include, for example, aliphatic amines such as stearylamine, fatty acid esters such as stearic acid esters and sebacic acid esters, fatty acid amides such as stearic acid amide, long-chain alkyl alcohols, natural waxes, polyethylene waxes, phosphate esters such as tricresyl phosphate, silicone-based processing aids, etc., and blending two or more types in appropriate amounts as necessary can improve the balance between mold releasability during molding and the physical properties of the molded product.
  • aliphatic amines such as stearylamine
  • fatty acid esters such as stearic acid esters and sebacic acid esters
  • fatty acid amides such as stearic acid amide
  • long-chain alkyl alcohols natural waxes
  • natural waxes polyethylene waxes
  • phosphate esters such as tricresyl phosphate
  • the content of the filler such as carbon black is not particularly limited, but is preferably 0 to 300 parts by mass, more preferably 1 to 150 parts by mass, even more preferably 2 to 100 parts by mass, and particularly preferably 2 to 75 parts by mass, per 100 parts by mass of the fluororubber.
  • the content of processing aids such as wax is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, and particularly preferably 0 to 2 parts by mass, per 100 parts by mass of fluororubber.
  • processing aids, plasticizers, and release agents tends to reduce the mechanical properties and sealing properties of the resulting molded product, so it is necessary to adjust the content of these agents within a range that allows for the desired properties of the resulting molded product.
  • the fluororubber cross-linking composition may contain a dialkyl sulfone compound.
  • a dialkyl sulfone compound By containing a dialkyl sulfone compound, the cross-linking efficiency of the fluororubber cross-linking composition is increased, the cross-linking speed is increased, the compression set property is further improved, and the fluidity of the rubber material is improved.
  • dialkyl sulfone compounds include dimethyl sulfone, diethyl sulfone, dibutyl sulfone, methyl ethyl sulfone, diphenyl sulfone, and sulfolane.
  • the content of the dialkyl sulfone compound is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, and particularly preferably 0 to 3 parts by mass, per 100 parts by mass of the fluororubber.
  • the lower limit of the content of the dialkyl sulfone compound may be, for example, 0.1 parts by mass or more per 100 parts by mass of the fluororubber.
  • the dialkyl sulfone compound and the processing aid may be blended together, as this provides a good balance between the crosslinking rate, the fluidity of the rubber material during molding, the mold releasability during molding, and the mechanical properties of the molded product.
  • the fluororubber crosslinking composition is obtained by kneading the fluororubber (a), the crosslinking agent (b), the dehydrofluorination agent (c), the organic peroxide (d), etc., using a commonly used rubber kneading device.
  • a commonly used rubber kneading device examples include a roll, a kneader, a Banbury mixer, an internal mixer, and a twin-screw extruder.
  • some of the components may be kneaded while melting them at a high temperature of 100 to 200°C using a closed kneading device such as a kneader, and then the remaining components may be kneaded at a relatively low temperature below this temperature.
  • the dispersibility can be further improved by mixing the fluororubber (a), crosslinking agent (b), dehydrofluorination agent (c), organic peroxide (d), etc., leaving the mixture at room temperature for 12 hours or more, and then mixing again.
  • the molded article of the present disclosure can be obtained by crosslinking the fluorororubber crosslinking composition.
  • the molded article of the present disclosure can also be obtained by molding and crosslinking the fluororubber crosslinking composition.
  • the fluororubber crosslinking composition can be molded by a conventionally known method.
  • the molding and crosslinking methods and conditions may be within the range of known methods and conditions for the molding and crosslinking to be adopted.
  • the order of molding and crosslinking is not limited, and molding may be followed by crosslinking, crosslinking may be followed by molding, or molding and crosslinking may be performed simultaneously.
  • molding methods include, but are not limited to, compression molding, casting, injection molding, extrusion molding, and roto-cure molding.
  • crosslinking methods that can be used include steam crosslinking, heat crosslinking, and radiation crosslinking, with steam crosslinking and heat crosslinking being preferred.
  • Specific crosslinking conditions that are not limited to these are usually within a temperature range of 140 to 250°C and a crosslinking time of 1 minute to 24 hours, and can be determined appropriately depending on the types of crosslinking agent (b), dehydrofluorination agent (c), organic peroxide (d), acid acceptor (e), etc.
  • crosslinking conditions which are not limited, are usually in the temperature range of 140 to 300°C, in the range of 30 minutes to 72 hours, and can be appropriately determined depending on the types of crosslinking agent (b), dehydrofluorination agent (c), organic peroxide (d), acid acceptor (e), etc.
  • the composition contains a fluororubber (a), a crosslinking agent (b), a dehydrofluorination agent (c), and an organic peroxide (d),
  • the crosslinking agent (b) is 1) at least one aromatic ring; 2) a group having a carbon-carbon triple bond, and 3)
  • a composition for crosslinking a fluororubber which is at least one selected from the group consisting of a compound (b1) having in the molecule at least one or both of a hydroxy group and an alkylcarbonyloxy group directly bonded to a carbon atom constituting the aromatic ring, an onium salt of the compound (b1), an alkali metal salt of the compound (b1), an alkaline earth metal salt of the compound (b1), and an ester derived from the compound (b1) and a carboxylic acid.
  • a composition for crosslinking a fluororubber according to a first aspect in which a group having a carbon-carbon triple bond is directly bonded to a carbon atom constituting the aromatic ring.
  • the alkylcarbonyloxy group has the general formula: R 1 —C( ⁇ O)—O— (wherein R 1 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a fluorinated alkyl group having 1 to 5 carbon atoms).
  • a composition for crosslinking fluororubber according to any one of the first to third aspects, in which the crosslinking agent (b) is a compound represented by general formula (b1). (wherein ring A is an aromatic ring, X is a hydroxy group or an alkylcarbonyloxy group, and R2 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluorophenyl group).
  • composition for crosslinking fluororubber according to any one of the first to fourth aspects, in which the compound (b1) is at least one selected from the group consisting of 3-ethynylphenol and 4-ethynylphenol.
  • the fluororubber (a) contains vinylidene fluoride units.
  • composition for crosslinking a fluororubber according to any one of the first to sixth aspects, in which the iodine content of the fluororubber (a) is 0.001 to 10 mass %.
  • iodine content of the fluororubber (a) is 0.001 to 10 mass %.
  • the content of the crosslinking agent (b) is 0.1 to 10 parts by mass per 100 parts by mass of the fluororubber (a).
  • a composition for crosslinking a fluororubber according to any one of the first to eighth aspects in which the content of the organic peroxide (d) is 0.05 to 10 parts by mass per 100 parts by mass of the fluororubber (a).
  • the content of the organic peroxide (d) is 0.05 to 10 parts by mass per 100 parts by mass of the fluororubber (a).
  • a composition for crosslinking a fluororubber according to any one of the first to ninth aspects further comprising an acid acceptor (e), the content of the acid acceptor (e) being 0.1 to 50 parts by mass per 100 parts by mass of the fluororubber (a).
  • an acid acceptor (e) the content of the acid acceptor (e) being 0.1 to 50 parts by mass per 100 parts by mass of the fluororubber (a).
  • ⁇ Glass transition temperature (Tg)> A DSC curve was obtained by heating 10 mg of a sample at 20° C./min using a differential scanning calorimeter (DSC822e, manufactured by Mettler Toledo, or X-DSC7000, manufactured by Hitachi High-Tech Science). The glass transition temperature was determined as the temperature indicating the intersection point between an extension of the baseline before and after the secondary transition of the DSC curve and a tangent to the inflection point of the DSC curve.
  • ⁇ Heat of fusion> A differential scanning calorimeter (DSC822e, manufactured by Mettler Toledo, or X-DSC7000, manufactured by Hitachi High-Tech Science) was used to obtain a DSC curve by heating 10 mg of a sample at a rate of 20° C./min, and the heat of fusion was calculated from the magnitude of the melting peak ( ⁇ H) that appeared in the DSC curve.
  • An absorbing solution was prepared by mixing Na2CO3 and K2CO3 in a 1:1 ratio (by weight) and dissolving the resulting mixture in 20 ml of pure water.
  • a mixture was prepared by mixing 12 mg of a sample ( fluororubber ) with 5 mg of Na2SO3 , and burning the mixture in oxygen in a quartz flask, and introducing the generated combustion gas into the absorbing solution.
  • the resulting absorbing solution was left for 30 minutes, and then the concentration of iodine ions in the absorbing solution was measured using a Shimadzu 20A ion chromatograph.
  • the content of iodine ions was determined using a calibration curve prepared using a KI standard solution containing 0.5 ppm iodine ions and a KI standard solution containing 1.0 ppm iodine ions.
  • a test piece in the shape of a dumbbell No. 6 was prepared using a crosslinked sheet having a thickness of 2 mm. Using the obtained test piece and a tensile tester (Tensilon RTG-1310 manufactured by A&D Co., Ltd.), the tensile strength and elongation at break were measured at 23°C under the condition of 500 mm/min in accordance with JIS K6251:2010.
