WO2024090512A1 - ナフタレン誘導体の結晶 - Google Patents

ナフタレン誘導体の結晶 Download PDF

Info

Publication number
WO2024090512A1
WO2024090512A1 PCT/JP2023/038651 JP2023038651W WO2024090512A1 WO 2024090512 A1 WO2024090512 A1 WO 2024090512A1 JP 2023038651 W JP2023038651 W JP 2023038651W WO 2024090512 A1 WO2024090512 A1 WO 2024090512A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystals
crystal
naphthalene
kus121
ylazo
Prior art date
Application number
PCT/JP2023/038651
Other languages
English (en)
French (fr)
Inventor
国弘 武蔵
征己 岡本
Original Assignee
株式会社京都創薬研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京都創薬研究所 filed Critical 株式会社京都創薬研究所
Publication of WO2024090512A1 publication Critical patent/WO2024090512A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4418Non condensed pyridines; Hydrogenated derivatives thereof having a carbocyclic group directly attached to the heterocyclic ring, e.g. cyproheptadine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/76Nitrogen atoms to which a second hetero atom is attached
    • C07D213/77Hydrazine radicals

Definitions

  • the present invention relates to novel crystals of KUS121 that are useful as pharmaceuticals and a method for producing the same.
  • KUS121 4-Amino-3-[6-(4-fluoro-2-methylphenyl)pyridin-3-ylazo]naphthalene-1-sulfonic acid sodium salt
  • Patent Document 1 4-Amino-3-[6-(4-fluoro-2-methylphenyl)pyridin-3-ylazo]naphthalene-1-sulfonic acid sodium salt
  • KUS121 crystals do not necessarily have high storage stability; for example, under normal accelerated testing conditions, crystallinity decreases and the crystalline form collapses, and there is a clear tendency for the moisture content to increase; from the perspective of pharmaceutical quality control, it has been necessary to store the drug under more severe storage conditions than usual.
  • multiple crystal forms have been confirmed for the KUS121 drug substance, and from the perspective of quality control, it was ideal to produce a stable single crystal and establish a stable manufacturing method for it.
  • the objective of the present invention is to find a stable crystalline form of the active ingredient KUS121, which is useful as a pharmaceutical, and to establish a method for producing it.
  • Item 3 The crystalline substance according to item 3, wherein the five or more selected diffraction angles are 6.9°, 13.3°, 14.2°, 15.0°, and 17.1°.
  • Item 5 The crystalline substance according to item 4, wherein the ten or more selected diffraction angles are 6.9°, 13.3°, 14.2°, 15.0°, 17.1°, 19.6°, 21.1°, 26.7°, 27.4°, and 29.5°.
  • a method for producing a crystalline form of 4-amino-3-[6-(4-fluoro-2-methylphenyl)pyridin-3-ylazo]naphthalene-1-sulfonic acid sodium salt dihydrate comprising the steps of: (i) KUS121 is dissolved in a water-containing solvent that is commonly used in the manufacture of pharmaceuticals, with appropriate heating, and stirred at 40 to 100°C; (ii) slowly cooling the mixture to precipitate crystals, and filtering the mixture to obtain crystals; (iii) A production method characterized by drying the obtained crystals at a temperature of 30 to 70°C under an atmosphere of a relative humidity of 10 to 100% RH to obtain a crystal of 4-amino-3-[6-(4-fluoro-2-methylphenyl)pyridin-3-ylazo]naphthalene-1-sulfonic acid sodium salt dihydrate.
  • a method for producing a crystalline form of 4-amino-3-[6-(4-fluoro-2-methylphenyl)pyridin-3-ylazo]naphthalene-1-sulfonic acid sodium salt dihydrate comprising the steps of: (i) KUS121 is dissolved in an aqueous solvent that is commonly used in the manufacture of pharmaceuticals at a concentration of 1 to 20% (w/v) with appropriate heating, and stirred at 40 to 100°C for 5 minutes or more; (ii) cooling to ⁇ 20° C. to 30° C.
  • a production method characterized by drying the obtained crystals at a temperature of 30 to 70°C under an atmosphere of a relative humidity of 10 to 100% RH to obtain a crystal of 4-amino-3-[6-(4-fluoro-2-methylphenyl)pyridin-3-ylazo]naphthalene-1-sulfonic acid sodium salt dihydrate.
  • Item 10 The method of claim 9, wherein the alcohol solvent is methanol, ethanol, 1-propanol, and/or 2-propanol.
  • the KUS121 dihydrate crystals of the present invention are crystals with outstanding storage stability among the many polymorphic forms of KUS121, and are useful as a stable drug substance for manufacturing. Furthermore, the method for manufacturing the KUS121 dihydrate crystals established in the present invention makes it possible to stably manufacture the KUS121 dihydrate crystals.
  • 1 shows a powder X-ray diffraction chart of the dihydrate crystals after drying in an example.
  • 1 shows the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of the dihydrate crystals after drying in the examples.
  • 1 shows a Raman scattering spectrum (FT-Raman) of the dihydrate crystal after drying in an example.
  • 1 shows a photomicrograph (PLM) of the dihydrate crystals after drying of the example.
  • 1 shows a powder X-ray diffraction chart of the anhydrous crystals of an example.
  • 1 shows a powder X-ray diffraction chart of the monohydrate crystal of an example.
  • 1 shows the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of the monohydrate crystal of an example.
  • 1 shows a powder X-ray diffraction chart of the tetrahydrate crystal of an example.
  • 1 shows the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of the tetrahydrate crystal of an example.
  • the compound of the present invention 4-amino-3-[6-(4-fluoro-2-methylphenyl)pyridin-3-ylazo]naphthalene-1-sulfonic acid sodium salt (KUS121), has the following structure, and its preparation method and spectral data are disclosed in Patent Document 1.
  • crystalline materials can be analyzed using conventional techniques such as X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman scattering spectroscopy (FT-Raman), and photomicrography (PLM).
  • XRPD X-ray powder diffraction
  • DSC differential scanning calorimetry
  • TGA thermogravimetric analysis
  • F-Raman Raman scattering spectroscopy
  • PLM photomicrography
  • the 2 ⁇ values of X-ray powder diffraction patterns may vary slightly from instrument to instrument or sample to sample, so the values given here are not absolute.
  • the measurement error of the diffraction angle in an X-ray powder diffraction spectrum is, for example, about ⁇ 0.2° in 2 ⁇ , and such measurement error should be taken into account when examining X-ray powder diffraction data.
  • the diffraction angle values of the dihydrate crystals of KUS121 vary greatly between instruments, so the measurement error of the diffraction angle should be considered to be even larger, for example, about ⁇ 0.5° in 2 ⁇ .