  • Fluorine rubber A Vinylidene fluoride/hexafluoropropylene molar ratio: 78/22 Fluorine content: 66% Mooney viscosity (ML1+10 (100°C)): 60 Glass transition temperature: -18°C Heat of fusion: None observed in the second run Iodine content: 0.17% by mass Fluorine Rubber B Vinylidene fluoride/hexafluoropropylene molar ratio: 78/22 Fluorine content: 66% Mooney viscosity (ML1+10 (100°C)): 70 Glass transition temperature: -18°C Heat of fusion: Not observed in the second run Does not contain iodine atoms
  • Example 1 100 parts by mass of fluororubber A, 20 parts by mass of MT carbon, 4 parts by mass of crosslinking agent A, 0.7 parts by mass of dehydrofluorination agent A, 0.5 parts by mass of organic peroxide A, 6 parts by mass of calcium hydroxide, and 3 parts by mass of magnesium oxide were blended and kneaded on an open roll to prepare a fluororubber crosslinking composition.
  • the maximum torque (MH) and optimal crosslinking time (T90) of the obtained fluororubber crosslinking composition are shown in Table 1.
  • the fluororubber crosslinking composition was crosslinked by primary crosslinking (press crosslinking) under the conditions shown in Table 1 and secondary crosslinking (oven crosslinking) under the conditions shown in Table 1 to obtain a crosslinked sheet (thickness 2 mm) and a small test piece for measuring compression set.
  • the evaluation results of the obtained crosslinked sheet and the results of the compression set test are shown in Table 1.
  • Example 2 A fluororubber crosslinking composition was prepared in the same manner as in Example 1, except that the amount of crosslinking agent A was changed to 2 parts by mass, and a crosslinked sheet (thickness 2 mm) and a small test piece for measuring compression set were obtained. The results are shown in Table 1.
  • Example 3 A fluororubber crosslinking composition was prepared in the same manner as in Example 1, except that the amount of crosslinking agent A was changed to 1 part by mass, and a crosslinked sheet (thickness 2 mm) and a small test piece for measuring compression set were obtained. The results are shown in Table 1.
  • Example 4 A fluororubber crosslinking composition was prepared in the same manner as in Example 1, except that the crosslinking agent A was changed to the crosslinking agent B, and a crosslinked sheet (thickness 2 mm) and a small test piece for measuring compression set were obtained. The results are shown in Table 1.
  • Comparative Example 1 A fluororubber crosslinking composition was prepared in the same manner as in Example 1, except that the crosslinking agent A was changed to the crosslinking agent C, and a crosslinked sheet (thickness 2 mm) and a small test piece for measuring compression set were obtained. The results are shown in Table 1.
  • Comparative Example 2 A fluororubber crosslinking composition was prepared in the same manner as in Comparative Example 1, except that the amount of crosslinking agent C was changed to 2 parts by mass, and a crosslinked sheet (thickness 2 mm) and a small test piece for measuring compression set were obtained. The results are shown in Table 1.
  • Comparative Example 3 A fluororubber crosslinking composition was prepared in the same manner as in Comparative Example 2, except that the crosslinking agent C was changed to the crosslinking agent D, and a crosslinked sheet (thickness 2 mm) and a small test piece for measuring compression set were obtained. The results are shown in Table 1.
  • Comparative Example 4 A fluororubber cross-linking composition was prepared in the same manner as in Example 1, except that no cross-linking agent A was added. The results are shown in Table 1.
  • Example 5 100 parts by mass of fluororubber B, 20 parts by mass of MT carbon, 2 parts by mass of crosslinking agent A, 0.7 parts by mass of dehydrofluorination agent A, 0.5 parts by mass of organic peroxide A, 6 parts by mass of calcium hydroxide, and 3 parts by mass of magnesium oxide were blended and kneaded on an open roll to prepare a fluororubber crosslinking composition.
  • the maximum torque (MH) and optimal crosslinking time (T90) of the obtained fluororubber crosslinking composition are shown in Table 2.
  • the fluororubber crosslinking composition was crosslinked by primary crosslinking (press crosslinking) under the conditions shown in Table 2 and secondary crosslinking (oven crosslinking) under the conditions shown in Table 2 to obtain a crosslinked sheet (thickness 2 mm) and a small test piece for measuring compression set.
  • the evaluation results of the obtained crosslinked sheet and the results of the compression set test are shown in Table 2.