  • the production method for the crystals of 4-amino-3-[6-(4-fluoro-2-methylphenyl)pyridin-3-ylazo]naphthalene-1-sulfonic acid sodium salt dihydrate is characterized by comprising the steps of: (i) dissolving KUS121 in a water-containing solvent that is commonly used in the production of pharmaceuticals with appropriate heating, and heating and stirring; (ii) cooling the heated KUS121 solution to precipitate crystals, and filtering the wet crystals; and (iii) drying the wet crystals obtained.
  • seed crystals are added to improve the certainty of controlling the formation of the dihydrate crystals of KUS121.
  • the "solvent commonly used in the manufacture of pharmaceuticals” is not particularly limited as long as it is a solvent commonly used in the manufacture of pharmaceuticals, but examples thereof include alcoholic solvents such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methoxyethanol, 1-methoxy-2-propanol, 2-methyl-1-propanol, 3-methyl-1-butanol, and 1-pentanol, as well as other solvents commonly used in the manufacture of pharmaceuticals, such as acetone, anisole, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, t-butyl methyl ether, dimethyl sulfoxide, diethyl ether, ethyl formate, heptane, methyl ethyl ketone, methyl isobutyl
  • aqueous solvents commonly used in the production of pharmaceuticals varies depending on the type of solvent used, but is usually 5% to 90%, preferably 10% to 50% for methanol, 10% to 90% for ethanol (more preferably 10% to 60%), and about 30% for 2-propanol.
  • the concentration of KUS121 dissolved in the aqueous solvent in step (i) is 1 to 20% (w/v), and preferably 2 to 10% (w/v).
  • the heating temperature in step (i) varies depending on the type of solvent used, but is 40 to 100°C, preferably 50 to 80°C, and more preferably 60 to 80°C.
  • the stirring time in step (i) is not particularly limited as long as the KUS121 is sufficiently dissolved, but is usually 5 minutes or more, and preferably 10 minutes or more.
  • the cooling rate in (ii) is usually 0.01 to 1°C/min, preferably 0.05 to 0.5°C/min. Cooling is usually performed to -20 to 30°C, preferably 0 to 30°C. After reaching these temperatures, stirring is usually continued until the crystals have ripened, or stirring is stopped and the mixture is left as is.
  • drying is usually performed in an atmosphere with a relative humidity of 10 to 100% RH at a temperature of 30 to 70° C., preferably in an atmosphere with a relative humidity of 30 to 95% RH at a temperature of 30 to 60° C., and more preferably in an atmosphere with a relative humidity of 40 to 70% RH at a temperature of 40 to 60° C.
  • the drying time is usually 3 hours or more, and preferably 10 hours or more.
  • air is blown appropriately to dry the material.
  • the drying step is appropriately performed under reduced pressure.
  • the pressure under reduced pressure is usually 0.05 to 20 kPa, preferably 1 to 20 kPa.
  • the temperature under reduced pressure is usually 30 to 60°C, preferably 30 to 50°C, and the humidity is adjusted by placing a tray filled with water in the drying chamber or by blowing in nitrogen gas containing water vapor.
  • drying is performed for 5 hours or more at a pressure of 1 to 7 kPa while blowing nitrogen saturated with water vapor into a drying chamber at 30 to 50° C.
  • a tray containing water is placed in the drying chamber and drying is performed for 10 hours or more at 30 to 50° C. and a pressure of 2 to 5 kPa.
  • the incident beam configuration was a fixed divergence slit (1/4°), a 0.04 radian Soller slit, an anti-scatter slit (1/4°), and a 10 mm beam mask.
  • the diffracted beam configuration was a fixed divergence slit (1/4°) and a 0.04 radian Soller slit.
  • DSC Differential Scanning Calorimetry
  • TGA Thermogravimetric Analysis
  • Thermogravimetric analysis was performed using a thermogravimetric analyzer (TA Instruments Q50 or Q500, manufactured by TA Instruments). TGA thermograms were obtained by placing approximately 1-10 mg of solid sample in an aluminum pan and heating at 10°C/min or 15°C/min under a 40 mL/min N2 purge.
  • Raman scattering spectrum Raman spectra were performed using a Raman instrument (Nicolet NXR9650 or NXR960 spectrometer, Thermo Electron) equipped with a 1064 nm Nd:YVO4 excitation laser, InGaAs and liquid nitrogen cooled Ge detectors, and a MicroStage. All spectra were acquired at 4 cm-1 resolution, 64-1024 scans, using the Happ-Genzel apodization function and two levels of zero filling. A neutral density filter (1.0 optical density) was used when detector saturation was observed.
  • Photomicrographs were taken using a BX60 polarizing microscope (Olympus) equipped with an Olympus DP70 camera.
  • Moisture Measurement The moisture content of each crystal was measured by one of the following three methods. (Water content measurement of KUS121 anhydrous crystals) The moisture value was measured using a coulometric moisture meter (CA-100, manufactured by Nitto Seiko Analytech) using approximately 0.5 g of solid sample, Aquamicron GEX as the solvent, and 3 mg of Aquamicron SS as the titrant.
  • CA-100 coulometric moisture meter
  • the moisture content was calculated from DSC thermograms measured using differential scanning calorimetry (differential scanning calorimeter TA Instruments Q100 or Q2000, manufactured by TA Instruments) and TGA thermograms measured using thermogravimetry (thermogravimetric analyzer TA Instruments Q50 or Q500, manufactured by TA Instruments). The measurements were carried out by placing approximately 1-10 mg of solid sample in an aluminum pan and heating at 10°C/min or 15°C/min under a 40 mL/min N2 purge.
  • KUS121 (5.00 g) was added to 90% ethanol aqueous solution (120 mL) and dissolved by stirring at 67°C or higher. This solution was filtered while hot, and the container and filter were washed with 90% ethanol aqueous solution (5 mL). The filtrate was heated to 67°C or higher and stirred for 30 minutes, and cooled to 60°C at a cooling rate of 0.1°C/min. Stirring was continued at 60°C for 1 hour to mature the crystals, and the mixture was cooled to 22°C at a cooling rate of 0.05 to 0.5°C/min. The precipitated crystals were collected by filtration and washed with 90% ethanol aqueous solution (5 mL) to obtain wet crystals of KUS121 dihydrate (net yield 97.3%). Moisture content: 13.0%
  • the dihydrate crystals have better storage stability than other hydrate crystals, and are extremely stable even under accelerated testing conditions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、医薬品として有用なKUS121の新規な結晶およびその製造方法に関する。