  • Example 6 A fluororubber crosslinking composition was prepared in the same manner as in Example 5, except that the amount of crosslinking agent A was changed to 1 part by mass, and a crosslinked sheet (thickness 2 mm) and a small test piece for measuring compression set were obtained. The results are shown in Table 2.
  • Comparative Example 5 A fluororubber crosslinking composition was prepared in the same manner as in Example 5, except that 2 parts by mass of the crosslinking agent A was changed to 4 parts by mass of the crosslinking agent D, and a crosslinked sheet (thickness 2 mm) and a small test piece for measuring compression set were obtained. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

フッ素ゴム(a)、架橋剤(b)、脱フッ化水素剤(c)、および、有機パーオキサイド(d)を含有し、架橋剤(b)が、1)少なくとも1つの芳香族環、2)炭素-炭素三重結合を有する基、および、3)前記芳香族環を構成する炭素原子に直接結合したヒドロキシ基およびアルキルカルボニルオキシ基の少なくとも一方または両方を分子内に有する化合物(b1)、化合物(b1)のオニウム塩、化合物(b1)のアルカリ金属塩、化合物(b1)のアルカリ土類金属塩、ならびに、化合物(b1)とカルボン酸とから誘導されるエステルからなる群より選択される少なくとも1種であるフッ素ゴム架橋用組成物を提供する。

Description

フッ素ゴム架橋用組成物および成形品
 本開示は、フッ素ゴム架橋用組成物および成形品に関する。
 特許文献1には、グラフト化可能なフルオロエラストマー組成物であって、求核性末端基を実質的に含まないポリヒドロキシ硬化性フルオロエラストマー;モノフェノールグラフト化剤;促進剤;および酸受容体を含み、135℃でML(1+18)のムーニー粘度が160未満であることを特徴とする組成物が記載されている。
 特許文献2には、(i)炭素-炭素二重結合を含む、又は部分フッ素化された非晶性フルオロポリマー鎖内で炭素-炭素二重結合を形成し得る、部分フッ素化された非晶性フルオロポリマーであって、臭素、ヨウ素、及びニトリルを実質的に含まない、部分フッ素化された非晶性フルオロポリマー;及び(ii)少なくとも1個のオレフィン系水素を有する末端オレフィンを含む硬化剤、を含む、硬化性部分フッ素化ポリマー組成物が記載されている。
特表2008-502789号公報 特表2017-538023号公報
 本開示では、架橋密度が高く、高温での圧縮永久歪み特性に優れる成形品を得ることができるフッ素ゴム架橋用組成物を提供することを目的とする。
 本開示によれば、フッ素ゴム(a)、架橋剤(b)、脱フッ化水素剤(c)、および、有機パーオキサイド(d)を含有し、架橋剤(b)が、1)少なくとも1つの芳香族環、2)炭素-炭素三重結合を有する基、および、3)前記芳香族環を構成する炭素原子に直接結合したヒドロキシ基およびアルキルカルボニルオキシ基の少なくとも一方または両方を分子内に有する化合物(b1)、化合物(b1)のオニウム塩、化合物(b1)のアルカリ金属塩、化合物(b1)のアルカリ土類金属塩、ならびに、化合物(b1)とカルボン酸とから誘導されるエステルからなる群より選択される少なくとも1種であるフッ素ゴム架橋用組成物が提供される。
 本開示によれば、架橋密度が高く、高温での圧縮永久歪み特性に優れる成形品を得ることができるフッ素ゴム架橋用組成物を提供することができる。
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
 本開示のフッ素ゴム架橋用組成物は、フッ素ゴム(a)、架橋剤(b)、脱フッ化水素剤(c)、および、有機パーオキサイド(d)を含有する。
 特許文献2では、硬化性部分フッ素化ポリマー組成物に、少なくとも1個のオレフィン系水素を有する末端オレフィンを含む硬化剤を配合することが提案されている。
 これに対し、本開示のフッ素ゴム架橋用組成物においては、炭素-炭素三重結合を有する基を分子内に有しており、なおかつ、ヒドロキシ基またはアルキルカルボニルオキシ基が結合した芳香族環を有する化合物を、フッ素ゴムの架橋剤として用いる。このような新規な架橋剤を用いることによって、高い架橋密度でフッ素ゴムを架橋させることができ、しかも、高温での圧縮永久歪み特性に優れる成形品を得ることができる。
 以下、本開示のフッ素ゴム架橋用組成物の各成分について、説明する。
(a)フッ素ゴム
 本開示のフッ素ゴム架橋用組成物は、フッ素ゴムを含有する。本開示において、フッ素ゴムとは、非晶質フルオロポリマーである。「非晶質」とは、フルオロポリマーの示差走査熱量測定〔DSC〕(昇温速度10℃/分)あるいは示差熱分析〔DTA〕(昇温速度10℃/分)において現われた融解ピーク(ΔH)の大きさが4.5J/g以下であることをいう。フッ素ゴムは、架橋することにより、エラストマー特性を示す。エラストマー特性とは、ポリマーを延伸することができ、ポリマーを延伸するのに必要とされる力がもはや適用されなくなったときに、その元の長さを保持できる特性を意味する。
 フッ素ゴムは、部分フッ素化ゴムであってもよいし、パーフルオロゴムであってもよいが、好ましくは部分フッ素化ゴムである。部分フッ素化ゴムとは、フルオロモノマー単位を含み、全重合単位に対するパーフルオロモノマー単位の含有量が90モル%未満のフルオロポリマーであって、20℃以下のガラス転移温度を有し、4.5J/g以下の融解ピーク(ΔH)の大きさを有するフルオロポリマーである。
 パーフルオロモノマーとは、分子中に炭素原子-水素原子結合を含まないモノマーである。上記パーフルオロモノマーは、炭素原子及びフッ素原子の他、炭素原子に結合しているフッ素原子のいくつかが塩素原子で置換されたモノマーであってもよく、炭素原子の他、窒素原子、酸素原子、硫黄原子、燐原子、硼素原子又は珪素原子を有するものであってもよい。上記パーフルオロモノマーとしては、全ての水素原子がフッ素原子に置換されたモノマーであることが好ましい。上記パーフルオロモノマーには、架橋部位を与えるモノマーは含まれない。
 架橋部位を与えるモノマーとは、架橋剤により架橋を形成するための架橋部位をフルオロポリマーに与える架橋性基を有するモノマー(キュアサイトモノマー)である。
 本開示で用いるフッ素ゴムとしては、特に限定されず、パーオキサイド架橋可能なフッ素ゴムとして知られているフッ素ゴム、ポリオール架橋可能なフッ素ゴムとして知られているフッ素ゴムなどが挙げられる。また、特表2018-514627号公報に記載のピリジニウム型塩を用いた架橋が可能なフッ素ゴムであってもよい。
 パーオキサイド架橋可能なフッ素ゴムは、パーオキサイド架橋可能な部位を有するフッ素ゴムである。パーオキサイド架橋可能な部位としては特に限定されず、例えば、フッ素ゴムが有するヨウ素原子、臭素原子、CN基;フッ素ゴムの主鎖または側鎖に存在する炭素-炭素間の不飽和結合;などが挙げられる。本開示においては、フッ素ゴムとしてパーオキサイド架橋可能なフッ素ゴムを用い得るが、このことは、本開示のフッ素ゴム架橋用組成物の架橋反応が、従来公知のパーオキサイド架橋可能なフッ素ゴムの架橋反応と同様に進行することを意味するものではない。
 ポリオール架橋可能なフッ素ゴムは、ポリオール架橋可能な部位を有するフッ素ゴムである。ポリオール架橋可能なフッ素ゴムとしては、ポリオール架橋可能な部分フッ素化ゴムが好ましい。ポリオール架橋可能なフッ素ゴムとしては、特に限定されず、ビニリデンフルオライド(VdF)系フッ素ゴムが挙げられる。本開示においては、フッ素ゴムとしてポリオール架橋可能なフッ素ゴムを用い得るが、このことは、本開示のフッ素ゴム架橋用組成物の架橋反応が、従来公知のポリオール架橋可能なフッ素ゴムの架橋反応と同様に進行することを意味するものではない。
 ポリオール架橋可能な部位を有するフッ素ゴムとしては、VdF系フッ素ゴム、側鎖および/または主鎖にポリオール架橋可能な官能部位を有するゴムなどがあげられる。
 本開示で用いるフッ素ゴムとしては、ビニリデンフルオライド(VdF)単位を含むフッ素ゴム(VdF系フッ素ゴム)が好ましい。
 VdF系フッ素ゴムとしては、テトラフルオロエチレン(TFE)/プロピレン/VdF系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)/VdF系フッ素ゴム、VdF/HFP系フッ素ゴム、VdF/TFE/HFP系フッ素ゴムなどがあげられる。これらポリオール架橋可能な部位を有するフッ素ゴムをそれぞれ単独で、または本開示の効果を損なわない範囲で任意に組み合わせて用いることができる。
 これらのなかでも、フッ素ゴムとしては、VdFと他の少なくとも1種のフッ素含有モノマーからなるフッ素ゴムであることが好ましく、特にVdF/HFP系フッ素ゴム、VdF/TFE/HFP系フッ素ゴム、および、VdF/TFE/PAVE系フッ素ゴムからなる群から選ばれる少なくとも1種のゴムであることが好ましく、VdF/HFP系フッ素ゴム、および、VdF/TFE/HFP系フッ素ゴムからなる群から選ばれる少なくとも1種のゴムであることがより好ましい。
 フッ素ゴムは、100℃におけるムーニー粘度(ML1+10(100℃))が、2以上であることが好ましく、10以上であることがより好ましく、20以上であることがさらに好ましく、30以上であることが特に好ましい。また、200以下であることが好ましく、150以下であることがより好ましく、120以下であることがさらに好ましく、100以下であることが特に好ましい。ムーニー粘度は、ASTM D1646-15およびJIS K6300-1:2013に準拠して測定する。
 フッ素ゴムは、フッ素含有率が50~75質量%であることが好ましい。より好ましくは60~73質量%であり、さらに好ましくは63~72質量%である。フッ素含有率は、フッ素ゴムを構成する単量体単位の組成比から計算により求められる。
 フッ素ゴムは、ガラス転移温度が-50~0℃であることが好ましい。ガラス転移温度は、示差走査熱量計を用い、試料10mgを20℃/minで昇温することによりDSC曲線を得て、DSC曲線の二次転移前後のベースラインの延長線と、DSC曲線の変曲点における接線との交点を示す温度をガラス転移温度として求めることができる。