Description

ナフタレン誘導体の結晶
 本発明は、医薬品として有用なKUS121の新規な結晶およびその製造方法に関する。
 4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩(以下、「KUS121」と称することもある)はナフタレン骨格を有する化合物で、網膜中心動脈閉塞症の治療薬として現在開発が進められている(特許文献1)。KUS121は溶解して注射剤として局所投与されるが、製剤化される前の製造原薬においては、一旦ここで品質を確保し、一定期間保存しておく必要があることから、通常保存安定に優れるとされる結晶体を原薬として、その保存および品質管理を行っている。
 しかしながら、KUS121の結晶は保存安定性が必ずしも高くなく、例えば通常の加速試験条件では、結晶性が低下して結晶形の形態が崩れ、また水分含量が増加する傾向が顕著であり、医薬品の品質管理の観点からは、通常よりシビアな保存条件で保存することが強いられていた。また、KUS121の原薬においては、複数の結晶形態が確認されており、品質管理の観点からは、理想的には安定な単一の結晶を製造し、その安定な製造方法も確立する必要があった。
 以上のように、KUS121においては、より安定な原薬の結晶を見出した上で、且つその製造も再現性よく単一の結晶が安定的に得られる製造方法の確立が望まれていた。
WO 2012/014994
 本発明は、医薬品として有用なKUS121の原薬において、製造上の原薬として安定な結晶体を見出し、その製造方法を確立することを目的とする。
 本発明者らは上記の課題に鑑み、まずKUS121の結晶形について検討を始めたところ、検討した中だけで20種類もの結晶多形があることがわかり、それらについて分析を進めたところ、結晶化工程に用いた溶媒を含んだ溶媒和物もいくつか含まれ、また水和物も何種類か含まれた。更に検討を進めたところ、2水和物の1つの結晶形において、特に保存安定性が優れていることがわかり、また数多くの結晶多形の中で、その2水和物の結晶体だけを特異的に調製する方法を確立し、本発明を完成するに至った。
 本発明の態様は、以下に示すとおりである。
[項1]
 X線粉末回折において、6.9°、13.3°、14.2°、15.0°、17.1°、18.5°、19.6°、21.1°、22.9°、23.7°、26.7°、27.4°、29.5°、34.1°、および36.1°から選択される4つ以上の回折角(2θ±0.5)を有する粉末X線回折パターンを特徴とする、4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体。
[項2]
 X線粉末回折において、6.9°、13.3°、14.2°、15.0°、17.1°、18.5°、19.6°、21.1°、22.9°、23.7°、26.7°、27.4°、29.5°、34.1°、および36.1°から選択される4つ以上の回折角(2θ±0.2)を有する粉末X線回折パターンを特徴とする、4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体。
[項3]
 選択される回折角が5つ以上である、項1または2の結晶体。
[項4]
 選択される回折角が10個以上である、項1または2の結晶体。
[項5]
 選択される5つ以上の回折角が、6.9°、13.3°、14.2°、15.0°、および17.1°の5つである、項3の結晶体。
[項6]
 選択される10個以上の回折角が、6.9°、13.3°、14.2°、15.0°、17.1°、19.6°、21.1°、26.7°、27.4°、および29.5°の10個である、項4の結晶体。
[項7]
 4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体の製造方法であって、
(i)KUS121を、医薬品の製造に一般的に使用される溶媒の含水溶媒に適宜加熱しながら溶解させ、40~100℃で撹拌し、
(ii)徐々に冷却して結晶を析出させ、ろ過して結晶体を得、
(iii)得られた結晶体を相対湿度10~100%RHの雰囲気下、温度30~70℃で乾燥することで、4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体を得ることを特徴とする製造方法。
[項8]
 4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体の製造方法であって、
(i)KUS121を、医薬品の製造に一般的に使用される溶媒の含水溶媒に、1~20%(w/v)の濃度で適宜加熱しながら溶解させ、40~100℃で5分以上撹拌し、
(ii)冷却速度0.01℃/分~1℃/分で-20℃~30℃まで冷却して結晶を析出させ、ろ過して結晶体を得、
(iii)得られた結晶を相対湿度10~100%RHの雰囲気下、温度30~70℃で乾燥することで、4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体を得ることを特徴とする製造方法。
[項9]
 一般的に使用される溶媒が、アルコール系溶媒を含む、項7または8の製造方法。
[項10]
 アルコール系溶媒が、メタノール、エタノール、1-プロパノール、および/または2-プロパノールである、項9の製造方法。
[項11]
 (iii)の乾燥工程を常圧下10時間以上行う、項7~10のいずれかの製造方法。
[項12]
 (iii)の乾燥工程を、乾燥庫内に水を入れたトレーを置き、30~50℃で、圧力2~5kPaで10時間以上行う、項7~10のいずれかの製造方法。
[項13]
 (iii)の乾燥工程を、30~50℃で、水蒸気を飽和させた窒素を乾燥庫に吹き込みながら、圧力1~7kPaで5時間以上行う、項7~10のいずれかの製造方法。
 本発明のKUS121の二水和物結晶体は、多数の結晶多形が存在するKUS121の中で、卓越した保存安定性を有する結晶体であり、製造上の安定な原薬として有用である。また、本発明で確立したKUS121の二水和物結晶体の製造方法により、安定的にKUS121の二水和物結晶体を製造することが可能となる。
実施例の乾燥後の二水和物結晶の粉末X線回折のチャートを示す。 実施例の乾燥後の二水和物結晶の示差走査熱量測定(DSC)および熱重量分析(TGA)の結果を示す。 実施例の乾燥後の二水和物結晶のラマン散乱スペクトル(FT-Raman)を示す。 実施例の乾燥後の二水和物結晶の顕微鏡写真(PLM)を示す。 実施例の無水物結晶の粉末X線回折のチャートを示す。 実施例の一水和物結晶の粉末X線回折のチャートを示す。 実施例の一水和物結晶の示差走査熱量測定(DSC)および熱重量分析(TGA)の結果を示す。 実施例の四水和物結晶の粉末X線回折のチャートを示す。 実施例の四水和物結晶の示差走査熱量測定(DSC)および熱重量分析(TGA)の結果を示す。
 本発明の化合物、4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩(KUS121)は、下記の構造を有しており、特許文献1にその製造方法およびスペクトルデータが開示されている。
Figure JPOXMLDOC01-appb-C000001
 本発明において結晶性物質は、X線粉末回折(XRPD)、示差走査熱量測定(DSC)、熱重量分析(TGA)、ラマン散乱スペクトル(FT-Raman)、顕微鏡写真(PLM)などの慣用技術を用いて分析できる。
 X線粉末回折パターンの2θ値は、機器毎にまたは試料毎にわずかに変化し得るので、本明細書に記載した数値は絶対ではない。一般に、X線粉末回折スペクトルにおける回折角の測定誤差は、2θで例えば約±0.2°であり、X線粉末回折データを検討する際にはその程度の測定誤差を考慮に入れるべきである。また、本発明において、KUS121の二水和物結晶体の回折角の値は、測定機器間の変動が大きいことから、回折角の測定誤差は、更に大きく2θで例えば約±0.5°であると考慮されるべきである。さらに、実験条件や試料調製(好ましい配向)によって強度が変動し得る。本願においては、銅放射線(Cu Kα、45kV/20mA、λ=1.5418Å)を使用して実施した際の測定値で示している。
KUS121の二水和物結晶体の製造
 4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体の製造方法については、(i)KUS121を医薬品の製造に一般的に使用される溶媒の含水溶媒に適宜加熱しながら溶解させ、加熱して撹拌する工程、(ii)加熱されたKUS121の溶液を冷却して結晶を析出させ、その湿結晶をろ過して得る工程、(iii)得られた湿結晶を乾燥させる工程、を含むことが特徴である。
 好ましくは、(ii)の工程で、種晶を加えることで、KUS121の二水和物結晶体制御の確実性が向上される。
 (i)の工程で、「医薬品の製造に一般的に使用される溶媒」とは、医薬品の製造において通常用いられる溶媒であれば特に制限はないが、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メトキシエタノール、1-メトキシ-2-プロパノール、2-メチル-1-プロパノール、3-メチル-1-ブタノール、1-ペンタノールなどのアルコール系溶媒、その他アセトン、アニソール、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、t-ブチルメチルエーテル、ジメチルスルフォキシド、ジエチルエーテル、ギ酸エチル、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、ペンタン、ニトロメタン、アセトニトリル、アセトン、4-メトキシ-2-ペンタノン、1,2-ジメトキシエタン、トルエン、ピリジン、テトラヒドロフラン、シクロヘキサン、ヘプタン、ビス(2-メトキシエチル)エーテルなどの医薬品の製造で一般的に使用される溶媒が挙げられ、これらの混合溶媒、またはこれらの溶媒とそれ以外の溶媒との混合溶媒であってもよい。好ましくはメタノール、エタノール、または2-プロパノールであり、更に好ましくはエタノールである。
 「医薬品の製造に一般的に使用される溶媒の含水溶媒」の水分含量は、用いられる溶媒の種類にもよるが、通常5%~90%であり、好ましくはメタノールの場合の含水量は10~50%、エタノールの場合の含水量は10~90%(より好ましくは10~60%)、2-プロパノールの場合の含水量は約30%である。
 また、(i)の工程でKUS121の含水溶媒に溶解させる濃度としては、1~20%(w/v)が挙げられ、好ましくは2~10%(w/v)である。
 (i)の工程で加熱する温度としては、用いられる溶媒の種類にもよるが、40~100℃が挙げられ、好ましくは50~80℃、より好ましくは60~80℃である。
 (i)の工程で撹拌時間は、KUS121が十分に溶解すれば特に制限はないが、通常5分以上であり、好ましくは10分以上である。