 フッ素ゴムは、ヨウ素原子および臭素原子の少なくとも一方を有していてもよく、ヨウ素原子を有していてもよい。フッ素ゴムは、架橋密度が一層高く、高温での圧縮永久歪み特性に一層優れる成形品を得ることができることから、ヨウ素原子および臭素原子の少なくとも一方を有することが好ましく、ヨウ素原子を有することがより好ましい。フッ素ゴムのヨウ素原子および臭素原子の含有量の合計は、好ましくは0.001~10質量%であり、より好ましくは5.0質量%以下であり、さらに好ましくは1.0質量%以下であり、特に好ましくは0.7質量%以下であり、最も好ましくは0.5質量%以下であり、より好ましくは0.01質量%以上であり、さらに好ましくは0.05質量%以上であり、特に好ましくは0.08質量%以上であり、最も好ましくは0.10質量%以上である。フッ素ゴムにおけるヨウ素原子および臭素原子の結合位置は、フッ素ゴムの主鎖の末端でも側鎖の末端でもよく、もちろん両者であってもよい。
 ヨウ素含有量は、次の方法により測定できる。NaCOとKCOとを1対1(重量比)で混合し、得られた混合物を純水20mlに溶解することにより、吸収液を調製し、試料(含フッ素ポリマー)12mgにNaSOを5mg混ぜて混合物を調製し、石英製のフラスコ中、酸素中で燃焼させ、発生した燃焼ガスを吸収液に導入し、得られた吸収液を30分間放置した後、吸収液中のヨウ素イオンの濃度を、島津20Aイオンクロマトグラフを用い測定し、ヨウ素イオン0.5ppmを含むKI標準溶液および1.0ppmを含むKI標準溶液を用いて作成した検量線を用いて、測定値からヨウ素イオンの含有量を決定することができる。
 ヨウ素原子および臭素原子の少なくとも一方を有するフッ素ゴムは、たとえば、ヨウ素または臭素含有単量体を重合する方法、重合開始剤または連鎖移動剤として臭素化合物またはヨウ素化合物を用いて重合する方法、などによって製造することができる。
 連鎖移動剤として臭素化合物またはヨウ素化合物を用いて重合する方法としては、たとえば、実質的に無酸素状態で、臭素化合物またはヨウ素化合物の存在下に、加圧しながら水媒体中で乳化重合を行う方法があげられる(ヨウ素移動重合法)。使用する臭素化合物またはヨウ素化合物の代表例としては、たとえば、
一般式:RBr
(式中、xおよびyはそれぞれ0~2の整数であり、かつ1≦x+y≦2を満たすものであり、Rは炭素数1~16の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基、または、炭素数1~3の炭化水素基であり、酸素原子を含んでいてもよい)で表される化合物があげられる。
 臭素化合物およびヨウ素化合物としては、たとえば1,3-ジヨードパーフルオロプロパン、2-ヨードパーフルオロプロパン、1,3-ジヨード-2-クロロパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,5-ジヨード-2,4-ジクロロパーフルオロペンタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン、1,12-ジヨードパーフルオロドデカン、1,16-ジヨードパーフルオロヘキサデカン、ジヨードメタン、1,2-ジヨードエタン、1,3-ジヨード-n-プロパン、CFBr、BrCFCFBr、CFCFBrCFBr、CFClBr、BrCFCFClBr、CFBrClCFClBr、BrCFCFCFBr、BrCFCFBrOCF、1-ブロモ-2-ヨードパーフルオロエタン、1-ブロモ-3-ヨードパーフルオロプロパン、1-ブロモ-4-ヨードパーフルオロブタン、2-ブロモ-3-ヨードパーフルオロブタン、3-ブロモ-4-ヨードパーフルオロブテン-1、2-ブロモ-4-ヨードパーフルオロブテン-1、ベンゼンのモノヨードモノブロモ置換体、ジヨードモノブロモ置換体、ならびに(2-ヨードエチル)および(2-ブロモエチル)置換体などがあげられ、これらの化合物は、単独で使用してもよく、相互に組み合わせて使用することもできる。
 これらのなかでも、重合反応性、架橋反応性、入手容易性などの点から、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン、2-ヨードパーフルオロプロパンを用いるのが好ましい。
 以上説明したフッ素ゴムは、常法により製造することができる。
(b)架橋剤
 本開示のフッ素ゴム架橋用組成物は、架橋剤を含有する。本開示のフッ素ゴム架橋用組成物においては、架橋剤として、
   1)少なくとも1つの芳香族環、
   2)炭素-炭素三重結合を有する基、および、
   3)前記芳香族環を構成する炭素原子に直接結合したヒドロキシ基およびアルキルカルボニルオキシ基の少なくとも一方または両方
を分子内に有する化合物(b1)、化合物(b1)のオニウム塩、化合物(b1)のアルカリ金属塩、化合物(b1)のアルカリ土類金属塩、ならびに、化合物(b1)とカルボン酸とから誘導されるエステルからなる群より選択される少なくとも1種を用いる。
 芳香族環は、単環または多環のいずれであってもよい。芳香族環は、炭素原子だけではなく、炭素原子と酸素原子、硫黄原子および窒素原子などのヘテロ原子とにより構成されるいわゆる複素環であってよい。芳香族環において、カルボニル基の炭素原子が環構造を構成していてもよい。
 単環の芳香族環としては、単環の5~7員環の芳香族環が挙げられ、具体的にはベンゼン環、単環の5~7員環の芳香族複素環(トロポン構造の7員環を含む)が好ましく、ベンゼン環、フラン環およびチオフェン環がより好ましく、ベンゼン環がさらに好ましい。
 多環の芳香族環が有する芳香族環の数は、2以上であり、好ましくは2~8であり、より好ましくは2~4であり、さらに好ましくは2または3であり、特に好ましくは2である。
 多環の芳香族環としては、多環式芳香族炭化水素環または多環式芳香族複素環が好ましく、多環式芳香族炭化水素環がより好ましい。多環式芳香族炭化水素環は、2つの環が結合を介して連結した多環、縮合環またはスピロ環であってよい。
 多環式芳香族炭化水素環の炭素数は、好ましくは3~30であり、より好ましくは5以上であり、さらに好ましくは6以上であり、より好ましくは20以下であり、さらに好ましくは14以下である。
 多環式芳香族炭化水素環の環数は、好ましくは2~4であり、より好ましくは2または3であり、さらに好ましくは2である。
 多環式芳香族炭化水素環としては、
ビフェニル環、ジフェニルメタン環、ジフェニルエーテル環、ジフェニルスルホン環、ジフェニルケトン環などの2つの環が結合を介して連結した多環式芳香族炭化水素環;
ナフタレン環、フェナントレン環、アントラセン環、フルオレン環、テトラセン環、クリセン環、ピレン環、ペンタセン環、ベンゾピレン環、トリフェニレン環、アズレン環などの縮合多環式炭化水素環;
などが挙げられる。
 多環式芳香族炭化水素環としては、なかでも、ナフタレン環またはビフェニル環が好ましい。
 多環式芳香族複素環においては、カルボニル基が芳香族環の一部を構成していてもよい。多環式芳香族複素環には、炭素原子およびカルボニル基の酸素原子のみで構成されている環も含まれる。
 多環式芳香族複素環としては、炭素原子と炭素原子以外の原子により形成される環が好ましい。炭素原子以外の原子としては、窒素原子、酸素原子または硫黄原子が好ましく、酸素原子または硫黄原子がより好ましい。すなわち、複素環としては、含窒素複素環、含酸素複素環または含硫黄複素環が好ましく、含酸素複素環または含硫黄複素環がより好ましい。環中の炭素原子以外の原子の数は、好ましくは1~3である。
 多環式芳香族複素環の環数は、好ましくは2~4であり、より好ましくは2または3であり、さらに好ましくは2である。
 多環式芳香族複素環としては、含酸素多環式芳香族複素環が好ましく、たとえば、キサンテン環、1-ベンゾピラン環、2-ベンゾピラン環、1-ベンゾフラン環、2-ベンゾフラン環などが挙げられる。
 芳香族環として、架橋密度が一層高く、高温での圧縮永久歪み特性に一層優れる成形品を得ることができることから、好ましくはベンゼン環、ナフタレン環またはビフェニル環であり、より好ましくはベンゼン環である。
 化合物(b1)は、芳香族環とともに、炭素-炭素三重結合を有する基を有する。炭素-炭素三重結合を有する基には、エチニル基の他、プロパルギル基などの炭素-炭素三重結合を構造の一部に含む基が含まれる。炭素-炭素三重結合を有する基の数は、好ましくは1以上であり、より好ましくは1または2であり、さらに好ましくは1である。
 炭素-炭素三重結合を有する基は、芳香族環を構成する炭素原子に直接結合していてもよいし、芳香族環を構成する炭素原子に他の結合を介して結合していてもよい。炭素-炭素三重結合を有する基は、架橋密度が一層高く、高温での圧縮永久歪み特性に一層優れる成形品を得ることができることから、芳香族環を構成する炭素原子に直接結合していることが好ましい。
 炭素-炭素三重結合を有する基としては、架橋密度が一層高く、高温での圧縮永久歪み特性に一層優れる成形品を得ることができることから、一般式:
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、水素原子、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、フェニル基またはフルオロフェニル基である)示される基が好ましい。
 Rとしては、水素原子またはフルオロフェニル基が好ましく、水素原子がより好ましい。すなわち、炭素-炭素三重結合を有する基としては、エチニル基がより好ましい。
 化合物(b1)は、芳香族環を構成する炭素原子に直接結合したヒドロキシ基およびアルキルカルボニルオキシ基の少なくとも一方または両方を分子内にさらに有している。
 アルキルカルボニルオキシ基としては、架橋密度が一層高く、高温での圧縮永久歪み特性に一層優れる成形品を得ることができることから、一般式:
   R-C(=O)-O-
(式中、Rは、水素原子、炭素数1~5のアルキル基または炭素数1~5のフッ素化アルキル基である)で示される基が好ましい。アルキル基およびフッ素化アルキル基の炭素数は、好ましくは1~3であり、より好ましくは1である。Rとして、好ましくはメチル基である。
 化合物(b1)が有するヒドロキシ基およびアルキルカルボニルオキシ基の合計数は、好ましくは1以上であり、好ましくは3以下であり、より好ましくは2以下である。一実施形態において、化合物(b1)は、芳香族環を構成する炭素原子に直接結合した1つのヒドロキシ基を分子内に有している。