 (ii)での冷却速度は、通常0.01~1℃/分であり、好ましくは0.05~0.5℃/分である。また、冷却は通常-20~30℃まで行い、好ましくは0~30℃まで行う。通常これらの温度に達した後、結晶が熟成するまで撹拌を続けるか、撹拌を止めて放置する。
 (iii)の乾燥条件においては、通常相対湿度10~100%RHの雰囲気下、温度30~70℃で乾燥し、好ましくは相対湿度30~95%RHの雰囲気下、温度30~60℃で乾燥し、より好ましくは相対湿度40~70%RHの雰囲気下、温度40~60℃で乾燥する。乾燥時間は、通常3時間以上、好ましくは10時間以上行う。
 また、適宜送風して乾燥を行う。
 また、乾燥工程においては、適宜減圧下行う。減圧下の圧力は、通常0.05~20kPa、好ましくは1~20kPaである。なお、減圧下での温度については、通常30~60℃、好ましくは30~50℃で行い、湿度については、乾燥庫内に水を入れたトレーを置くか、水蒸気を含んだ窒素ガスを吹き込むかして調整する。
 好ましい減圧下での態様としては、30~50℃で、水蒸気を飽和させた窒素を乾燥庫に吹き込みながら、圧力1~7kPaで5時間以上乾燥する。また、別の好ましい減圧下での態様としては、乾燥庫内に水を入れたトレーを置き、30~50℃で、圧力2~5kPaで10時間以上乾燥する。
 以下に本発明を、実施例によりさらに具体的に説明するが、本発明はこれに限定されるものではない。
(1)分析方法
 調製した各結晶体は、下記の分析方法を用いて、記載の条件にて分析を行った。
X線粉末回折(XRPD)
(測定条件1)
 粉末X線回折データは、PhotonMax高フラックス9kW回転対陰極X線発生装置(SmartLab 9kW、リガク製)を使用して取得した。すべての回折図は、銅放射線(CuKα、45kV/200mA、λ=1.5418Å)を使用し、Kβフィルタを使用して不要な放射線を減らして取得した。メノウ乳鉢で優しく粉砕した検体を測定台に置き、スキャン範囲3~40°、スキャンスピード20°/分、ステップサイズ0.02°の2θの走査条件で実施した。
(測定条件2)
 粉末X線回折データは、回折計(X’PertPro,PANalytical製)を使用してSi zero-background wafers(Siゼロバックグラウンドウェーハ)上で取得した。すべての回折図は、銅放射線(CuKα,45kV/40mA,λ=1.5418Å)およびX’celeratorTM RTMS(Real Time Multi-Strip)検出器を使用し、ニッケルフィルターを使用して不要な放射線を減らして取得した。走査は、スキャン範囲2~40°、ステップサイズ0.02°の2θで実施した。入射ビーム側の構成は、固定発散スリット(1/4°)、0.04ラジアンソラースリット、散乱防止スリット(1/4°)、および10mmビームマスクであった。回折ビーム側の構成は、固定発散スリット(1/4°)および0.04ラジアンソラースリットであった。
(測定条件3)
 粉末X線回折データは、回折計(MiniFlex600、リガク製)を使用して取得した。すべての回折図は、銅放射線(CuKα,40kV/15mA、λ=1.5418Å)を使用し、Kβフィルタを使用して不要な放射線を減らして取得した。走査は、スキャン範囲5~50°、スキャンスピード5°/分、ステップサイズ0.02°の2θで実施した。
示差走査熱量測定(DSC)
 示差走査熱量測定は、オートサンプラーと冷蔵冷却システムを備えた示差走査熱量計(TA Instruments Q100またはQ2000、TA Instruments製)を使用して実施した。DSCサーモグラムは、固体試料およそ1~10mgを圧着されたアルミニウムパンに入れ、40mL/分のNパージ下、10℃/分または15℃/分で加熱して取得した。
熱重量分析(TGA)
 熱重量分析は、熱重量分析装置(TA Instruments Q50またはQ500、TA Instruments製)を使用して実施した。TGAサームグラムは、固体試料およそ1~10mgをアルミニウムパンに入れ、40mL/分のNパージ下、10℃/分または15℃/分で加熱して取得した。
ラマン散乱スペクトル(FT-Raman)
 ラマンスペクトルは、1064nmのNd:YVO4励起レーザー、InGaAsおよび液体窒素冷却Ge検出器、およびMicroStageを備えたラマン装置(NicoletNXR9650またはNXR960分光計、Thermo Electron製)を使用して実施した。すべてのスペクトルは、Happ-Genzelアポダイゼーション機能と2レベルのゼロフィリングを使用して、4cm-1の解像度、64~1024スキャンで取得した。検出器の飽和が観察された場合は、ニュートラルデンシティフィルター(1.0オプティカルデンシティ)を使用した。
顕微鏡写真(PLM)
 顕微鏡写真は、オリンパスDP70カメラを備えたBX60偏光顕微鏡(オリンパス製)を使用して撮影した。
水分測定
 それぞれの結晶について、以下の3つのいずれかの方法で水分を測定した。
(KUS121無水物結晶の水分測定)
 水分値は、電量法水分計(CA-100、日東精工アナリテック製)を使用し、固体試料およそ0.5g、溶媒にはアクアミクロンGEX、滴定剤にはアクアミクロンSS 3mgを使用して測定した。
(KUS121二水和物結晶の水分測定)
 水分値は、ヨウ素発生用電解槽スターラー、定電流電位差計を備えたカールフィッシャー水分計(AQUACOUNTER AQV-2100、平沼産業製)を使用し、固体試料およそ0.2g、溶媒にはアクアミクロンGEX、滴定剤にはアクアミクロンSS-Z 3mgを使用して測定した。
(KUS121一水和物結晶および四水和物結晶の水分測定)
 水分値は、示差走査熱量測定(示差走査熱量計TA Instruments Q100またはQ2000、TA Instruments製)を使用して測定したDSCサーモグラムと、熱重量分析(熱重量分析装置TA Instruments Q50またはQ500、TA Instruments製)を使用して測定したTGAサームグラムから算出した。測定は、固体試料およそ1~10mgをアルミニウムパンに入れ、40mL/分のNパージ下、10℃/分または15℃/分で加熱して実施した。
(2)結晶体の製造
 KUS121の二水和物結晶、無水物結晶、一水和物結晶、四水和物結晶を以下の手順で調製した。なお、二水和物結晶の乾燥工程については、常圧下と減圧下の2つの方法でそれぞれ行った。
二水和物結晶の製造(晶析)
 KUS121(5.00g)に90%エタノール水溶液(120mL)を加えて、67℃以上で攪拌して溶解させた。この溶液を熱時ろ過し、90%エタノール水溶液(5mL)で容器とろ過器を洗いこんだ。ろ過液を67℃以上に加温して30分間攪拌し、冷却速度0.1℃/分で60℃まで冷却した。60℃で1時間攪拌を続け結晶を熟成させ、冷却速度0.05~0.5℃/分で22℃まで冷却した。析出した結晶をろ取し、90%エタノール水溶液(5mL)で洗浄し、KUS121二水和物の湿結晶を得た(net収率97.3%)。
水分値:13.0%
二水和物結晶の製造(常圧乾燥)
 上記の手順で得られるKUS121二水和物の湿結晶(24.0g、net17.4g)を50℃で送風乾燥し、KUS121二水和物の乾燥結晶を得た(収率91.7%)。
水分値:7.4%
二水和物結晶の製造(減圧乾燥)
 上記の手順で得られるKUS121二水和物の湿結晶(2.32kg)をバット2枚に分けて敷き詰め、蒸留水(4.56g)を入れたビーカーとともに減圧乾燥機内の棚に並べた。乾燥機の外温を35℃、真空度を2.86~2.96kPaに制御して約16時間減圧乾燥し、KUS121二水和物の乾燥結晶1.92kgを得た。
水分値:7.7%
乾燥後の二水和物結晶の分析結果
粉末X線回折(測定条件1、図1参照)(2θ):6.9°、13.3°、14.2°、15.0°、17.1°、18.5°、19.6°、21.1°、22.9°、23.7°、26.7°、27.4°、29.5°、34.1°、36.1°
示差走査熱量測定(DSC)および熱重量分析(TGA):図2参照
ラマン散乱スペクトル(FT-Raman):図3参照
顕微鏡写真(PLM):図4参照
無水物結晶の製造
 KUS121(71.8g)とエタノール(5840g)をコルベンに仕込み、76~77℃(還流)で30分攪拌して溶解させた。攪拌下、65~70℃まで冷却して熱時ろ過を行い、不溶物を除去した。この操作を3バッチ繰り返して行い、ろ過液を一つにまとめて1バッチとした。攪拌下、水浴を用いて27℃まで冷却し、さらに氷浴を用いて4℃まで冷却した。攪拌下、3~4℃で1時間析出固体を熟成後、結晶をろ取し、エタノール292gで3回掛け洗いした。結晶を30~80℃で61時間減圧乾燥し、KUS121無水物結晶を得た(収率54.8%)。
水分値2.3%。
粉末X線回折(測定条件3、図5参照)(2θ):7.2°、13.2°、15.4°、16.2°、17.5°、20.0°、22.6°、25.9°、27.3°
一水和物結晶の製造
 上記の手順で得られるKUS121二水和物結晶(67mg)を、乾燥窒素を流しながら減圧乾燥(17inHg、40℃)し、KUS121一水和物結晶を得た(収率100%)。
水分値:3.4%
粉末X線回折(測定条件2、図6参照)(2θ):10.1°、10.9°、13.2°、15.2°、20.4°、23.1°、23.8°、26.4°、29.6°、30.6°
示差走査熱量測定(DSC)および熱重量分析(TGA):図7参照
四水和物結晶の製造
 KUS121(250mg)を40%エタノール(2.5mL)に67℃で溶解させた。溶液を冷却速度0.1℃/分で60℃まで冷却し、1時間攪拌した。さらに冷却速度0.1℃/分で55℃まで冷却し、1時間攪拌して結晶を析出させた。懸濁液を冷却速度0.1℃/分で22℃まで冷却して終夜攪拌した。析出結晶を減圧濾過し、1時間送風乾燥してKUS121四水和物結晶を得た(収率74%)。
水分値:13.9%
粉末X線回折(測定条件2、図8参照)(2θ):6.9°、12.5°、13.0°、14.4°、16.3°、18.8°、21.5°、23.5°、24.3°、25.1°
示差走査熱量測定(DSC)および熱重量分析(TGA):図9参照
(3)安定性試験
 KUS121の二水和物結晶について、通常の保存安定性試験(25℃/60%RH、18箇月間)、および加速試験条件下での保存安定性試験(40℃/75%RH、6箇月間)を実施した。また、比較として、KUS121の無水和物結晶については、加速試験条件下(40℃/75%RH、6箇月間)および成り行き室温条件下での安定性観察(30箇月間)を実施した。結果を下表に示す。
 なお、KUS121の一水和物結晶および四水和物結晶についても、安定性について観察を行った。その結果も下表に示す。
Figure JPOXMLDOC01-appb-I000002