 芳香族環を構成する炭素原子に結合する水素原子は、炭素-炭素三重結合を有する基、ヒドロキシ基を含有する置換基およびアルキルカルボニルオキシ基以外の置換基により置換されていてもよい。このような置換基としては、Hammettの置換基定数σmおよびσpの少なくとも一方の値が、0.03以上である置換基(γ)(ただしヒドロキシ基を含有する置換基およびアルキルカルボニルオキシ基を除く)が好ましい。置換基(γ)が芳香族環を構成する炭素原子に直接結合することによって、芳香族環を構成する炭素原子に直接結合するヒドロキシ基またはアルキルカルボニルオキシ基の電子密度を適切に調整して、フッ素ゴム架橋用組成物から得られる成形品の特性を向上させることができる。
 置換基(γ)には、ヒドロキシ基を含有する置換基およびアルキルカルボニルオキシ基は含まれない。ヒドロキシ基を含有する置換基には、ヒドロキシ基、および、ヒドロキシ基をその構造の一部として有する基が含まれる。
 置換基(γ)の数は、好ましくは0~4であり、より好ましくは0~2であり、さらに好ましくは0または1である。
 置換基(γ)は、一価の置換基であって、Hammettの置換基定数σmおよびσpの少なくとも一方の値が、0.03以上の範囲内にある置換基である。
 置換基(γ)の置換基定数σmおよびσpの少なくとも一方の値は、0.03以上であり、好ましくは0.05以上であり、より好ましくは0.10以上であり、好ましくは1.40以下であり、より好ましくは1.00以下であり、さらに好ましくは0.80以下である。
 一実施形態において、置換基(γ)の置換基定数σmの値が、0.03以上であり、好ましくは0.05以上であり、より好ましくは0.10以上であり、好ましくは1.40以下であり、より好ましくは1.00以下であり、さらに好ましくは0.80以下である。
 一実施形態において、置換基(γ)の置換基定数σpの値が、0.03以上であり、好ましくは0.05以上であり、より好ましくは0.10以上であり、好ましくは1.40以下であり、より好ましくは1.00以下であり、さらに好ましくは0.80以下である。
 Hammett則は、ベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために1935年L.P.Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。Hammett則に求められた置換基定数にはσp値とσm値があり、これらの値は多くの一般的な成書に見出すことができるが、本発明においては、Chem.Rev.,1991年,91巻,165~195ページのうち「TABLE1 Hammett and Modified Swain-Lupton Constants」に記載された値を採用する。なお、上記文献に記載されていない置換基については、文献「The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives」(J.Am.Chem.Soc.1937, 59, 1, 96-103)に記載された計算方法に従って算出された値を採用する。
 化合物(b1)には、ベンゼン誘導体ではない物も含まれるが、置換基の電子効果を示す尺度として、置換位置に関係なくσm値およびσp値を使用する。本開示においては、σm値およびσp値をこのような意味で使用する。
 置換基(γ)として、具体的には、一部がフッ素化された炭素数1~5のアルキル基、炭素数1~5のパーフルオロアルキル基、フッ素原子、塩素原子、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)1~5のアルコキシカルボニル基、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)1~5の一部がフッ素化されたアルコキシカルボニル基、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)1~5のパーフルオロアルコキシカルボニル基、炭素数1~5のアルコキシ基、炭素数1~5の一部がフッ素化されたアルコキシ基、炭素数1~5のパーフルオロアルキコキシ基、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)1~5の一部がフッ素化されたアシルオキシ基、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)1~5のパーフルオロアシルオキシ基、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)0~5のアシル基、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)0~5の一部がフッ素化されたアシル基、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)0~5のパーフルオロアシル基、炭素数1~5のアルキルスルホニル基、炭素数1~5の一部がフッ素化されたアルキルスルホニル基、炭素数1~5のパーフルオロアルキルスルホニル基、トリメトキシシリル基などが挙げられる。
 置換基(γ)としては、炭素数1~5の一部がフッ素化されたアルキル基、炭素数1~5のパーフルオロアルキル基、フッ素原子、塩素原子、炭素数1~5のアルコキシ基、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)0~5のアルコキシカルボニル基、および、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)0~5のアシル基からなる群より選択される少なくとも1種が好ましく、炭素数1~5のパーフルオロアルキル基、フッ素原子、塩素原子、炭素数1~5のアルコキシ基、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)0~5のアルコキシカルボニル基、および、炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)0~5のアシル基からなる群より選択される少なくとも1種であることがより好ましく、炭素数1~5のパーフルオロアルキル基、フッ素原子、塩素原子および炭素数(ただし、カルボニル基を構成する炭素原子の数を除く)0~5のアシル基からなる群より選択される少なくとも1種がさらに好ましく、塩素原子、フッ素原子、アセチル基、メトキシカルボニル基およびメトキシ基からなる群より選択される少なくとも1種が尚さらに好ましく、アセチル基およびメトキシカルボニル基からなる群より選択される少なくとも1種が特に好ましい。
 化合物(b1)が有する芳香族環を構成する炭素原子に結合する水素原子は、置換基(γ)以外の任意の置換基により置換されていてもよいし、置換されていなくてもよいが、ヒドロキシ基を適切な電子密度にする置換基(γ)の作用を損なわないように、置換基(γ)以外の置換基により置換されていないことが好ましい。また、一実施形態においては、架橋剤が有する芳香族環は、炭素-炭素三重結合を有する基、ヒドロキシ基およびアルキルカルボニルオキシ基以外の如何なる置換基によっても置換されていない。
 化合物(b1)としては、一般式(b1)で示される化合物が好ましく、3-エチニルフェノールおよび4-エチニルフェノールからなる群より選択される少なくとも1種がより好ましい。
一般式(b1):
Figure JPOXMLDOC01-appb-C000003
(式中、環Aは芳香族環、Xはヒドロキシ基またはアルキルカルボニルオキシ基、Rは、水素原子、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、フェニル基またはフルオロフェニル基である)
 一般式(b1)において、環Aは、単環または多環の芳香族環である。芳香族環は、炭素原子だけではなく、炭素原子と酸素原子、硫黄原子および窒素原子などのヘテロ原子とにより構成されるいわゆる複素環であってよい。またカルボニル基の炭素原子が環構造を構成していてもよい。
 環Aとしては、架橋密度が一層高く、高温での圧縮永久歪み特性に一層優れる成形品を得ることができることから、単環が好ましく、単環の5~7員環の芳香族環がより好ましく、ベンゼン環、単環の5~7員環の芳香族複素環(トロポン構造の7員環を含む)がさらに好ましく、ベンゼン環、フラン環およびチオフェン環が尚さらに好ましく、ベンゼン環が特に好ましい。
 一般式(b1)において、Xはヒドロキシ基またはアルキルカルボニルオキシ基であり、好ましくはヒドロキシ基である。
 一般式(b1)において、Rは、水素原子、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、フェニル基またはフルオロフェニル基であり、好ましくは水素原子またはフルオロフェニル基であり、より好ましくは水素原子である。
 架橋剤の含有量としては、架橋工程における架橋反応が適切な速度で進行することおよび十分な引張強さ、切断時伸びおよび高温での圧縮永久歪み特性、適度な硬さを有する成形品を得ることができることから、好ましくは0.1~10質量部であり、より好ましくは0.5質量部以上であり、さらに好ましくは0.7質量部以上であり、より好ましくは7質量部以下であり、さらに好ましくは5質量部以下である。
(c)脱フッ化水素剤
 本開示のフッ素ゴム架橋用組成物は、脱フッ化水素剤を含有する。脱フッ化水素剤を用いると、フッ素ゴム主鎖の脱フッ酸反応における分子内二重結合の形成を促進することにより架橋反応を促進することができる。
 脱フッ化水素剤としては、一般にオニウム化合物が用いられる。オニウム化合物としては特に限定されず、たとえば、第4級アンモニウム塩等のアンモニウム塩、第4級ホスホニウム塩等のホスホニウム塩、スルホニウム塩などがあげられ、これらの中でも第4級アンモニウム塩、第4級ホスホニウム塩が好ましい。