Figure JPOXMLDOC01-appb-I000003


Figure JPOXMLDOC01-appb-I000004
 上記のように二水和物結晶は、他の水和物結晶より保存安定性に優れ、加速試験条件下においても、極めて安定であった。

Claims (13)

  1.  X線粉末回折において、6.9°、13.3°、14.2°、15.0°、17.1°、18.5°、19.6°、21.1°、22.9°、23.7°、26.7°、27.4°、29.5°、34.1°、および36.1°から選択される4つ以上の回折角(2θ±0.5)を有する粉末X線回折パターンを特徴とする、4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体。
  2.  X線粉末回折において、6.9°、13.3°、14.2°、15.0°、17.1°、18.5°、19.6°、21.1°、22.9°、23.7°、26.7°、27.4°、29.5°、34.1°、および36.1°から選択される4つ以上の回折角(2θ±0.2)を有する粉末X線回折パターンを特徴とする、4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体。
  3.  選択される回折角が5つ以上である、請求項1または2の結晶体。
  4.  選択される回折角が10個以上である、請求項1または2の結晶体。
  5.  選択される5つ以上の回折角が、6.9°、13.3°、14.2°、15.0°、および17.1°の5つである、請求項3の結晶体。
  6.  選択される10個以上の回折角が、6.9°、13.3°、14.2°、15.0°、17.1°、19.6°、21.1°、26.7°、27.4°、および29.5°の10個である、請求項4の結晶体。
  7.  4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体の製造方法であって、
    (i)KUS121を、医薬品の製造に一般的に使用される溶媒の含水溶媒に適宜加熱しながら溶解させ、40~100℃で撹拌し、
    (ii)徐々に冷却して結晶を析出させ、ろ過して結晶体を得、
    (iii)得られた結晶体を相対湿度10~100%RHの雰囲気下、温度30~70℃で乾燥することで、4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体を得ることを特徴とする製造方法。
  8.  4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体の製造方法であって、
    (i)KUS121を、医薬品の製造に一般的に使用される溶媒の含水溶媒に、1~20%(w/v)の濃度で適宜加熱しながら溶解させ、40~100℃で5分以上撹拌し、
    (ii)冷却速度0.01℃/分~1℃/分で-20℃~30℃まで冷却して結晶を析出させ、ろ過して結晶体を得、
    (iii)得られた結晶体を相対湿度10~100%RHの雰囲気下、温度30~70℃で乾燥することで、4-アミノ-3-[6-(4-フルオロ-2-メチルフェニル)ピリジン-3-イルアゾ]ナフタレン-1-スルホン酸ナトリウム塩・二水和物の結晶体を得ることを特徴とする製造方法。
  9.  一般的に使用される溶媒が、アルコール系溶媒を含む、請求項7または8の製造方法。
  10.  アルコール系溶媒が、メタノール、エタノール、1-プロパノール、および/または2-プロパノールである、請求項9の製造方法。
  11.  (iii)の乾燥工程を常圧下10時間以上行う、請求項7~10のいずれかの製造方法。
  12.  (iii)の乾燥工程を、乾燥庫内に水を入れたトレーを置き、30~50℃で、圧力2~5kPaで10時間以上行う、請求項7~10のいずれかの製造方法。
  13.  (iii)の乾燥工程を、30~50℃で、水蒸気を飽和させた窒素を乾燥庫に吹き込みながら、圧力1~7kPaで5時間以上行う、請求項7~10のいずれかの製造方法。
PCT/JP2023/038651 2022-10-27 2023-10-26 ナフタレン誘導体の結晶 WO2024090512A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-172131 2022-10-27
JP2022172131 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090512A1 true WO2024090512A1 (ja) 2024-05-02

Family

ID=90831005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038651 WO2024090512A1 (ja) 2022-10-27 2023-10-26 ナフタレン誘導体の結晶

Country Status (1)