 第4級アンモニウム塩としては特に限定されず、たとえば、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムアイオダイド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムメチルスルフェート、8-エチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムブロミド、8-プロピル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムブロミド、8-ドデシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-ドデシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-エイコシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-テトラコシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-ベンジル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド(以下、DBU-Bとする)、8-ベンジル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-フェネチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-(3-フェニルプロピル)-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、ベンジルジメチルオクタデシルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムクロリド、ベンジルトリブチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド、テトラブチルアンモニウム硫酸水素塩、テトラブチルアンモニウムヒドロキシドなどがあげられる。これらの中でも、架橋性、架橋物の物性の点から、DBU-Bまたはベンジルジメチルオクタデシルアンモニウムクロリドが好ましい。
 また、第4級ホスホニウム塩としては特に限定されず、たとえば、テトラブチルホスホニウムクロリド、ベンジルトリフェニルホスホニウムクロリド(以下、BTPPCとする)、ベンジルトリメチルホスホニウムクロリド、ベンジルトリブチルホスホニウムクロリド、トリブチルアリルホスホニウムクロリド、トリブチル-2-メトキシプロピルホスホニウムクロリド、ベンジルフェニル(ジメチルアミノ)ホスホニウムクロリドなどをあげることができ、これらの中でも、架橋性、架橋物の物性の点から、ベンジルトリフェニルホスホニウムクロリド(BTPPC)が好ましい。
 脱フッ化水素剤の含有量としては、架橋反応が適切な速度であることおよび高温での圧縮永久歪み特性により一層優れた成形品を得ることができることから、フッ素ゴム100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは0.1~5質量部であり、さらに好ましくは0.1~3質量部であり、特に好ましくは0.1~1.5質量部である。
(d)有機パーオキサイド
 本開示のフッ素ゴム架橋用組成物は、有機パーオキサイドを含有する。
 有機パーオキサイドとしては、熱や酸化還元系の存在で容易にパーオキシラジカルを発生するものが好ましい。具体的には、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)-ヘキシン-3、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)へキサン、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシベンゾエイトなどをあげることができる。これらの中でも、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)-ヘキシン-3が好ましい。
 有機パーオキサイドの含有量は、架橋密度が一層高く、高温での圧縮永久歪み特性に一層優れる成形品を得ることができることから、フッ素ゴム100質量部に対して、好ましくは0.05~10質量部であり、より好ましくは0.1質量部以上であり、より好ましくは5質量部以下であり、さらに好ましくは1質量部以下である。
(e)受酸剤
 本開示のフッ素ゴム架橋用組成物は、受酸剤をさらに含有してもよい。受酸剤を含有することにより、フッ素ゴム架橋用組成物の架橋反応が一層円滑に進行し、高温での圧縮永久歪み特性が一層向上する。
 受酸剤としては、たとえば、酸化マグネシウム、酸化カルシウム、酸化ビスマス、酸化亜鉛等の金属酸化物、水酸化カルシウム等の金属水酸化物、ハイドロタルサイト、メタケイ酸ナトリウム等の特表2011-522921号公報に記載されたアルカリ金属ケイ酸塩、特開2003-277563号公報に記載された弱酸の金属塩等が挙げられる。弱酸の金属塩としては、Ca、Sr、Ba、Na、Kの炭酸塩、安息香酸塩、蓚酸塩、亜リン酸塩などが挙げられる。
 受酸剤としては、高温での圧縮永久歪み特性により一層優れた成形品を得ることができることから、金属酸化物、金属水酸化物、アルカリ金属ケイ酸塩、弱酸の金属塩およびハイドロタルサイトからなる群より選択される少なくとも1種が好ましく、メタケイ酸ナトリウムの水和物、水酸化カルシウム、酸化マグネシウム、酸化ビスマス、ハイドロタルサイトがより好ましい。また、得られる成形品に、良好な耐水性、耐酸性またはバイオディーゼルを含む耐有機酸エステル性が必要とされる場合には、受酸剤としては、酸化ビスマスおよびハイドロタルサイトからなる群より選択される少なくとも1種が好ましい。
 フッ素ゴム架橋用組成物において、受酸剤の含有量としては、高温での圧縮永久歪み特性により一層優れた成形品を得ることができることから、フッ素ゴム100質量部に対して、好ましくは0.1~100質量部であり、より好ましくは1~50質量部であり、さらに好ましく1~30質量部であり、特に好ましくは1~20質量部である。
 受酸剤の含有量が多くなると、得られる成形品の耐水性、耐酸性およびバイオディーゼルを含む耐有機酸エステル性が低下する傾向にあり、一方、受酸剤の含有量が少なくなると架橋速度が低下し、架橋密度の低下により機械物性が低下する傾向にある。そのため、得られる成形品の用途に応じて、受酸剤の含有量を選択することができる。また、水酸化カルシウム以外の受酸剤を含有する場合、水酸化カルシウムの含有量を0~1.5質量部などに減量したうえで、他方の受酸剤の含有量を調整して架橋密度を調整することにより、高温での圧縮永久歪み特性が一層良好な成形品を得ることができる。
(f)その他の成分
 フッ素ゴム架橋用組成物は、必要に応じてフッ素ゴム架橋用組成物に配合される通常の添加物、たとえば充填剤(カーボンブラック、瀝青炭、硫酸バリウム、珪藻土、焼成クレー、タルク、ウォラストナイト、カーボンナノチューブ等)、加工助剤(ワックス等)、可塑剤、着色剤、安定剤、粘着性付与剤(クマロン樹脂、クマロン・インデン樹脂等)、離型剤、導電性付与剤、熱伝導性付与剤、表面非粘着剤、柔軟性付与剤、耐熱性改善剤、難燃剤、発泡剤、国際公開第2012/023485号に記載の酸化防止剤などの各種添加剤を配合することができ、前記のものとは異なる常用の架橋剤、脱フッ化水素剤を1種またはそれ以上配合してもよい。
 このうちカーボンブラックとしては、サーマルカーボンブラック、ファーネスカーボンブラックが好ましく、MTカーボンブラック、FTカーボンブラック、SRFカーボンブラックがより好ましい。カーボンブラック、またはFTカーボンブラックなどの比較的粒径の大きいカーボンブラックを配合すると圧縮永久歪み特性に優れた成形品が得られ、細かい粒径のカーボンブラックを配合すると強度や伸びに優れた成形品が得られる。異なるグレードを併用して配合することにより、上記特性のバランスをとることができる。
 カーボンブラック以外の充填剤としては、硫酸バリウム、ウォラストナイトが好ましい。
 加工助剤としては、特に限定されないが、例えばステアリルアミンなどの脂肪族アミン、ステアリン酸エステルやセバシン酸エステルのような脂肪酸エステル、ステアリン酸アミドのような脂肪酸アミド、長鎖アルキルアルコール、天然ワックス、ポリエチレンワックス、リン酸トリクレジルなどのリン酸エステル、シリコーン系加工助剤などを配合してもよく、必要に応じて2種以上を適切な量で配合すると成形時の金型離型性と成形品の物性のバランスがよくなることがある。
 カーボンブラックなどの充填剤の含有量としては、特に限定されるものではないが、フッ素ゴム100質量部に対して0~300質量部であることが好ましく、1~150質量部であることがより好ましく、2~100質量部であることが更に好ましく、2~75質量部であることが特に好ましい。
 ワックス等の加工助剤の含有量としては、フッ素ゴム100質量部に対して0~10質量部であることが好ましく、0~5質量部であることが更に好ましく、0~2質量部であることが特に好ましい。加工助剤、可塑剤や離型剤を使用すると、得られる成形品の機械物性やシール性が下がる傾向があるので、目的とする得られる成形品の特性が許容される範囲でこれらの含有量を調整する必要がある。
 フッ素ゴム架橋用組成物は、ジアルキルスルホン化合物を含有してもよい。ジアルキルスルホン化合物を含有することにより、フッ素ゴム架橋用組成物の架橋効率が高まったり、架橋速度が速くなったり、圧縮永久歪み特性がより一層向上したり、ゴム生地の流動性が向上する。ジアルキルスルホン化合物としては、ジメチルスルホン、ジエチルスルホン、ジブチルスルホン、メチルエチルスルホン、ジフェニルスルホン、スルホラン等が挙げられる。なかでも、架橋効率および圧縮永久歪み特性の観点、ならびに、沸点が適当であることから、スルホランが好ましい。ジアルキルスルホン化合物の含有量としては、フッ素ゴム100質量部に対して0~10質量部であることが好ましく、0~5質量部であることがさらに好ましく、0~3質量部であることが特に好ましい。本開示のフッ素ゴム架橋用組成物がジアルキルスルホン化合物を含有する場合には、ジアルキルスルホン化合物の含有量の下限値は、たとえば、フッ素ゴム100質量部に対して、0.1質量部以上であってよい。
 架橋速度、成形時におけるゴム生地の流動性、成形時の金型離型性、成形品の機械特性のバランスのよいものとなることから、上記ジアルキルスルホン化合物と上記加工助剤をともに配合してもよい。
 フッ素ゴム架橋用組成物は、フッ素ゴム(a)、架橋剤(b)、脱フッ化水素剤(c)、有機パーオキサイド(d)などを、一般に使用されているゴム混練り装置を用いて混練りすることにより得られる。ゴム混練り装置としては、ロール、ニーダー、バンバリーミキサー、インターナルミキサー、二軸押し出し機などを用いることができる。
 また、各成分をゴム中に均一に分散させるために、一部の成分をニーダーなどの密閉型の混練り装置を用いて100~200℃の高温で溶融させながら混練りした後に、残りの成分をこれ以下の比較的低温で混練りする方法を用いてもよい。
 さらに、フッ素ゴム(a)、架橋剤(b)、脱フッ化水素剤(c)、有機パーオキサイド(d)などを混練りした後に、室温にて12時間以上置いた後に再度混練りすることで、さらに分散性を高めることができる。
<成形品>
 フッ素ゴム架橋用組成物を架橋することにより、本開示の成形品を得ることができる。また、フッ素ゴム架橋用組成物を成形し、架橋することによっても、本開示の成形品を得ることができる。フッ素ゴム架橋用組成物は、従来公知の方法で成形することができる。成形および架橋の方法および条件としては、採用する成形および架橋において公知の方法および条件の範囲内でよい。成形および架橋の順序は限定されず、成形した後架橋してもよいし、架橋した後成形してもよいし、成形と架橋とを同時に行ってもよい。