Country Link
WO (1) WO2024090512A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014994A1 (ja) * 2010-07-30 2012-02-02 ダイトーケミックス株式会社 ナフタレン誘導体
WO2012043891A1 (ja) * 2010-09-30 2012-04-05 ダイトーケミックス株式会社 眼疾患処置薬
WO2014129495A1 (ja) * 2013-02-20 2014-08-28 国立大学法人京都大学 眼疾患処置薬
WO2015033981A1 (ja) * 2013-09-04 2015-03-12 国立大学法人京都大学 レプチン抵抗性を改善する医薬組成物
WO2015129809A1 (ja) * 2014-02-28 2015-09-03 国立大学法人京都大学 虚血性眼疾患の処置用の医薬組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014994A1 (ja) * 2010-07-30 2012-02-02 ダイトーケミックス株式会社 ナフタレン誘導体
WO2012043891A1 (ja) * 2010-09-30 2012-04-05 ダイトーケミックス株式会社 眼疾患処置薬
WO2014129495A1 (ja) * 2013-02-20 2014-08-28 国立大学法人京都大学 眼疾患処置薬
WO2015033981A1 (ja) * 2013-09-04 2015-03-12 国立大学法人京都大学 レプチン抵抗性を改善する医薬組成物
WO2015129809A1 (ja) * 2014-02-28 2015-09-03 国立大学法人京都大学 虚血性眼疾患の処置用の医薬組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUHIDE ASHIZAWA: "Iyakuhin Kessho no Bunshi Jotai ni Kansuru Bussei Hyoka (12) Shio Kesshokei no Saitekika to Kesshoka Gijutsu [Physico-Chemical Studies on the Molecular Details of Drug Crystals]", PHARM TECH JAPAN, JIHO, INC., JP, vol. 18, no. 10, 1 January 2002 (2002-01-01), JP , pages 81 (1629) - 96 (1644), XP008177312, ISSN: 0910-4739 *
NORIYUKI TAKATA: "Soyaku Dankai ni Okeru Gen'yaku Form Screening to Sentaku - API form screening and selection in drug discovery stage", PHARM STAGE, TECHNICAL INFORMATION INSTITUTE, JP, vol. 6, no. 10, 1 January 2007 (2007-01-01), JP , pages 20 - 25, XP008145548, ISSN: 1346-3918 *

Similar Documents

Publication Publication Date Title
JP7476370B2 (ja) 6-(シクロプロパンカルボキサミド)-4-((2-メトキシ-3-(1-メチル-1H-1,2,4-トリアゾール-3-イル)フェニル)アミノ)-N-(メチル-d3)ピリダジン-3-カルボキサミドの結晶形態
US11613529B2 (en) Crystalline form of 6-(cyclopropanecarboxamido)-4-((2-methoxy-3-(1-methyl-1H-1,2,4-triazol-3-yl)phenyl)amino)-N-(methyl-D3) pyridazine-3-carboxamide
KR20220020890A (ko) 6-(시클로프로판카르복스아미도)-4-((2-메톡시-3-(1-메틸-1h-1,2,4-트리아졸-3-일)페닐)아미노)-n-(메틸-d3) 피리다진-3-카르복스아미드의 결정질 염 형태
CZ2015504A3 (cs) Krystalické formy obeticholové kyseliny
JP6628884B2 (ja) Ahu−377とバルサルタン三ナトリウム塩の共晶水和物の結晶形iiの製造方法
CA2771011A1 (en) Crystalline compound of 7-[(3r)-3-amino-1-oxo-4-(2,4,5-trifluorophenyl)butyl]-5,6,7,8-tetrahydro-3-(trifluoromethyl)-1,2,4-triazolo[4,3-a]pyrazine
EP4361164A1 (en) Crystal forms of glucosamine derivative, and preparation method therefor and use thereof
KR20230137962A (ko) 6-(시클로프로판카르복스아미도)-4-((2-메톡시-3-(1-메틸-1h-1,2,4-트리아졸-3-일)페닐)아미노)-n-(메틸-d3)피리다진-3-카르복스아미드의 결정 형태
WO2024090512A1 (ja) ナフタレン誘導体の結晶
CN113439079A (zh) 制造二聚体萘二甲酰亚胺及其固态形式的方法
JP6014844B2 (ja) エピルビシン塩酸塩の結晶化
EP4313974A1 (en) Crystal forms of 6-(cyclopropanecarboxamido)-4-((2-methoxy-3-(1-methyl-1h-1,2,4-triazol-3-yl)phenyl)amino)-n-(methyl-d3)pyridazine-3-carboxamide
CN115109085A (zh) L-草铵膦铵盐的固体形式及其制备方法和用途
EP1971613A1 (en) Crystalline form of vinflunine ditartrate
EP3917931A1 (en) Solid state forms of oclacitinib maleate
EP4190320A1 (en) Crystalline form of phentermine hydrochloride and process for obtaining same
US20240300882A1 (en) Crystalline forms of a diffusion enhancing compound
EP4301749A1 (en) Solid forms of a 4h-pyran-4-one structured cyp11a1 inhibitor
EP4387968A1 (en) Crystal forms of 6-(cyclopropanecarboxamido)-4-((2-methoxy-3-(1-methyl-1h-1,2,4-triazol-3-yl)phenyl)amino)-n-(methyl-d3)pyridazine-3-carboxamide
JP2022114727A (ja) リナグリプチン結晶及びその製造法
CN115181109A (zh) 吗啡喃衍生物的晶体及其制备方法
EA044397B1 (ru) КРИСТАЛЛИЧЕСКАЯ ФОРМА 6-(ЦИКЛОПРОПАНКАРБОКСАМИДО)-4-((2-МЕТОКСИ-3-(1-МЕТИЛ-1H-1,2,4-ТРИАЗОЛ-3-ИЛ)ФЕНИЛ)АМИНО)-N-(МЕТИЛ-d3)ПИРИДАЗИН-3-КАРБОКСАМИДА
EA044645B1 (ru) Способ получения апиксабана

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882716

Country of ref document: EP

Kind code of ref document: A1