 成形方法としては、圧縮成形法、注入成形法、インジェクション成形法、押出し成形法、ロートキュアーによる成形法などが例示できるが、これらに限定されるものではない。架橋方法としては、スチーム架橋法、加熱による架橋法、放射線架橋法等が採用でき、なかでも、スチーム架橋法、加熱による架橋法が好ましい。限定されない具体的な架橋条件としては、通常、140~250℃の温度範囲、1分間~24時間の架橋時間内で、架橋剤(b)、脱フッ化水素剤(c)、有機パーオキサイド(d)、受酸剤(e)などの種類により適宜決めればよい。
 また得られた成形品をオーブン等により加熱することで、引張強さなどの機械物性、耐熱性および高温での圧縮永久歪み特性などを向上させることができる。限定されない具体的な架橋条件としては、通常、140~300℃の温度範囲、30分間~72時間の範囲で、架橋剤(b)、脱フッ化水素剤(c)、有機パーオキサイド(d)、受酸剤(e)などの種類により適宜決めればよい。
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
<1> 本開示の第1の観点によれば、
 フッ素ゴム(a)、架橋剤(b)、脱フッ化水素剤(c)、および、有機パーオキサイド(d)を含有し、
 架橋剤(b)が、
   1)少なくとも1つの芳香族環、
   2)炭素-炭素三重結合を有する基、および、
   3)前記芳香族環を構成する炭素原子に直接結合したヒドロキシ基およびアルキルカルボニルオキシ基の少なくとも一方または両方
を分子内に有する化合物(b1)、化合物(b1)のオニウム塩、化合物(b1)のアルカリ金属塩、化合物(b1)のアルカリ土類金属塩、ならびに、化合物(b1)とカルボン酸とから誘導されるエステルからなる群より選択される少なくとも1種であるフッ素ゴム架橋用組成物が提供される。
<2> 本開示の第2の観点によれば、
 炭素-炭素三重結合を有する基が、前記芳香族環を構成する炭素原子に直接結合している第1の観点によるフッ素ゴム架橋用組成物が提供される。
<3> 本開示の第3の観点によれば、
 前記アルキルカルボニルオキシ基が、一般式:
   R-C(=O)-O-
(式中、Rは、水素原子、炭素数1~5のアルキル基または炭素数1~5のフッ素化アルキル基である)で示される基である第1または第2の観点によるフッ素ゴム架橋用組成物が提供される。
<4> 本開示の第4の観点によれば、
 架橋剤(b)が、一般式(b1)で示される化合物である第1~第3のいずれかの観点によるフッ素ゴム架橋用組成物が提供される。
Figure JPOXMLDOC01-appb-C000004
(式中、環Aは芳香族環、Xはヒドロキシ基またはアルキルカルボニルオキシ基、Rは、水素原子、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、フェニル基またはフルオロフェニル基である)
<5> 本開示の第5の観点によれば、
 化合物(b1)が、3-エチニルフェノールおよび4-エチニルフェノールからなる群より選択される少なくとも1種である第1~第4のいずれかの観点によるフッ素ゴム架橋用組成物が提供される。
<6> 本開示の第6の観点によれば、
 フッ素ゴム(a)が、ビニリデンフルオライド単位を含む第1~第5のいずれかの観点によるフッ素ゴム架橋用組成物が提供される。
<7> 本開示の第7の観点によれば、
 フッ素ゴム(a)のヨウ素含有量が、0.001~10質量%である第1~第6のいずれかの観点によるフッ素ゴム架橋用組成物が提供される。
<8> 本開示の第8の観点によれば、
 架橋剤(b)の含有量が、フッ素ゴム(a)100質量部に対し、0.1~10質量部である第1~第7のいずれかの観点によるフッ素ゴム架橋用組成物が提供される。
<9> 本開示の第9の観点によれば、
 有機パーオキサイド(d)の含有量が、フッ素ゴム(a)100質量部に対し、0.05~10質量部である第1~第8のいずれかの観点によるフッ素ゴム架橋用組成物が提供される。
<10> 本開示の第10の観点によれば、
 受酸剤(e)をさらに含有し、受酸剤(e)の含有量が、フッ素ゴム(a)100質量部に対し、0.1~50質量部である第1~第9のいずれかの観点によるフッ素ゴム架橋用組成物が提供される。
<11> 本開示の第11の観点によれば、
 第1~第10のいずれかの観点によるフッ素ゴム架橋用組成物から得られる成形品が提供される。
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
 実施例の各数値は以下の方法により測定した。
<フッ素ゴムの単量体組成>
 19F-NMR(Bruker社製AC300P型)を用いて測定した。
<フッ素含有率>
 19F-NMRにて測定されたフッ素ゴムの組成から計算によって求めた。
<ムーニー粘度>
 ASTM D1646-15およびJIS K6300-1:2013に準拠して測定した。測定温度は100℃である。
<ガラス転移温度(Tg)>
 示差走査熱量計(メトラー・トレド社製、DSC822e、もしくは、日立ハイテクサイエンス社製、X-DSC7000)を用い、試料10mgを20℃/分で昇温することによりDSC曲線を得て、DSC曲線の二次転移前後のベースラインの延長線と、DSC曲線の変曲点における接線との交点を示す温度をガラス転移温度とした。
<融解熱>
 示差走査熱量計(メトラー・トレド社製、DSC822e、もしくは、日立ハイテクサイエンス社製、X-DSC7000)を用い、試料10mgを20℃/分で昇温することによりDSC曲線を得て、DSC曲線において現われた融解ピーク(ΔH)の大きさから融解熱を算出した。
<ヨウ素含有量>
 NaCOとKCOとを1対1(重量比)で混合し、得られた混合物を純水20mlに溶解することにより、吸収液を調製した。試料(フッ素ゴム)12mgにNaSOを5mg混ぜて混合物を調製し、石英製のフラスコ中、酸素中で燃焼させ、発生した燃焼ガスを吸収液に導入した。得られた吸収液を30分間放置した後、吸収液中のヨウ素イオンの濃度を、島津20Aイオンクロマトグラフを用いて測定した。ヨウ素イオン0.5ppmを含むKI標準溶液および1.0ppmを含むKI標準溶液を用いて作成した検量線を用いて、ヨウ素イオンの含有量を決定した。
<架橋特性(最大トルク(MH)、最適架橋時間(T90))>
 フッ素ゴム架橋用組成物について、一次架橋時に加硫試験機(エムアンドケー社製 MDR H2030)を用いて、各表に記載の温度で架橋曲線を求め、トルクの変化より、最大トルク(MH)および最適架橋時間(T90)を求めた。最大トルク(MH)が大きいほど、架橋密度が高いことを意味する。
<引張強さおよび切断時伸び>
 厚さ2mmの架橋シートを用いて、ダンベル6号形状の試験片を作製した。得られた試験片および引張試験機(エー・アンド・デイ社製テンシロンRTG-1310)を使用して、JIS K6251:2010に準じて、500mm/分の条件下、23℃における引張強さおよび切断時伸びを測定した。
<硬さ>
 厚さ2mmの架橋シートを3枚重ねて、JIS K6251-3:2012に準じて、デュロメータ硬さ(タイプA、ピーク値)を測定した。
<圧縮永久歪み>
 圧縮永久歪み測定用小形試験片を用いて、JIS K6262:2013のA法に準じて、圧縮率25%、試験温度200℃、試験時間72時間で測定した。
 実施例および比較例では、以下の材料を用いた。
フッ素ゴムA:
   フッ化ビニリデン/ヘキサフルオロプロピレンのモル比:78/22
   フッ素含有率:66%
   ムーニー粘度(ML1+10(100℃)):60
   ガラス転移温度:-18℃
   融解熱:セカンドランでは認めず
   ヨウ素含有量 0.17質量%
フッ素ゴムB
   フッ化ビニリデン/ヘキサフルオロプロピレンのモル比:78/22
   フッ素含有率:66%
   ムーニー粘度(ML1+10(100℃)):70
   ガラス転移温度:-18℃
   融解熱:セカンドランでは認めず
   ヨウ素原子を含有しない
MTカーボン(NSA:8m/g、DBP:43ml/100g)
架橋剤A:3-エチニルフェノール
架橋剤B:4-(4-フルオロフェニルエチニル)フェノール
架橋剤C:オイゲノール
架橋剤D:トリアリルイソシアヌレート
脱フッ化水素剤A:ベンジルジメチルオクタデシルアンモニウムクロリド91質量%とイソプロピルアルコール9質量%との混合物
有機パーオキサイドA:2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン
水酸化カルシウム
酸化マグネシウム
実施例1
 フッ素ゴムA100質量部、MTカーボン20質量部、架橋剤A4質量部、脱フッ化水素剤A0.7質量部、有機パーオキサイドA0.5質量部、水酸化カルシウム6質量部、酸化マグネシウム3質量部を配合し、オープンロール上で混練りして、フッ素ゴム架橋用組成物を調製した。得られたフッ素ゴム架橋用組成物の最大トルク(MH)および最適架橋時間(T90)を表1に示す。次に、表1に記載の条件の一次架橋(プレス架橋)、および、表1に記載の条件の二次架橋(オーブン架橋)により、フッ素ゴム架橋用組成物を架橋させ、架橋シート(厚さ2mm)および圧縮永久歪み測定用小形試験片を得た。得られた架橋シートの評価結果および圧縮永久歪み試験の結果を表1に示す。
 実施例2
 架橋剤Aの量を2質量部に変更した以外は、実施例1と同様にして、フッ素ゴム架橋用組成物を調製し、架橋シート(厚さ2mm)および圧縮永久歪み測定用小形試験片を得た。結果を表1に示す。
実施例3
 架橋剤Aの量を1質量部に変更した以外は、実施例1と同様にして、フッ素ゴム架橋用組成物を調製し、架橋シート(厚さ2mm)および圧縮永久歪み測定用小形試験片を得た。結果を表1に示す。
実施例4
 架橋剤Aを架橋剤Bに変更した以外は、実施例1と同様にして、フッ素ゴム架橋用組成物を調製し、架橋シート(厚さ2mm)および圧縮永久歪み測定用小形試験片を得た。結果を表1に示す。
比較例1
 架橋剤Aを架橋剤Cに変更した以外は、実施例1と同様にして、フッ素ゴム架橋用組成物を調製し、架橋シート(厚さ2mm)および圧縮永久歪み測定用小形試験片を得た。結果を表1に示す。
比較例2
 架橋剤Cの量を2質量部に変更した以外は、比較例1と同様にして、フッ素ゴム架橋用組成物を調製し、架橋シート(厚さ2mm)および圧縮永久歪み測定用小形試験片を得た。結果を表1に示す。
比較例3
 架橋剤Cを架橋剤Dに変更した以外は、比較例2と同様にして、フッ素ゴム架橋用組成物を調製し、架橋シート(厚さ2mm)および圧縮永久歪み測定用小形試験片を得た。結果を表1に示す。
比較例4
 架橋剤Aを配合しなかった以外は、実施例1と同様にして、フッ素ゴム架橋用組成物を調製した。結果を表1に示す。
実施例5
 フッ素ゴムB100質量部、MTカーボン20質量部、架橋剤A2質量部、脱フッ化水素剤A0.7質量部、有機パーオキサイドA0.5質量部、水酸化カルシウム6質量部、酸化マグネシウム3質量部を配合し、オープンロール上で混練りして、フッ素ゴム架橋用組成物を調製した。得られたフッ素ゴム架橋用組成物の最大トルク(MH)および最適架橋時間(T90)を表2に示す。次に、表2に記載の条件の一次架橋(プレス架橋)、および、表2に記載の条件の二次架橋(オーブン架橋)により、フッ素ゴム架橋用組成物を架橋させ、架橋シート(厚さ2mm)および圧縮永久歪み測定用小形試験片を得た。得られた架橋シートの評価結果および圧縮永久歪み試験の結果を表2に示す。
実施例6
 架橋剤Aの量を1質量部に変更した以外は、実施例5と同様にして、フッ素ゴム架橋用組成物を調製し、架橋シート(厚さ2mm)および圧縮永久歪み測定用小形試験片を得た。結果を表2に示す。
比較例5
 架橋剤A2質量部を架橋剤D4質量部に変更した以外は、実施例5と同様にして、フッ素ゴム架橋用組成物を調製し、架橋シート(厚さ2mm)および圧縮永久歪み測定用小形試験片を得た。結果を表2に示す。
比較例6
 架橋剤Aを配合しなかった以外は、実施例5と同様にして、フッ素ゴム架橋用組成物を調製した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Claims (11)

  1.  フッ素ゴム(a)、架橋剤(b)、脱フッ化水素剤(c)、および、有機パーオキサイド(d)を含有し、
     架橋剤(b)が、
       1)少なくとも1つの芳香族環、
       2)炭素-炭素三重結合を有する基、および、
       3)前記芳香族環を構成する炭素原子に直接結合したヒドロキシ基およびアルキルカルボニルオキシ基の少なくとも一方または両方
    を分子内に有する化合物(b1)、化合物(b1)のオニウム塩、化合物(b1)のアルカリ金属塩、化合物(b1)のアルカリ土類金属塩、ならびに、化合物(b1)とカルボン酸とから誘導されるエステルからなる群より選択される少なくとも1種であるフッ素ゴム架橋用組成物。
  2.  炭素-炭素三重結合を有する基が、前記芳香族環を構成する炭素原子に直接結合している請求項1に記載のフッ素ゴム架橋用組成物。
  3.  前記アルキルカルボニルオキシ基が、一般式:
       R-C(=O)-O-
    (式中、Rは、水素原子、炭素数1~5のアルキル基または炭素数1~5のフッ素化アルキル基である)で示される基である請求項1または2に記載のフッ素ゴム架橋用組成物。
  4.  架橋剤(b)が、一般式(b1)で示される化合物である請求項1~3のいずれかに記載のフッ素ゴム架橋用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、環Aは芳香族環、Xはヒドロキシ基またはアルキルカルボニルオキシ基、Rは、水素原子、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、フェニル基またはフルオロフェニル基である)
  5.  化合物(b1)が、3-エチニルフェノールおよび4-エチニルフェノールからなる群より選択される少なくとも1種である請求項1~4のいずれかに記載のフッ素ゴム架橋用組成物。
  6.  フッ素ゴム(a)が、ビニリデンフルオライド単位を含む請求項1~5のいずれかに記載のフッ素ゴム架橋用組成物。
  7.  フッ素ゴム(a)のヨウ素含有量が、0.001~10質量%である請求項1~6のいずれかに記載のフッ素ゴム架橋用組成物。
  8.  架橋剤(b)の含有量が、フッ素ゴム(a)100質量部に対し、0.1~10質量部である請求項1~7のいずれかに記載のフッ素ゴム架橋用組成物。
  9.  有機パーオキサイド(d)の含有量が、フッ素ゴム(a)100質量部に対し、0.05~10質量部である請求項1~8のいずれかに記載のフッ素ゴム架橋用組成物。
  10.  受酸剤(e)をさらに含有し、受酸剤(e)の含有量が、フッ素ゴム(a)100質量部に対し、0.1~50質量部である請求項1~9のいずれかに記載のフッ素ゴム架橋用組成物。
  11.  請求項1~10のいずれかに記載のフッ素ゴム架橋用組成物から得られる成形品。
PCT/JP2023/038898 2022-10-27 2023-10-27 フッ素ゴム架橋用組成物および成形品 WO2024090559A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-172560 2022-10-27
JP2022172560 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090559A1 true WO2024090559A1 (ja) 2024-05-02

Family

ID=90831057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038898 WO2024090559A1 (ja) 2022-10-27 2023-10-27 フッ素ゴム架橋用組成物および成形品

Country Status (2)

Country Link
JP (1) JP2024065089A (ja)
WO (1) WO2024090559A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145592A (en) * 1975-06-09 1976-12-14 Japan Atom Energy Res Inst A process for preparing graft polymer based on fluorine-containing bac kbone polymer
JPS524589A (en) * 1975-07-01 1977-01-13 Cosmo Co Ltd Preparation of graft polymer
JP2008502789A (ja) * 2004-06-10 2008-01-31 デュポン パフォーマンス エラストマーズ エルエルシー グラフト化したフルオロエラストマー
JP2017538023A (ja) * 2014-12-19 2017-12-21 スリーエム イノベイティブ プロパティズ カンパニー 硬化性部分フッ素化ポリマー組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145592A (en) * 1975-06-09 1976-12-14 Japan Atom Energy Res Inst A process for preparing graft polymer based on fluorine-containing bac kbone polymer
JPS524589A (en) * 1975-07-01 1977-01-13 Cosmo Co Ltd Preparation of graft polymer
JP2008502789A (ja) * 2004-06-10 2008-01-31 デュポン パフォーマンス エラストマーズ エルエルシー グラフト化したフルオロエラストマー
JP2017538023A (ja) * 2014-12-19 2017-12-21 スリーエム イノベイティブ プロパティズ カンパニー 硬化性部分フッ素化ポリマー組成物

Also Published As

Publication number Publication date
JP2024065089A (ja) 2024-05-14

Similar Documents

Publication Publication Date Title
US6160053A (en) Flourine-containing copolymer composition
JP5044999B2 (ja) パーフルオロエラストマー組成物およびパーフルオロゴム成形品
JP4554879B2 (ja) 硬化性フルオロエラストマー組成物
JPWO2007119834A1 (ja) 含フッ素エラストマー組成物および含フッ素ゴム成形品
US20090023863A1 (en) Cross-linked fluorine-containing copolymer moldings
US20090312473A1 (en) Fluorine-Containing Alloyed Copolymer
US20200332107A1 (en) Fluoropolymer compositions including functional fluorinated silane compounds
JP5617243B2 (ja) フルオロエラストマーの製造法
JP5353880B2 (ja) 燃料低透過性ブロック共重合体
JP2009256658A (ja) 燃料低透過性ブロック共重合体
KR101385871B1 (ko) 퍼플루오로엘라스토머 조성물 및 퍼플루오로 고무 성형품
WO2024090559A1 (ja) フッ素ゴム架橋用組成物および成形品
WO2024090557A1 (ja) フッ素ゴム架橋用組成物および成形品
JP2019501247A (ja) フッ素化エラストマー用硬化剤
EP3720899B1 (en) Curable fluorinated polymer compositions
CN111655779B (zh) 包含用官能氟化硅烷化合物官能化的纳米粒子的含氟聚合物组合物
WO2024090554A1 (ja) フッ素ゴム架橋用組成物および成形品
JP2019157065A (ja) 放熱材料用含フッ素エラストマー組成物およびシート
JP6708290B2 (ja) 含フッ素ポリマーを含有する組成物および成形品
JP2013014785A (ja) パーオキサイド架橋可能なフッ素ゴム
US20220251338A1 (en) Curable Fluoropolymer Compositions Comprising a Compound Containing a Phthalonitrile and an Olefinic Bond and Cured Articles Therefrom
JP2011225692A (ja) 架橋用高分子組成物および高分子成形体
JP2017193684A (ja) エラストマー組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882761

Country of ref document: EP

Kind code of ref document: A1